1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
|
// SPDX-License-Identifier: GPL-2.0-only
/****************************************************************************
* Driver for Solarflare network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2005-2013 Solarflare Communications Inc.
*/
#include <linux/pci.h>
#include <linux/tcp.h>
#include <linux/ip.h>
#include <linux/in.h>
#include <linux/ipv6.h>
#include <linux/slab.h>
#include <net/ipv6.h>
#include <linux/if_ether.h>
#include <linux/highmem.h>
#include <linux/cache.h>
#include "net_driver.h"
#include "efx.h"
#include "io.h"
#include "nic.h"
#include "tx.h"
#include "tx_common.h"
#include "workarounds.h"
static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue,
struct efx_tx_buffer *buffer)
{
unsigned int index = efx_tx_queue_get_insert_index(tx_queue);
struct efx_buffer *page_buf =
&tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)];
unsigned int offset =
((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
if (unlikely(!page_buf->addr) &&
efx_siena_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
GFP_ATOMIC))
return NULL;
buffer->dma_addr = page_buf->dma_addr + offset;
buffer->unmap_len = 0;
return (u8 *)page_buf->addr + offset;
}
static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
{
/* We need to consider all queues that the net core sees as one */
struct efx_nic *efx = txq1->efx;
struct efx_tx_queue *txq2;
unsigned int fill_level;
fill_level = efx_channel_tx_old_fill_level(txq1->channel);
if (likely(fill_level < efx->txq_stop_thresh))
return;
/* We used the stale old_read_count above, which gives us a
* pessimistic estimate of the fill level (which may even
* validly be >= efx->txq_entries). Now try again using
* read_count (more likely to be a cache miss).
*
* If we read read_count and then conditionally stop the
* queue, it is possible for the completion path to race with
* us and complete all outstanding descriptors in the middle,
* after which there will be no more completions to wake it.
* Therefore we stop the queue first, then read read_count
* (with a memory barrier to ensure the ordering), then
* restart the queue if the fill level turns out to be low
* enough.
*/
netif_tx_stop_queue(txq1->core_txq);
smp_mb();
efx_for_each_channel_tx_queue(txq2, txq1->channel)
txq2->old_read_count = READ_ONCE(txq2->read_count);
fill_level = efx_channel_tx_old_fill_level(txq1->channel);
EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries);
if (likely(fill_level < efx->txq_stop_thresh)) {
smp_mb();
if (likely(!efx->loopback_selftest))
netif_tx_start_queue(txq1->core_txq);
}
}
static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue,
struct sk_buff *skb)
{
unsigned int copy_len = skb->len;
struct efx_tx_buffer *buffer;
u8 *copy_buffer;
int rc;
EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE);
buffer = efx_tx_queue_get_insert_buffer(tx_queue);
copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer);
if (unlikely(!copy_buffer))
return -ENOMEM;
rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
EFX_WARN_ON_PARANOID(rc);
buffer->len = copy_len;
buffer->skb = skb;
buffer->flags = EFX_TX_BUF_SKB;
++tx_queue->insert_count;
return rc;
}
/* Send any pending traffic for a channel. xmit_more is shared across all
* queues for a channel, so we must check all of them.
*/
static void efx_tx_send_pending(struct efx_channel *channel)
{
struct efx_tx_queue *q;
efx_for_each_channel_tx_queue(q, channel) {
if (q->xmit_pending)
efx_nic_push_buffers(q);
}
}
/*
* Add a socket buffer to a TX queue
*
* This maps all fragments of a socket buffer for DMA and adds them to
* the TX queue. The queue's insert pointer will be incremented by
* the number of fragments in the socket buffer.
*
* If any DMA mapping fails, any mapped fragments will be unmapped,
* the queue's insert pointer will be restored to its original value.
*
* This function is split out from efx_siena_hard_start_xmit to allow the
* loopback test to direct packets via specific TX queues.
*
* Returns NETDEV_TX_OK.
* You must hold netif_tx_lock() to call this function.
*/
netdev_tx_t __efx_siena_enqueue_skb(struct efx_tx_queue *tx_queue,
struct sk_buff *skb)
{
unsigned int old_insert_count = tx_queue->insert_count;
bool xmit_more = netdev_xmit_more();
bool data_mapped = false;
unsigned int segments;
unsigned int skb_len;
int rc;
skb_len = skb->len;
segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
if (segments == 1)
segments = 0; /* Don't use TSO for a single segment. */
/* Handle TSO first - it's *possible* (although unlikely) that we might
* be passed a packet to segment that's smaller than the copybreak/PIO
* size limit.
*/
if (segments) {
rc = efx_siena_tx_tso_fallback(tx_queue, skb);
tx_queue->tso_fallbacks++;
if (rc == 0)
return 0;
goto err;
} else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) {
/* Pad short packets or coalesce short fragmented packets. */
if (efx_enqueue_skb_copy(tx_queue, skb))
goto err;
tx_queue->cb_packets++;
data_mapped = true;
}
/* Map for DMA and create descriptors if we haven't done so already. */
if (!data_mapped && (efx_siena_tx_map_data(tx_queue, skb, segments)))
goto err;
efx_tx_maybe_stop_queue(tx_queue);
tx_queue->xmit_pending = true;
/* Pass off to hardware */
if (__netdev_tx_sent_queue(tx_queue->core_txq, skb_len, xmit_more))
efx_tx_send_pending(tx_queue->channel);
tx_queue->tx_packets++;
return NETDEV_TX_OK;
err:
efx_siena_enqueue_unwind(tx_queue, old_insert_count);
dev_kfree_skb_any(skb);
/* If we're not expecting another transmit and we had something to push
* on this queue or a partner queue then we need to push here to get the
* previous packets out.
*/
if (!xmit_more)
efx_tx_send_pending(tx_queue->channel);
return NETDEV_TX_OK;
}
/* Transmit a packet from an XDP buffer
*
* Returns number of packets sent on success, error code otherwise.
* Runs in NAPI context, either in our poll (for XDP TX) or a different NIC
* (for XDP redirect).
*/
int efx_siena_xdp_tx_buffers(struct efx_nic *efx, int n, struct xdp_frame **xdpfs,
bool flush)
{
struct efx_tx_buffer *tx_buffer;
struct efx_tx_queue *tx_queue;
struct xdp_frame *xdpf;
dma_addr_t dma_addr;
unsigned int len;
int space;
int cpu;
int i = 0;
if (unlikely(n && !xdpfs))
return -EINVAL;
if (unlikely(!n))
return 0;
cpu = raw_smp_processor_id();
if (unlikely(cpu >= efx->xdp_tx_queue_count))
return -EINVAL;
tx_queue = efx->xdp_tx_queues[cpu];
if (unlikely(!tx_queue))
return -EINVAL;
if (!tx_queue->initialised)
return -EINVAL;
if (efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_DEDICATED)
HARD_TX_LOCK(efx->net_dev, tx_queue->core_txq, cpu);
/* If we're borrowing net stack queues we have to handle stop-restart
* or we might block the queue and it will be considered as frozen
*/
if (efx->xdp_txq_queues_mode == EFX_XDP_TX_QUEUES_BORROWED) {
if (netif_tx_queue_stopped(tx_queue->core_txq))
goto unlock;
efx_tx_maybe_stop_queue(tx_queue);
}
/* Check for available space. We should never need multiple
* descriptors per frame.
*/
space = efx->txq_entries +
tx_queue->read_count - tx_queue->insert_count;
for (i = 0; i < n; i++) {
xdpf = xdpfs[i];
if (i >= space)
break;
/* We'll want a descriptor for this tx. */
prefetchw(__efx_tx_queue_get_insert_buffer(tx_queue));
len = xdpf->len;
/* Map for DMA. */
dma_addr = dma_map_single(&efx->pci_dev->dev,
xdpf->data, len,
DMA_TO_DEVICE);
if (dma_mapping_error(&efx->pci_dev->dev, dma_addr))
break;
/* Create descriptor and set up for unmapping DMA. */
tx_buffer = efx_siena_tx_map_chunk(tx_queue, dma_addr, len);
tx_buffer->xdpf = xdpf;
tx_buffer->flags = EFX_TX_BUF_XDP |
EFX_TX_BUF_MAP_SINGLE;
tx_buffer->dma_offset = 0;
tx_buffer->unmap_len = len;
tx_queue->tx_packets++;
}
/* Pass mapped frames to hardware. */
if (flush && i > 0)
efx_nic_push_buffers(tx_queue);
unlock:
if (efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_DEDICATED)
HARD_TX_UNLOCK(efx->net_dev, tx_queue->core_txq);
return i == 0 ? -EIO : i;
}
/* Initiate a packet transmission. We use one channel per CPU
* (sharing when we have more CPUs than channels).
*
* Context: non-blocking.
* Should always return NETDEV_TX_OK and consume the skb.
*/
netdev_tx_t efx_siena_hard_start_xmit(struct sk_buff *skb,
struct net_device *net_dev)
{
struct efx_nic *efx = netdev_priv(net_dev);
struct efx_tx_queue *tx_queue;
unsigned index, type;
EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
index = skb_get_queue_mapping(skb);
type = efx_tx_csum_type_skb(skb);
if (index >= efx->n_tx_channels) {
index -= efx->n_tx_channels;
type |= EFX_TXQ_TYPE_HIGHPRI;
}
/* PTP "event" packet */
if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
((efx_siena_ptp_use_mac_tx_timestamps(efx) && efx->ptp_data) ||
unlikely(efx_siena_ptp_is_ptp_tx(efx, skb)))) {
/* There may be existing transmits on the channel that are
* waiting for this packet to trigger the doorbell write.
* We need to send the packets at this point.
*/
efx_tx_send_pending(efx_get_tx_channel(efx, index));
return efx_siena_ptp_tx(efx, skb);
}
tx_queue = efx_get_tx_queue(efx, index, type);
if (WARN_ON_ONCE(!tx_queue)) {
/* We don't have a TXQ of the right type.
* This should never happen, as we don't advertise offload
* features unless we can support them.
*/
dev_kfree_skb_any(skb);
/* If we're not expecting another transmit and we had something to push
* on this queue or a partner queue then we need to push here to get the
* previous packets out.
*/
if (!netdev_xmit_more())
efx_tx_send_pending(efx_get_tx_channel(efx, index));
return NETDEV_TX_OK;
}
return __efx_siena_enqueue_skb(tx_queue, skb);
}
void efx_siena_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
/* Must be inverse of queue lookup in efx_siena_hard_start_xmit() */
tx_queue->core_txq =
netdev_get_tx_queue(efx->net_dev,
tx_queue->channel->channel +
((tx_queue->type & EFX_TXQ_TYPE_HIGHPRI) ?
efx->n_tx_channels : 0));
}
int efx_siena_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
void *type_data)
{
struct efx_nic *efx = netdev_priv(net_dev);
struct tc_mqprio_qopt *mqprio = type_data;
unsigned tc, num_tc;
if (type != TC_SETUP_QDISC_MQPRIO)
return -EOPNOTSUPP;
/* Only Siena supported highpri queues */
if (efx_nic_rev(efx) > EFX_REV_SIENA_A0)
return -EOPNOTSUPP;
num_tc = mqprio->num_tc;
if (num_tc > EFX_MAX_TX_TC)
return -EINVAL;
mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
if (num_tc == net_dev->num_tc)
return 0;
for (tc = 0; tc < num_tc; tc++) {
net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
}
net_dev->num_tc = num_tc;
return netif_set_real_num_tx_queues(net_dev,
max_t(int, num_tc, 1) *
efx->n_tx_channels);
}
|