summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/raw/fsl_upm.c
blob: 315e9d2b573d330b935382501d12beb43909989b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Freescale UPM NAND driver.
 *
 * Copyright © 2007-2008  MontaVista Software, Inc.
 *
 * Author: Anton Vorontsov <avorontsov@ru.mvista.com>
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/mtd.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <asm/fsl_lbc.h>

struct fsl_upm_nand {
	struct nand_controller base;
	struct device *dev;
	struct nand_chip chip;
	struct fsl_upm upm;
	uint8_t upm_addr_offset;
	uint8_t upm_cmd_offset;
	void __iomem *io_base;
	struct gpio_desc *rnb_gpio[NAND_MAX_CHIPS];
	uint32_t mchip_offsets[NAND_MAX_CHIPS];
	uint32_t mchip_count;
	uint32_t mchip_number;
};

static inline struct fsl_upm_nand *to_fsl_upm_nand(struct mtd_info *mtdinfo)
{
	return container_of(mtd_to_nand(mtdinfo), struct fsl_upm_nand,
			    chip);
}

static int fun_chip_init(struct fsl_upm_nand *fun,
			 const struct device_node *upm_np,
			 const struct resource *io_res)
{
	struct mtd_info *mtd = nand_to_mtd(&fun->chip);
	int ret;
	struct device_node *flash_np;

	fun->chip.ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
	fun->chip.ecc.algo = NAND_ECC_ALGO_HAMMING;
	fun->chip.controller = &fun->base;
	mtd->dev.parent = fun->dev;

	flash_np = of_get_next_child(upm_np, NULL);
	if (!flash_np)
		return -ENODEV;

	nand_set_flash_node(&fun->chip, flash_np);
	mtd->name = devm_kasprintf(fun->dev, GFP_KERNEL, "0x%llx.%pOFn",
				   (u64)io_res->start,
				   flash_np);
	if (!mtd->name) {
		ret = -ENOMEM;
		goto err;
	}

	ret = nand_scan(&fun->chip, fun->mchip_count);
	if (ret)
		goto err;

	ret = mtd_device_register(mtd, NULL, 0);
err:
	of_node_put(flash_np);
	return ret;
}

static int func_exec_instr(struct nand_chip *chip,
			   const struct nand_op_instr *instr)
{
	struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
	u32 mar, reg_offs = fun->mchip_offsets[fun->mchip_number];
	unsigned int i;
	const u8 *out;
	u8 *in;

	switch (instr->type) {
	case NAND_OP_CMD_INSTR:
		fsl_upm_start_pattern(&fun->upm, fun->upm_cmd_offset);
		mar = (instr->ctx.cmd.opcode << (32 - fun->upm.width)) |
		      reg_offs;
		fsl_upm_run_pattern(&fun->upm, fun->io_base + reg_offs, mar);
		fsl_upm_end_pattern(&fun->upm);
		return 0;

	case NAND_OP_ADDR_INSTR:
		fsl_upm_start_pattern(&fun->upm, fun->upm_addr_offset);
		for (i = 0; i < instr->ctx.addr.naddrs; i++) {
			mar = (instr->ctx.addr.addrs[i] << (32 - fun->upm.width)) |
			      reg_offs;
			fsl_upm_run_pattern(&fun->upm, fun->io_base + reg_offs, mar);
		}
		fsl_upm_end_pattern(&fun->upm);
		return 0;

	case NAND_OP_DATA_IN_INSTR:
		in = instr->ctx.data.buf.in;
		for (i = 0; i < instr->ctx.data.len; i++)
			in[i] = in_8(fun->io_base + reg_offs);
		return 0;

	case NAND_OP_DATA_OUT_INSTR:
		out = instr->ctx.data.buf.out;
		for (i = 0; i < instr->ctx.data.len; i++)
			out_8(fun->io_base + reg_offs, out[i]);
		return 0;

	case NAND_OP_WAITRDY_INSTR:
		if (!fun->rnb_gpio[fun->mchip_number])
			return nand_soft_waitrdy(chip, instr->ctx.waitrdy.timeout_ms);

		return nand_gpio_waitrdy(chip, fun->rnb_gpio[fun->mchip_number],
					 instr->ctx.waitrdy.timeout_ms);

	default:
		return -EINVAL;
	}

	return 0;
}

static int fun_exec_op(struct nand_chip *chip, const struct nand_operation *op,
		       bool check_only)
{
	struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
	unsigned int i;
	int ret;

	if (op->cs >= NAND_MAX_CHIPS)
		return -EINVAL;

	if (check_only)
		return 0;

	fun->mchip_number = op->cs;

	for (i = 0; i < op->ninstrs; i++) {
		ret = func_exec_instr(chip, &op->instrs[i]);
		if (ret)
			return ret;

		if (op->instrs[i].delay_ns)
			ndelay(op->instrs[i].delay_ns);
	}

	return 0;
}

static const struct nand_controller_ops fun_ops = {
	.exec_op = fun_exec_op,
};

static int fun_probe(struct platform_device *ofdev)
{
	struct fsl_upm_nand *fun;
	struct resource *io_res;
	const __be32 *prop;
	int ret;
	int size;
	int i;

	fun = devm_kzalloc(&ofdev->dev, sizeof(*fun), GFP_KERNEL);
	if (!fun)
		return -ENOMEM;

	fun->io_base = devm_platform_get_and_ioremap_resource(ofdev, 0, &io_res);
	if (IS_ERR(fun->io_base))
		return PTR_ERR(fun->io_base);

	ret = fsl_upm_find(io_res->start, &fun->upm);
	if (ret) {
		dev_err(&ofdev->dev, "can't find UPM\n");
		return ret;
	}

	prop = of_get_property(ofdev->dev.of_node, "fsl,upm-addr-offset",
			       &size);
	if (!prop || size != sizeof(uint32_t)) {
		dev_err(&ofdev->dev, "can't get UPM address offset\n");
		return -EINVAL;
	}
	fun->upm_addr_offset = *prop;

	prop = of_get_property(ofdev->dev.of_node, "fsl,upm-cmd-offset", &size);
	if (!prop || size != sizeof(uint32_t)) {
		dev_err(&ofdev->dev, "can't get UPM command offset\n");
		return -EINVAL;
	}
	fun->upm_cmd_offset = *prop;

	prop = of_get_property(ofdev->dev.of_node,
			       "fsl,upm-addr-line-cs-offsets", &size);
	if (prop && (size / sizeof(uint32_t)) > 0) {
		fun->mchip_count = size / sizeof(uint32_t);
		if (fun->mchip_count >= NAND_MAX_CHIPS) {
			dev_err(&ofdev->dev, "too much multiple chips\n");
			return -EINVAL;
		}
		for (i = 0; i < fun->mchip_count; i++)
			fun->mchip_offsets[i] = be32_to_cpu(prop[i]);
	} else {
		fun->mchip_count = 1;
	}

	for (i = 0; i < fun->mchip_count; i++) {
		fun->rnb_gpio[i] = devm_gpiod_get_index_optional(&ofdev->dev,
								 NULL, i,
								 GPIOD_IN);
		if (IS_ERR(fun->rnb_gpio[i])) {
			dev_err(&ofdev->dev, "RNB gpio #%d is invalid\n", i);
			return PTR_ERR(fun->rnb_gpio[i]);
		}
	}

	nand_controller_init(&fun->base);
	fun->base.ops = &fun_ops;
	fun->dev = &ofdev->dev;

	ret = fun_chip_init(fun, ofdev->dev.of_node, io_res);
	if (ret)
		return ret;

	dev_set_drvdata(&ofdev->dev, fun);

	return 0;
}

static void fun_remove(struct platform_device *ofdev)
{
	struct fsl_upm_nand *fun = dev_get_drvdata(&ofdev->dev);
	struct nand_chip *chip = &fun->chip;
	struct mtd_info *mtd = nand_to_mtd(chip);
	int ret;

	ret = mtd_device_unregister(mtd);
	WARN_ON(ret);
	nand_cleanup(chip);
}

static const struct of_device_id of_fun_match[] = {
	{ .compatible = "fsl,upm-nand" },
	{},
};
MODULE_DEVICE_TABLE(of, of_fun_match);

static struct platform_driver of_fun_driver = {
	.driver = {
		.name = "fsl,upm-nand",
		.of_match_table = of_fun_match,
	},
	.probe		= fun_probe,
	.remove_new	= fun_remove,
};

module_platform_driver(of_fun_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Anton Vorontsov <avorontsov@ru.mvista.com>");
MODULE_DESCRIPTION("Driver for NAND chips working through Freescale "
		   "LocalBus User-Programmable Machine");