1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
|
// SPDX-License-Identifier: GPL-2.0-only
/*******************************************************************************
This is the driver for the GMAC on-chip Ethernet controller for ST SoCs.
DWC Ether MAC 10/100/1000 Universal version 3.41a has been used for
developing this code.
This contains the functions to handle the dma.
Copyright (C) 2007-2009 STMicroelectronics Ltd
Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
*******************************************************************************/
#include <asm/io.h>
#include "dwmac1000.h"
#include "dwmac_dma.h"
static void dwmac1000_dma_axi(void __iomem *ioaddr, struct stmmac_axi *axi)
{
u32 value = readl(ioaddr + DMA_AXI_BUS_MODE);
int i;
pr_info("dwmac1000: Master AXI performs %s burst length\n",
!(value & DMA_AXI_UNDEF) ? "fixed" : "any");
if (axi->axi_lpi_en)
value |= DMA_AXI_EN_LPI;
if (axi->axi_xit_frm)
value |= DMA_AXI_LPI_XIT_FRM;
value &= ~DMA_AXI_WR_OSR_LMT;
value |= (axi->axi_wr_osr_lmt & DMA_AXI_WR_OSR_LMT_MASK) <<
DMA_AXI_WR_OSR_LMT_SHIFT;
value &= ~DMA_AXI_RD_OSR_LMT;
value |= (axi->axi_rd_osr_lmt & DMA_AXI_RD_OSR_LMT_MASK) <<
DMA_AXI_RD_OSR_LMT_SHIFT;
/* Depending on the UNDEF bit the Master AXI will perform any burst
* length according to the BLEN programmed (by default all BLEN are
* set).
*/
for (i = 0; i < AXI_BLEN; i++) {
switch (axi->axi_blen[i]) {
case 256:
value |= DMA_AXI_BLEN256;
break;
case 128:
value |= DMA_AXI_BLEN128;
break;
case 64:
value |= DMA_AXI_BLEN64;
break;
case 32:
value |= DMA_AXI_BLEN32;
break;
case 16:
value |= DMA_AXI_BLEN16;
break;
case 8:
value |= DMA_AXI_BLEN8;
break;
case 4:
value |= DMA_AXI_BLEN4;
break;
}
}
writel(value, ioaddr + DMA_AXI_BUS_MODE);
}
static void dwmac1000_dma_init(void __iomem *ioaddr,
struct stmmac_dma_cfg *dma_cfg, int atds)
{
u32 value = readl(ioaddr + DMA_BUS_MODE);
int txpbl = dma_cfg->txpbl ?: dma_cfg->pbl;
int rxpbl = dma_cfg->rxpbl ?: dma_cfg->pbl;
/*
* Set the DMA PBL (Programmable Burst Length) mode.
*
* Note: before stmmac core 3.50 this mode bit was 4xPBL, and
* post 3.5 mode bit acts as 8*PBL.
*/
if (dma_cfg->pblx8)
value |= DMA_BUS_MODE_MAXPBL;
value |= DMA_BUS_MODE_USP;
value &= ~(DMA_BUS_MODE_PBL_MASK | DMA_BUS_MODE_RPBL_MASK);
value |= (txpbl << DMA_BUS_MODE_PBL_SHIFT);
value |= (rxpbl << DMA_BUS_MODE_RPBL_SHIFT);
/* Set the Fixed burst mode */
if (dma_cfg->fixed_burst)
value |= DMA_BUS_MODE_FB;
/* Mixed Burst has no effect when fb is set */
if (dma_cfg->mixed_burst)
value |= DMA_BUS_MODE_MB;
if (atds)
value |= DMA_BUS_MODE_ATDS;
if (dma_cfg->aal)
value |= DMA_BUS_MODE_AAL;
writel(value, ioaddr + DMA_BUS_MODE);
/* Mask interrupts by writing to CSR7 */
writel(DMA_INTR_DEFAULT_MASK, ioaddr + DMA_INTR_ENA);
}
static void dwmac1000_dma_init_rx(struct stmmac_priv *priv,
void __iomem *ioaddr,
struct stmmac_dma_cfg *dma_cfg,
dma_addr_t dma_rx_phy, u32 chan)
{
/* RX descriptor base address list must be written into DMA CSR3 */
writel(lower_32_bits(dma_rx_phy), ioaddr + DMA_RCV_BASE_ADDR);
}
static void dwmac1000_dma_init_tx(struct stmmac_priv *priv,
void __iomem *ioaddr,
struct stmmac_dma_cfg *dma_cfg,
dma_addr_t dma_tx_phy, u32 chan)
{
/* TX descriptor base address list must be written into DMA CSR4 */
writel(lower_32_bits(dma_tx_phy), ioaddr + DMA_TX_BASE_ADDR);
}
static u32 dwmac1000_configure_fc(u32 csr6, int rxfifosz)
{
csr6 &= ~DMA_CONTROL_RFA_MASK;
csr6 &= ~DMA_CONTROL_RFD_MASK;
/* Leave flow control disabled if receive fifo size is less than
* 4K or 0. Otherwise, send XOFF when fifo is 1K less than full,
* and send XON when 2K less than full.
*/
if (rxfifosz < 4096) {
csr6 &= ~DMA_CONTROL_EFC;
pr_debug("GMAC: disabling flow control, rxfifo too small(%d)\n",
rxfifosz);
} else {
csr6 |= DMA_CONTROL_EFC;
csr6 |= RFA_FULL_MINUS_1K;
csr6 |= RFD_FULL_MINUS_2K;
}
return csr6;
}
static void dwmac1000_dma_operation_mode_rx(struct stmmac_priv *priv,
void __iomem *ioaddr, int mode,
u32 channel, int fifosz, u8 qmode)
{
u32 csr6 = readl(ioaddr + DMA_CONTROL);
if (mode == SF_DMA_MODE) {
pr_debug("GMAC: enable RX store and forward mode\n");
csr6 |= DMA_CONTROL_RSF;
} else {
pr_debug("GMAC: disable RX SF mode (threshold %d)\n", mode);
csr6 &= ~DMA_CONTROL_RSF;
csr6 &= DMA_CONTROL_TC_RX_MASK;
if (mode <= 32)
csr6 |= DMA_CONTROL_RTC_32;
else if (mode <= 64)
csr6 |= DMA_CONTROL_RTC_64;
else if (mode <= 96)
csr6 |= DMA_CONTROL_RTC_96;
else
csr6 |= DMA_CONTROL_RTC_128;
}
/* Configure flow control based on rx fifo size */
csr6 = dwmac1000_configure_fc(csr6, fifosz);
writel(csr6, ioaddr + DMA_CONTROL);
}
static void dwmac1000_dma_operation_mode_tx(struct stmmac_priv *priv,
void __iomem *ioaddr, int mode,
u32 channel, int fifosz, u8 qmode)
{
u32 csr6 = readl(ioaddr + DMA_CONTROL);
if (mode == SF_DMA_MODE) {
pr_debug("GMAC: enable TX store and forward mode\n");
/* Transmit COE type 2 cannot be done in cut-through mode. */
csr6 |= DMA_CONTROL_TSF;
/* Operating on second frame increase the performance
* especially when transmit store-and-forward is used.
*/
csr6 |= DMA_CONTROL_OSF;
} else {
pr_debug("GMAC: disabling TX SF (threshold %d)\n", mode);
csr6 &= ~DMA_CONTROL_TSF;
csr6 &= DMA_CONTROL_TC_TX_MASK;
/* Set the transmit threshold */
if (mode <= 32)
csr6 |= DMA_CONTROL_TTC_32;
else if (mode <= 64)
csr6 |= DMA_CONTROL_TTC_64;
else if (mode <= 128)
csr6 |= DMA_CONTROL_TTC_128;
else if (mode <= 192)
csr6 |= DMA_CONTROL_TTC_192;
else
csr6 |= DMA_CONTROL_TTC_256;
}
writel(csr6, ioaddr + DMA_CONTROL);
}
static void dwmac1000_dump_dma_regs(struct stmmac_priv *priv,
void __iomem *ioaddr, u32 *reg_space)
{
int i;
for (i = 0; i < NUM_DWMAC1000_DMA_REGS; i++)
if ((i < 12) || (i > 17))
reg_space[DMA_BUS_MODE / 4 + i] =
readl(ioaddr + DMA_BUS_MODE + i * 4);
}
static int dwmac1000_get_hw_feature(void __iomem *ioaddr,
struct dma_features *dma_cap)
{
u32 hw_cap = readl(ioaddr + DMA_HW_FEATURE);
if (!hw_cap) {
/* 0x00000000 is the value read on old hardware that does not
* implement this register
*/
return -EOPNOTSUPP;
}
dma_cap->mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
dma_cap->mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
dma_cap->half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
dma_cap->hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
dma_cap->multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
dma_cap->pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
dma_cap->sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
dma_cap->pmt_remote_wake_up = (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
dma_cap->pmt_magic_frame = (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
/* MMC */
dma_cap->rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
/* IEEE 1588-2002 */
dma_cap->time_stamp =
(hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
/* IEEE 1588-2008 */
dma_cap->atime_stamp = (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
/* 802.3az - Energy-Efficient Ethernet (EEE) */
dma_cap->eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
dma_cap->av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
/* TX and RX csum */
dma_cap->tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
dma_cap->rx_coe_type1 = (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
dma_cap->rx_coe_type2 = (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
dma_cap->rxfifo_over_2048 = (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
/* TX and RX number of channels */
dma_cap->number_rx_channel = (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
dma_cap->number_tx_channel = (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
/* Alternate (enhanced) DESC mode */
dma_cap->enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
return 0;
}
static void dwmac1000_rx_watchdog(struct stmmac_priv *priv,
void __iomem *ioaddr, u32 riwt, u32 queue)
{
writel(riwt, ioaddr + DMA_RX_WATCHDOG);
}
const struct stmmac_dma_ops dwmac1000_dma_ops = {
.reset = dwmac_dma_reset,
.init = dwmac1000_dma_init,
.init_rx_chan = dwmac1000_dma_init_rx,
.init_tx_chan = dwmac1000_dma_init_tx,
.axi = dwmac1000_dma_axi,
.dump_regs = dwmac1000_dump_dma_regs,
.dma_rx_mode = dwmac1000_dma_operation_mode_rx,
.dma_tx_mode = dwmac1000_dma_operation_mode_tx,
.enable_dma_transmission = dwmac_enable_dma_transmission,
.enable_dma_irq = dwmac_enable_dma_irq,
.disable_dma_irq = dwmac_disable_dma_irq,
.start_tx = dwmac_dma_start_tx,
.stop_tx = dwmac_dma_stop_tx,
.start_rx = dwmac_dma_start_rx,
.stop_rx = dwmac_dma_stop_rx,
.dma_interrupt = dwmac_dma_interrupt,
.get_hw_feature = dwmac1000_get_hw_feature,
.rx_watchdog = dwmac1000_rx_watchdog,
};
|