1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
|
// SPDX-License-Identifier: GPL-2.0
/*
* 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
* - BMI088
* - BMI085
* - BMI090L
*
* Copyright (c) 2018-2021, Topic Embedded Products
*/
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <asm/unaligned.h>
#include "bmi088-accel.h"
#define BMI088_ACCEL_REG_CHIP_ID 0x00
#define BMI088_ACCEL_REG_ERROR 0x02
#define BMI088_ACCEL_REG_INT_STATUS 0x1D
#define BMI088_ACCEL_INT_STATUS_BIT_DRDY BIT(7)
#define BMI088_ACCEL_REG_RESET 0x7E
#define BMI088_ACCEL_RESET_VAL 0xB6
#define BMI088_ACCEL_REG_PWR_CTRL 0x7D
#define BMI088_ACCEL_REG_PWR_CONF 0x7C
#define BMI088_ACCEL_REG_INT_MAP_DATA 0x58
#define BMI088_ACCEL_INT_MAP_DATA_BIT_INT1_DRDY BIT(2)
#define BMI088_ACCEL_INT_MAP_DATA_BIT_INT2_FWM BIT(5)
#define BMI088_ACCEL_REG_INT1_IO_CONF 0x53
#define BMI088_ACCEL_INT1_IO_CONF_BIT_ENABLE_OUT BIT(3)
#define BMI088_ACCEL_INT1_IO_CONF_BIT_LVL BIT(1)
#define BMI088_ACCEL_REG_INT2_IO_CONF 0x54
#define BMI088_ACCEL_INT2_IO_CONF_BIT_ENABLE_OUT BIT(3)
#define BMI088_ACCEL_INT2_IO_CONF_BIT_LVL BIT(1)
#define BMI088_ACCEL_REG_ACC_CONF 0x40
#define BMI088_ACCEL_MODE_ODR_MASK 0x0f
#define BMI088_ACCEL_REG_ACC_RANGE 0x41
#define BMI088_ACCEL_RANGE_3G 0x00
#define BMI088_ACCEL_RANGE_6G 0x01
#define BMI088_ACCEL_RANGE_12G 0x02
#define BMI088_ACCEL_RANGE_24G 0x03
#define BMI088_ACCEL_REG_TEMP 0x22
#define BMI088_ACCEL_REG_TEMP_SHIFT 5
#define BMI088_ACCEL_TEMP_UNIT 125
#define BMI088_ACCEL_TEMP_OFFSET 23000
#define BMI088_ACCEL_REG_XOUT_L 0x12
#define BMI088_ACCEL_AXIS_TO_REG(axis) \
(BMI088_ACCEL_REG_XOUT_L + (axis * 2))
#define BMI088_ACCEL_MAX_STARTUP_TIME_US 1000
#define BMI088_AUTO_SUSPEND_DELAY_MS 2000
#define BMI088_ACCEL_REG_FIFO_STATUS 0x0E
#define BMI088_ACCEL_REG_FIFO_CONFIG0 0x48
#define BMI088_ACCEL_REG_FIFO_CONFIG1 0x49
#define BMI088_ACCEL_REG_FIFO_DATA 0x3F
#define BMI088_ACCEL_FIFO_LENGTH 100
#define BMI088_ACCEL_FIFO_MODE_FIFO 0x40
#define BMI088_ACCEL_FIFO_MODE_STREAM 0x80
#define BMIO088_ACCEL_ACC_RANGE_MSK GENMASK(1, 0)
enum bmi088_accel_axis {
AXIS_X,
AXIS_Y,
AXIS_Z,
};
static const int bmi088_sample_freqs[] = {
12, 500000,
25, 0,
50, 0,
100, 0,
200, 0,
400, 0,
800, 0,
1600, 0,
};
/* Available OSR (over sampling rate) sets the 3dB cut-off frequency */
enum bmi088_osr_modes {
BMI088_ACCEL_MODE_OSR_NORMAL = 0xA,
BMI088_ACCEL_MODE_OSR_2 = 0x9,
BMI088_ACCEL_MODE_OSR_4 = 0x8,
};
/* Available ODR (output data rates) in Hz */
enum bmi088_odr_modes {
BMI088_ACCEL_MODE_ODR_12_5 = 0x5,
BMI088_ACCEL_MODE_ODR_25 = 0x6,
BMI088_ACCEL_MODE_ODR_50 = 0x7,
BMI088_ACCEL_MODE_ODR_100 = 0x8,
BMI088_ACCEL_MODE_ODR_200 = 0x9,
BMI088_ACCEL_MODE_ODR_400 = 0xa,
BMI088_ACCEL_MODE_ODR_800 = 0xb,
BMI088_ACCEL_MODE_ODR_1600 = 0xc,
};
struct bmi088_scale_info {
int scale;
u8 reg_range;
};
struct bmi088_accel_chip_info {
const char *name;
u8 chip_id;
const struct iio_chan_spec *channels;
int num_channels;
const int scale_table[4][2];
};
struct bmi088_accel_data {
struct regmap *regmap;
const struct bmi088_accel_chip_info *chip_info;
u8 buffer[2] __aligned(IIO_DMA_MINALIGN); /* shared DMA safe buffer */
};
static const struct regmap_range bmi088_volatile_ranges[] = {
/* All registers below 0x40 are volatile, except the CHIP ID. */
regmap_reg_range(BMI088_ACCEL_REG_ERROR, 0x3f),
/* Mark the RESET as volatile too, it is self-clearing */
regmap_reg_range(BMI088_ACCEL_REG_RESET, BMI088_ACCEL_REG_RESET),
};
static const struct regmap_access_table bmi088_volatile_table = {
.yes_ranges = bmi088_volatile_ranges,
.n_yes_ranges = ARRAY_SIZE(bmi088_volatile_ranges),
};
const struct regmap_config bmi088_regmap_conf = {
.reg_bits = 8,
.val_bits = 8,
.max_register = 0x7E,
.volatile_table = &bmi088_volatile_table,
.cache_type = REGCACHE_RBTREE,
};
EXPORT_SYMBOL_NS_GPL(bmi088_regmap_conf, IIO_BMI088);
static int bmi088_accel_power_up(struct bmi088_accel_data *data)
{
int ret;
/* Enable accelerometer and temperature sensor */
ret = regmap_write(data->regmap, BMI088_ACCEL_REG_PWR_CTRL, 0x4);
if (ret)
return ret;
/* Datasheet recommends to wait at least 5ms before communication */
usleep_range(5000, 6000);
/* Disable suspend mode */
ret = regmap_write(data->regmap, BMI088_ACCEL_REG_PWR_CONF, 0x0);
if (ret)
return ret;
/* Recommended at least 1ms before further communication */
usleep_range(1000, 1200);
return 0;
}
static int bmi088_accel_power_down(struct bmi088_accel_data *data)
{
int ret;
/* Enable suspend mode */
ret = regmap_write(data->regmap, BMI088_ACCEL_REG_PWR_CONF, 0x3);
if (ret)
return ret;
/* Recommended at least 1ms before further communication */
usleep_range(1000, 1200);
/* Disable accelerometer and temperature sensor */
ret = regmap_write(data->regmap, BMI088_ACCEL_REG_PWR_CTRL, 0x0);
if (ret)
return ret;
/* Datasheet recommends to wait at least 5ms before communication */
usleep_range(5000, 6000);
return 0;
}
static int bmi088_accel_get_sample_freq(struct bmi088_accel_data *data,
int *val, int *val2)
{
unsigned int value;
int ret;
ret = regmap_read(data->regmap, BMI088_ACCEL_REG_ACC_CONF,
&value);
if (ret)
return ret;
value &= BMI088_ACCEL_MODE_ODR_MASK;
value -= BMI088_ACCEL_MODE_ODR_12_5;
value <<= 1;
if (value >= ARRAY_SIZE(bmi088_sample_freqs) - 1)
return -EINVAL;
*val = bmi088_sample_freqs[value];
*val2 = bmi088_sample_freqs[value + 1];
return IIO_VAL_INT_PLUS_MICRO;
}
static int bmi088_accel_set_sample_freq(struct bmi088_accel_data *data, int val)
{
unsigned int regval;
int index = 0;
while (index < ARRAY_SIZE(bmi088_sample_freqs) &&
bmi088_sample_freqs[index] != val)
index += 2;
if (index >= ARRAY_SIZE(bmi088_sample_freqs))
return -EINVAL;
regval = (index >> 1) + BMI088_ACCEL_MODE_ODR_12_5;
return regmap_update_bits(data->regmap, BMI088_ACCEL_REG_ACC_CONF,
BMI088_ACCEL_MODE_ODR_MASK, regval);
}
static int bmi088_accel_set_scale(struct bmi088_accel_data *data, int val, int val2)
{
unsigned int i;
for (i = 0; i < 4; i++)
if (val == data->chip_info->scale_table[i][0] &&
val2 == data->chip_info->scale_table[i][1])
break;
if (i == 4)
return -EINVAL;
return regmap_write(data->regmap, BMI088_ACCEL_REG_ACC_RANGE, i);
}
static int bmi088_accel_get_temp(struct bmi088_accel_data *data, int *val)
{
int ret;
s16 temp;
ret = regmap_bulk_read(data->regmap, BMI088_ACCEL_REG_TEMP,
&data->buffer, sizeof(__be16));
if (ret)
return ret;
/* data->buffer is cacheline aligned */
temp = be16_to_cpu(*(__be16 *)data->buffer);
*val = temp >> BMI088_ACCEL_REG_TEMP_SHIFT;
return IIO_VAL_INT;
}
static int bmi088_accel_get_axis(struct bmi088_accel_data *data,
struct iio_chan_spec const *chan,
int *val)
{
int ret;
s16 raw_val;
ret = regmap_bulk_read(data->regmap,
BMI088_ACCEL_AXIS_TO_REG(chan->scan_index),
data->buffer, sizeof(__le16));
if (ret)
return ret;
raw_val = le16_to_cpu(*(__le16 *)data->buffer);
*val = raw_val;
return IIO_VAL_INT;
}
static int bmi088_accel_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct bmi088_accel_data *data = iio_priv(indio_dev);
struct device *dev = regmap_get_device(data->regmap);
int ret;
int reg;
switch (mask) {
case IIO_CHAN_INFO_RAW:
switch (chan->type) {
case IIO_TEMP:
ret = pm_runtime_resume_and_get(dev);
if (ret)
return ret;
ret = bmi088_accel_get_temp(data, val);
goto out_read_raw_pm_put;
case IIO_ACCEL:
ret = pm_runtime_resume_and_get(dev);
if (ret)
return ret;
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
goto out_read_raw_pm_put;
ret = bmi088_accel_get_axis(data, chan, val);
iio_device_release_direct_mode(indio_dev);
if (!ret)
ret = IIO_VAL_INT;
goto out_read_raw_pm_put;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_OFFSET:
switch (chan->type) {
case IIO_TEMP:
/* Offset applies before scale */
*val = BMI088_ACCEL_TEMP_OFFSET/BMI088_ACCEL_TEMP_UNIT;
return IIO_VAL_INT;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_TEMP:
/* 0.125 degrees per LSB */
*val = BMI088_ACCEL_TEMP_UNIT;
return IIO_VAL_INT;
case IIO_ACCEL:
ret = pm_runtime_resume_and_get(dev);
if (ret)
return ret;
ret = regmap_read(data->regmap,
BMI088_ACCEL_REG_ACC_RANGE, ®);
if (ret)
goto out_read_raw_pm_put;
reg = FIELD_GET(BMIO088_ACCEL_ACC_RANGE_MSK, reg);
*val = data->chip_info->scale_table[reg][0];
*val2 = data->chip_info->scale_table[reg][1];
ret = IIO_VAL_INT_PLUS_MICRO;
goto out_read_raw_pm_put;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_SAMP_FREQ:
ret = pm_runtime_resume_and_get(dev);
if (ret)
return ret;
ret = bmi088_accel_get_sample_freq(data, val, val2);
goto out_read_raw_pm_put;
default:
break;
}
return -EINVAL;
out_read_raw_pm_put:
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return ret;
}
static int bmi088_accel_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long mask)
{
struct bmi088_accel_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_SCALE:
*vals = (const int *)data->chip_info->scale_table;
*length = 8;
*type = IIO_VAL_INT_PLUS_MICRO;
return IIO_AVAIL_LIST;
case IIO_CHAN_INFO_SAMP_FREQ:
*type = IIO_VAL_INT_PLUS_MICRO;
*vals = bmi088_sample_freqs;
*length = ARRAY_SIZE(bmi088_sample_freqs);
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
static int bmi088_accel_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct bmi088_accel_data *data = iio_priv(indio_dev);
struct device *dev = regmap_get_device(data->regmap);
int ret;
switch (mask) {
case IIO_CHAN_INFO_SCALE:
ret = pm_runtime_resume_and_get(dev);
if (ret)
return ret;
ret = bmi088_accel_set_scale(data, val, val2);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return ret;
case IIO_CHAN_INFO_SAMP_FREQ:
ret = pm_runtime_resume_and_get(dev);
if (ret)
return ret;
ret = bmi088_accel_set_sample_freq(data, val);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return ret;
default:
return -EINVAL;
}
}
#define BMI088_ACCEL_CHANNEL(_axis) { \
.type = IIO_ACCEL, \
.modified = 1, \
.channel2 = IIO_MOD_##_axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
BIT(IIO_CHAN_INFO_SCALE), \
.scan_index = AXIS_##_axis, \
}
static const struct iio_chan_spec bmi088_accel_channels[] = {
{
.type = IIO_TEMP,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_OFFSET),
.scan_index = -1,
},
BMI088_ACCEL_CHANNEL(X),
BMI088_ACCEL_CHANNEL(Y),
BMI088_ACCEL_CHANNEL(Z),
IIO_CHAN_SOFT_TIMESTAMP(3),
};
static const struct bmi088_accel_chip_info bmi088_accel_chip_info_tbl[] = {
[BOSCH_BMI085] = {
.name = "bmi085-accel",
.chip_id = 0x1F,
.channels = bmi088_accel_channels,
.num_channels = ARRAY_SIZE(bmi088_accel_channels),
.scale_table = {{0, 598}, {0, 1196}, {0, 2393}, {0, 4785}},
},
[BOSCH_BMI088] = {
.name = "bmi088-accel",
.chip_id = 0x1E,
.channels = bmi088_accel_channels,
.num_channels = ARRAY_SIZE(bmi088_accel_channels),
.scale_table = {{0, 897}, {0, 1794}, {0, 3589}, {0, 7178}},
},
[BOSCH_BMI090L] = {
.name = "bmi090l-accel",
.chip_id = 0x1A,
.channels = bmi088_accel_channels,
.num_channels = ARRAY_SIZE(bmi088_accel_channels),
.scale_table = {{0, 897}, {0, 1794}, {0, 3589}, {0, 7178}},
},
};
static const struct iio_info bmi088_accel_info = {
.read_raw = bmi088_accel_read_raw,
.write_raw = bmi088_accel_write_raw,
.read_avail = bmi088_accel_read_avail,
};
static const unsigned long bmi088_accel_scan_masks[] = {
BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
0
};
static int bmi088_accel_chip_init(struct bmi088_accel_data *data, enum bmi_device_type type)
{
struct device *dev = regmap_get_device(data->regmap);
int ret, i;
unsigned int val;
if (type >= BOSCH_UNKNOWN)
return -ENODEV;
/* Do a dummy read to enable SPI interface, won't harm I2C */
regmap_read(data->regmap, BMI088_ACCEL_REG_INT_STATUS, &val);
/*
* Reset chip to get it in a known good state. A delay of 1ms after
* reset is required according to the data sheet
*/
ret = regmap_write(data->regmap, BMI088_ACCEL_REG_RESET,
BMI088_ACCEL_RESET_VAL);
if (ret)
return ret;
usleep_range(1000, 2000);
/* Do a dummy read again after a reset to enable the SPI interface */
regmap_read(data->regmap, BMI088_ACCEL_REG_INT_STATUS, &val);
/* Read chip ID */
ret = regmap_read(data->regmap, BMI088_ACCEL_REG_CHIP_ID, &val);
if (ret) {
dev_err(dev, "Error: Reading chip id\n");
return ret;
}
/* Validate chip ID */
for (i = 0; i < ARRAY_SIZE(bmi088_accel_chip_info_tbl); i++)
if (bmi088_accel_chip_info_tbl[i].chip_id == val)
break;
if (i == ARRAY_SIZE(bmi088_accel_chip_info_tbl))
data->chip_info = &bmi088_accel_chip_info_tbl[type];
else
data->chip_info = &bmi088_accel_chip_info_tbl[i];
if (i != type)
dev_warn(dev, "unexpected chip id 0x%X\n", val);
return 0;
}
int bmi088_accel_core_probe(struct device *dev, struct regmap *regmap,
int irq, enum bmi_device_type type)
{
struct bmi088_accel_data *data;
struct iio_dev *indio_dev;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
dev_set_drvdata(dev, indio_dev);
data->regmap = regmap;
ret = bmi088_accel_chip_init(data, type);
if (ret)
return ret;
indio_dev->channels = data->chip_info->channels;
indio_dev->num_channels = data->chip_info->num_channels;
indio_dev->name = data->chip_info->name;
indio_dev->available_scan_masks = bmi088_accel_scan_masks;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &bmi088_accel_info;
/* Enable runtime PM */
pm_runtime_get_noresume(dev);
pm_runtime_set_suspended(dev);
pm_runtime_enable(dev);
/* We need ~6ms to startup, so set the delay to 6 seconds */
pm_runtime_set_autosuspend_delay(dev, 6000);
pm_runtime_use_autosuspend(dev);
pm_runtime_put(dev);
ret = iio_device_register(indio_dev);
if (ret)
dev_err(dev, "Unable to register iio device\n");
return ret;
}
EXPORT_SYMBOL_NS_GPL(bmi088_accel_core_probe, IIO_BMI088);
void bmi088_accel_core_remove(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct bmi088_accel_data *data = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
pm_runtime_disable(dev);
pm_runtime_set_suspended(dev);
bmi088_accel_power_down(data);
}
EXPORT_SYMBOL_NS_GPL(bmi088_accel_core_remove, IIO_BMI088);
static int bmi088_accel_runtime_suspend(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct bmi088_accel_data *data = iio_priv(indio_dev);
return bmi088_accel_power_down(data);
}
static int bmi088_accel_runtime_resume(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct bmi088_accel_data *data = iio_priv(indio_dev);
return bmi088_accel_power_up(data);
}
EXPORT_NS_GPL_RUNTIME_DEV_PM_OPS(bmi088_accel_pm_ops,
bmi088_accel_runtime_suspend,
bmi088_accel_runtime_resume, NULL,
IIO_BMI088);
MODULE_AUTHOR("Niek van Agt <niek.van.agt@topicproducts.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("BMI088 accelerometer driver (core)");
|