1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
|
// SPDX-License-Identifier: GPL-2.0
/*
* ADMFM2000 Dual Microwave Down Converter
*
* Copyright 2024 Analog Devices Inc.
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/iio/iio.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#define ADMFM2000_MIXER_MODE 0
#define ADMFM2000_DIRECT_IF_MODE 1
#define ADMFM2000_DSA_GPIOS 5
#define ADMFM2000_MODE_GPIOS 2
#define ADMFM2000_MAX_GAIN 0
#define ADMFM2000_MIN_GAIN -31000
#define ADMFM2000_DEFAULT_GAIN -0x20
struct admfm2000_state {
struct mutex lock; /* protect sensor state */
struct gpio_desc *sw1_ch[2];
struct gpio_desc *sw2_ch[2];
struct gpio_desc *dsa1_gpios[5];
struct gpio_desc *dsa2_gpios[5];
u32 gain[2];
};
static int admfm2000_mode(struct iio_dev *indio_dev, u32 chan, u32 mode)
{
struct admfm2000_state *st = iio_priv(indio_dev);
int i;
switch (mode) {
case ADMFM2000_MIXER_MODE:
for (i = 0; i < ADMFM2000_MODE_GPIOS; i++) {
gpiod_set_value_cansleep(st->sw1_ch[i], (chan == 0) ? 1 : 0);
gpiod_set_value_cansleep(st->sw2_ch[i], (chan == 0) ? 0 : 1);
}
return 0;
case ADMFM2000_DIRECT_IF_MODE:
for (i = 0; i < ADMFM2000_MODE_GPIOS; i++) {
gpiod_set_value_cansleep(st->sw1_ch[i], (chan == 0) ? 0 : 1);
gpiod_set_value_cansleep(st->sw2_ch[i], (chan == 0) ? 1 : 0);
}
return 0;
default:
return -EINVAL;
}
}
static int admfm2000_attenuation(struct iio_dev *indio_dev, u32 chan, u32 value)
{
struct admfm2000_state *st = iio_priv(indio_dev);
int i;
switch (chan) {
case 0:
for (i = 0; i < ADMFM2000_DSA_GPIOS; i++)
gpiod_set_value_cansleep(st->dsa1_gpios[i], value & (1 << i));
return 0;
case 1:
for (i = 0; i < ADMFM2000_DSA_GPIOS; i++)
gpiod_set_value_cansleep(st->dsa2_gpios[i], value & (1 << i));
return 0;
default:
return -EINVAL;
}
}
static int admfm2000_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val,
int *val2, long mask)
{
struct admfm2000_state *st = iio_priv(indio_dev);
int gain;
switch (mask) {
case IIO_CHAN_INFO_HARDWAREGAIN:
mutex_lock(&st->lock);
gain = ~(st->gain[chan->channel]) * -1000;
*val = gain / 1000;
*val2 = (gain % 1000) * 1000;
mutex_unlock(&st->lock);
return IIO_VAL_INT_PLUS_MICRO_DB;
default:
return -EINVAL;
}
}
static int admfm2000_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int val,
int val2, long mask)
{
struct admfm2000_state *st = iio_priv(indio_dev);
int gain, ret;
if (val < 0)
gain = (val * 1000) - (val2 / 1000);
else
gain = (val * 1000) + (val2 / 1000);
if (gain > ADMFM2000_MAX_GAIN || gain < ADMFM2000_MIN_GAIN)
return -EINVAL;
switch (mask) {
case IIO_CHAN_INFO_HARDWAREGAIN:
mutex_lock(&st->lock);
st->gain[chan->channel] = ~((abs(gain) / 1000) & 0x1F);
ret = admfm2000_attenuation(indio_dev, chan->channel,
st->gain[chan->channel]);
mutex_unlock(&st->lock);
return ret;
default:
return -EINVAL;
}
}
static int admfm2000_write_raw_get_fmt(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
long mask)
{
switch (mask) {
case IIO_CHAN_INFO_HARDWAREGAIN:
return IIO_VAL_INT_PLUS_MICRO_DB;
default:
return -EINVAL;
}
}
static const struct iio_info admfm2000_info = {
.read_raw = &admfm2000_read_raw,
.write_raw = &admfm2000_write_raw,
.write_raw_get_fmt = &admfm2000_write_raw_get_fmt,
};
#define ADMFM2000_CHAN(_channel) { \
.type = IIO_VOLTAGE, \
.output = 1, \
.indexed = 1, \
.channel = _channel, \
.info_mask_separate = BIT(IIO_CHAN_INFO_HARDWAREGAIN), \
}
static const struct iio_chan_spec admfm2000_channels[] = {
ADMFM2000_CHAN(0),
ADMFM2000_CHAN(1),
};
static int admfm2000_channel_config(struct admfm2000_state *st,
struct iio_dev *indio_dev)
{
struct platform_device *pdev = to_platform_device(indio_dev->dev.parent);
struct device *dev = &pdev->dev;
struct gpio_desc **dsa;
struct gpio_desc **sw;
int ret, i;
bool mode;
u32 reg;
device_for_each_child_node_scoped(dev, child) {
ret = fwnode_property_read_u32(child, "reg", ®);
if (ret)
return dev_err_probe(dev, ret,
"Failed to get reg property\n");
if (reg >= indio_dev->num_channels)
return dev_err_probe(dev, -EINVAL, "reg bigger than: %d\n",
indio_dev->num_channels);
if (fwnode_property_present(child, "adi,mixer-mode"))
mode = ADMFM2000_MIXER_MODE;
else
mode = ADMFM2000_DIRECT_IF_MODE;
switch (reg) {
case 0:
sw = st->sw1_ch;
dsa = st->dsa1_gpios;
break;
case 1:
sw = st->sw2_ch;
dsa = st->dsa2_gpios;
break;
default:
return -EINVAL;
}
for (i = 0; i < ADMFM2000_MODE_GPIOS; i++) {
sw[i] = devm_fwnode_gpiod_get_index(dev, child, "switch",
i, GPIOD_OUT_LOW, NULL);
if (IS_ERR(sw[i]))
return dev_err_probe(dev, PTR_ERR(sw[i]),
"Failed to get gpios\n");
}
for (i = 0; i < ADMFM2000_DSA_GPIOS; i++) {
dsa[i] = devm_fwnode_gpiod_get_index(dev, child,
"attenuation", i,
GPIOD_OUT_LOW, NULL);
if (IS_ERR(dsa[i]))
return dev_err_probe(dev, PTR_ERR(dsa[i]),
"Failed to get gpios\n");
}
ret = admfm2000_mode(indio_dev, reg, mode);
if (ret)
return ret;
}
return 0;
}
static int admfm2000_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct admfm2000_state *st;
struct iio_dev *indio_dev;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
st = iio_priv(indio_dev);
indio_dev->name = "admfm2000";
indio_dev->num_channels = ARRAY_SIZE(admfm2000_channels);
indio_dev->channels = admfm2000_channels;
indio_dev->info = &admfm2000_info;
indio_dev->modes = INDIO_DIRECT_MODE;
st->gain[0] = ADMFM2000_DEFAULT_GAIN;
st->gain[1] = ADMFM2000_DEFAULT_GAIN;
mutex_init(&st->lock);
ret = admfm2000_channel_config(st, indio_dev);
if (ret)
return ret;
return devm_iio_device_register(dev, indio_dev);
}
static const struct of_device_id admfm2000_of_match[] = {
{ .compatible = "adi,admfm2000" },
{ }
};
MODULE_DEVICE_TABLE(of, admfm2000_of_match);
static struct platform_driver admfm2000_driver = {
.driver = {
.name = "admfm2000",
.of_match_table = admfm2000_of_match,
},
.probe = admfm2000_probe,
};
module_platform_driver(admfm2000_driver);
MODULE_AUTHOR("Kim Seer Paller <kimseer.paller@analog.com>");
MODULE_DESCRIPTION("ADMFM2000 Dual Microwave Down Converter");
MODULE_LICENSE("GPL");
|