1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright 2023 Red Hat
*/
#include "funnel-workqueue.h"
#include <linux/atomic.h>
#include <linux/cache.h>
#include <linux/completion.h>
#include <linux/err.h>
#include <linux/kthread.h>
#include <linux/percpu.h>
#include "funnel-queue.h"
#include "logger.h"
#include "memory-alloc.h"
#include "numeric.h"
#include "permassert.h"
#include "string-utils.h"
#include "completion.h"
#include "status-codes.h"
static DEFINE_PER_CPU(unsigned int, service_queue_rotor);
/**
* DOC: Work queue definition.
*
* There are two types of work queues: simple, with one worker thread, and round-robin, which uses
* a group of the former to do the work, and assigns work to them in round-robin fashion (roughly).
* Externally, both are represented via the same common sub-structure, though there's actually not
* a great deal of overlap between the two types internally.
*/
struct vdo_work_queue {
/* Name of just the work queue (e.g., "cpuQ12") */
char *name;
bool round_robin_mode;
struct vdo_thread *owner;
/* Life cycle functions, etc */
const struct vdo_work_queue_type *type;
};
struct simple_work_queue {
struct vdo_work_queue common;
struct funnel_queue *priority_lists[VDO_WORK_Q_MAX_PRIORITY + 1];
void *private;
/*
* The fields above are unchanged after setup but often read, and are good candidates for
* caching -- and if the max priority is 2, just fit in one x86-64 cache line if aligned.
* The fields below are often modified as we sleep and wake, so we want a separate cache
* line for performance.
*/
/* Any (0 or 1) worker threads waiting for new work to do */
wait_queue_head_t waiting_worker_threads ____cacheline_aligned;
/* Hack to reduce wakeup calls if the worker thread is running */
atomic_t idle;
/* These are infrequently used so in terms of performance we don't care where they land. */
struct task_struct *thread;
/* Notify creator once worker has initialized */
struct completion *started;
};
struct round_robin_work_queue {
struct vdo_work_queue common;
struct simple_work_queue **service_queues;
unsigned int num_service_queues;
};
static inline struct simple_work_queue *as_simple_work_queue(struct vdo_work_queue *queue)
{
return ((queue == NULL) ?
NULL : container_of(queue, struct simple_work_queue, common));
}
static inline struct round_robin_work_queue *as_round_robin_work_queue(struct vdo_work_queue *queue)
{
return ((queue == NULL) ?
NULL :
container_of(queue, struct round_robin_work_queue, common));
}
/* Processing normal completions. */
/*
* Dequeue and return the next waiting completion, if any.
*
* We scan the funnel queues from highest priority to lowest, once; there is therefore a race
* condition where a high-priority completion can be enqueued followed by a lower-priority one, and
* we'll grab the latter (but we'll catch the high-priority item on the next call). If strict
* enforcement of priorities becomes necessary, this function will need fixing.
*/
static struct vdo_completion *poll_for_completion(struct simple_work_queue *queue)
{
int i;
for (i = queue->common.type->max_priority; i >= 0; i--) {
struct funnel_queue_entry *link = vdo_funnel_queue_poll(queue->priority_lists[i]);
if (link != NULL)
return container_of(link, struct vdo_completion, work_queue_entry_link);
}
return NULL;
}
static void enqueue_work_queue_completion(struct simple_work_queue *queue,
struct vdo_completion *completion)
{
VDO_ASSERT_LOG_ONLY(completion->my_queue == NULL,
"completion %px (fn %px) to enqueue (%px) is not already queued (%px)",
completion, completion->callback, queue, completion->my_queue);
if (completion->priority == VDO_WORK_Q_DEFAULT_PRIORITY)
completion->priority = queue->common.type->default_priority;
if (VDO_ASSERT(completion->priority <= queue->common.type->max_priority,
"priority is in range for queue") != VDO_SUCCESS)
completion->priority = 0;
completion->my_queue = &queue->common;
/* Funnel queue handles the synchronization for the put. */
vdo_funnel_queue_put(queue->priority_lists[completion->priority],
&completion->work_queue_entry_link);
/*
* Due to how funnel queue synchronization is handled (just atomic operations), the
* simplest safe implementation here would be to wake-up any waiting threads after
* enqueueing each item. Even if the funnel queue is not empty at the time of adding an
* item to the queue, the consumer thread may not see this since it is not guaranteed to
* have the same view of the queue as a producer thread.
*
* However, the above is wasteful so instead we attempt to minimize the number of thread
* wakeups. Using an idle flag, and careful ordering using memory barriers, we should be
* able to determine when the worker thread might be asleep or going to sleep. We use
* cmpxchg to try to take ownership (vs other producer threads) of the responsibility for
* waking the worker thread, so multiple wakeups aren't tried at once.
*
* This was tuned for some x86 boxes that were handy; it's untested whether doing the read
* first is any better or worse for other platforms, even other x86 configurations.
*/
smp_mb();
if ((atomic_read(&queue->idle) != 1) || (atomic_cmpxchg(&queue->idle, 1, 0) != 1))
return;
/* There's a maximum of one thread in this list. */
wake_up(&queue->waiting_worker_threads);
}
static void run_start_hook(struct simple_work_queue *queue)
{
if (queue->common.type->start != NULL)
queue->common.type->start(queue->private);
}
static void run_finish_hook(struct simple_work_queue *queue)
{
if (queue->common.type->finish != NULL)
queue->common.type->finish(queue->private);
}
/*
* Wait for the next completion to process, or until kthread_should_stop indicates that it's time
* for us to shut down.
*
* If kthread_should_stop says it's time to stop but we have pending completions return a
* completion.
*
* Also update statistics relating to scheduler interactions.
*/
static struct vdo_completion *wait_for_next_completion(struct simple_work_queue *queue)
{
struct vdo_completion *completion;
DEFINE_WAIT(wait);
while (true) {
prepare_to_wait(&queue->waiting_worker_threads, &wait,
TASK_INTERRUPTIBLE);
/*
* Don't set the idle flag until a wakeup will not be lost.
*
* Force synchronization between setting the idle flag and checking the funnel
* queue; the producer side will do them in the reverse order. (There's still a
* race condition we've chosen to allow, because we've got a timeout below that
* unwedges us if we hit it, but this may narrow the window a little.)
*/
atomic_set(&queue->idle, 1);
smp_mb(); /* store-load barrier between "idle" and funnel queue */
completion = poll_for_completion(queue);
if (completion != NULL)
break;
/*
* We need to check for thread-stop after setting TASK_INTERRUPTIBLE state up
* above. Otherwise, schedule() will put the thread to sleep and might miss a
* wakeup from kthread_stop() call in vdo_finish_work_queue().
*/
if (kthread_should_stop())
break;
schedule();
/*
* Most of the time when we wake, it should be because there's work to do. If it
* was a spurious wakeup, continue looping.
*/
completion = poll_for_completion(queue);
if (completion != NULL)
break;
}
finish_wait(&queue->waiting_worker_threads, &wait);
atomic_set(&queue->idle, 0);
return completion;
}
static void process_completion(struct simple_work_queue *queue,
struct vdo_completion *completion)
{
if (VDO_ASSERT(completion->my_queue == &queue->common,
"completion %px from queue %px marked as being in this queue (%px)",
completion, queue, completion->my_queue) == VDO_SUCCESS)
completion->my_queue = NULL;
vdo_run_completion(completion);
}
static void service_work_queue(struct simple_work_queue *queue)
{
run_start_hook(queue);
while (true) {
struct vdo_completion *completion = poll_for_completion(queue);
if (completion == NULL)
completion = wait_for_next_completion(queue);
if (completion == NULL) {
/* No completions but kthread_should_stop() was triggered. */
break;
}
process_completion(queue, completion);
/*
* Be friendly to a CPU that has other work to do, if the kernel has told us to.
* This speeds up some performance tests; that "other work" might include other VDO
* threads.
*/
if (need_resched())
cond_resched();
}
run_finish_hook(queue);
}
static int work_queue_runner(void *ptr)
{
struct simple_work_queue *queue = ptr;
complete(queue->started);
service_work_queue(queue);
return 0;
}
/* Creation & teardown */
static void free_simple_work_queue(struct simple_work_queue *queue)
{
unsigned int i;
for (i = 0; i <= VDO_WORK_Q_MAX_PRIORITY; i++)
vdo_free_funnel_queue(queue->priority_lists[i]);
vdo_free(queue->common.name);
vdo_free(queue);
}
static void free_round_robin_work_queue(struct round_robin_work_queue *queue)
{
struct simple_work_queue **queue_table = queue->service_queues;
unsigned int count = queue->num_service_queues;
unsigned int i;
queue->service_queues = NULL;
for (i = 0; i < count; i++)
free_simple_work_queue(queue_table[i]);
vdo_free(queue_table);
vdo_free(queue->common.name);
vdo_free(queue);
}
void vdo_free_work_queue(struct vdo_work_queue *queue)
{
if (queue == NULL)
return;
vdo_finish_work_queue(queue);
if (queue->round_robin_mode)
free_round_robin_work_queue(as_round_robin_work_queue(queue));
else
free_simple_work_queue(as_simple_work_queue(queue));
}
static int make_simple_work_queue(const char *thread_name_prefix, const char *name,
struct vdo_thread *owner, void *private,
const struct vdo_work_queue_type *type,
struct simple_work_queue **queue_ptr)
{
DECLARE_COMPLETION_ONSTACK(started);
struct simple_work_queue *queue;
int i;
struct task_struct *thread = NULL;
int result;
VDO_ASSERT_LOG_ONLY((type->max_priority <= VDO_WORK_Q_MAX_PRIORITY),
"queue priority count %u within limit %u", type->max_priority,
VDO_WORK_Q_MAX_PRIORITY);
result = vdo_allocate(1, struct simple_work_queue, "simple work queue", &queue);
if (result != VDO_SUCCESS)
return result;
queue->private = private;
queue->started = &started;
queue->common.type = type;
queue->common.owner = owner;
init_waitqueue_head(&queue->waiting_worker_threads);
result = vdo_duplicate_string(name, "queue name", &queue->common.name);
if (result != VDO_SUCCESS) {
vdo_free(queue);
return -ENOMEM;
}
for (i = 0; i <= type->max_priority; i++) {
result = vdo_make_funnel_queue(&queue->priority_lists[i]);
if (result != VDO_SUCCESS) {
free_simple_work_queue(queue);
return result;
}
}
thread = kthread_run(work_queue_runner, queue, "%s:%s", thread_name_prefix,
queue->common.name);
if (IS_ERR(thread)) {
free_simple_work_queue(queue);
return (int) PTR_ERR(thread);
}
queue->thread = thread;
/*
* If we don't wait to ensure the thread is running VDO code, a quick kthread_stop (due to
* errors elsewhere) could cause it to never get as far as running VDO, skipping the
* cleanup code.
*
* Eventually we should just make that path safe too, and then we won't need this
* synchronization.
*/
wait_for_completion(&started);
*queue_ptr = queue;
return VDO_SUCCESS;
}
/**
* vdo_make_work_queue() - Create a work queue; if multiple threads are requested, completions will
* be distributed to them in round-robin fashion.
*
* Each queue is associated with a struct vdo_thread which has a single vdo thread id. Regardless
* of the actual number of queues and threads allocated here, code outside of the queue
* implementation will treat this as a single zone.
*/
int vdo_make_work_queue(const char *thread_name_prefix, const char *name,
struct vdo_thread *owner, const struct vdo_work_queue_type *type,
unsigned int thread_count, void *thread_privates[],
struct vdo_work_queue **queue_ptr)
{
struct round_robin_work_queue *queue;
int result;
char thread_name[TASK_COMM_LEN];
unsigned int i;
if (thread_count == 1) {
struct simple_work_queue *simple_queue;
void *context = ((thread_privates != NULL) ? thread_privates[0] : NULL);
result = make_simple_work_queue(thread_name_prefix, name, owner, context,
type, &simple_queue);
if (result == VDO_SUCCESS)
*queue_ptr = &simple_queue->common;
return result;
}
result = vdo_allocate(1, struct round_robin_work_queue, "round-robin work queue",
&queue);
if (result != VDO_SUCCESS)
return result;
result = vdo_allocate(thread_count, struct simple_work_queue *,
"subordinate work queues", &queue->service_queues);
if (result != VDO_SUCCESS) {
vdo_free(queue);
return result;
}
queue->num_service_queues = thread_count;
queue->common.round_robin_mode = true;
queue->common.owner = owner;
result = vdo_duplicate_string(name, "queue name", &queue->common.name);
if (result != VDO_SUCCESS) {
vdo_free(queue->service_queues);
vdo_free(queue);
return -ENOMEM;
}
*queue_ptr = &queue->common;
for (i = 0; i < thread_count; i++) {
void *context = ((thread_privates != NULL) ? thread_privates[i] : NULL);
snprintf(thread_name, sizeof(thread_name), "%s%u", name, i);
result = make_simple_work_queue(thread_name_prefix, thread_name, owner,
context, type, &queue->service_queues[i]);
if (result != VDO_SUCCESS) {
queue->num_service_queues = i;
/* Destroy previously created subordinates. */
vdo_free_work_queue(vdo_forget(*queue_ptr));
return result;
}
}
return VDO_SUCCESS;
}
static void finish_simple_work_queue(struct simple_work_queue *queue)
{
if (queue->thread == NULL)
return;
/* Tells the worker thread to shut down and waits for it to exit. */
kthread_stop(queue->thread);
queue->thread = NULL;
}
static void finish_round_robin_work_queue(struct round_robin_work_queue *queue)
{
struct simple_work_queue **queue_table = queue->service_queues;
unsigned int count = queue->num_service_queues;
unsigned int i;
for (i = 0; i < count; i++)
finish_simple_work_queue(queue_table[i]);
}
/* No enqueueing of completions should be done once this function is called. */
void vdo_finish_work_queue(struct vdo_work_queue *queue)
{
if (queue == NULL)
return;
if (queue->round_robin_mode)
finish_round_robin_work_queue(as_round_robin_work_queue(queue));
else
finish_simple_work_queue(as_simple_work_queue(queue));
}
/* Debugging dumps */
static void dump_simple_work_queue(struct simple_work_queue *queue)
{
const char *thread_status = "no threads";
char task_state_report = '-';
if (queue->thread != NULL) {
task_state_report = task_state_to_char(queue->thread);
thread_status = atomic_read(&queue->idle) ? "idle" : "running";
}
vdo_log_info("workQ %px (%s) %s (%c)", &queue->common, queue->common.name,
thread_status, task_state_report);
/* ->waiting_worker_threads wait queue status? anyone waiting? */
}
/*
* Write to the buffer some info about the completion, for logging. Since the common use case is
* dumping info about a lot of completions to syslog all at once, the format favors brevity over
* readability.
*/
void vdo_dump_work_queue(struct vdo_work_queue *queue)
{
if (queue->round_robin_mode) {
struct round_robin_work_queue *round_robin = as_round_robin_work_queue(queue);
unsigned int i;
for (i = 0; i < round_robin->num_service_queues; i++)
dump_simple_work_queue(round_robin->service_queues[i]);
} else {
dump_simple_work_queue(as_simple_work_queue(queue));
}
}
static void get_function_name(void *pointer, char *buffer, size_t buffer_length)
{
if (pointer == NULL) {
/*
* Format "%ps" logs a null pointer as "(null)" with a bunch of leading spaces. We
* sometimes use this when logging lots of data; don't be so verbose.
*/
strscpy(buffer, "-", buffer_length);
} else {
/*
* Use a pragma to defeat gcc's format checking, which doesn't understand that
* "%ps" actually does support a precision spec in Linux kernel code.
*/
char *space;
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wformat"
snprintf(buffer, buffer_length, "%.*ps", buffer_length - 1, pointer);
#pragma GCC diagnostic pop
space = strchr(buffer, ' ');
if (space != NULL)
*space = '\0';
}
}
void vdo_dump_completion_to_buffer(struct vdo_completion *completion, char *buffer,
size_t length)
{
size_t current_length =
scnprintf(buffer, length, "%.*s/", TASK_COMM_LEN,
(completion->my_queue == NULL ? "-" : completion->my_queue->name));
if (current_length < length - 1) {
get_function_name((void *) completion->callback, buffer + current_length,
length - current_length);
}
}
/* Completion submission */
/*
* If the completion has a timeout that has already passed, the timeout handler function may be
* invoked by this function.
*/
void vdo_enqueue_work_queue(struct vdo_work_queue *queue,
struct vdo_completion *completion)
{
/*
* Convert the provided generic vdo_work_queue to the simple_work_queue to actually queue
* on.
*/
struct simple_work_queue *simple_queue = NULL;
if (!queue->round_robin_mode) {
simple_queue = as_simple_work_queue(queue);
} else {
struct round_robin_work_queue *round_robin = as_round_robin_work_queue(queue);
/*
* It shouldn't be a big deal if the same rotor gets used for multiple work queues.
* Any patterns that might develop are likely to be disrupted by random ordering of
* multiple completions and migration between cores, unless the load is so light as
* to be regular in ordering of tasks and the threads are confined to individual
* cores; with a load that light we won't care.
*/
unsigned int rotor = this_cpu_inc_return(service_queue_rotor);
unsigned int index = rotor % round_robin->num_service_queues;
simple_queue = round_robin->service_queues[index];
}
enqueue_work_queue_completion(simple_queue, completion);
}
/* Misc */
/*
* Return the work queue pointer recorded at initialization time in the work-queue stack handle
* initialized on the stack of the current thread, if any.
*/
static struct simple_work_queue *get_current_thread_work_queue(void)
{
/*
* In interrupt context, if a vdo thread is what got interrupted, the calls below will find
* the queue for the thread which was interrupted. However, the interrupted thread may have
* been processing a completion, in which case starting to process another would violate
* our concurrency assumptions.
*/
if (in_interrupt())
return NULL;
if (kthread_func(current) != work_queue_runner)
/* Not a VDO work queue thread. */
return NULL;
return kthread_data(current);
}
struct vdo_work_queue *vdo_get_current_work_queue(void)
{
struct simple_work_queue *queue = get_current_thread_work_queue();
return (queue == NULL) ? NULL : &queue->common;
}
struct vdo_thread *vdo_get_work_queue_owner(struct vdo_work_queue *queue)
{
return queue->owner;
}
/**
* vdo_get_work_queue_private_data() - Returns the private data for the current thread's work
* queue, or NULL if none or if the current thread is not a
* work queue thread.
*/
void *vdo_get_work_queue_private_data(void)
{
struct simple_work_queue *queue = get_current_thread_work_queue();
return (queue != NULL) ? queue->private : NULL;
}
bool vdo_work_queue_type_is(struct vdo_work_queue *queue,
const struct vdo_work_queue_type *type)
{
return (queue->type == type);
}
|