summaryrefslogtreecommitdiffstats
path: root/drivers/net/can/m_can/m_can.c
blob: 16ecc11c7f62af670226282f13e677d2340ad99f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
// SPDX-License-Identifier: GPL-2.0
// CAN bus driver for Bosch M_CAN controller
// Copyright (C) 2014 Freescale Semiconductor, Inc.
//      Dong Aisheng <b29396@freescale.com>
// Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/

/* Bosch M_CAN user manual can be obtained from:
 * https://github.com/linux-can/can-doc/tree/master/m_can
 */

#include <linux/bitfield.h>
#include <linux/can/dev.h>
#include <linux/ethtool.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>

#include "m_can.h"

/* registers definition */
enum m_can_reg {
	M_CAN_CREL	= 0x0,
	M_CAN_ENDN	= 0x4,
	M_CAN_CUST	= 0x8,
	M_CAN_DBTP	= 0xc,
	M_CAN_TEST	= 0x10,
	M_CAN_RWD	= 0x14,
	M_CAN_CCCR	= 0x18,
	M_CAN_NBTP	= 0x1c,
	M_CAN_TSCC	= 0x20,
	M_CAN_TSCV	= 0x24,
	M_CAN_TOCC	= 0x28,
	M_CAN_TOCV	= 0x2c,
	M_CAN_ECR	= 0x40,
	M_CAN_PSR	= 0x44,
	/* TDCR Register only available for version >=3.1.x */
	M_CAN_TDCR	= 0x48,
	M_CAN_IR	= 0x50,
	M_CAN_IE	= 0x54,
	M_CAN_ILS	= 0x58,
	M_CAN_ILE	= 0x5c,
	M_CAN_GFC	= 0x80,
	M_CAN_SIDFC	= 0x84,
	M_CAN_XIDFC	= 0x88,
	M_CAN_XIDAM	= 0x90,
	M_CAN_HPMS	= 0x94,
	M_CAN_NDAT1	= 0x98,
	M_CAN_NDAT2	= 0x9c,
	M_CAN_RXF0C	= 0xa0,
	M_CAN_RXF0S	= 0xa4,
	M_CAN_RXF0A	= 0xa8,
	M_CAN_RXBC	= 0xac,
	M_CAN_RXF1C	= 0xb0,
	M_CAN_RXF1S	= 0xb4,
	M_CAN_RXF1A	= 0xb8,
	M_CAN_RXESC	= 0xbc,
	M_CAN_TXBC	= 0xc0,
	M_CAN_TXFQS	= 0xc4,
	M_CAN_TXESC	= 0xc8,
	M_CAN_TXBRP	= 0xcc,
	M_CAN_TXBAR	= 0xd0,
	M_CAN_TXBCR	= 0xd4,
	M_CAN_TXBTO	= 0xd8,
	M_CAN_TXBCF	= 0xdc,
	M_CAN_TXBTIE	= 0xe0,
	M_CAN_TXBCIE	= 0xe4,
	M_CAN_TXEFC	= 0xf0,
	M_CAN_TXEFS	= 0xf4,
	M_CAN_TXEFA	= 0xf8,
};

/* message ram configuration data length */
#define MRAM_CFG_LEN	8

/* Core Release Register (CREL) */
#define CREL_REL_MASK		GENMASK(31, 28)
#define CREL_STEP_MASK		GENMASK(27, 24)
#define CREL_SUBSTEP_MASK	GENMASK(23, 20)

/* Data Bit Timing & Prescaler Register (DBTP) */
#define DBTP_TDC		BIT(23)
#define DBTP_DBRP_MASK		GENMASK(20, 16)
#define DBTP_DTSEG1_MASK	GENMASK(12, 8)
#define DBTP_DTSEG2_MASK	GENMASK(7, 4)
#define DBTP_DSJW_MASK		GENMASK(3, 0)

/* Transmitter Delay Compensation Register (TDCR) */
#define TDCR_TDCO_MASK		GENMASK(14, 8)
#define TDCR_TDCF_MASK		GENMASK(6, 0)

/* Test Register (TEST) */
#define TEST_LBCK		BIT(4)

/* CC Control Register (CCCR) */
#define CCCR_TXP		BIT(14)
#define CCCR_TEST		BIT(7)
#define CCCR_DAR		BIT(6)
#define CCCR_MON		BIT(5)
#define CCCR_CSR		BIT(4)
#define CCCR_CSA		BIT(3)
#define CCCR_ASM		BIT(2)
#define CCCR_CCE		BIT(1)
#define CCCR_INIT		BIT(0)
/* for version 3.0.x */
#define CCCR_CMR_MASK		GENMASK(11, 10)
#define CCCR_CMR_CANFD		0x1
#define CCCR_CMR_CANFD_BRS	0x2
#define CCCR_CMR_CAN		0x3
#define CCCR_CME_MASK		GENMASK(9, 8)
#define CCCR_CME_CAN		0
#define CCCR_CME_CANFD		0x1
#define CCCR_CME_CANFD_BRS	0x2
/* for version >=3.1.x */
#define CCCR_EFBI		BIT(13)
#define CCCR_PXHD		BIT(12)
#define CCCR_BRSE		BIT(9)
#define CCCR_FDOE		BIT(8)
/* for version >=3.2.x */
#define CCCR_NISO		BIT(15)
/* for version >=3.3.x */
#define CCCR_WMM		BIT(11)
#define CCCR_UTSU		BIT(10)

/* Nominal Bit Timing & Prescaler Register (NBTP) */
#define NBTP_NSJW_MASK		GENMASK(31, 25)
#define NBTP_NBRP_MASK		GENMASK(24, 16)
#define NBTP_NTSEG1_MASK	GENMASK(15, 8)
#define NBTP_NTSEG2_MASK	GENMASK(6, 0)

/* Timestamp Counter Configuration Register (TSCC) */
#define TSCC_TCP_MASK		GENMASK(19, 16)
#define TSCC_TSS_MASK		GENMASK(1, 0)
#define TSCC_TSS_DISABLE	0x0
#define TSCC_TSS_INTERNAL	0x1
#define TSCC_TSS_EXTERNAL	0x2

/* Timestamp Counter Value Register (TSCV) */
#define TSCV_TSC_MASK		GENMASK(15, 0)

/* Error Counter Register (ECR) */
#define ECR_RP			BIT(15)
#define ECR_REC_MASK		GENMASK(14, 8)
#define ECR_TEC_MASK		GENMASK(7, 0)

/* Protocol Status Register (PSR) */
#define PSR_BO		BIT(7)
#define PSR_EW		BIT(6)
#define PSR_EP		BIT(5)
#define PSR_LEC_MASK	GENMASK(2, 0)
#define PSR_DLEC_MASK	GENMASK(10, 8)

/* Interrupt Register (IR) */
#define IR_ALL_INT	0xffffffff

/* Renamed bits for versions > 3.1.x */
#define IR_ARA		BIT(29)
#define IR_PED		BIT(28)
#define IR_PEA		BIT(27)

/* Bits for version 3.0.x */
#define IR_STE		BIT(31)
#define IR_FOE		BIT(30)
#define IR_ACKE		BIT(29)
#define IR_BE		BIT(28)
#define IR_CRCE		BIT(27)
#define IR_WDI		BIT(26)
#define IR_BO		BIT(25)
#define IR_EW		BIT(24)
#define IR_EP		BIT(23)
#define IR_ELO		BIT(22)
#define IR_BEU		BIT(21)
#define IR_BEC		BIT(20)
#define IR_DRX		BIT(19)
#define IR_TOO		BIT(18)
#define IR_MRAF		BIT(17)
#define IR_TSW		BIT(16)
#define IR_TEFL		BIT(15)
#define IR_TEFF		BIT(14)
#define IR_TEFW		BIT(13)
#define IR_TEFN		BIT(12)
#define IR_TFE		BIT(11)
#define IR_TCF		BIT(10)
#define IR_TC		BIT(9)
#define IR_HPM		BIT(8)
#define IR_RF1L		BIT(7)
#define IR_RF1F		BIT(6)
#define IR_RF1W		BIT(5)
#define IR_RF1N		BIT(4)
#define IR_RF0L		BIT(3)
#define IR_RF0F		BIT(2)
#define IR_RF0W		BIT(1)
#define IR_RF0N		BIT(0)
#define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)

/* Interrupts for version 3.0.x */
#define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
#define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \
			 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
			 IR_RF0L)
#define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)

/* Interrupts for version >= 3.1.x */
#define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
#define IR_ERR_BUS_31X	(IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \
			 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
			 IR_RF0L)
#define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)

/* Interrupt Line Select (ILS) */
#define ILS_ALL_INT0	0x0
#define ILS_ALL_INT1	0xFFFFFFFF

/* Interrupt Line Enable (ILE) */
#define ILE_EINT1	BIT(1)
#define ILE_EINT0	BIT(0)

/* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
#define RXFC_FWM_MASK	GENMASK(30, 24)
#define RXFC_FS_MASK	GENMASK(22, 16)

/* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
#define RXFS_RFL	BIT(25)
#define RXFS_FF		BIT(24)
#define RXFS_FPI_MASK	GENMASK(21, 16)
#define RXFS_FGI_MASK	GENMASK(13, 8)
#define RXFS_FFL_MASK	GENMASK(6, 0)

/* Rx Buffer / FIFO Element Size Configuration (RXESC) */
#define RXESC_RBDS_MASK		GENMASK(10, 8)
#define RXESC_F1DS_MASK		GENMASK(6, 4)
#define RXESC_F0DS_MASK		GENMASK(2, 0)
#define RXESC_64B		0x7

/* Tx Buffer Configuration (TXBC) */
#define TXBC_TFQS_MASK		GENMASK(29, 24)
#define TXBC_NDTB_MASK		GENMASK(21, 16)

/* Tx FIFO/Queue Status (TXFQS) */
#define TXFQS_TFQF		BIT(21)
#define TXFQS_TFQPI_MASK	GENMASK(20, 16)
#define TXFQS_TFGI_MASK		GENMASK(12, 8)
#define TXFQS_TFFL_MASK		GENMASK(5, 0)

/* Tx Buffer Element Size Configuration (TXESC) */
#define TXESC_TBDS_MASK		GENMASK(2, 0)
#define TXESC_TBDS_64B		0x7

/* Tx Event FIFO Configuration (TXEFC) */
#define TXEFC_EFS_MASK		GENMASK(21, 16)

/* Tx Event FIFO Status (TXEFS) */
#define TXEFS_TEFL		BIT(25)
#define TXEFS_EFF		BIT(24)
#define TXEFS_EFGI_MASK		GENMASK(12, 8)
#define TXEFS_EFFL_MASK		GENMASK(5, 0)

/* Tx Event FIFO Acknowledge (TXEFA) */
#define TXEFA_EFAI_MASK		GENMASK(4, 0)

/* Message RAM Configuration (in bytes) */
#define SIDF_ELEMENT_SIZE	4
#define XIDF_ELEMENT_SIZE	8
#define RXF0_ELEMENT_SIZE	72
#define RXF1_ELEMENT_SIZE	72
#define RXB_ELEMENT_SIZE	72
#define TXE_ELEMENT_SIZE	8
#define TXB_ELEMENT_SIZE	72

/* Message RAM Elements */
#define M_CAN_FIFO_ID		0x0
#define M_CAN_FIFO_DLC		0x4
#define M_CAN_FIFO_DATA		0x8

/* Rx Buffer Element */
/* R0 */
#define RX_BUF_ESI		BIT(31)
#define RX_BUF_XTD		BIT(30)
#define RX_BUF_RTR		BIT(29)
/* R1 */
#define RX_BUF_ANMF		BIT(31)
#define RX_BUF_FDF		BIT(21)
#define RX_BUF_BRS		BIT(20)
#define RX_BUF_RXTS_MASK	GENMASK(15, 0)

/* Tx Buffer Element */
/* T0 */
#define TX_BUF_ESI		BIT(31)
#define TX_BUF_XTD		BIT(30)
#define TX_BUF_RTR		BIT(29)
/* T1 */
#define TX_BUF_EFC		BIT(23)
#define TX_BUF_FDF		BIT(21)
#define TX_BUF_BRS		BIT(20)
#define TX_BUF_MM_MASK		GENMASK(31, 24)
#define TX_BUF_DLC_MASK		GENMASK(19, 16)

/* Tx event FIFO Element */
/* E1 */
#define TX_EVENT_MM_MASK	GENMASK(31, 24)
#define TX_EVENT_TXTS_MASK	GENMASK(15, 0)

/* Hrtimer polling interval */
#define HRTIMER_POLL_INTERVAL_MS		1

/* The ID and DLC registers are adjacent in M_CAN FIFO memory,
 * and we can save a (potentially slow) bus round trip by combining
 * reads and writes to them.
 */
struct id_and_dlc {
	u32 id;
	u32 dlc;
};

static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
{
	return cdev->ops->read_reg(cdev, reg);
}

static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
			       u32 val)
{
	cdev->ops->write_reg(cdev, reg, val);
}

static int
m_can_fifo_read(struct m_can_classdev *cdev,
		u32 fgi, unsigned int offset, void *val, size_t val_count)
{
	u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
		offset;

	if (val_count == 0)
		return 0;

	return cdev->ops->read_fifo(cdev, addr_offset, val, val_count);
}

static int
m_can_fifo_write(struct m_can_classdev *cdev,
		 u32 fpi, unsigned int offset, const void *val, size_t val_count)
{
	u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
		offset;

	if (val_count == 0)
		return 0;

	return cdev->ops->write_fifo(cdev, addr_offset, val, val_count);
}

static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev,
					  u32 fpi, u32 val)
{
	return cdev->ops->write_fifo(cdev, fpi, &val, 1);
}

static int
m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val)
{
	u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
		offset;

	return cdev->ops->read_fifo(cdev, addr_offset, val, 1);
}

static inline bool _m_can_tx_fifo_full(u32 txfqs)
{
	return !!(txfqs & TXFQS_TFQF);
}

static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
{
	return _m_can_tx_fifo_full(m_can_read(cdev, M_CAN_TXFQS));
}

static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
{
	u32 cccr = m_can_read(cdev, M_CAN_CCCR);
	u32 timeout = 10;
	u32 val = 0;

	/* Clear the Clock stop request if it was set */
	if (cccr & CCCR_CSR)
		cccr &= ~CCCR_CSR;

	if (enable) {
		/* enable m_can configuration */
		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
		udelay(5);
		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
	} else {
		m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
	}

	/* there's a delay for module initialization */
	if (enable)
		val = CCCR_INIT | CCCR_CCE;

	while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
		if (timeout == 0) {
			netdev_warn(cdev->net, "Failed to init module\n");
			return;
		}
		timeout--;
		udelay(1);
	}
}

static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
{
	/* Only interrupt line 0 is used in this driver */
	m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
}

static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
{
	m_can_write(cdev, M_CAN_ILE, 0x0);
}

/* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit
 * width.
 */
static u32 m_can_get_timestamp(struct m_can_classdev *cdev)
{
	u32 tscv;
	u32 tsc;

	tscv = m_can_read(cdev, M_CAN_TSCV);
	tsc = FIELD_GET(TSCV_TSC_MASK, tscv);

	return (tsc << 16);
}

static void m_can_clean(struct net_device *net)
{
	struct m_can_classdev *cdev = netdev_priv(net);

	if (cdev->tx_skb) {
		int putidx = 0;

		net->stats.tx_errors++;
		if (cdev->version > 30)
			putidx = FIELD_GET(TXFQS_TFQPI_MASK,
					   m_can_read(cdev, M_CAN_TXFQS));

		can_free_echo_skb(cdev->net, putidx, NULL);
		cdev->tx_skb = NULL;
	}
}

/* For peripherals, pass skb to rx-offload, which will push skb from
 * napi. For non-peripherals, RX is done in napi already, so push
 * directly. timestamp is used to ensure good skb ordering in
 * rx-offload and is ignored for non-peripherals.
 */
static void m_can_receive_skb(struct m_can_classdev *cdev,
			      struct sk_buff *skb,
			      u32 timestamp)
{
	if (cdev->is_peripheral) {
		struct net_device_stats *stats = &cdev->net->stats;
		int err;

		err = can_rx_offload_queue_timestamp(&cdev->offload, skb,
						     timestamp);
		if (err)
			stats->rx_fifo_errors++;
	} else {
		netif_receive_skb(skb);
	}
}

static int m_can_read_fifo(struct net_device *dev, u32 fgi)
{
	struct net_device_stats *stats = &dev->stats;
	struct m_can_classdev *cdev = netdev_priv(dev);
	struct canfd_frame *cf;
	struct sk_buff *skb;
	struct id_and_dlc fifo_header;
	u32 timestamp = 0;
	int err;

	err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2);
	if (err)
		goto out_fail;

	if (fifo_header.dlc & RX_BUF_FDF)
		skb = alloc_canfd_skb(dev, &cf);
	else
		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
	if (!skb) {
		stats->rx_dropped++;
		return 0;
	}

	if (fifo_header.dlc & RX_BUF_FDF)
		cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F);
	else
		cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F);

	if (fifo_header.id & RX_BUF_XTD)
		cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG;
	else
		cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK;

	if (fifo_header.id & RX_BUF_ESI) {
		cf->flags |= CANFD_ESI;
		netdev_dbg(dev, "ESI Error\n");
	}

	if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) {
		cf->can_id |= CAN_RTR_FLAG;
	} else {
		if (fifo_header.dlc & RX_BUF_BRS)
			cf->flags |= CANFD_BRS;

		err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA,
				      cf->data, DIV_ROUND_UP(cf->len, 4));
		if (err)
			goto out_free_skb;

		stats->rx_bytes += cf->len;
	}
	stats->rx_packets++;

	timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc) << 16;

	m_can_receive_skb(cdev, skb, timestamp);

	return 0;

out_free_skb:
	kfree_skb(skb);
out_fail:
	netdev_err(dev, "FIFO read returned %d\n", err);
	return err;
}

static int m_can_do_rx_poll(struct net_device *dev, int quota)
{
	struct m_can_classdev *cdev = netdev_priv(dev);
	u32 pkts = 0;
	u32 rxfs;
	u32 rx_count;
	u32 fgi;
	int ack_fgi = -1;
	int i;
	int err = 0;

	rxfs = m_can_read(cdev, M_CAN_RXF0S);
	if (!(rxfs & RXFS_FFL_MASK)) {
		netdev_dbg(dev, "no messages in fifo0\n");
		return 0;
	}

	rx_count = FIELD_GET(RXFS_FFL_MASK, rxfs);
	fgi = FIELD_GET(RXFS_FGI_MASK, rxfs);

	for (i = 0; i < rx_count && quota > 0; ++i) {
		err = m_can_read_fifo(dev, fgi);
		if (err)
			break;

		quota--;
		pkts++;
		ack_fgi = fgi;
		fgi = (++fgi >= cdev->mcfg[MRAM_RXF0].num ? 0 : fgi);
	}

	if (ack_fgi != -1)
		m_can_write(cdev, M_CAN_RXF0A, ack_fgi);

	if (err)
		return err;

	return pkts;
}

static int m_can_handle_lost_msg(struct net_device *dev)
{
	struct m_can_classdev *cdev = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	struct sk_buff *skb;
	struct can_frame *frame;
	u32 timestamp = 0;

	netdev_err(dev, "msg lost in rxf0\n");

	stats->rx_errors++;
	stats->rx_over_errors++;

	skb = alloc_can_err_skb(dev, &frame);
	if (unlikely(!skb))
		return 0;

	frame->can_id |= CAN_ERR_CRTL;
	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;

	if (cdev->is_peripheral)
		timestamp = m_can_get_timestamp(cdev);

	m_can_receive_skb(cdev, skb, timestamp);

	return 1;
}

static int m_can_handle_lec_err(struct net_device *dev,
				enum m_can_lec_type lec_type)
{
	struct m_can_classdev *cdev = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	struct can_frame *cf;
	struct sk_buff *skb;
	u32 timestamp = 0;

	cdev->can.can_stats.bus_error++;
	stats->rx_errors++;

	/* propagate the error condition to the CAN stack */
	skb = alloc_can_err_skb(dev, &cf);
	if (unlikely(!skb))
		return 0;

	/* check for 'last error code' which tells us the
	 * type of the last error to occur on the CAN bus
	 */
	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;

	switch (lec_type) {
	case LEC_STUFF_ERROR:
		netdev_dbg(dev, "stuff error\n");
		cf->data[2] |= CAN_ERR_PROT_STUFF;
		break;
	case LEC_FORM_ERROR:
		netdev_dbg(dev, "form error\n");
		cf->data[2] |= CAN_ERR_PROT_FORM;
		break;
	case LEC_ACK_ERROR:
		netdev_dbg(dev, "ack error\n");
		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
		break;
	case LEC_BIT1_ERROR:
		netdev_dbg(dev, "bit1 error\n");
		cf->data[2] |= CAN_ERR_PROT_BIT1;
		break;
	case LEC_BIT0_ERROR:
		netdev_dbg(dev, "bit0 error\n");
		cf->data[2] |= CAN_ERR_PROT_BIT0;
		break;
	case LEC_CRC_ERROR:
		netdev_dbg(dev, "CRC error\n");
		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
		break;
	default:
		break;
	}

	if (cdev->is_peripheral)
		timestamp = m_can_get_timestamp(cdev);

	m_can_receive_skb(cdev, skb, timestamp);

	return 1;
}

static int __m_can_get_berr_counter(const struct net_device *dev,
				    struct can_berr_counter *bec)
{
	struct m_can_classdev *cdev = netdev_priv(dev);
	unsigned int ecr;

	ecr = m_can_read(cdev, M_CAN_ECR);
	bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr);
	bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr);

	return 0;
}

static int m_can_clk_start(struct m_can_classdev *cdev)
{
	if (cdev->pm_clock_support == 0)
		return 0;

	return pm_runtime_resume_and_get(cdev->dev);
}

static void m_can_clk_stop(struct m_can_classdev *cdev)
{
	if (cdev->pm_clock_support)
		pm_runtime_put_sync(cdev->dev);
}

static int m_can_get_berr_counter(const struct net_device *dev,
				  struct can_berr_counter *bec)
{
	struct m_can_classdev *cdev = netdev_priv(dev);
	int err;

	err = m_can_clk_start(cdev);
	if (err)
		return err;

	__m_can_get_berr_counter(dev, bec);

	m_can_clk_stop(cdev);

	return 0;
}

static int m_can_handle_state_change(struct net_device *dev,
				     enum can_state new_state)
{
	struct m_can_classdev *cdev = netdev_priv(dev);
	struct can_frame *cf;
	struct sk_buff *skb;
	struct can_berr_counter bec;
	unsigned int ecr;
	u32 timestamp = 0;

	switch (new_state) {
	case CAN_STATE_ERROR_WARNING:
		/* error warning state */
		cdev->can.can_stats.error_warning++;
		cdev->can.state = CAN_STATE_ERROR_WARNING;
		break;
	case CAN_STATE_ERROR_PASSIVE:
		/* error passive state */
		cdev->can.can_stats.error_passive++;
		cdev->can.state = CAN_STATE_ERROR_PASSIVE;
		break;
	case CAN_STATE_BUS_OFF:
		/* bus-off state */
		cdev->can.state = CAN_STATE_BUS_OFF;
		m_can_disable_all_interrupts(cdev);
		cdev->can.can_stats.bus_off++;
		can_bus_off(dev);
		break;
	default:
		break;
	}

	/* propagate the error condition to the CAN stack */
	skb = alloc_can_err_skb(dev, &cf);
	if (unlikely(!skb))
		return 0;

	__m_can_get_berr_counter(dev, &bec);

	switch (new_state) {
	case CAN_STATE_ERROR_WARNING:
		/* error warning state */
		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
		cf->data[1] = (bec.txerr > bec.rxerr) ?
			CAN_ERR_CRTL_TX_WARNING :
			CAN_ERR_CRTL_RX_WARNING;
		cf->data[6] = bec.txerr;
		cf->data[7] = bec.rxerr;
		break;
	case CAN_STATE_ERROR_PASSIVE:
		/* error passive state */
		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
		ecr = m_can_read(cdev, M_CAN_ECR);
		if (ecr & ECR_RP)
			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
		if (bec.txerr > 127)
			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
		cf->data[6] = bec.txerr;
		cf->data[7] = bec.rxerr;
		break;
	case CAN_STATE_BUS_OFF:
		/* bus-off state */
		cf->can_id |= CAN_ERR_BUSOFF;
		break;
	default:
		break;
	}

	if (cdev->is_peripheral)
		timestamp = m_can_get_timestamp(cdev);

	m_can_receive_skb(cdev, skb, timestamp);

	return 1;
}

static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
{
	struct m_can_classdev *cdev = netdev_priv(dev);
	int work_done = 0;

	if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
		netdev_dbg(dev, "entered error warning state\n");
		work_done += m_can_handle_state_change(dev,
						       CAN_STATE_ERROR_WARNING);
	}

	if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
		netdev_dbg(dev, "entered error passive state\n");
		work_done += m_can_handle_state_change(dev,
						       CAN_STATE_ERROR_PASSIVE);
	}

	if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
		netdev_dbg(dev, "entered error bus off state\n");
		work_done += m_can_handle_state_change(dev,
						       CAN_STATE_BUS_OFF);
	}

	return work_done;
}

static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
{
	if (irqstatus & IR_WDI)
		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
	if (irqstatus & IR_BEU)
		netdev_err(dev, "Bit Error Uncorrected\n");
	if (irqstatus & IR_BEC)
		netdev_err(dev, "Bit Error Corrected\n");
	if (irqstatus & IR_TOO)
		netdev_err(dev, "Timeout reached\n");
	if (irqstatus & IR_MRAF)
		netdev_err(dev, "Message RAM access failure occurred\n");
}

static inline bool is_lec_err(u8 lec)
{
	return lec != LEC_NO_ERROR && lec != LEC_NO_CHANGE;
}

static inline bool m_can_is_protocol_err(u32 irqstatus)
{
	return irqstatus & IR_ERR_LEC_31X;
}

static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
{
	struct net_device_stats *stats = &dev->stats;
	struct m_can_classdev *cdev = netdev_priv(dev);
	struct can_frame *cf;
	struct sk_buff *skb;
	u32 timestamp = 0;

	/* propagate the error condition to the CAN stack */
	skb = alloc_can_err_skb(dev, &cf);

	/* update tx error stats since there is protocol error */
	stats->tx_errors++;

	/* update arbitration lost status */
	if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
		netdev_dbg(dev, "Protocol error in Arbitration fail\n");
		cdev->can.can_stats.arbitration_lost++;
		if (skb) {
			cf->can_id |= CAN_ERR_LOSTARB;
			cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
		}
	}

	if (unlikely(!skb)) {
		netdev_dbg(dev, "allocation of skb failed\n");
		return 0;
	}

	if (cdev->is_peripheral)
		timestamp = m_can_get_timestamp(cdev);

	m_can_receive_skb(cdev, skb, timestamp);

	return 1;
}

static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
				   u32 psr)
{
	struct m_can_classdev *cdev = netdev_priv(dev);
	int work_done = 0;

	if (irqstatus & IR_RF0L)
		work_done += m_can_handle_lost_msg(dev);

	/* handle lec errors on the bus */
	if (cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
		u8 lec = FIELD_GET(PSR_LEC_MASK, psr);
		u8 dlec = FIELD_GET(PSR_DLEC_MASK, psr);

		if (is_lec_err(lec)) {
			netdev_dbg(dev, "Arbitration phase error detected\n");
			work_done += m_can_handle_lec_err(dev, lec);
		}

		if (is_lec_err(dlec)) {
			netdev_dbg(dev, "Data phase error detected\n");
			work_done += m_can_handle_lec_err(dev, dlec);
		}
	}

	/* handle protocol errors in arbitration phase */
	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
	    m_can_is_protocol_err(irqstatus))
		work_done += m_can_handle_protocol_error(dev, irqstatus);

	/* other unproccessed error interrupts */
	m_can_handle_other_err(dev, irqstatus);

	return work_done;
}

static int m_can_rx_handler(struct net_device *dev, int quota, u32 irqstatus)
{
	struct m_can_classdev *cdev = netdev_priv(dev);
	int rx_work_or_err;
	int work_done = 0;

	if (!irqstatus)
		goto end;

	/* Errata workaround for issue "Needless activation of MRAF irq"
	 * During frame reception while the MCAN is in Error Passive state
	 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
	 * it may happen that MCAN_IR.MRAF is set although there was no
	 * Message RAM access failure.
	 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
	 * The Message RAM Access Failure interrupt routine needs to check
	 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
	 * In this case, reset MCAN_IR.MRAF. No further action is required.
	 */
	if (cdev->version <= 31 && irqstatus & IR_MRAF &&
	    m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
		struct can_berr_counter bec;

		__m_can_get_berr_counter(dev, &bec);
		if (bec.rxerr == 127) {
			m_can_write(cdev, M_CAN_IR, IR_MRAF);
			irqstatus &= ~IR_MRAF;
		}
	}

	if (irqstatus & IR_ERR_STATE)
		work_done += m_can_handle_state_errors(dev,
						       m_can_read(cdev, M_CAN_PSR));

	if (irqstatus & IR_ERR_BUS_30X)
		work_done += m_can_handle_bus_errors(dev, irqstatus,
						     m_can_read(cdev, M_CAN_PSR));

	if (irqstatus & IR_RF0N) {
		rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done));
		if (rx_work_or_err < 0)
			return rx_work_or_err;

		work_done += rx_work_or_err;
	}
end:
	return work_done;
}

static int m_can_rx_peripheral(struct net_device *dev, u32 irqstatus)
{
	struct m_can_classdev *cdev = netdev_priv(dev);
	int work_done;

	work_done = m_can_rx_handler(dev, NAPI_POLL_WEIGHT, irqstatus);

	/* Don't re-enable interrupts if the driver had a fatal error
	 * (e.g., FIFO read failure).
	 */
	if (work_done < 0)
		m_can_disable_all_interrupts(cdev);

	return work_done;
}

static int m_can_poll(struct napi_struct *napi, int quota)
{
	struct net_device *dev = napi->dev;
	struct m_can_classdev *cdev = netdev_priv(dev);
	int work_done;
	u32 irqstatus;

	irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);

	work_done = m_can_rx_handler(dev, quota, irqstatus);

	/* Don't re-enable interrupts if the driver had a fatal error
	 * (e.g., FIFO read failure).
	 */
	if (work_done >= 0 && work_done < quota) {
		napi_complete_done(napi, work_done);
		m_can_enable_all_interrupts(cdev);
	}

	return work_done;
}

/* Echo tx skb and update net stats. Peripherals use rx-offload for
 * echo. timestamp is used for peripherals to ensure correct ordering
 * by rx-offload, and is ignored for non-peripherals.
 */
static void m_can_tx_update_stats(struct m_can_classdev *cdev,
				  unsigned int msg_mark,
				  u32 timestamp)
{
	struct net_device *dev = cdev->net;
	struct net_device_stats *stats = &dev->stats;

	if (cdev->is_peripheral)
		stats->tx_bytes +=
			can_rx_offload_get_echo_skb_queue_timestamp(&cdev->offload,
								    msg_mark,
								    timestamp,
								    NULL);
	else
		stats->tx_bytes += can_get_echo_skb(dev, msg_mark, NULL);

	stats->tx_packets++;
}

static int m_can_echo_tx_event(struct net_device *dev)
{
	u32 txe_count = 0;
	u32 m_can_txefs;
	u32 fgi = 0;
	int ack_fgi = -1;
	int i = 0;
	int err = 0;
	unsigned int msg_mark;

	struct m_can_classdev *cdev = netdev_priv(dev);

	/* read tx event fifo status */
	m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);

	/* Get Tx Event fifo element count */
	txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs);
	fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_txefs);

	/* Get and process all sent elements */
	for (i = 0; i < txe_count; i++) {
		u32 txe, timestamp = 0;

		/* get message marker, timestamp */
		err = m_can_txe_fifo_read(cdev, fgi, 4, &txe);
		if (err) {
			netdev_err(dev, "TXE FIFO read returned %d\n", err);
			break;
		}

		msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe);
		timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe) << 16;

		ack_fgi = fgi;
		fgi = (++fgi >= cdev->mcfg[MRAM_TXE].num ? 0 : fgi);

		/* update stats */
		m_can_tx_update_stats(cdev, msg_mark, timestamp);
	}

	if (ack_fgi != -1)
		m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK,
							  ack_fgi));

	return err;
}

static irqreturn_t m_can_isr(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct m_can_classdev *cdev = netdev_priv(dev);
	u32 ir;

	if (pm_runtime_suspended(cdev->dev))
		return IRQ_NONE;
	ir = m_can_read(cdev, M_CAN_IR);
	if (!ir)
		return IRQ_NONE;

	/* ACK all irqs */
	m_can_write(cdev, M_CAN_IR, ir);

	if (cdev->ops->clear_interrupts)
		cdev->ops->clear_interrupts(cdev);

	/* schedule NAPI in case of
	 * - rx IRQ
	 * - state change IRQ
	 * - bus error IRQ and bus error reporting
	 */
	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
		cdev->irqstatus = ir;
		if (!cdev->is_peripheral) {
			m_can_disable_all_interrupts(cdev);
			napi_schedule(&cdev->napi);
		} else if (m_can_rx_peripheral(dev, ir) < 0) {
			goto out_fail;
		}
	}

	if (cdev->version == 30) {
		if (ir & IR_TC) {
			/* Transmission Complete Interrupt*/
			u32 timestamp = 0;

			if (cdev->is_peripheral)
				timestamp = m_can_get_timestamp(cdev);
			m_can_tx_update_stats(cdev, 0, timestamp);
			netif_wake_queue(dev);
		}
	} else  {
		if (ir & IR_TEFN) {
			/* New TX FIFO Element arrived */
			if (m_can_echo_tx_event(dev) != 0)
				goto out_fail;

			if (netif_queue_stopped(dev) &&
			    !m_can_tx_fifo_full(cdev))
				netif_wake_queue(dev);
		}
	}

	if (cdev->is_peripheral)
		can_rx_offload_threaded_irq_finish(&cdev->offload);

	return IRQ_HANDLED;

out_fail:
	m_can_disable_all_interrupts(cdev);
	return IRQ_HANDLED;
}

static const struct can_bittiming_const m_can_bittiming_const_30X = {
	.name = KBUILD_MODNAME,
	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 64,
	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 16,
	.sjw_max = 16,
	.brp_min = 1,
	.brp_max = 1024,
	.brp_inc = 1,
};

static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
	.name = KBUILD_MODNAME,
	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 16,
	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 8,
	.sjw_max = 4,
	.brp_min = 1,
	.brp_max = 32,
	.brp_inc = 1,
};

static const struct can_bittiming_const m_can_bittiming_const_31X = {
	.name = KBUILD_MODNAME,
	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 256,
	.tseg2_min = 2,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 128,
	.sjw_max = 128,
	.brp_min = 1,
	.brp_max = 512,
	.brp_inc = 1,
};

static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
	.name = KBUILD_MODNAME,
	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 32,
	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 16,
	.sjw_max = 16,
	.brp_min = 1,
	.brp_max = 32,
	.brp_inc = 1,
};

static int m_can_set_bittiming(struct net_device *dev)
{
	struct m_can_classdev *cdev = netdev_priv(dev);
	const struct can_bittiming *bt = &cdev->can.bittiming;
	const struct can_bittiming *dbt = &cdev->can.data_bittiming;
	u16 brp, sjw, tseg1, tseg2;
	u32 reg_btp;

	brp = bt->brp - 1;
	sjw = bt->sjw - 1;
	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
	tseg2 = bt->phase_seg2 - 1;
	reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) |
		  FIELD_PREP(NBTP_NSJW_MASK, sjw) |
		  FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) |
		  FIELD_PREP(NBTP_NTSEG2_MASK, tseg2);
	m_can_write(cdev, M_CAN_NBTP, reg_btp);

	if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
		reg_btp = 0;
		brp = dbt->brp - 1;
		sjw = dbt->sjw - 1;
		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
		tseg2 = dbt->phase_seg2 - 1;

		/* TDC is only needed for bitrates beyond 2.5 MBit/s.
		 * This is mentioned in the "Bit Time Requirements for CAN FD"
		 * paper presented at the International CAN Conference 2013
		 */
		if (dbt->bitrate > 2500000) {
			u32 tdco, ssp;

			/* Use the same value of secondary sampling point
			 * as the data sampling point
			 */
			ssp = dbt->sample_point;

			/* Equation based on Bosch's M_CAN User Manual's
			 * Transmitter Delay Compensation Section
			 */
			tdco = (cdev->can.clock.freq / 1000) *
				ssp / dbt->bitrate;

			/* Max valid TDCO value is 127 */
			if (tdco > 127) {
				netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
					    tdco);
				tdco = 127;
			}

			reg_btp |= DBTP_TDC;
			m_can_write(cdev, M_CAN_TDCR,
				    FIELD_PREP(TDCR_TDCO_MASK, tdco));
		}

		reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) |
			FIELD_PREP(DBTP_DSJW_MASK, sjw) |
			FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) |
			FIELD_PREP(DBTP_DTSEG2_MASK, tseg2);

		m_can_write(cdev, M_CAN_DBTP, reg_btp);
	}

	return 0;
}

/* Configure M_CAN chip:
 * - set rx buffer/fifo element size
 * - configure rx fifo
 * - accept non-matching frame into fifo 0
 * - configure tx buffer
 *		- >= v3.1.x: TX FIFO is used
 * - configure mode
 * - setup bittiming
 * - configure timestamp generation
 */
static int m_can_chip_config(struct net_device *dev)
{
	struct m_can_classdev *cdev = netdev_priv(dev);
	u32 interrupts = IR_ALL_INT;
	u32 cccr, test;
	int err;

	err = m_can_init_ram(cdev);
	if (err) {
		dev_err(cdev->dev, "Message RAM configuration failed\n");
		return err;
	}

	/* Disable unused interrupts */
	interrupts &= ~(IR_ARA | IR_ELO | IR_DRX | IR_TEFF | IR_TEFW | IR_TFE |
			IR_TCF | IR_HPM | IR_RF1F | IR_RF1W | IR_RF1N |
			IR_RF0F | IR_RF0W);

	m_can_config_endisable(cdev, true);

	/* RX Buffer/FIFO Element Size 64 bytes data field */
	m_can_write(cdev, M_CAN_RXESC,
		    FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) |
		    FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) |
		    FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B));

	/* Accept Non-matching Frames Into FIFO 0 */
	m_can_write(cdev, M_CAN_GFC, 0x0);

	if (cdev->version == 30) {
		/* only support one Tx Buffer currently */
		m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) |
			    cdev->mcfg[MRAM_TXB].off);
	} else {
		/* TX FIFO is used for newer IP Core versions */
		m_can_write(cdev, M_CAN_TXBC,
			    FIELD_PREP(TXBC_TFQS_MASK,
				       cdev->mcfg[MRAM_TXB].num) |
			    cdev->mcfg[MRAM_TXB].off);
	}

	/* support 64 bytes payload */
	m_can_write(cdev, M_CAN_TXESC,
		    FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B));

	/* TX Event FIFO */
	if (cdev->version == 30) {
		m_can_write(cdev, M_CAN_TXEFC,
			    FIELD_PREP(TXEFC_EFS_MASK, 1) |
			    cdev->mcfg[MRAM_TXE].off);
	} else {
		/* Full TX Event FIFO is used */
		m_can_write(cdev, M_CAN_TXEFC,
			    FIELD_PREP(TXEFC_EFS_MASK,
				       cdev->mcfg[MRAM_TXE].num) |
			    cdev->mcfg[MRAM_TXE].off);
	}

	/* rx fifo configuration, blocking mode, fifo size 1 */
	m_can_write(cdev, M_CAN_RXF0C,
		    FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) |
		    cdev->mcfg[MRAM_RXF0].off);

	m_can_write(cdev, M_CAN_RXF1C,
		    FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) |
		    cdev->mcfg[MRAM_RXF1].off);

	cccr = m_can_read(cdev, M_CAN_CCCR);
	test = m_can_read(cdev, M_CAN_TEST);
	test &= ~TEST_LBCK;
	if (cdev->version == 30) {
		/* Version 3.0.x */

		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
			  FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) |
			  FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK)));

		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
			cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS);

	} else {
		/* Version 3.1.x or 3.2.x */
		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
			  CCCR_NISO | CCCR_DAR);

		/* Only 3.2.x has NISO Bit implemented */
		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
			cccr |= CCCR_NISO;

		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
			cccr |= (CCCR_BRSE | CCCR_FDOE);
	}

	/* Loopback Mode */
	if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
		cccr |= CCCR_TEST | CCCR_MON;
		test |= TEST_LBCK;
	}

	/* Enable Monitoring (all versions) */
	if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
		cccr |= CCCR_MON;

	/* Disable Auto Retransmission (all versions) */
	if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
		cccr |= CCCR_DAR;

	/* Write config */
	m_can_write(cdev, M_CAN_CCCR, cccr);
	m_can_write(cdev, M_CAN_TEST, test);

	/* Enable interrupts */
	if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) {
		if (cdev->version == 30)
			interrupts &= ~(IR_ERR_LEC_30X);
		else
			interrupts &= ~(IR_ERR_LEC_31X);
	}
	m_can_write(cdev, M_CAN_IE, interrupts);

	/* route all interrupts to INT0 */
	m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);

	/* set bittiming params */
	m_can_set_bittiming(dev);

	/* enable internal timestamp generation, with a prescaler of 16. The
	 * prescaler is applied to the nominal bit timing
	 */
	m_can_write(cdev, M_CAN_TSCC,
		    FIELD_PREP(TSCC_TCP_MASK, 0xf) |
		    FIELD_PREP(TSCC_TSS_MASK, TSCC_TSS_INTERNAL));

	m_can_config_endisable(cdev, false);

	if (cdev->ops->init)
		cdev->ops->init(cdev);

	return 0;
}

static int m_can_start(struct net_device *dev)
{
	struct m_can_classdev *cdev = netdev_priv(dev);
	int ret;

	/* basic m_can configuration */
	ret = m_can_chip_config(dev);
	if (ret)
		return ret;

	cdev->can.state = CAN_STATE_ERROR_ACTIVE;

	m_can_enable_all_interrupts(cdev);

	if (!dev->irq) {
		dev_dbg(cdev->dev, "Start hrtimer\n");
		hrtimer_start(&cdev->hrtimer, ms_to_ktime(HRTIMER_POLL_INTERVAL_MS),
			      HRTIMER_MODE_REL_PINNED);
	}

	return 0;
}

static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
{
	switch (mode) {
	case CAN_MODE_START:
		m_can_clean(dev);
		m_can_start(dev);
		netif_wake_queue(dev);
		break;
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

/* Checks core release number of M_CAN
 * returns 0 if an unsupported device is detected
 * else it returns the release and step coded as:
 * return value = 10 * <release> + 1 * <step>
 */
static int m_can_check_core_release(struct m_can_classdev *cdev)
{
	u32 crel_reg;
	u8 rel;
	u8 step;
	int res;

	/* Read Core Release Version and split into version number
	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
	 */
	crel_reg = m_can_read(cdev, M_CAN_CREL);
	rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg);
	step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg);

	if (rel == 3) {
		/* M_CAN v3.x.y: create return value */
		res = 30 + step;
	} else {
		/* Unsupported M_CAN version */
		res = 0;
	}

	return res;
}

/* Selectable Non ISO support only in version 3.2.x
 * This function checks if the bit is writable.
 */
static bool m_can_niso_supported(struct m_can_classdev *cdev)
{
	u32 cccr_reg, cccr_poll = 0;
	int niso_timeout = -ETIMEDOUT;
	int i;

	m_can_config_endisable(cdev, true);
	cccr_reg = m_can_read(cdev, M_CAN_CCCR);
	cccr_reg |= CCCR_NISO;
	m_can_write(cdev, M_CAN_CCCR, cccr_reg);

	for (i = 0; i <= 10; i++) {
		cccr_poll = m_can_read(cdev, M_CAN_CCCR);
		if (cccr_poll == cccr_reg) {
			niso_timeout = 0;
			break;
		}

		usleep_range(1, 5);
	}

	/* Clear NISO */
	cccr_reg &= ~(CCCR_NISO);
	m_can_write(cdev, M_CAN_CCCR, cccr_reg);

	m_can_config_endisable(cdev, false);

	/* return false if time out (-ETIMEDOUT), else return true */
	return !niso_timeout;
}

static int m_can_dev_setup(struct m_can_classdev *cdev)
{
	struct net_device *dev = cdev->net;
	int m_can_version, err;

	m_can_version = m_can_check_core_release(cdev);
	/* return if unsupported version */
	if (!m_can_version) {
		dev_err(cdev->dev, "Unsupported version number: %2d",
			m_can_version);
		return -EINVAL;
	}

	if (!cdev->is_peripheral)
		netif_napi_add(dev, &cdev->napi, m_can_poll);

	/* Shared properties of all M_CAN versions */
	cdev->version = m_can_version;
	cdev->can.do_set_mode = m_can_set_mode;
	cdev->can.do_get_berr_counter = m_can_get_berr_counter;

	/* Set M_CAN supported operations */
	cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
		CAN_CTRLMODE_LISTENONLY |
		CAN_CTRLMODE_BERR_REPORTING |
		CAN_CTRLMODE_FD |
		CAN_CTRLMODE_ONE_SHOT;

	/* Set properties depending on M_CAN version */
	switch (cdev->version) {
	case 30:
		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
		err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
		if (err)
			return err;
		cdev->can.bittiming_const = &m_can_bittiming_const_30X;
		cdev->can.data_bittiming_const = &m_can_data_bittiming_const_30X;
		break;
	case 31:
		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
		err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
		if (err)
			return err;
		cdev->can.bittiming_const = &m_can_bittiming_const_31X;
		cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
		break;
	case 32:
	case 33:
		/* Support both MCAN version v3.2.x and v3.3.0 */
		cdev->can.bittiming_const = &m_can_bittiming_const_31X;
		cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;

		cdev->can.ctrlmode_supported |=
			(m_can_niso_supported(cdev) ?
			 CAN_CTRLMODE_FD_NON_ISO : 0);
		break;
	default:
		dev_err(cdev->dev, "Unsupported version number: %2d",
			cdev->version);
		return -EINVAL;
	}

	if (cdev->ops->init)
		cdev->ops->init(cdev);

	return 0;
}

static void m_can_stop(struct net_device *dev)
{
	struct m_can_classdev *cdev = netdev_priv(dev);

	if (!dev->irq) {
		dev_dbg(cdev->dev, "Stop hrtimer\n");
		hrtimer_cancel(&cdev->hrtimer);
	}

	/* disable all interrupts */
	m_can_disable_all_interrupts(cdev);

	/* Set init mode to disengage from the network */
	m_can_config_endisable(cdev, true);

	/* set the state as STOPPED */
	cdev->can.state = CAN_STATE_STOPPED;
}

static int m_can_close(struct net_device *dev)
{
	struct m_can_classdev *cdev = netdev_priv(dev);

	netif_stop_queue(dev);

	if (!cdev->is_peripheral)
		napi_disable(&cdev->napi);

	m_can_stop(dev);
	m_can_clk_stop(cdev);
	free_irq(dev->irq, dev);

	if (cdev->is_peripheral) {
		cdev->tx_skb = NULL;
		destroy_workqueue(cdev->tx_wq);
		cdev->tx_wq = NULL;
		can_rx_offload_disable(&cdev->offload);
	}

	close_candev(dev);

	phy_power_off(cdev->transceiver);

	return 0;
}

static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
{
	struct m_can_classdev *cdev = netdev_priv(dev);
	/*get wrap around for loopback skb index */
	unsigned int wrap = cdev->can.echo_skb_max;
	int next_idx;

	/* calculate next index */
	next_idx = (++putidx >= wrap ? 0 : putidx);

	/* check if occupied */
	return !!cdev->can.echo_skb[next_idx];
}

static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
{
	struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
	struct net_device *dev = cdev->net;
	struct sk_buff *skb = cdev->tx_skb;
	struct id_and_dlc fifo_header;
	u32 cccr, fdflags;
	u32 txfqs;
	int err;
	int putidx;

	cdev->tx_skb = NULL;

	/* Generate ID field for TX buffer Element */
	/* Common to all supported M_CAN versions */
	if (cf->can_id & CAN_EFF_FLAG) {
		fifo_header.id = cf->can_id & CAN_EFF_MASK;
		fifo_header.id |= TX_BUF_XTD;
	} else {
		fifo_header.id = ((cf->can_id & CAN_SFF_MASK) << 18);
	}

	if (cf->can_id & CAN_RTR_FLAG)
		fifo_header.id |= TX_BUF_RTR;

	if (cdev->version == 30) {
		netif_stop_queue(dev);

		fifo_header.dlc = can_fd_len2dlc(cf->len) << 16;

		/* Write the frame ID, DLC, and payload to the FIFO element. */
		err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_header, 2);
		if (err)
			goto out_fail;

		err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA,
				       cf->data, DIV_ROUND_UP(cf->len, 4));
		if (err)
			goto out_fail;

		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
			cccr = m_can_read(cdev, M_CAN_CCCR);
			cccr &= ~CCCR_CMR_MASK;
			if (can_is_canfd_skb(skb)) {
				if (cf->flags & CANFD_BRS)
					cccr |= FIELD_PREP(CCCR_CMR_MASK,
							   CCCR_CMR_CANFD_BRS);
				else
					cccr |= FIELD_PREP(CCCR_CMR_MASK,
							   CCCR_CMR_CANFD);
			} else {
				cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN);
			}
			m_can_write(cdev, M_CAN_CCCR, cccr);
		}
		m_can_write(cdev, M_CAN_TXBTIE, 0x1);

		can_put_echo_skb(skb, dev, 0, 0);

		m_can_write(cdev, M_CAN_TXBAR, 0x1);
		/* End of xmit function for version 3.0.x */
	} else {
		/* Transmit routine for version >= v3.1.x */

		txfqs = m_can_read(cdev, M_CAN_TXFQS);

		/* Check if FIFO full */
		if (_m_can_tx_fifo_full(txfqs)) {
			/* This shouldn't happen */
			netif_stop_queue(dev);
			netdev_warn(dev,
				    "TX queue active although FIFO is full.");

			if (cdev->is_peripheral) {
				kfree_skb(skb);
				dev->stats.tx_dropped++;
				return NETDEV_TX_OK;
			} else {
				return NETDEV_TX_BUSY;
			}
		}

		/* get put index for frame */
		putidx = FIELD_GET(TXFQS_TFQPI_MASK, txfqs);

		/* Construct DLC Field, with CAN-FD configuration.
		 * Use the put index of the fifo as the message marker,
		 * used in the TX interrupt for sending the correct echo frame.
		 */

		/* get CAN FD configuration of frame */
		fdflags = 0;
		if (can_is_canfd_skb(skb)) {
			fdflags |= TX_BUF_FDF;
			if (cf->flags & CANFD_BRS)
				fdflags |= TX_BUF_BRS;
		}

		fifo_header.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) |
			FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) |
			fdflags | TX_BUF_EFC;
		err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, &fifo_header, 2);
		if (err)
			goto out_fail;

		err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA,
				       cf->data, DIV_ROUND_UP(cf->len, 4));
		if (err)
			goto out_fail;

		/* Push loopback echo.
		 * Will be looped back on TX interrupt based on message marker
		 */
		can_put_echo_skb(skb, dev, putidx, 0);

		/* Enable TX FIFO element to start transfer  */
		m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));

		/* stop network queue if fifo full */
		if (m_can_tx_fifo_full(cdev) ||
		    m_can_next_echo_skb_occupied(dev, putidx))
			netif_stop_queue(dev);
	}

	return NETDEV_TX_OK;

out_fail:
	netdev_err(dev, "FIFO write returned %d\n", err);
	m_can_disable_all_interrupts(cdev);
	return NETDEV_TX_BUSY;
}

static void m_can_tx_work_queue(struct work_struct *ws)
{
	struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
						   tx_work);

	m_can_tx_handler(cdev);
}

static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
				    struct net_device *dev)
{
	struct m_can_classdev *cdev = netdev_priv(dev);

	if (can_dev_dropped_skb(dev, skb))
		return NETDEV_TX_OK;

	if (cdev->is_peripheral) {
		if (cdev->tx_skb) {
			netdev_err(dev, "hard_xmit called while tx busy\n");
			return NETDEV_TX_BUSY;
		}

		if (cdev->can.state == CAN_STATE_BUS_OFF) {
			m_can_clean(dev);
		} else {
			/* Need to stop the queue to avoid numerous requests
			 * from being sent.  Suggested improvement is to create
			 * a queueing mechanism that will queue the skbs and
			 * process them in order.
			 */
			cdev->tx_skb = skb;
			netif_stop_queue(cdev->net);
			queue_work(cdev->tx_wq, &cdev->tx_work);
		}
	} else {
		cdev->tx_skb = skb;
		return m_can_tx_handler(cdev);
	}

	return NETDEV_TX_OK;
}

static enum hrtimer_restart hrtimer_callback(struct hrtimer *timer)
{
	struct m_can_classdev *cdev = container_of(timer, struct
						   m_can_classdev, hrtimer);

	m_can_isr(0, cdev->net);

	hrtimer_forward_now(timer, ms_to_ktime(HRTIMER_POLL_INTERVAL_MS));

	return HRTIMER_RESTART;
}

static int m_can_open(struct net_device *dev)
{
	struct m_can_classdev *cdev = netdev_priv(dev);
	int err;

	err = phy_power_on(cdev->transceiver);
	if (err)
		return err;

	err = m_can_clk_start(cdev);
	if (err)
		goto out_phy_power_off;

	/* open the can device */
	err = open_candev(dev);
	if (err) {
		netdev_err(dev, "failed to open can device\n");
		goto exit_disable_clks;
	}

	if (cdev->is_peripheral)
		can_rx_offload_enable(&cdev->offload);

	/* register interrupt handler */
	if (cdev->is_peripheral) {
		cdev->tx_skb = NULL;
		cdev->tx_wq = alloc_workqueue("mcan_wq",
					      WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
		if (!cdev->tx_wq) {
			err = -ENOMEM;
			goto out_wq_fail;
		}

		INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);

		err = request_threaded_irq(dev->irq, NULL, m_can_isr,
					   IRQF_ONESHOT,
					   dev->name, dev);
	} else if (dev->irq) {
		err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
				  dev);
	}

	if (err < 0) {
		netdev_err(dev, "failed to request interrupt\n");
		goto exit_irq_fail;
	}

	/* start the m_can controller */
	err = m_can_start(dev);
	if (err)
		goto exit_irq_fail;

	if (!cdev->is_peripheral)
		napi_enable(&cdev->napi);

	netif_start_queue(dev);

	return 0;

exit_irq_fail:
	if (cdev->is_peripheral)
		destroy_workqueue(cdev->tx_wq);
out_wq_fail:
	if (cdev->is_peripheral)
		can_rx_offload_disable(&cdev->offload);
	close_candev(dev);
exit_disable_clks:
	m_can_clk_stop(cdev);
out_phy_power_off:
	phy_power_off(cdev->transceiver);
	return err;
}

static const struct net_device_ops m_can_netdev_ops = {
	.ndo_open = m_can_open,
	.ndo_stop = m_can_close,
	.ndo_start_xmit = m_can_start_xmit,
	.ndo_change_mtu = can_change_mtu,
};

static const struct ethtool_ops m_can_ethtool_ops = {
	.get_ts_info = ethtool_op_get_ts_info,
};

static int register_m_can_dev(struct net_device *dev)
{
	dev->flags |= IFF_ECHO;	/* we support local echo */
	dev->netdev_ops = &m_can_netdev_ops;
	dev->ethtool_ops = &m_can_ethtool_ops;

	return register_candev(dev);
}

int m_can_check_mram_cfg(struct m_can_classdev *cdev, u32 mram_max_size)
{
	u32 total_size;

	total_size = cdev->mcfg[MRAM_TXB].off - cdev->mcfg[MRAM_SIDF].off +
			cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
	if (total_size > mram_max_size) {
		dev_err(cdev->dev, "Total size of mram config(%u) exceeds mram(%u)\n",
			total_size, mram_max_size);
		return -EINVAL;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(m_can_check_mram_cfg);

static void m_can_of_parse_mram(struct m_can_classdev *cdev,
				const u32 *mram_config_vals)
{
	cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
	cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
	cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
		cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
	cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
	cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
		cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
	cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
		FIELD_MAX(RXFC_FS_MASK);
	cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
		cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
	cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
		FIELD_MAX(RXFC_FS_MASK);
	cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
		cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
	cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
	cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
		cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
	cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
	cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
		cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
	cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
		FIELD_MAX(TXBC_NDTB_MASK);

	dev_dbg(cdev->dev,
		"sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
		cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
		cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
		cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
		cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
		cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
		cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
		cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
}

int m_can_init_ram(struct m_can_classdev *cdev)
{
	int end, i, start;
	int err = 0;

	/* initialize the entire Message RAM in use to avoid possible
	 * ECC/parity checksum errors when reading an uninitialized buffer
	 */
	start = cdev->mcfg[MRAM_SIDF].off;
	end = cdev->mcfg[MRAM_TXB].off +
		cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;

	for (i = start; i < end; i += 4) {
		err = m_can_fifo_write_no_off(cdev, i, 0x0);
		if (err)
			break;
	}

	return err;
}
EXPORT_SYMBOL_GPL(m_can_init_ram);

int m_can_class_get_clocks(struct m_can_classdev *cdev)
{
	int ret = 0;

	cdev->hclk = devm_clk_get(cdev->dev, "hclk");
	cdev->cclk = devm_clk_get(cdev->dev, "cclk");

	if (IS_ERR(cdev->hclk) || IS_ERR(cdev->cclk)) {
		dev_err(cdev->dev, "no clock found\n");
		ret = -ENODEV;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(m_can_class_get_clocks);

struct m_can_classdev *m_can_class_allocate_dev(struct device *dev,
						int sizeof_priv)
{
	struct m_can_classdev *class_dev = NULL;
	u32 mram_config_vals[MRAM_CFG_LEN];
	struct net_device *net_dev;
	u32 tx_fifo_size;
	int ret;

	ret = fwnode_property_read_u32_array(dev_fwnode(dev),
					     "bosch,mram-cfg",
					     mram_config_vals,
					     sizeof(mram_config_vals) / 4);
	if (ret) {
		dev_err(dev, "Could not get Message RAM configuration.");
		goto out;
	}

	/* Get TX FIFO size
	 * Defines the total amount of echo buffers for loopback
	 */
	tx_fifo_size = mram_config_vals[7];

	/* allocate the m_can device */
	net_dev = alloc_candev(sizeof_priv, tx_fifo_size);
	if (!net_dev) {
		dev_err(dev, "Failed to allocate CAN device");
		goto out;
	}

	class_dev = netdev_priv(net_dev);
	class_dev->net = net_dev;
	class_dev->dev = dev;
	SET_NETDEV_DEV(net_dev, dev);

	m_can_of_parse_mram(class_dev, mram_config_vals);
out:
	return class_dev;
}
EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);

void m_can_class_free_dev(struct net_device *net)
{
	free_candev(net);
}
EXPORT_SYMBOL_GPL(m_can_class_free_dev);

int m_can_class_register(struct m_can_classdev *cdev)
{
	int ret;

	if (cdev->pm_clock_support) {
		ret = m_can_clk_start(cdev);
		if (ret)
			return ret;
	}

	if (cdev->is_peripheral) {
		ret = can_rx_offload_add_manual(cdev->net, &cdev->offload,
						NAPI_POLL_WEIGHT);
		if (ret)
			goto clk_disable;
	}

	if (!cdev->net->irq)
		cdev->hrtimer.function = &hrtimer_callback;

	ret = m_can_dev_setup(cdev);
	if (ret)
		goto rx_offload_del;

	ret = register_m_can_dev(cdev->net);
	if (ret) {
		dev_err(cdev->dev, "registering %s failed (err=%d)\n",
			cdev->net->name, ret);
		goto rx_offload_del;
	}

	of_can_transceiver(cdev->net);

	dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n",
		 KBUILD_MODNAME, cdev->net->irq, cdev->version);

	/* Probe finished
	 * Stop clocks. They will be reactivated once the M_CAN device is opened
	 */
	m_can_clk_stop(cdev);

	return 0;

rx_offload_del:
	if (cdev->is_peripheral)
		can_rx_offload_del(&cdev->offload);
clk_disable:
	m_can_clk_stop(cdev);

	return ret;
}
EXPORT_SYMBOL_GPL(m_can_class_register);

void m_can_class_unregister(struct m_can_classdev *cdev)
{
	if (cdev->is_peripheral)
		can_rx_offload_del(&cdev->offload);
	unregister_candev(cdev->net);
}
EXPORT_SYMBOL_GPL(m_can_class_unregister);

int m_can_class_suspend(struct device *dev)
{
	struct m_can_classdev *cdev = dev_get_drvdata(dev);
	struct net_device *ndev = cdev->net;

	if (netif_running(ndev)) {
		netif_stop_queue(ndev);
		netif_device_detach(ndev);
		m_can_stop(ndev);
		m_can_clk_stop(cdev);
	}

	pinctrl_pm_select_sleep_state(dev);

	cdev->can.state = CAN_STATE_SLEEPING;

	return 0;
}
EXPORT_SYMBOL_GPL(m_can_class_suspend);

int m_can_class_resume(struct device *dev)
{
	struct m_can_classdev *cdev = dev_get_drvdata(dev);
	struct net_device *ndev = cdev->net;

	pinctrl_pm_select_default_state(dev);

	cdev->can.state = CAN_STATE_ERROR_ACTIVE;

	if (netif_running(ndev)) {
		int ret;

		ret = m_can_clk_start(cdev);
		if (ret)
			return ret;
		ret  = m_can_start(ndev);
		if (ret) {
			m_can_clk_stop(cdev);

			return ret;
		}

		netif_device_attach(ndev);
		netif_start_queue(ndev);
	}

	return 0;
}
EXPORT_SYMBOL_GPL(m_can_class_resume);

MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");