summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/tests/mtd_nandecctest.c
blob: 824cc1c03b6a335f27f5ac7cfc593e4976cfd076 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
// SPDX-License-Identifier: GPL-2.0-only
#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/random.h>
#include <linux/string.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/mtd/nand-ecc-sw-hamming.h>

#include "mtd_test.h"

/*
 * Test the implementation for software ECC
 *
 * No actual MTD device is needed, So we don't need to warry about losing
 * important data by human error.
 *
 * This covers possible patterns of corruption which can be reliably corrected
 * or detected.
 */

#if IS_ENABLED(CONFIG_MTD_RAW_NAND)

struct nand_ecc_test {
	const char *name;
	void (*prepare)(void *, void *, void *, void *, const size_t);
	int (*verify)(void *, void *, void *, const size_t);
};

/*
 * The reason for this __change_bit_le() instead of __change_bit() is to inject
 * bit error properly within the region which is not a multiple of
 * sizeof(unsigned long) on big-endian systems
 */
#ifdef __LITTLE_ENDIAN
#define __change_bit_le(nr, addr) __change_bit(nr, addr)
#elif defined(__BIG_ENDIAN)
#define __change_bit_le(nr, addr) \
		__change_bit((nr) ^ ((BITS_PER_LONG - 1) & ~0x7), addr)
#else
#error "Unknown byte order"
#endif

static void single_bit_error_data(void *error_data, void *correct_data,
				size_t size)
{
	unsigned int offset = get_random_u32_below(size * BITS_PER_BYTE);

	memcpy(error_data, correct_data, size);
	__change_bit_le(offset, error_data);
}

static void double_bit_error_data(void *error_data, void *correct_data,
				size_t size)
{
	unsigned int offset[2];

	offset[0] = get_random_u32_below(size * BITS_PER_BYTE);
	do {
		offset[1] = get_random_u32_below(size * BITS_PER_BYTE);
	} while (offset[0] == offset[1]);

	memcpy(error_data, correct_data, size);

	__change_bit_le(offset[0], error_data);
	__change_bit_le(offset[1], error_data);
}

static unsigned int random_ecc_bit(size_t size)
{
	unsigned int offset = get_random_u32_below(3 * BITS_PER_BYTE);

	if (size == 256) {
		/*
		 * Don't inject a bit error into the insignificant bits (16th
		 * and 17th bit) in ECC code for 256 byte data block
		 */
		while (offset == 16 || offset == 17)
			offset = get_random_u32_below(3 * BITS_PER_BYTE);
	}

	return offset;
}

static void single_bit_error_ecc(void *error_ecc, void *correct_ecc,
				size_t size)
{
	unsigned int offset = random_ecc_bit(size);

	memcpy(error_ecc, correct_ecc, 3);
	__change_bit_le(offset, error_ecc);
}

static void double_bit_error_ecc(void *error_ecc, void *correct_ecc,
				size_t size)
{
	unsigned int offset[2];

	offset[0] = random_ecc_bit(size);
	do {
		offset[1] = random_ecc_bit(size);
	} while (offset[0] == offset[1]);

	memcpy(error_ecc, correct_ecc, 3);
	__change_bit_le(offset[0], error_ecc);
	__change_bit_le(offset[1], error_ecc);
}

static void no_bit_error(void *error_data, void *error_ecc,
		void *correct_data, void *correct_ecc, const size_t size)
{
	memcpy(error_data, correct_data, size);
	memcpy(error_ecc, correct_ecc, 3);
}

static int no_bit_error_verify(void *error_data, void *error_ecc,
				void *correct_data, const size_t size)
{
	bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC);
	unsigned char calc_ecc[3];
	int ret;

	ecc_sw_hamming_calculate(error_data, size, calc_ecc, sm_order);
	ret = ecc_sw_hamming_correct(error_data, error_ecc, calc_ecc, size,
				     sm_order);
	if (ret == 0 && !memcmp(correct_data, error_data, size))
		return 0;

	return -EINVAL;
}

static void single_bit_error_in_data(void *error_data, void *error_ecc,
		void *correct_data, void *correct_ecc, const size_t size)
{
	single_bit_error_data(error_data, correct_data, size);
	memcpy(error_ecc, correct_ecc, 3);
}

static void single_bit_error_in_ecc(void *error_data, void *error_ecc,
		void *correct_data, void *correct_ecc, const size_t size)
{
	memcpy(error_data, correct_data, size);
	single_bit_error_ecc(error_ecc, correct_ecc, size);
}

static int single_bit_error_correct(void *error_data, void *error_ecc,
				void *correct_data, const size_t size)
{
	bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC);
	unsigned char calc_ecc[3];
	int ret;

	ecc_sw_hamming_calculate(error_data, size, calc_ecc, sm_order);
	ret = ecc_sw_hamming_correct(error_data, error_ecc, calc_ecc, size,
				     sm_order);
	if (ret == 1 && !memcmp(correct_data, error_data, size))
		return 0;

	return -EINVAL;
}

static void double_bit_error_in_data(void *error_data, void *error_ecc,
		void *correct_data, void *correct_ecc, const size_t size)
{
	double_bit_error_data(error_data, correct_data, size);
	memcpy(error_ecc, correct_ecc, 3);
}

static void single_bit_error_in_data_and_ecc(void *error_data, void *error_ecc,
		void *correct_data, void *correct_ecc, const size_t size)
{
	single_bit_error_data(error_data, correct_data, size);
	single_bit_error_ecc(error_ecc, correct_ecc, size);
}

static void double_bit_error_in_ecc(void *error_data, void *error_ecc,
		void *correct_data, void *correct_ecc, const size_t size)
{
	memcpy(error_data, correct_data, size);
	double_bit_error_ecc(error_ecc, correct_ecc, size);
}

static int double_bit_error_detect(void *error_data, void *error_ecc,
				void *correct_data, const size_t size)
{
	bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC);
	unsigned char calc_ecc[3];
	int ret;

	ecc_sw_hamming_calculate(error_data, size, calc_ecc, sm_order);
	ret = ecc_sw_hamming_correct(error_data, error_ecc, calc_ecc, size,
				     sm_order);

	return (ret == -EBADMSG) ? 0 : -EINVAL;
}

static const struct nand_ecc_test nand_ecc_test[] = {
	{
		.name = "no-bit-error",
		.prepare = no_bit_error,
		.verify = no_bit_error_verify,
	},
	{
		.name = "single-bit-error-in-data-correct",
		.prepare = single_bit_error_in_data,
		.verify = single_bit_error_correct,
	},
	{
		.name = "single-bit-error-in-ecc-correct",
		.prepare = single_bit_error_in_ecc,
		.verify = single_bit_error_correct,
	},
	{
		.name = "double-bit-error-in-data-detect",
		.prepare = double_bit_error_in_data,
		.verify = double_bit_error_detect,
	},
	{
		.name = "single-bit-error-in-data-and-ecc-detect",
		.prepare = single_bit_error_in_data_and_ecc,
		.verify = double_bit_error_detect,
	},
	{
		.name = "double-bit-error-in-ecc-detect",
		.prepare = double_bit_error_in_ecc,
		.verify = double_bit_error_detect,
	},
};

static void dump_data_ecc(void *error_data, void *error_ecc, void *correct_data,
			void *correct_ecc, const size_t size)
{
	pr_info("hexdump of error data:\n");
	print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
			error_data, size, false);
	print_hex_dump(KERN_INFO, "hexdump of error ecc: ",
			DUMP_PREFIX_NONE, 16, 1, error_ecc, 3, false);

	pr_info("hexdump of correct data:\n");
	print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
			correct_data, size, false);
	print_hex_dump(KERN_INFO, "hexdump of correct ecc: ",
			DUMP_PREFIX_NONE, 16, 1, correct_ecc, 3, false);
}

static int nand_ecc_test_run(const size_t size)
{
	bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC);
	int i;
	int err = 0;
	void *error_data;
	void *error_ecc;
	void *correct_data;
	void *correct_ecc;

	error_data = kmalloc(size, GFP_KERNEL);
	error_ecc = kmalloc(3, GFP_KERNEL);
	correct_data = kmalloc(size, GFP_KERNEL);
	correct_ecc = kmalloc(3, GFP_KERNEL);

	if (!error_data || !error_ecc || !correct_data || !correct_ecc) {
		err = -ENOMEM;
		goto error;
	}

	get_random_bytes(correct_data, size);
	ecc_sw_hamming_calculate(correct_data, size, correct_ecc, sm_order);
	for (i = 0; i < ARRAY_SIZE(nand_ecc_test); i++) {
		nand_ecc_test[i].prepare(error_data, error_ecc,
				correct_data, correct_ecc, size);
		err = nand_ecc_test[i].verify(error_data, error_ecc,
						correct_data, size);

		if (err) {
			pr_err("not ok - %s-%zd\n",
				nand_ecc_test[i].name, size);
			dump_data_ecc(error_data, error_ecc,
				correct_data, correct_ecc, size);
			break;
		}
		pr_info("ok - %s-%zd\n",
			nand_ecc_test[i].name, size);

		err = mtdtest_relax();
		if (err)
			break;
	}
error:
	kfree(error_data);
	kfree(error_ecc);
	kfree(correct_data);
	kfree(correct_ecc);

	return err;
}

#else

static int nand_ecc_test_run(const size_t size)
{
	return 0;
}

#endif

static int __init ecc_test_init(void)
{
	int err;

	err = nand_ecc_test_run(256);
	if (err)
		return err;

	return nand_ecc_test_run(512);
}

static void __exit ecc_test_exit(void)
{
}

module_init(ecc_test_init);
module_exit(ecc_test_exit);

MODULE_DESCRIPTION("NAND ECC function test module");
MODULE_AUTHOR("Akinobu Mita");
MODULE_LICENSE("GPL");