summaryrefslogtreecommitdiffstats
path: root/drivers/iio/humidity/hdc3020.c
blob: a82dcc3da4216f84c68096e779cb8df58fe37971 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
// SPDX-License-Identifier: GPL-2.0+
/*
 * hdc3020.c - Support for the TI HDC3020,HDC3021 and HDC3022
 * temperature + relative humidity sensors
 *
 * Copyright (C) 2023
 *
 * Copyright (C) 2024 Liebherr-Electronics and Drives GmbH
 *
 * Datasheet: https://www.ti.com/lit/ds/symlink/hdc3020.pdf
 */

#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/cleanup.h>
#include <linux/crc8.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/pm.h>
#include <linux/regulator/consumer.h>
#include <linux/units.h>

#include <asm/unaligned.h>

#include <linux/iio/events.h>
#include <linux/iio/iio.h>

#define HDC3020_S_AUTO_10HZ_MOD0	0x2737
#define HDC3020_S_STATUS		0x3041
#define HDC3020_HEATER_DISABLE		0x3066
#define HDC3020_HEATER_ENABLE		0x306D
#define HDC3020_HEATER_CONFIG		0x306E
#define HDC3020_EXIT_AUTO		0x3093
#define HDC3020_S_T_RH_THRESH_LOW	0x6100
#define HDC3020_S_T_RH_THRESH_LOW_CLR	0x610B
#define HDC3020_S_T_RH_THRESH_HIGH_CLR	0x6116
#define HDC3020_S_T_RH_THRESH_HIGH	0x611D
#define HDC3020_R_T_RH_AUTO		0xE000
#define HDC3020_R_T_LOW_AUTO		0xE002
#define HDC3020_R_T_HIGH_AUTO		0xE003
#define HDC3020_R_RH_LOW_AUTO		0xE004
#define HDC3020_R_RH_HIGH_AUTO		0xE005
#define HDC3020_R_T_RH_THRESH_LOW	0xE102
#define HDC3020_R_T_RH_THRESH_LOW_CLR	0xE109
#define HDC3020_R_T_RH_THRESH_HIGH_CLR	0xE114
#define HDC3020_R_T_RH_THRESH_HIGH	0xE11F
#define HDC3020_R_STATUS		0xF32D

#define HDC3020_THRESH_TEMP_MASK	GENMASK(8, 0)
#define HDC3020_THRESH_TEMP_TRUNC_SHIFT	7
#define HDC3020_THRESH_HUM_MASK		GENMASK(15, 9)
#define HDC3020_THRESH_HUM_TRUNC_SHIFT	9

#define HDC3020_STATUS_T_LOW_ALERT	BIT(6)
#define HDC3020_STATUS_T_HIGH_ALERT	BIT(7)
#define HDC3020_STATUS_RH_LOW_ALERT	BIT(8)
#define HDC3020_STATUS_RH_HIGH_ALERT	BIT(9)

#define HDC3020_READ_RETRY_TIMES	10
#define HDC3020_BUSY_DELAY_MS		10

#define HDC3020_CRC8_POLYNOMIAL		0x31

#define HDC3020_MIN_TEMP_MICRO		-39872968
#define HDC3020_MAX_TEMP_MICRO		124875639
#define HDC3020_MAX_TEMP_HYST_MICRO	164748607
#define HDC3020_MAX_HUM_MICRO		99220264

struct hdc3020_data {
	struct i2c_client *client;
	struct gpio_desc *reset_gpio;
	struct regulator *vdd_supply;
	/*
	 * Ensure that the sensor configuration (currently only heater is
	 * supported) will not be changed during the process of reading
	 * sensor data (this driver will try HDC3020_READ_RETRY_TIMES times
	 * if the device does not respond).
	 */
	struct mutex lock;
};

static const int hdc3020_heater_vals[] = {0, 1, 0x3FFF};

static const struct iio_event_spec hdc3020_t_rh_event[] = {
	{
		.type = IIO_EV_TYPE_THRESH,
		.dir = IIO_EV_DIR_RISING,
		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
		BIT(IIO_EV_INFO_HYSTERESIS),
	},
	{
		.type = IIO_EV_TYPE_THRESH,
		.dir = IIO_EV_DIR_FALLING,
		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
		BIT(IIO_EV_INFO_HYSTERESIS),
	},
};

static const struct iio_chan_spec hdc3020_channels[] = {
	{
		.type = IIO_TEMP,
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
		BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_PEAK) |
		BIT(IIO_CHAN_INFO_TROUGH) | BIT(IIO_CHAN_INFO_OFFSET),
		.event_spec = hdc3020_t_rh_event,
		.num_event_specs = ARRAY_SIZE(hdc3020_t_rh_event),
	},
	{
		.type = IIO_HUMIDITYRELATIVE,
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
		BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_PEAK) |
		BIT(IIO_CHAN_INFO_TROUGH),
		.event_spec = hdc3020_t_rh_event,
		.num_event_specs = ARRAY_SIZE(hdc3020_t_rh_event),
	},
	{
		/*
		 * For setting the internal heater, which can be switched on to
		 * prevent or remove any condensation that may develop when the
		 * ambient environment approaches its dew point temperature.
		 */
		.type = IIO_CURRENT,
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
		.info_mask_separate_available = BIT(IIO_CHAN_INFO_RAW),
		.output = 1,
	},
};

DECLARE_CRC8_TABLE(hdc3020_crc8_table);

static int hdc3020_write_bytes(struct hdc3020_data *data, u8 *buf, u8 len)
{
	struct i2c_client *client = data->client;
	struct i2c_msg msg;
	int ret, cnt;

	msg.addr = client->addr;
	msg.flags = 0;
	msg.buf = buf;
	msg.len = len;

	/*
	 * During the measurement process, HDC3020 will not return data.
	 * So wait for a while and try again
	 */
	for (cnt = 0; cnt < HDC3020_READ_RETRY_TIMES; cnt++) {
		ret = i2c_transfer(client->adapter, &msg, 1);
		if (ret == 1)
			return 0;

		mdelay(HDC3020_BUSY_DELAY_MS);
	}
	dev_err(&client->dev, "Could not write sensor command\n");

	return -ETIMEDOUT;
}

static
int hdc3020_read_bytes(struct hdc3020_data *data, u16 reg, u8 *buf, int len)
{
	u8 reg_buf[2];
	int ret, cnt;
	struct i2c_client *client = data->client;
	struct i2c_msg msg[2] = {
		[0] = {
			.addr = client->addr,
			.flags = 0,
			.buf = reg_buf,
			.len = 2,
		},
		[1] = {
			.addr = client->addr,
			.flags = I2C_M_RD,
			.buf = buf,
			.len = len,
		},
	};

	put_unaligned_be16(reg, reg_buf);
	/*
	 * During the measurement process, HDC3020 will not return data.
	 * So wait for a while and try again
	 */
	for (cnt = 0; cnt < HDC3020_READ_RETRY_TIMES; cnt++) {
		ret = i2c_transfer(client->adapter, msg, 2);
		if (ret == 2)
			return 0;

		mdelay(HDC3020_BUSY_DELAY_MS);
	}
	dev_err(&client->dev, "Could not read sensor data\n");

	return -ETIMEDOUT;
}

static int hdc3020_read_be16(struct hdc3020_data *data, u16 reg)
{
	u8 crc, buf[3];
	int ret;

	ret = hdc3020_read_bytes(data, reg, buf, 3);
	if (ret < 0)
		return ret;

	crc = crc8(hdc3020_crc8_table, buf, 2, CRC8_INIT_VALUE);
	if (crc != buf[2])
		return -EINVAL;

	return get_unaligned_be16(buf);
}

static int hdc3020_exec_cmd(struct hdc3020_data *data, u16 reg)
{
	u8 reg_buf[2];

	put_unaligned_be16(reg, reg_buf);
	return hdc3020_write_bytes(data, reg_buf, 2);
}

static int hdc3020_read_measurement(struct hdc3020_data *data,
				    enum iio_chan_type type, int *val)
{
	u8 crc, buf[6];
	int ret;

	ret = hdc3020_read_bytes(data, HDC3020_R_T_RH_AUTO, buf, 6);
	if (ret < 0)
		return ret;

	/* CRC check of the temperature measurement */
	crc = crc8(hdc3020_crc8_table, buf, 2, CRC8_INIT_VALUE);
	if (crc != buf[2])
		return -EINVAL;

	/* CRC check of the relative humidity measurement */
	crc = crc8(hdc3020_crc8_table, buf + 3, 2, CRC8_INIT_VALUE);
	if (crc != buf[5])
		return -EINVAL;

	if (type == IIO_TEMP)
		*val = get_unaligned_be16(buf);
	else if (type == IIO_HUMIDITYRELATIVE)
		*val = get_unaligned_be16(&buf[3]);
	else
		return -EINVAL;

	return 0;
}

static int hdc3020_read_raw(struct iio_dev *indio_dev,
			    struct iio_chan_spec const *chan, int *val,
			    int *val2, long mask)
{
	struct hdc3020_data *data = iio_priv(indio_dev);
	int ret;

	if (chan->type != IIO_TEMP && chan->type != IIO_HUMIDITYRELATIVE)
		return -EINVAL;

	switch (mask) {
	case IIO_CHAN_INFO_RAW: {
		guard(mutex)(&data->lock);
		ret = hdc3020_read_measurement(data, chan->type, val);
		if (ret < 0)
			return ret;

		return IIO_VAL_INT;
	}
	case IIO_CHAN_INFO_PEAK: {
		guard(mutex)(&data->lock);
		if (chan->type == IIO_TEMP)
			ret = hdc3020_read_be16(data, HDC3020_R_T_HIGH_AUTO);
		else
			ret = hdc3020_read_be16(data, HDC3020_R_RH_HIGH_AUTO);

		if (ret < 0)
			return ret;

		*val = ret;
		return IIO_VAL_INT;
	}
	case IIO_CHAN_INFO_TROUGH: {
		guard(mutex)(&data->lock);
		if (chan->type == IIO_TEMP)
			ret = hdc3020_read_be16(data, HDC3020_R_T_LOW_AUTO);
		else
			ret = hdc3020_read_be16(data, HDC3020_R_RH_LOW_AUTO);

		if (ret < 0)
			return ret;

		*val = ret;
		return IIO_VAL_INT;
	}
	case IIO_CHAN_INFO_SCALE:
		*val2 = 65536;
		if (chan->type == IIO_TEMP)
			*val = 175;
		else
			*val = 100;
		return IIO_VAL_FRACTIONAL;

	case IIO_CHAN_INFO_OFFSET:
		if (chan->type != IIO_TEMP)
			return -EINVAL;

		*val = -16852;
		return IIO_VAL_INT;

	default:
		return -EINVAL;
	}
}

static int hdc3020_read_available(struct iio_dev *indio_dev,
				  struct iio_chan_spec const *chan,
				  const int **vals,
				  int *type, int *length, long mask)
{
	if (mask != IIO_CHAN_INFO_RAW || chan->type != IIO_CURRENT)
		return -EINVAL;

	*vals = hdc3020_heater_vals;
	*type = IIO_VAL_INT;

	return IIO_AVAIL_RANGE;
}

static int hdc3020_update_heater(struct hdc3020_data *data, int val)
{
	u8 buf[5];
	int ret;

	if (val < hdc3020_heater_vals[0] || val > hdc3020_heater_vals[2])
		return -EINVAL;

	if (!val)
		hdc3020_exec_cmd(data, HDC3020_HEATER_DISABLE);

	put_unaligned_be16(HDC3020_HEATER_CONFIG, buf);
	put_unaligned_be16(val & GENMASK(13, 0), &buf[2]);
	buf[4] = crc8(hdc3020_crc8_table, buf + 2, 2, CRC8_INIT_VALUE);
	ret = hdc3020_write_bytes(data, buf, 5);
	if (ret < 0)
		return ret;

	return hdc3020_exec_cmd(data, HDC3020_HEATER_ENABLE);
}

static int hdc3020_write_raw(struct iio_dev *indio_dev,
			     struct iio_chan_spec const *chan,
			     int val, int val2, long mask)
{
	struct hdc3020_data *data = iio_priv(indio_dev);

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		if (chan->type != IIO_CURRENT)
			return -EINVAL;

		guard(mutex)(&data->lock);
		return hdc3020_update_heater(data, val);
	}

	return -EINVAL;
}

static int hdc3020_thresh_get_temp(u16 thresh)
{
	int temp;

	/*
	 * Get the temperature threshold from 9 LSBs, shift them to get
	 * the truncated temperature threshold representation and
	 * calculate the threshold according to the formula in the
	 * datasheet. Result is degree celsius scaled by 65535.
	 */
	temp = FIELD_GET(HDC3020_THRESH_TEMP_MASK, thresh) <<
	       HDC3020_THRESH_TEMP_TRUNC_SHIFT;

	return -2949075 + (175 * temp);
}

static int hdc3020_thresh_get_hum(u16 thresh)
{
	int hum;

	/*
	 * Get the humidity threshold from 7 MSBs, shift them to get the
	 * truncated humidity threshold representation and calculate the
	 * threshold according to the formula in the datasheet. Result is
	 * percent scaled by 65535.
	 */
	hum = FIELD_GET(HDC3020_THRESH_HUM_MASK, thresh) <<
	      HDC3020_THRESH_HUM_TRUNC_SHIFT;

	return hum * 100;
}

static u16 hdc3020_thresh_set_temp(int s_temp, u16 curr_thresh)
{
	u64 temp;
	u16 thresh;

	/*
	 * Calculate temperature threshold, shift it down to get the
	 * truncated threshold representation in the 9LSBs while keeping
	 * the current humidity threshold in the 7 MSBs.
	 */
	temp = (u64)(s_temp + 45000000) * 65535ULL;
	temp = div_u64(temp, 1000000 * 175) >> HDC3020_THRESH_TEMP_TRUNC_SHIFT;
	thresh = FIELD_PREP(HDC3020_THRESH_TEMP_MASK, temp);
	thresh |= (FIELD_GET(HDC3020_THRESH_HUM_MASK, curr_thresh) <<
		  HDC3020_THRESH_HUM_TRUNC_SHIFT);

	return thresh;
}

static u16 hdc3020_thresh_set_hum(int s_hum, u16 curr_thresh)
{
	u64 hum;
	u16 thresh;

	/*
	 * Calculate humidity threshold, shift it down and up to get the
	 * truncated threshold representation in the 7MSBs while keeping
	 * the current temperature threshold in the 9 LSBs.
	 */
	hum = (u64)(s_hum) * 65535ULL;
	hum = div_u64(hum, 1000000 * 100) >> HDC3020_THRESH_HUM_TRUNC_SHIFT;
	thresh = FIELD_PREP(HDC3020_THRESH_HUM_MASK, hum);
	thresh |= FIELD_GET(HDC3020_THRESH_TEMP_MASK, curr_thresh);

	return thresh;
}

static
int hdc3020_thresh_clr(s64 s_thresh, s64 s_hyst, enum iio_event_direction dir)
{
	s64 s_clr;

	/*
	 * Include directions when calculation the clear value,
	 * since hysteresis is unsigned by definition and the
	 * clear value is an absolute value which is signed.
	 */
	if (dir == IIO_EV_DIR_RISING)
		s_clr = s_thresh - s_hyst;
	else
		s_clr = s_thresh + s_hyst;

	/* Divide by 65535 to get units of micro */
	return div_s64(s_clr, 65535);
}

static int _hdc3020_write_thresh(struct hdc3020_data *data, u16 reg, u16 val)
{
	u8 buf[5];

	put_unaligned_be16(reg, buf);
	put_unaligned_be16(val, buf + 2);
	buf[4] = crc8(hdc3020_crc8_table, buf + 2, 2, CRC8_INIT_VALUE);

	return hdc3020_write_bytes(data, buf, 5);
}

static int hdc3020_write_thresh(struct iio_dev *indio_dev,
				const struct iio_chan_spec *chan,
				enum iio_event_type type,
				enum iio_event_direction dir,
				enum iio_event_info info,
				int val, int val2)
{
	struct hdc3020_data *data = iio_priv(indio_dev);
	u16 reg, reg_val, reg_thresh_rd, reg_clr_rd, reg_thresh_wr, reg_clr_wr;
	s64 s_thresh, s_hyst, s_clr;
	int s_val, thresh, clr, ret;

	/* Select threshold registers */
	if (dir == IIO_EV_DIR_RISING) {
		reg_thresh_rd = HDC3020_R_T_RH_THRESH_HIGH;
		reg_thresh_wr = HDC3020_S_T_RH_THRESH_HIGH;
		reg_clr_rd = HDC3020_R_T_RH_THRESH_HIGH_CLR;
		reg_clr_wr = HDC3020_S_T_RH_THRESH_HIGH_CLR;
	} else {
		reg_thresh_rd = HDC3020_R_T_RH_THRESH_LOW;
		reg_thresh_wr = HDC3020_S_T_RH_THRESH_LOW;
		reg_clr_rd = HDC3020_R_T_RH_THRESH_LOW_CLR;
		reg_clr_wr = HDC3020_S_T_RH_THRESH_LOW_CLR;
	}

	guard(mutex)(&data->lock);
	ret = hdc3020_read_be16(data, reg_thresh_rd);
	if (ret < 0)
		return ret;

	thresh = ret;
	ret = hdc3020_read_be16(data, reg_clr_rd);
	if (ret < 0)
		return ret;

	clr = ret;
	/* Scale value to include decimal part into calculations */
	s_val = (val < 0) ? (val * 1000000 - val2) : (val * 1000000 + val2);
	switch (chan->type) {
	case IIO_TEMP:
		switch (info) {
		case IIO_EV_INFO_VALUE:
			s_val = max(s_val, HDC3020_MIN_TEMP_MICRO);
			s_val = min(s_val, HDC3020_MAX_TEMP_MICRO);
			reg = reg_thresh_wr;
			reg_val = hdc3020_thresh_set_temp(s_val, thresh);
			ret = _hdc3020_write_thresh(data, reg, reg_val);
			if (ret < 0)
				return ret;

			/* Calculate old hysteresis */
			s_thresh = (s64)hdc3020_thresh_get_temp(thresh) * 1000000;
			s_clr = (s64)hdc3020_thresh_get_temp(clr) * 1000000;
			s_hyst = div_s64(abs(s_thresh - s_clr), 65535);
			/* Set new threshold */
			thresh = reg_val;
			/* Set old hysteresis */
			s_val = s_hyst;
			fallthrough;
		case IIO_EV_INFO_HYSTERESIS:
			/*
			 * Function hdc3020_thresh_get_temp returns temperature
			 * in degree celsius scaled by 65535. Scale by 1000000
			 * to be able to subtract scaled hysteresis value.
			 */
			s_thresh = (s64)hdc3020_thresh_get_temp(thresh) * 1000000;
			/*
			 * Units of s_val are in micro degree celsius, scale by
			 * 65535 to get same units as s_thresh.
			 */
			s_val = min(abs(s_val), HDC3020_MAX_TEMP_HYST_MICRO);
			s_hyst = (s64)s_val * 65535;
			s_clr = hdc3020_thresh_clr(s_thresh, s_hyst, dir);
			s_clr = max(s_clr, HDC3020_MIN_TEMP_MICRO);
			s_clr = min(s_clr, HDC3020_MAX_TEMP_MICRO);
			reg = reg_clr_wr;
			reg_val = hdc3020_thresh_set_temp(s_clr, clr);
			break;
		default:
			return -EOPNOTSUPP;
		}
		break;
	case IIO_HUMIDITYRELATIVE:
		s_val = (s_val < 0) ? 0 : min(s_val, HDC3020_MAX_HUM_MICRO);
		switch (info) {
		case IIO_EV_INFO_VALUE:
			reg = reg_thresh_wr;
			reg_val = hdc3020_thresh_set_hum(s_val, thresh);
			ret = _hdc3020_write_thresh(data, reg, reg_val);
			if (ret < 0)
				return ret;

			/* Calculate old hysteresis */
			s_thresh = (s64)hdc3020_thresh_get_hum(thresh) * 1000000;
			s_clr = (s64)hdc3020_thresh_get_hum(clr) * 1000000;
			s_hyst = div_s64(abs(s_thresh - s_clr), 65535);
			/* Set new threshold */
			thresh = reg_val;
			/* Try to set old hysteresis */
			s_val = min(abs(s_hyst), HDC3020_MAX_HUM_MICRO);
			fallthrough;
		case IIO_EV_INFO_HYSTERESIS:
			/*
			 * Function hdc3020_thresh_get_hum returns relative
			 * humidity in percent scaled by 65535. Scale by 1000000
			 * to be able to subtract scaled hysteresis value.
			 */
			s_thresh = (s64)hdc3020_thresh_get_hum(thresh) * 1000000;
			/*
			 * Units of s_val are in micro percent, scale by 65535
			 * to get same units as s_thresh.
			 */
			s_hyst = (s64)s_val * 65535;
			s_clr = hdc3020_thresh_clr(s_thresh, s_hyst, dir);
			s_clr = max(s_clr, 0);
			s_clr = min(s_clr, HDC3020_MAX_HUM_MICRO);
			reg = reg_clr_wr;
			reg_val = hdc3020_thresh_set_hum(s_clr, clr);
			break;
		default:
			return -EOPNOTSUPP;
		}
		break;
	default:
		return -EOPNOTSUPP;
	}

	return _hdc3020_write_thresh(data, reg, reg_val);
}

static int hdc3020_read_thresh(struct iio_dev *indio_dev,
			       const struct iio_chan_spec *chan,
			       enum iio_event_type type,
			       enum iio_event_direction dir,
			       enum iio_event_info info,
			       int *val, int *val2)
{
	struct hdc3020_data *data = iio_priv(indio_dev);
	u16 reg_thresh, reg_clr;
	int thresh, clr, ret;

	/* Select threshold registers */
	if (dir == IIO_EV_DIR_RISING) {
		reg_thresh = HDC3020_R_T_RH_THRESH_HIGH;
		reg_clr = HDC3020_R_T_RH_THRESH_HIGH_CLR;
	} else {
		reg_thresh = HDC3020_R_T_RH_THRESH_LOW;
		reg_clr = HDC3020_R_T_RH_THRESH_LOW_CLR;
	}

	guard(mutex)(&data->lock);
	ret = hdc3020_read_be16(data, reg_thresh);
	if (ret < 0)
		return ret;

	switch (chan->type) {
	case IIO_TEMP:
		thresh = hdc3020_thresh_get_temp(ret);
		switch (info) {
		case IIO_EV_INFO_VALUE:
			*val = thresh;
			break;
		case IIO_EV_INFO_HYSTERESIS:
			ret = hdc3020_read_be16(data, reg_clr);
			if (ret < 0)
				return ret;

			clr = hdc3020_thresh_get_temp(ret);
			*val = abs(thresh - clr);
			break;
		default:
			return -EOPNOTSUPP;
		}
		*val2 = 65535;
		return IIO_VAL_FRACTIONAL;
	case IIO_HUMIDITYRELATIVE:
		thresh = hdc3020_thresh_get_hum(ret);
		switch (info) {
		case IIO_EV_INFO_VALUE:
			*val = thresh;
			break;
		case IIO_EV_INFO_HYSTERESIS:
			ret = hdc3020_read_be16(data, reg_clr);
			if (ret < 0)
				return ret;

			clr = hdc3020_thresh_get_hum(ret);
			*val = abs(thresh - clr);
			break;
		default:
			return -EOPNOTSUPP;
		}
		*val2 = 65535;
		return IIO_VAL_FRACTIONAL;
	default:
		return -EOPNOTSUPP;
	}
}

static irqreturn_t hdc3020_interrupt_handler(int irq, void *private)
{
	struct iio_dev *indio_dev = private;
	struct hdc3020_data *data;
	s64 time;
	int ret;

	data = iio_priv(indio_dev);
	ret = hdc3020_read_be16(data, HDC3020_R_STATUS);
	if (ret < 0)
		return IRQ_HANDLED;

	if (!(ret & (HDC3020_STATUS_T_HIGH_ALERT | HDC3020_STATUS_T_LOW_ALERT |
		HDC3020_STATUS_RH_HIGH_ALERT | HDC3020_STATUS_RH_LOW_ALERT)))
		return IRQ_NONE;

	time = iio_get_time_ns(indio_dev);
	if (ret & HDC3020_STATUS_T_HIGH_ALERT)
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_TEMP, 0,
						  IIO_NO_MOD,
						  IIO_EV_TYPE_THRESH,
						  IIO_EV_DIR_RISING),
						  time);

	if (ret & HDC3020_STATUS_T_LOW_ALERT)
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_TEMP, 0,
						  IIO_NO_MOD,
						  IIO_EV_TYPE_THRESH,
						  IIO_EV_DIR_FALLING),
						  time);

	if (ret & HDC3020_STATUS_RH_HIGH_ALERT)
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_HUMIDITYRELATIVE, 0,
						  IIO_NO_MOD,
						  IIO_EV_TYPE_THRESH,
						  IIO_EV_DIR_RISING),
						  time);

	if (ret & HDC3020_STATUS_RH_LOW_ALERT)
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_HUMIDITYRELATIVE, 0,
						  IIO_NO_MOD,
						  IIO_EV_TYPE_THRESH,
						  IIO_EV_DIR_FALLING),
						  time);

	return IRQ_HANDLED;
}

static const struct iio_info hdc3020_info = {
	.read_raw = hdc3020_read_raw,
	.write_raw = hdc3020_write_raw,
	.read_avail = hdc3020_read_available,
	.read_event_value = hdc3020_read_thresh,
	.write_event_value = hdc3020_write_thresh,
};

static int hdc3020_power_off(struct hdc3020_data *data)
{
	hdc3020_exec_cmd(data, HDC3020_EXIT_AUTO);

	if (data->reset_gpio)
		gpiod_set_value_cansleep(data->reset_gpio, 1);

	return regulator_disable(data->vdd_supply);
}

static int hdc3020_power_on(struct hdc3020_data *data)
{
	int ret;

	ret = regulator_enable(data->vdd_supply);
	if (ret)
		return ret;

	fsleep(5000);

	if (data->reset_gpio) {
		gpiod_set_value_cansleep(data->reset_gpio, 0);
		fsleep(3000);
	}

	if (data->client->irq) {
		/*
		 * The alert output is activated by default upon power up,
		 * hardware reset, and soft reset. Clear the status register.
		 */
		ret = hdc3020_exec_cmd(data, HDC3020_S_STATUS);
		if (ret) {
			hdc3020_power_off(data);
			return ret;
		}
	}

	ret = hdc3020_exec_cmd(data, HDC3020_S_AUTO_10HZ_MOD0);
	if (ret)
		hdc3020_power_off(data);

	return ret;
}

static void hdc3020_exit(void *data)
{
	hdc3020_power_off(data);
}

static int hdc3020_probe(struct i2c_client *client)
{
	struct iio_dev *indio_dev;
	struct hdc3020_data *data;
	int ret;

	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
		return -EOPNOTSUPP;

	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
	if (!indio_dev)
		return -ENOMEM;

	dev_set_drvdata(&client->dev, indio_dev);

	data = iio_priv(indio_dev);
	data->client = client;
	mutex_init(&data->lock);

	crc8_populate_msb(hdc3020_crc8_table, HDC3020_CRC8_POLYNOMIAL);

	indio_dev->name = "hdc3020";
	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->info = &hdc3020_info;
	indio_dev->channels = hdc3020_channels;
	indio_dev->num_channels = ARRAY_SIZE(hdc3020_channels);

	data->vdd_supply = devm_regulator_get(&client->dev, "vdd");
	if (IS_ERR(data->vdd_supply))
		return dev_err_probe(&client->dev, PTR_ERR(data->vdd_supply),
				     "Unable to get VDD regulator\n");

	data->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset",
						   GPIOD_OUT_HIGH);
	if (IS_ERR(data->reset_gpio))
		return dev_err_probe(&client->dev, PTR_ERR(data->reset_gpio),
				     "Cannot get reset GPIO\n");

	ret = hdc3020_power_on(data);
	if (ret)
		return dev_err_probe(&client->dev, ret, "Power on failed\n");

	ret = devm_add_action_or_reset(&data->client->dev, hdc3020_exit, data);
	if (ret)
		return ret;

	if (client->irq) {
		ret = devm_request_threaded_irq(&client->dev, client->irq,
						NULL, hdc3020_interrupt_handler,
						IRQF_ONESHOT, "hdc3020",
						indio_dev);
		if (ret)
			return dev_err_probe(&client->dev, ret,
					     "Failed to request IRQ\n");
	}

	ret = devm_iio_device_register(&data->client->dev, indio_dev);
	if (ret)
		return dev_err_probe(&client->dev, ret, "Failed to add device");

	return 0;
}

static int hdc3020_suspend(struct device *dev)
{
	struct iio_dev *iio_dev = dev_get_drvdata(dev);
	struct hdc3020_data *data = iio_priv(iio_dev);

	return hdc3020_power_off(data);
}

static int hdc3020_resume(struct device *dev)
{
	struct iio_dev *iio_dev = dev_get_drvdata(dev);
	struct hdc3020_data *data = iio_priv(iio_dev);

	return hdc3020_power_on(data);
}

static DEFINE_SIMPLE_DEV_PM_OPS(hdc3020_pm_ops, hdc3020_suspend, hdc3020_resume);

static const struct i2c_device_id hdc3020_id[] = {
	{ "hdc3020" },
	{ "hdc3021" },
	{ "hdc3022" },
	{ }
};
MODULE_DEVICE_TABLE(i2c, hdc3020_id);

static const struct of_device_id hdc3020_dt_ids[] = {
	{ .compatible = "ti,hdc3020" },
	{ .compatible = "ti,hdc3021" },
	{ .compatible = "ti,hdc3022" },
	{ }
};
MODULE_DEVICE_TABLE(of, hdc3020_dt_ids);

static struct i2c_driver hdc3020_driver = {
	.driver = {
		.name = "hdc3020",
		.pm = pm_sleep_ptr(&hdc3020_pm_ops),
		.of_match_table = hdc3020_dt_ids,
	},
	.probe = hdc3020_probe,
	.id_table = hdc3020_id,
};
module_i2c_driver(hdc3020_driver);

MODULE_AUTHOR("Javier Carrasco <javier.carrasco.cruz@gmail.com>");
MODULE_AUTHOR("Li peiyu <579lpy@gmail.com>");
MODULE_DESCRIPTION("TI HDC3020 humidity and temperature sensor driver");
MODULE_LICENSE("GPL");