1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
|
// SPDX-License-Identifier: GPL-2.0
/*
* NVM Express target device driver tracepoints
* Copyright (c) 2018 Johannes Thumshirn, SUSE Linux GmbH
*/
#include <asm/unaligned.h>
#include "trace.h"
static const char *nvmet_trace_admin_identify(struct trace_seq *p, u8 *cdw10)
{
const char *ret = trace_seq_buffer_ptr(p);
u8 cns = cdw10[0];
u16 ctrlid = get_unaligned_le16(cdw10 + 2);
trace_seq_printf(p, "cns=%u, ctrlid=%u", cns, ctrlid);
trace_seq_putc(p, 0);
return ret;
}
static const char *nvmet_trace_admin_get_features(struct trace_seq *p,
u8 *cdw10)
{
const char *ret = trace_seq_buffer_ptr(p);
u8 fid = cdw10[0];
u8 sel = cdw10[1] & 0x7;
u32 cdw11 = get_unaligned_le32(cdw10 + 4);
trace_seq_printf(p, "fid=0x%x, sel=0x%x, cdw11=0x%x", fid, sel, cdw11);
trace_seq_putc(p, 0);
return ret;
}
static const char *nvmet_trace_get_lba_status(struct trace_seq *p,
u8 *cdw10)
{
const char *ret = trace_seq_buffer_ptr(p);
u64 slba = get_unaligned_le64(cdw10);
u32 mndw = get_unaligned_le32(cdw10 + 8);
u16 rl = get_unaligned_le16(cdw10 + 12);
u8 atype = cdw10[15];
trace_seq_printf(p, "slba=0x%llx, mndw=0x%x, rl=0x%x, atype=%u",
slba, mndw, rl, atype);
trace_seq_putc(p, 0);
return ret;
}
static const char *nvmet_trace_admin_set_features(struct trace_seq *p,
u8 *cdw10)
{
const char *ret = trace_seq_buffer_ptr(p);
u8 fid = cdw10[0];
u8 sv = cdw10[3] & 0x8;
u32 cdw11 = get_unaligned_le32(cdw10 + 4);
trace_seq_printf(p, "fid=0x%x, sv=0x%x, cdw11=0x%x", fid, sv, cdw11);
trace_seq_putc(p, 0);
return ret;
}
static const char *nvmet_trace_read_write(struct trace_seq *p, u8 *cdw10)
{
const char *ret = trace_seq_buffer_ptr(p);
u64 slba = get_unaligned_le64(cdw10);
u16 length = get_unaligned_le16(cdw10 + 8);
u16 control = get_unaligned_le16(cdw10 + 10);
u32 dsmgmt = get_unaligned_le32(cdw10 + 12);
u32 reftag = get_unaligned_le32(cdw10 + 16);
trace_seq_printf(p,
"slba=%llu, len=%u, ctrl=0x%x, dsmgmt=%u, reftag=%u",
slba, length, control, dsmgmt, reftag);
trace_seq_putc(p, 0);
return ret;
}
static const char *nvmet_trace_dsm(struct trace_seq *p, u8 *cdw10)
{
const char *ret = trace_seq_buffer_ptr(p);
trace_seq_printf(p, "nr=%u, attributes=%u",
get_unaligned_le32(cdw10),
get_unaligned_le32(cdw10 + 4));
trace_seq_putc(p, 0);
return ret;
}
static const char *nvmet_trace_common(struct trace_seq *p, u8 *cdw10)
{
const char *ret = trace_seq_buffer_ptr(p);
trace_seq_printf(p, "cdw10=%*ph", 24, cdw10);
trace_seq_putc(p, 0);
return ret;
}
const char *nvmet_trace_parse_admin_cmd(struct trace_seq *p,
u8 opcode, u8 *cdw10)
{
switch (opcode) {
case nvme_admin_identify:
return nvmet_trace_admin_identify(p, cdw10);
case nvme_admin_set_features:
return nvmet_trace_admin_set_features(p, cdw10);
case nvme_admin_get_features:
return nvmet_trace_admin_get_features(p, cdw10);
case nvme_admin_get_lba_status:
return nvmet_trace_get_lba_status(p, cdw10);
default:
return nvmet_trace_common(p, cdw10);
}
}
static const char *nvmet_trace_zone_mgmt_send(struct trace_seq *p, u8 *cdw10)
{
static const char * const zsa_strs[] = {
[0x01] = "close zone",
[0x02] = "finish zone",
[0x03] = "open zone",
[0x04] = "reset zone",
[0x05] = "offline zone",
[0x10] = "set zone descriptor extension"
};
const char *ret = trace_seq_buffer_ptr(p);
u64 slba = get_unaligned_le64(cdw10);
const char *zsa_str;
u8 zsa = cdw10[12];
u8 all = cdw10[13];
if (zsa < ARRAY_SIZE(zsa_strs) && zsa_strs[zsa])
zsa_str = zsa_strs[zsa];
else
zsa_str = "reserved";
trace_seq_printf(p, "slba=%llu, zsa=%u:%s, all=%u",
slba, zsa, zsa_str, all);
trace_seq_putc(p, 0);
return ret;
}
static const char *nvmet_trace_zone_mgmt_recv(struct trace_seq *p, u8 *cdw10)
{
static const char * const zrasf_strs[] = {
[0x00] = "list all zones",
[0x01] = "list the zones in the ZSE: Empty state",
[0x02] = "list the zones in the ZSIO: Implicitly Opened state",
[0x03] = "list the zones in the ZSEO: Explicitly Opened state",
[0x04] = "list the zones in the ZSC: Closed state",
[0x05] = "list the zones in the ZSF: Full state",
[0x06] = "list the zones in the ZSRO: Read Only state",
[0x07] = "list the zones in the ZSO: Offline state",
[0x09] = "list the zones that have the zone attribute"
};
const char *ret = trace_seq_buffer_ptr(p);
u64 slba = get_unaligned_le64(cdw10);
u32 numd = get_unaligned_le32(&cdw10[8]);
u8 zra = cdw10[12];
u8 zrasf = cdw10[13];
const char *zrasf_str;
u8 pr = cdw10[14];
if (zrasf < ARRAY_SIZE(zrasf_strs) && zrasf_strs[zrasf])
zrasf_str = zrasf_strs[zrasf];
else
zrasf_str = "reserved";
trace_seq_printf(p, "slba=%llu, numd=%u, zra=%u, zrasf=%u:%s, pr=%u",
slba, numd, zra, zrasf, zrasf_str, pr);
trace_seq_putc(p, 0);
return ret;
}
const char *nvmet_trace_parse_nvm_cmd(struct trace_seq *p,
u8 opcode, u8 *cdw10)
{
switch (opcode) {
case nvme_cmd_read:
case nvme_cmd_write:
case nvme_cmd_write_zeroes:
case nvme_cmd_zone_append:
return nvmet_trace_read_write(p, cdw10);
case nvme_cmd_dsm:
return nvmet_trace_dsm(p, cdw10);
case nvme_cmd_zone_mgmt_send:
return nvmet_trace_zone_mgmt_send(p, cdw10);
case nvme_cmd_zone_mgmt_recv:
return nvmet_trace_zone_mgmt_recv(p, cdw10);
default:
return nvmet_trace_common(p, cdw10);
}
}
static const char *nvmet_trace_fabrics_property_set(struct trace_seq *p,
u8 *spc)
{
const char *ret = trace_seq_buffer_ptr(p);
u8 attrib = spc[0];
u32 ofst = get_unaligned_le32(spc + 4);
u64 value = get_unaligned_le64(spc + 8);
trace_seq_printf(p, "attrib=%u, ofst=0x%x, value=0x%llx",
attrib, ofst, value);
trace_seq_putc(p, 0);
return ret;
}
static const char *nvmet_trace_fabrics_connect(struct trace_seq *p,
u8 *spc)
{
const char *ret = trace_seq_buffer_ptr(p);
u16 recfmt = get_unaligned_le16(spc);
u16 qid = get_unaligned_le16(spc + 2);
u16 sqsize = get_unaligned_le16(spc + 4);
u8 cattr = spc[6];
u32 kato = get_unaligned_le32(spc + 8);
trace_seq_printf(p, "recfmt=%u, qid=%u, sqsize=%u, cattr=%u, kato=%u",
recfmt, qid, sqsize, cattr, kato);
trace_seq_putc(p, 0);
return ret;
}
static const char *nvmet_trace_fabrics_property_get(struct trace_seq *p,
u8 *spc)
{
const char *ret = trace_seq_buffer_ptr(p);
u8 attrib = spc[0];
u32 ofst = get_unaligned_le32(spc + 4);
trace_seq_printf(p, "attrib=%u, ofst=0x%x", attrib, ofst);
trace_seq_putc(p, 0);
return ret;
}
static const char *nvmet_trace_fabrics_auth_send(struct trace_seq *p, u8 *spc)
{
const char *ret = trace_seq_buffer_ptr(p);
u8 spsp0 = spc[1];
u8 spsp1 = spc[2];
u8 secp = spc[3];
u32 tl = get_unaligned_le32(spc + 4);
trace_seq_printf(p, "spsp0=%02x, spsp1=%02x, secp=%02x, tl=%u",
spsp0, spsp1, secp, tl);
trace_seq_putc(p, 0);
return ret;
}
static const char *nvmet_trace_fabrics_auth_receive(struct trace_seq *p, u8 *spc)
{
const char *ret = trace_seq_buffer_ptr(p);
u8 spsp0 = spc[1];
u8 spsp1 = spc[2];
u8 secp = spc[3];
u32 al = get_unaligned_le32(spc + 4);
trace_seq_printf(p, "spsp0=%02x, spsp1=%02x, secp=%02x, al=%u",
spsp0, spsp1, secp, al);
trace_seq_putc(p, 0);
return ret;
}
static const char *nvmet_trace_fabrics_common(struct trace_seq *p, u8 *spc)
{
const char *ret = trace_seq_buffer_ptr(p);
trace_seq_printf(p, "specific=%*ph", 24, spc);
trace_seq_putc(p, 0);
return ret;
}
const char *nvmet_trace_parse_fabrics_cmd(struct trace_seq *p,
u8 fctype, u8 *spc)
{
switch (fctype) {
case nvme_fabrics_type_property_set:
return nvmet_trace_fabrics_property_set(p, spc);
case nvme_fabrics_type_connect:
return nvmet_trace_fabrics_connect(p, spc);
case nvme_fabrics_type_property_get:
return nvmet_trace_fabrics_property_get(p, spc);
case nvme_fabrics_type_auth_send:
return nvmet_trace_fabrics_auth_send(p, spc);
case nvme_fabrics_type_auth_receive:
return nvmet_trace_fabrics_auth_receive(p, spc);
default:
return nvmet_trace_fabrics_common(p, spc);
}
}
const char *nvmet_trace_disk_name(struct trace_seq *p, char *name)
{
const char *ret = trace_seq_buffer_ptr(p);
if (*name)
trace_seq_printf(p, "disk=%s, ", name);
trace_seq_putc(p, 0);
return ret;
}
const char *nvmet_trace_ctrl_id(struct trace_seq *p, u16 ctrl_id)
{
const char *ret = trace_seq_buffer_ptr(p);
/*
* XXX: We don't know the controller instance before executing the
* connect command itself because the connect command for the admin
* queue will not provide the cntlid which will be allocated in this
* command. In case of io queues, the controller instance will be
* mapped by the extra data of the connect command.
* If we can know the extra data of the connect command in this stage,
* we can update this print statement later.
*/
if (ctrl_id)
trace_seq_printf(p, "%d", ctrl_id);
else
trace_seq_printf(p, "_");
trace_seq_putc(p, 0);
return ret;
}
|