1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* VMware VMCI Driver
*
* Copyright (C) 2012 VMware, Inc. All rights reserved.
*/
#include <linux/vmw_vmci_defs.h>
#include <linux/vmw_vmci_api.h>
#include <linux/moduleparam.h>
#include <linux/interrupt.h>
#include <linux/highmem.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/processor.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/smp.h>
#include <linux/io.h>
#include <linux/vmalloc.h>
#include "vmci_datagram.h"
#include "vmci_doorbell.h"
#include "vmci_context.h"
#include "vmci_driver.h"
#include "vmci_event.h"
#define PCI_DEVICE_ID_VMWARE_VMCI 0x0740
#define VMCI_UTIL_NUM_RESOURCES 1
/*
* Datagram buffers for DMA send/receive must accommodate at least
* a maximum sized datagram and the header.
*/
#define VMCI_DMA_DG_BUFFER_SIZE (VMCI_MAX_DG_SIZE + PAGE_SIZE)
static bool vmci_disable_msi;
module_param_named(disable_msi, vmci_disable_msi, bool, 0);
MODULE_PARM_DESC(disable_msi, "Disable MSI use in driver - (default=0)");
static bool vmci_disable_msix;
module_param_named(disable_msix, vmci_disable_msix, bool, 0);
MODULE_PARM_DESC(disable_msix, "Disable MSI-X use in driver - (default=0)");
static u32 ctx_update_sub_id = VMCI_INVALID_ID;
static u32 vm_context_id = VMCI_INVALID_ID;
struct vmci_guest_device {
struct device *dev; /* PCI device we are attached to */
void __iomem *iobase;
void __iomem *mmio_base;
bool exclusive_vectors;
struct wait_queue_head inout_wq;
void *data_buffer;
dma_addr_t data_buffer_base;
void *tx_buffer;
dma_addr_t tx_buffer_base;
void *notification_bitmap;
dma_addr_t notification_base;
};
static bool use_ppn64;
bool vmci_use_ppn64(void)
{
return use_ppn64;
}
/* vmci_dev singleton device and supporting data*/
struct pci_dev *vmci_pdev;
static struct vmci_guest_device *vmci_dev_g;
static DEFINE_SPINLOCK(vmci_dev_spinlock);
static atomic_t vmci_num_guest_devices = ATOMIC_INIT(0);
bool vmci_guest_code_active(void)
{
return atomic_read(&vmci_num_guest_devices) != 0;
}
u32 vmci_get_vm_context_id(void)
{
if (vm_context_id == VMCI_INVALID_ID) {
struct vmci_datagram get_cid_msg;
get_cid_msg.dst =
vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
VMCI_GET_CONTEXT_ID);
get_cid_msg.src = VMCI_ANON_SRC_HANDLE;
get_cid_msg.payload_size = 0;
vm_context_id = vmci_send_datagram(&get_cid_msg);
}
return vm_context_id;
}
static unsigned int vmci_read_reg(struct vmci_guest_device *dev, u32 reg)
{
if (dev->mmio_base != NULL)
return readl(dev->mmio_base + reg);
return ioread32(dev->iobase + reg);
}
static void vmci_write_reg(struct vmci_guest_device *dev, u32 val, u32 reg)
{
if (dev->mmio_base != NULL)
writel(val, dev->mmio_base + reg);
else
iowrite32(val, dev->iobase + reg);
}
static void vmci_read_data(struct vmci_guest_device *vmci_dev,
void *dest, size_t size)
{
if (vmci_dev->mmio_base == NULL)
ioread8_rep(vmci_dev->iobase + VMCI_DATA_IN_ADDR,
dest, size);
else {
/*
* For DMA datagrams, the data_buffer will contain the header on the
* first page, followed by the incoming datagram(s) on the following
* pages. The header uses an S/G element immediately following the
* header on the first page to point to the data area.
*/
struct vmci_data_in_out_header *buffer_header = vmci_dev->data_buffer;
struct vmci_sg_elem *sg_array = (struct vmci_sg_elem *)(buffer_header + 1);
size_t buffer_offset = dest - vmci_dev->data_buffer;
buffer_header->opcode = 1;
buffer_header->size = 1;
buffer_header->busy = 0;
sg_array[0].addr = vmci_dev->data_buffer_base + buffer_offset;
sg_array[0].size = size;
vmci_write_reg(vmci_dev, lower_32_bits(vmci_dev->data_buffer_base),
VMCI_DATA_IN_LOW_ADDR);
wait_event(vmci_dev->inout_wq, buffer_header->busy == 1);
}
}
static int vmci_write_data(struct vmci_guest_device *dev,
struct vmci_datagram *dg)
{
int result;
if (dev->mmio_base != NULL) {
struct vmci_data_in_out_header *buffer_header = dev->tx_buffer;
u8 *dg_out_buffer = (u8 *)(buffer_header + 1);
if (VMCI_DG_SIZE(dg) > VMCI_MAX_DG_SIZE)
return VMCI_ERROR_INVALID_ARGS;
/*
* Initialize send buffer with outgoing datagram
* and set up header for inline data. Device will
* not access buffer asynchronously - only after
* the write to VMCI_DATA_OUT_LOW_ADDR.
*/
memcpy(dg_out_buffer, dg, VMCI_DG_SIZE(dg));
buffer_header->opcode = 0;
buffer_header->size = VMCI_DG_SIZE(dg);
buffer_header->busy = 1;
vmci_write_reg(dev, lower_32_bits(dev->tx_buffer_base),
VMCI_DATA_OUT_LOW_ADDR);
/* Caller holds a spinlock, so cannot block. */
spin_until_cond(buffer_header->busy == 0);
result = vmci_read_reg(vmci_dev_g, VMCI_RESULT_LOW_ADDR);
if (result == VMCI_SUCCESS)
result = (int)buffer_header->result;
} else {
iowrite8_rep(dev->iobase + VMCI_DATA_OUT_ADDR,
dg, VMCI_DG_SIZE(dg));
result = vmci_read_reg(vmci_dev_g, VMCI_RESULT_LOW_ADDR);
}
return result;
}
/*
* VM to hypervisor call mechanism. We use the standard VMware naming
* convention since shared code is calling this function as well.
*/
int vmci_send_datagram(struct vmci_datagram *dg)
{
unsigned long flags;
int result;
/* Check args. */
if (dg == NULL)
return VMCI_ERROR_INVALID_ARGS;
/*
* Need to acquire spinlock on the device because the datagram
* data may be spread over multiple pages and the monitor may
* interleave device user rpc calls from multiple
* VCPUs. Acquiring the spinlock precludes that
* possibility. Disabling interrupts to avoid incoming
* datagrams during a "rep out" and possibly landing up in
* this function.
*/
spin_lock_irqsave(&vmci_dev_spinlock, flags);
if (vmci_dev_g) {
vmci_write_data(vmci_dev_g, dg);
result = vmci_read_reg(vmci_dev_g, VMCI_RESULT_LOW_ADDR);
} else {
result = VMCI_ERROR_UNAVAILABLE;
}
spin_unlock_irqrestore(&vmci_dev_spinlock, flags);
return result;
}
EXPORT_SYMBOL_GPL(vmci_send_datagram);
/*
* Gets called with the new context id if updated or resumed.
* Context id.
*/
static void vmci_guest_cid_update(u32 sub_id,
const struct vmci_event_data *event_data,
void *client_data)
{
const struct vmci_event_payld_ctx *ev_payload =
vmci_event_data_const_payload(event_data);
if (sub_id != ctx_update_sub_id) {
pr_devel("Invalid subscriber (ID=0x%x)\n", sub_id);
return;
}
if (!event_data || ev_payload->context_id == VMCI_INVALID_ID) {
pr_devel("Invalid event data\n");
return;
}
pr_devel("Updating context from (ID=0x%x) to (ID=0x%x) on event (type=%d)\n",
vm_context_id, ev_payload->context_id, event_data->event);
vm_context_id = ev_payload->context_id;
}
/*
* Verify that the host supports the hypercalls we need. If it does not,
* try to find fallback hypercalls and use those instead. Returns 0 if
* required hypercalls (or fallback hypercalls) are supported by the host,
* an error code otherwise.
*/
static int vmci_check_host_caps(struct pci_dev *pdev)
{
bool result;
struct vmci_resource_query_msg *msg;
u32 msg_size = sizeof(struct vmci_resource_query_hdr) +
VMCI_UTIL_NUM_RESOURCES * sizeof(u32);
struct vmci_datagram *check_msg;
check_msg = kzalloc(msg_size, GFP_KERNEL);
if (!check_msg) {
dev_err(&pdev->dev, "%s: Insufficient memory\n", __func__);
return -ENOMEM;
}
check_msg->dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
VMCI_RESOURCES_QUERY);
check_msg->src = VMCI_ANON_SRC_HANDLE;
check_msg->payload_size = msg_size - VMCI_DG_HEADERSIZE;
msg = (struct vmci_resource_query_msg *)VMCI_DG_PAYLOAD(check_msg);
msg->num_resources = VMCI_UTIL_NUM_RESOURCES;
msg->resources[0] = VMCI_GET_CONTEXT_ID;
/* Checks that hyper calls are supported */
result = vmci_send_datagram(check_msg) == 0x01;
kfree(check_msg);
dev_dbg(&pdev->dev, "%s: Host capability check: %s\n",
__func__, result ? "PASSED" : "FAILED");
/* We need the vector. There are no fallbacks. */
return result ? 0 : -ENXIO;
}
/*
* Reads datagrams from the device and dispatches them. For IO port
* based access to the device, we always start reading datagrams into
* only the first page of the datagram buffer. If the datagrams don't
* fit into one page, we use the maximum datagram buffer size for the
* remainder of the invocation. This is a simple heuristic for not
* penalizing small datagrams. For DMA-based datagrams, we always
* use the maximum datagram buffer size, since there is no performance
* penalty for doing so.
*
* This function assumes that it has exclusive access to the data
* in register(s) for the duration of the call.
*/
static void vmci_dispatch_dgs(struct vmci_guest_device *vmci_dev)
{
u8 *dg_in_buffer = vmci_dev->data_buffer;
struct vmci_datagram *dg;
size_t dg_in_buffer_size = VMCI_MAX_DG_SIZE;
size_t current_dg_in_buffer_size;
size_t remaining_bytes;
bool is_io_port = vmci_dev->mmio_base == NULL;
BUILD_BUG_ON(VMCI_MAX_DG_SIZE < PAGE_SIZE);
if (!is_io_port) {
/* For mmio, the first page is used for the header. */
dg_in_buffer += PAGE_SIZE;
/*
* For DMA-based datagram operations, there is no performance
* penalty for reading the maximum buffer size.
*/
current_dg_in_buffer_size = VMCI_MAX_DG_SIZE;
} else {
current_dg_in_buffer_size = PAGE_SIZE;
}
vmci_read_data(vmci_dev, dg_in_buffer, current_dg_in_buffer_size);
dg = (struct vmci_datagram *)dg_in_buffer;
remaining_bytes = current_dg_in_buffer_size;
/*
* Read through the buffer until an invalid datagram header is
* encountered. The exit condition for datagrams read through
* VMCI_DATA_IN_ADDR is a bit more complicated, since a datagram
* can start on any page boundary in the buffer.
*/
while (dg->dst.resource != VMCI_INVALID_ID ||
(is_io_port && remaining_bytes > PAGE_SIZE)) {
unsigned dg_in_size;
/*
* If using VMCI_DATA_IN_ADDR, skip to the next page
* as a datagram can start on any page boundary.
*/
if (dg->dst.resource == VMCI_INVALID_ID) {
dg = (struct vmci_datagram *)roundup(
(uintptr_t)dg + 1, PAGE_SIZE);
remaining_bytes =
(size_t)(dg_in_buffer +
current_dg_in_buffer_size -
(u8 *)dg);
continue;
}
dg_in_size = VMCI_DG_SIZE_ALIGNED(dg);
if (dg_in_size <= dg_in_buffer_size) {
int result;
/*
* If the remaining bytes in the datagram
* buffer doesn't contain the complete
* datagram, we first make sure we have enough
* room for it and then we read the reminder
* of the datagram and possibly any following
* datagrams.
*/
if (dg_in_size > remaining_bytes) {
if (remaining_bytes !=
current_dg_in_buffer_size) {
/*
* We move the partial
* datagram to the front and
* read the reminder of the
* datagram and possibly
* following calls into the
* following bytes.
*/
memmove(dg_in_buffer, dg_in_buffer +
current_dg_in_buffer_size -
remaining_bytes,
remaining_bytes);
dg = (struct vmci_datagram *)
dg_in_buffer;
}
if (current_dg_in_buffer_size !=
dg_in_buffer_size)
current_dg_in_buffer_size =
dg_in_buffer_size;
vmci_read_data(vmci_dev,
dg_in_buffer +
remaining_bytes,
current_dg_in_buffer_size -
remaining_bytes);
}
/*
* We special case event datagrams from the
* hypervisor.
*/
if (dg->src.context == VMCI_HYPERVISOR_CONTEXT_ID &&
dg->dst.resource == VMCI_EVENT_HANDLER) {
result = vmci_event_dispatch(dg);
} else {
result = vmci_datagram_invoke_guest_handler(dg);
}
if (result < VMCI_SUCCESS)
dev_dbg(vmci_dev->dev,
"Datagram with resource (ID=0x%x) failed (err=%d)\n",
dg->dst.resource, result);
/* On to the next datagram. */
dg = (struct vmci_datagram *)((u8 *)dg +
dg_in_size);
} else {
size_t bytes_to_skip;
/*
* Datagram doesn't fit in datagram buffer of maximal
* size. We drop it.
*/
dev_dbg(vmci_dev->dev,
"Failed to receive datagram (size=%u bytes)\n",
dg_in_size);
bytes_to_skip = dg_in_size - remaining_bytes;
if (current_dg_in_buffer_size != dg_in_buffer_size)
current_dg_in_buffer_size = dg_in_buffer_size;
for (;;) {
vmci_read_data(vmci_dev, dg_in_buffer,
current_dg_in_buffer_size);
if (bytes_to_skip <= current_dg_in_buffer_size)
break;
bytes_to_skip -= current_dg_in_buffer_size;
}
dg = (struct vmci_datagram *)(dg_in_buffer +
bytes_to_skip);
}
remaining_bytes =
(size_t) (dg_in_buffer + current_dg_in_buffer_size -
(u8 *)dg);
if (remaining_bytes < VMCI_DG_HEADERSIZE) {
/* Get the next batch of datagrams. */
vmci_read_data(vmci_dev, dg_in_buffer,
current_dg_in_buffer_size);
dg = (struct vmci_datagram *)dg_in_buffer;
remaining_bytes = current_dg_in_buffer_size;
}
}
}
/*
* Scans the notification bitmap for raised flags, clears them
* and handles the notifications.
*/
static void vmci_process_bitmap(struct vmci_guest_device *dev)
{
if (!dev->notification_bitmap) {
dev_dbg(dev->dev, "No bitmap present in %s\n", __func__);
return;
}
vmci_dbell_scan_notification_entries(dev->notification_bitmap);
}
/*
* Interrupt handler for legacy or MSI interrupt, or for first MSI-X
* interrupt (vector VMCI_INTR_DATAGRAM).
*/
static irqreturn_t vmci_interrupt(int irq, void *_dev)
{
struct vmci_guest_device *dev = _dev;
/*
* If we are using MSI-X with exclusive vectors then we simply call
* vmci_dispatch_dgs(), since we know the interrupt was meant for us.
* Otherwise we must read the ICR to determine what to do.
*/
if (dev->exclusive_vectors) {
vmci_dispatch_dgs(dev);
} else {
unsigned int icr;
/* Acknowledge interrupt and determine what needs doing. */
icr = vmci_read_reg(dev, VMCI_ICR_ADDR);
if (icr == 0 || icr == ~0)
return IRQ_NONE;
if (icr & VMCI_ICR_DATAGRAM) {
vmci_dispatch_dgs(dev);
icr &= ~VMCI_ICR_DATAGRAM;
}
if (icr & VMCI_ICR_NOTIFICATION) {
vmci_process_bitmap(dev);
icr &= ~VMCI_ICR_NOTIFICATION;
}
if (icr & VMCI_ICR_DMA_DATAGRAM) {
wake_up_all(&dev->inout_wq);
icr &= ~VMCI_ICR_DMA_DATAGRAM;
}
if (icr != 0)
dev_warn(dev->dev,
"Ignoring unknown interrupt cause (%d)\n",
icr);
}
return IRQ_HANDLED;
}
/*
* Interrupt handler for MSI-X interrupt vector VMCI_INTR_NOTIFICATION,
* which is for the notification bitmap. Will only get called if we are
* using MSI-X with exclusive vectors.
*/
static irqreturn_t vmci_interrupt_bm(int irq, void *_dev)
{
struct vmci_guest_device *dev = _dev;
/* For MSI-X we can just assume it was meant for us. */
vmci_process_bitmap(dev);
return IRQ_HANDLED;
}
/*
* Interrupt handler for MSI-X interrupt vector VMCI_INTR_DMA_DATAGRAM,
* which is for the completion of a DMA datagram send or receive operation.
* Will only get called if we are using MSI-X with exclusive vectors.
*/
static irqreturn_t vmci_interrupt_dma_datagram(int irq, void *_dev)
{
struct vmci_guest_device *dev = _dev;
wake_up_all(&dev->inout_wq);
return IRQ_HANDLED;
}
static void vmci_free_dg_buffers(struct vmci_guest_device *vmci_dev)
{
if (vmci_dev->mmio_base != NULL) {
if (vmci_dev->tx_buffer != NULL)
dma_free_coherent(vmci_dev->dev,
VMCI_DMA_DG_BUFFER_SIZE,
vmci_dev->tx_buffer,
vmci_dev->tx_buffer_base);
if (vmci_dev->data_buffer != NULL)
dma_free_coherent(vmci_dev->dev,
VMCI_DMA_DG_BUFFER_SIZE,
vmci_dev->data_buffer,
vmci_dev->data_buffer_base);
} else {
vfree(vmci_dev->data_buffer);
}
}
/*
* Most of the initialization at module load time is done here.
*/
static int vmci_guest_probe_device(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct vmci_guest_device *vmci_dev;
void __iomem *iobase = NULL;
void __iomem *mmio_base = NULL;
unsigned int num_irq_vectors;
unsigned int capabilities;
unsigned int caps_in_use;
unsigned long cmd;
int vmci_err;
int error;
dev_dbg(&pdev->dev, "Probing for vmci/PCI guest device\n");
error = pcim_enable_device(pdev);
if (error) {
dev_err(&pdev->dev,
"Failed to enable VMCI device: %d\n", error);
return error;
}
/*
* The VMCI device with mmio access to registers requests 256KB
* for BAR1. If present, driver will use new VMCI device
* functionality for register access and datagram send/recv.
*/
if (pci_resource_len(pdev, 1) == VMCI_WITH_MMIO_ACCESS_BAR_SIZE) {
dev_info(&pdev->dev, "MMIO register access is available\n");
mmio_base = pci_iomap_range(pdev, 1, VMCI_MMIO_ACCESS_OFFSET,
VMCI_MMIO_ACCESS_SIZE);
/* If the map fails, we fall back to IOIO access. */
if (!mmio_base)
dev_warn(&pdev->dev, "Failed to map MMIO register access\n");
}
if (!mmio_base) {
if (IS_ENABLED(CONFIG_ARM64)) {
dev_err(&pdev->dev, "MMIO base is invalid\n");
return -ENXIO;
}
error = pcim_iomap_regions(pdev, BIT(0), KBUILD_MODNAME);
if (error) {
dev_err(&pdev->dev, "Failed to reserve/map IO regions\n");
return error;
}
iobase = pcim_iomap_table(pdev)[0];
}
vmci_dev = devm_kzalloc(&pdev->dev, sizeof(*vmci_dev), GFP_KERNEL);
if (!vmci_dev) {
dev_err(&pdev->dev,
"Can't allocate memory for VMCI device\n");
error = -ENOMEM;
goto err_unmap_mmio_base;
}
vmci_dev->dev = &pdev->dev;
vmci_dev->exclusive_vectors = false;
vmci_dev->iobase = iobase;
vmci_dev->mmio_base = mmio_base;
init_waitqueue_head(&vmci_dev->inout_wq);
if (mmio_base != NULL) {
vmci_dev->tx_buffer = dma_alloc_coherent(&pdev->dev, VMCI_DMA_DG_BUFFER_SIZE,
&vmci_dev->tx_buffer_base,
GFP_KERNEL);
if (!vmci_dev->tx_buffer) {
dev_err(&pdev->dev,
"Can't allocate memory for datagram tx buffer\n");
error = -ENOMEM;
goto err_unmap_mmio_base;
}
vmci_dev->data_buffer = dma_alloc_coherent(&pdev->dev, VMCI_DMA_DG_BUFFER_SIZE,
&vmci_dev->data_buffer_base,
GFP_KERNEL);
} else {
vmci_dev->data_buffer = vmalloc(VMCI_MAX_DG_SIZE);
}
if (!vmci_dev->data_buffer) {
dev_err(&pdev->dev,
"Can't allocate memory for datagram buffer\n");
error = -ENOMEM;
goto err_free_data_buffers;
}
pci_set_master(pdev); /* To enable queue_pair functionality. */
/*
* Verify that the VMCI Device supports the capabilities that
* we need. If the device is missing capabilities that we would
* like to use, check for fallback capabilities and use those
* instead (so we can run a new VM on old hosts). Fail the load if
* a required capability is missing and there is no fallback.
*
* Right now, we need datagrams. There are no fallbacks.
*/
capabilities = vmci_read_reg(vmci_dev, VMCI_CAPS_ADDR);
if (!(capabilities & VMCI_CAPS_DATAGRAM)) {
dev_err(&pdev->dev, "Device does not support datagrams\n");
error = -ENXIO;
goto err_free_data_buffers;
}
caps_in_use = VMCI_CAPS_DATAGRAM;
/*
* Use 64-bit PPNs if the device supports.
*
* There is no check for the return value of dma_set_mask_and_coherent
* since this driver can handle the default mask values if
* dma_set_mask_and_coherent fails.
*/
if (capabilities & VMCI_CAPS_PPN64) {
dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
use_ppn64 = true;
caps_in_use |= VMCI_CAPS_PPN64;
} else {
dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(44));
use_ppn64 = false;
}
/*
* If the hardware supports notifications, we will use that as
* well.
*/
if (capabilities & VMCI_CAPS_NOTIFICATIONS) {
vmci_dev->notification_bitmap = dma_alloc_coherent(
&pdev->dev, PAGE_SIZE, &vmci_dev->notification_base,
GFP_KERNEL);
if (!vmci_dev->notification_bitmap)
dev_warn(&pdev->dev,
"Unable to allocate notification bitmap\n");
else
caps_in_use |= VMCI_CAPS_NOTIFICATIONS;
}
if (mmio_base != NULL) {
if (capabilities & VMCI_CAPS_DMA_DATAGRAM) {
caps_in_use |= VMCI_CAPS_DMA_DATAGRAM;
} else {
dev_err(&pdev->dev,
"Missing capability: VMCI_CAPS_DMA_DATAGRAM\n");
error = -ENXIO;
goto err_free_notification_bitmap;
}
}
dev_info(&pdev->dev, "Using capabilities 0x%x\n", caps_in_use);
/* Let the host know which capabilities we intend to use. */
vmci_write_reg(vmci_dev, caps_in_use, VMCI_CAPS_ADDR);
if (caps_in_use & VMCI_CAPS_DMA_DATAGRAM) {
/* Let the device know the size for pages passed down. */
vmci_write_reg(vmci_dev, PAGE_SHIFT, VMCI_GUEST_PAGE_SHIFT);
/* Configure the high order parts of the data in/out buffers. */
vmci_write_reg(vmci_dev, upper_32_bits(vmci_dev->data_buffer_base),
VMCI_DATA_IN_HIGH_ADDR);
vmci_write_reg(vmci_dev, upper_32_bits(vmci_dev->tx_buffer_base),
VMCI_DATA_OUT_HIGH_ADDR);
}
/* Set up global device so that we can start sending datagrams */
spin_lock_irq(&vmci_dev_spinlock);
vmci_dev_g = vmci_dev;
vmci_pdev = pdev;
spin_unlock_irq(&vmci_dev_spinlock);
/*
* Register notification bitmap with device if that capability is
* used.
*/
if (caps_in_use & VMCI_CAPS_NOTIFICATIONS) {
unsigned long bitmap_ppn =
vmci_dev->notification_base >> PAGE_SHIFT;
if (!vmci_dbell_register_notification_bitmap(bitmap_ppn)) {
dev_warn(&pdev->dev,
"VMCI device unable to register notification bitmap with PPN 0x%lx\n",
bitmap_ppn);
error = -ENXIO;
goto err_remove_vmci_dev_g;
}
}
/* Check host capabilities. */
error = vmci_check_host_caps(pdev);
if (error)
goto err_remove_vmci_dev_g;
/* Enable device. */
/*
* We subscribe to the VMCI_EVENT_CTX_ID_UPDATE here so we can
* update the internal context id when needed.
*/
vmci_err = vmci_event_subscribe(VMCI_EVENT_CTX_ID_UPDATE,
vmci_guest_cid_update, NULL,
&ctx_update_sub_id);
if (vmci_err < VMCI_SUCCESS)
dev_warn(&pdev->dev,
"Failed to subscribe to event (type=%d): %d\n",
VMCI_EVENT_CTX_ID_UPDATE, vmci_err);
/*
* Enable interrupts. Try MSI-X first, then MSI, and then fallback on
* legacy interrupts.
*/
if (vmci_dev->mmio_base != NULL)
num_irq_vectors = VMCI_MAX_INTRS;
else
num_irq_vectors = VMCI_MAX_INTRS_NOTIFICATION;
error = pci_alloc_irq_vectors(pdev, num_irq_vectors, num_irq_vectors,
PCI_IRQ_MSIX);
if (error < 0) {
error = pci_alloc_irq_vectors(pdev, 1, 1,
PCI_IRQ_MSIX | PCI_IRQ_MSI | PCI_IRQ_LEGACY);
if (error < 0)
goto err_unsubscribe_event;
} else {
vmci_dev->exclusive_vectors = true;
}
/*
* Request IRQ for legacy or MSI interrupts, or for first
* MSI-X vector.
*/
error = request_threaded_irq(pci_irq_vector(pdev, 0), NULL,
vmci_interrupt, IRQF_SHARED,
KBUILD_MODNAME, vmci_dev);
if (error) {
dev_err(&pdev->dev, "Irq %u in use: %d\n",
pci_irq_vector(pdev, 0), error);
goto err_disable_msi;
}
/*
* For MSI-X with exclusive vectors we need to request an
* interrupt for each vector so that we get a separate
* interrupt handler routine. This allows us to distinguish
* between the vectors.
*/
if (vmci_dev->exclusive_vectors) {
error = request_threaded_irq(pci_irq_vector(pdev, 1), NULL,
vmci_interrupt_bm, 0,
KBUILD_MODNAME, vmci_dev);
if (error) {
dev_err(&pdev->dev,
"Failed to allocate irq %u: %d\n",
pci_irq_vector(pdev, 1), error);
goto err_free_irq;
}
if (caps_in_use & VMCI_CAPS_DMA_DATAGRAM) {
error = request_threaded_irq(pci_irq_vector(pdev, 2),
NULL,
vmci_interrupt_dma_datagram,
0, KBUILD_MODNAME,
vmci_dev);
if (error) {
dev_err(&pdev->dev,
"Failed to allocate irq %u: %d\n",
pci_irq_vector(pdev, 2), error);
goto err_free_bm_irq;
}
}
}
dev_dbg(&pdev->dev, "Registered device\n");
atomic_inc(&vmci_num_guest_devices);
/* Enable specific interrupt bits. */
cmd = VMCI_IMR_DATAGRAM;
if (caps_in_use & VMCI_CAPS_NOTIFICATIONS)
cmd |= VMCI_IMR_NOTIFICATION;
if (caps_in_use & VMCI_CAPS_DMA_DATAGRAM)
cmd |= VMCI_IMR_DMA_DATAGRAM;
vmci_write_reg(vmci_dev, cmd, VMCI_IMR_ADDR);
/* Enable interrupts. */
vmci_write_reg(vmci_dev, VMCI_CONTROL_INT_ENABLE, VMCI_CONTROL_ADDR);
pci_set_drvdata(pdev, vmci_dev);
vmci_call_vsock_callback(false);
return 0;
err_free_bm_irq:
if (vmci_dev->exclusive_vectors)
free_irq(pci_irq_vector(pdev, 1), vmci_dev);
err_free_irq:
free_irq(pci_irq_vector(pdev, 0), vmci_dev);
err_disable_msi:
pci_free_irq_vectors(pdev);
err_unsubscribe_event:
vmci_err = vmci_event_unsubscribe(ctx_update_sub_id);
if (vmci_err < VMCI_SUCCESS)
dev_warn(&pdev->dev,
"Failed to unsubscribe from event (type=%d) with subscriber (ID=0x%x): %d\n",
VMCI_EVENT_CTX_ID_UPDATE, ctx_update_sub_id, vmci_err);
err_remove_vmci_dev_g:
spin_lock_irq(&vmci_dev_spinlock);
vmci_pdev = NULL;
vmci_dev_g = NULL;
spin_unlock_irq(&vmci_dev_spinlock);
err_free_notification_bitmap:
if (vmci_dev->notification_bitmap) {
vmci_write_reg(vmci_dev, VMCI_CONTROL_RESET, VMCI_CONTROL_ADDR);
dma_free_coherent(&pdev->dev, PAGE_SIZE,
vmci_dev->notification_bitmap,
vmci_dev->notification_base);
}
err_free_data_buffers:
vmci_free_dg_buffers(vmci_dev);
err_unmap_mmio_base:
if (mmio_base != NULL)
pci_iounmap(pdev, mmio_base);
/* The rest are managed resources and will be freed by PCI core */
return error;
}
static void vmci_guest_remove_device(struct pci_dev *pdev)
{
struct vmci_guest_device *vmci_dev = pci_get_drvdata(pdev);
int vmci_err;
dev_dbg(&pdev->dev, "Removing device\n");
atomic_dec(&vmci_num_guest_devices);
vmci_qp_guest_endpoints_exit();
vmci_err = vmci_event_unsubscribe(ctx_update_sub_id);
if (vmci_err < VMCI_SUCCESS)
dev_warn(&pdev->dev,
"Failed to unsubscribe from event (type=%d) with subscriber (ID=0x%x): %d\n",
VMCI_EVENT_CTX_ID_UPDATE, ctx_update_sub_id, vmci_err);
spin_lock_irq(&vmci_dev_spinlock);
vmci_dev_g = NULL;
vmci_pdev = NULL;
spin_unlock_irq(&vmci_dev_spinlock);
dev_dbg(&pdev->dev, "Resetting vmci device\n");
vmci_write_reg(vmci_dev, VMCI_CONTROL_RESET, VMCI_CONTROL_ADDR);
/*
* Free IRQ and then disable MSI/MSI-X as appropriate. For
* MSI-X, we might have multiple vectors, each with their own
* IRQ, which we must free too.
*/
if (vmci_dev->exclusive_vectors) {
free_irq(pci_irq_vector(pdev, 1), vmci_dev);
if (vmci_dev->mmio_base != NULL)
free_irq(pci_irq_vector(pdev, 2), vmci_dev);
}
free_irq(pci_irq_vector(pdev, 0), vmci_dev);
pci_free_irq_vectors(pdev);
if (vmci_dev->notification_bitmap) {
/*
* The device reset above cleared the bitmap state of the
* device, so we can safely free it here.
*/
dma_free_coherent(&pdev->dev, PAGE_SIZE,
vmci_dev->notification_bitmap,
vmci_dev->notification_base);
}
vmci_free_dg_buffers(vmci_dev);
if (vmci_dev->mmio_base != NULL)
pci_iounmap(pdev, vmci_dev->mmio_base);
/* The rest are managed resources and will be freed by PCI core */
}
static const struct pci_device_id vmci_ids[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_VMWARE, PCI_DEVICE_ID_VMWARE_VMCI), },
{ 0 },
};
MODULE_DEVICE_TABLE(pci, vmci_ids);
static struct pci_driver vmci_guest_driver = {
.name = KBUILD_MODNAME,
.id_table = vmci_ids,
.probe = vmci_guest_probe_device,
.remove = vmci_guest_remove_device,
};
int __init vmci_guest_init(void)
{
return pci_register_driver(&vmci_guest_driver);
}
void __exit vmci_guest_exit(void)
{
pci_unregister_driver(&vmci_guest_driver);
}
|