summaryrefslogtreecommitdiffstats
path: root/drivers/pci/endpoint/functions/pci-epf-test.c
blob: 546d2a27955cf2600f89ed6602201df941437994 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
// SPDX-License-Identifier: GPL-2.0
/*
 * Test driver to test endpoint functionality
 *
 * Copyright (C) 2017 Texas Instruments
 * Author: Kishon Vijay Abraham I <kishon@ti.com>
 */

#include <linux/crc32.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/pci_ids.h>
#include <linux/random.h>

#include <linux/pci-epc.h>
#include <linux/pci-epf.h>
#include <linux/pci_regs.h>

#define IRQ_TYPE_INTX			0
#define IRQ_TYPE_MSI			1
#define IRQ_TYPE_MSIX			2

#define COMMAND_RAISE_INTX_IRQ		BIT(0)
#define COMMAND_RAISE_MSI_IRQ		BIT(1)
#define COMMAND_RAISE_MSIX_IRQ		BIT(2)
#define COMMAND_READ			BIT(3)
#define COMMAND_WRITE			BIT(4)
#define COMMAND_COPY			BIT(5)

#define STATUS_READ_SUCCESS		BIT(0)
#define STATUS_READ_FAIL		BIT(1)
#define STATUS_WRITE_SUCCESS		BIT(2)
#define STATUS_WRITE_FAIL		BIT(3)
#define STATUS_COPY_SUCCESS		BIT(4)
#define STATUS_COPY_FAIL		BIT(5)
#define STATUS_IRQ_RAISED		BIT(6)
#define STATUS_SRC_ADDR_INVALID		BIT(7)
#define STATUS_DST_ADDR_INVALID		BIT(8)

#define FLAG_USE_DMA			BIT(0)

#define TIMER_RESOLUTION		1

static struct workqueue_struct *kpcitest_workqueue;

struct pci_epf_test {
	void			*reg[PCI_STD_NUM_BARS];
	struct pci_epf		*epf;
	enum pci_barno		test_reg_bar;
	size_t			msix_table_offset;
	struct delayed_work	cmd_handler;
	struct dma_chan		*dma_chan_tx;
	struct dma_chan		*dma_chan_rx;
	struct dma_chan		*transfer_chan;
	dma_cookie_t		transfer_cookie;
	enum dma_status		transfer_status;
	struct completion	transfer_complete;
	bool			dma_supported;
	bool			dma_private;
	const struct pci_epc_features *epc_features;
};

struct pci_epf_test_reg {
	u32	magic;
	u32	command;
	u32	status;
	u64	src_addr;
	u64	dst_addr;
	u32	size;
	u32	checksum;
	u32	irq_type;
	u32	irq_number;
	u32	flags;
} __packed;

static struct pci_epf_header test_header = {
	.vendorid	= PCI_ANY_ID,
	.deviceid	= PCI_ANY_ID,
	.baseclass_code = PCI_CLASS_OTHERS,
	.interrupt_pin	= PCI_INTERRUPT_INTA,
};

static size_t bar_size[] = { 512, 512, 1024, 16384, 131072, 1048576 };

static void pci_epf_test_dma_callback(void *param)
{
	struct pci_epf_test *epf_test = param;
	struct dma_tx_state state;

	epf_test->transfer_status =
		dmaengine_tx_status(epf_test->transfer_chan,
				    epf_test->transfer_cookie, &state);
	if (epf_test->transfer_status == DMA_COMPLETE ||
	    epf_test->transfer_status == DMA_ERROR)
		complete(&epf_test->transfer_complete);
}

/**
 * pci_epf_test_data_transfer() - Function that uses dmaengine API to transfer
 *				  data between PCIe EP and remote PCIe RC
 * @epf_test: the EPF test device that performs the data transfer operation
 * @dma_dst: The destination address of the data transfer. It can be a physical
 *	     address given by pci_epc_mem_alloc_addr or DMA mapping APIs.
 * @dma_src: The source address of the data transfer. It can be a physical
 *	     address given by pci_epc_mem_alloc_addr or DMA mapping APIs.
 * @len: The size of the data transfer
 * @dma_remote: remote RC physical address
 * @dir: DMA transfer direction
 *
 * Function that uses dmaengine API to transfer data between PCIe EP and remote
 * PCIe RC. The source and destination address can be a physical address given
 * by pci_epc_mem_alloc_addr or the one obtained using DMA mapping APIs.
 *
 * The function returns '0' on success and negative value on failure.
 */
static int pci_epf_test_data_transfer(struct pci_epf_test *epf_test,
				      dma_addr_t dma_dst, dma_addr_t dma_src,
				      size_t len, dma_addr_t dma_remote,
				      enum dma_transfer_direction dir)
{
	struct dma_chan *chan = (dir == DMA_MEM_TO_DEV) ?
				 epf_test->dma_chan_tx : epf_test->dma_chan_rx;
	dma_addr_t dma_local = (dir == DMA_MEM_TO_DEV) ? dma_src : dma_dst;
	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
	struct pci_epf *epf = epf_test->epf;
	struct dma_async_tx_descriptor *tx;
	struct dma_slave_config sconf = {};
	struct device *dev = &epf->dev;
	int ret;

	if (IS_ERR_OR_NULL(chan)) {
		dev_err(dev, "Invalid DMA memcpy channel\n");
		return -EINVAL;
	}

	if (epf_test->dma_private) {
		sconf.direction = dir;
		if (dir == DMA_MEM_TO_DEV)
			sconf.dst_addr = dma_remote;
		else
			sconf.src_addr = dma_remote;

		if (dmaengine_slave_config(chan, &sconf)) {
			dev_err(dev, "DMA slave config fail\n");
			return -EIO;
		}
		tx = dmaengine_prep_slave_single(chan, dma_local, len, dir,
						 flags);
	} else {
		tx = dmaengine_prep_dma_memcpy(chan, dma_dst, dma_src, len,
					       flags);
	}

	if (!tx) {
		dev_err(dev, "Failed to prepare DMA memcpy\n");
		return -EIO;
	}

	reinit_completion(&epf_test->transfer_complete);
	epf_test->transfer_chan = chan;
	tx->callback = pci_epf_test_dma_callback;
	tx->callback_param = epf_test;
	epf_test->transfer_cookie = dmaengine_submit(tx);

	ret = dma_submit_error(epf_test->transfer_cookie);
	if (ret) {
		dev_err(dev, "Failed to do DMA tx_submit %d\n", ret);
		goto terminate;
	}

	dma_async_issue_pending(chan);
	ret = wait_for_completion_interruptible(&epf_test->transfer_complete);
	if (ret < 0) {
		dev_err(dev, "DMA wait_for_completion interrupted\n");
		goto terminate;
	}

	if (epf_test->transfer_status == DMA_ERROR) {
		dev_err(dev, "DMA transfer failed\n");
		ret = -EIO;
	}

terminate:
	dmaengine_terminate_sync(chan);

	return ret;
}

struct epf_dma_filter {
	struct device *dev;
	u32 dma_mask;
};

static bool epf_dma_filter_fn(struct dma_chan *chan, void *node)
{
	struct epf_dma_filter *filter = node;
	struct dma_slave_caps caps;

	memset(&caps, 0, sizeof(caps));
	dma_get_slave_caps(chan, &caps);

	return chan->device->dev == filter->dev
		&& (filter->dma_mask & caps.directions);
}

/**
 * pci_epf_test_init_dma_chan() - Function to initialize EPF test DMA channel
 * @epf_test: the EPF test device that performs data transfer operation
 *
 * Function to initialize EPF test DMA channel.
 */
static int pci_epf_test_init_dma_chan(struct pci_epf_test *epf_test)
{
	struct pci_epf *epf = epf_test->epf;
	struct device *dev = &epf->dev;
	struct epf_dma_filter filter;
	struct dma_chan *dma_chan;
	dma_cap_mask_t mask;
	int ret;

	filter.dev = epf->epc->dev.parent;
	filter.dma_mask = BIT(DMA_DEV_TO_MEM);

	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);
	dma_chan = dma_request_channel(mask, epf_dma_filter_fn, &filter);
	if (!dma_chan) {
		dev_info(dev, "Failed to get private DMA rx channel. Falling back to generic one\n");
		goto fail_back_tx;
	}

	epf_test->dma_chan_rx = dma_chan;

	filter.dma_mask = BIT(DMA_MEM_TO_DEV);
	dma_chan = dma_request_channel(mask, epf_dma_filter_fn, &filter);

	if (!dma_chan) {
		dev_info(dev, "Failed to get private DMA tx channel. Falling back to generic one\n");
		goto fail_back_rx;
	}

	epf_test->dma_chan_tx = dma_chan;
	epf_test->dma_private = true;

	init_completion(&epf_test->transfer_complete);

	return 0;

fail_back_rx:
	dma_release_channel(epf_test->dma_chan_rx);
	epf_test->dma_chan_tx = NULL;

fail_back_tx:
	dma_cap_zero(mask);
	dma_cap_set(DMA_MEMCPY, mask);

	dma_chan = dma_request_chan_by_mask(&mask);
	if (IS_ERR(dma_chan)) {
		ret = PTR_ERR(dma_chan);
		if (ret != -EPROBE_DEFER)
			dev_err(dev, "Failed to get DMA channel\n");
		return ret;
	}
	init_completion(&epf_test->transfer_complete);

	epf_test->dma_chan_tx = epf_test->dma_chan_rx = dma_chan;

	return 0;
}

/**
 * pci_epf_test_clean_dma_chan() - Function to cleanup EPF test DMA channel
 * @epf_test: the EPF test device that performs data transfer operation
 *
 * Helper to cleanup EPF test DMA channel.
 */
static void pci_epf_test_clean_dma_chan(struct pci_epf_test *epf_test)
{
	if (!epf_test->dma_supported)
		return;

	dma_release_channel(epf_test->dma_chan_tx);
	if (epf_test->dma_chan_tx == epf_test->dma_chan_rx) {
		epf_test->dma_chan_tx = NULL;
		epf_test->dma_chan_rx = NULL;
		return;
	}

	dma_release_channel(epf_test->dma_chan_rx);
	epf_test->dma_chan_rx = NULL;

	return;
}

static void pci_epf_test_print_rate(struct pci_epf_test *epf_test,
				    const char *op, u64 size,
				    struct timespec64 *start,
				    struct timespec64 *end, bool dma)
{
	struct timespec64 ts = timespec64_sub(*end, *start);
	u64 rate = 0, ns;

	/* calculate the rate */
	ns = timespec64_to_ns(&ts);
	if (ns)
		rate = div64_u64(size * NSEC_PER_SEC, ns * 1000);

	dev_info(&epf_test->epf->dev,
		 "%s => Size: %llu B, DMA: %s, Time: %llu.%09u s, Rate: %llu KB/s\n",
		 op, size, dma ? "YES" : "NO",
		 (u64)ts.tv_sec, (u32)ts.tv_nsec, rate);
}

static void pci_epf_test_copy(struct pci_epf_test *epf_test,
			      struct pci_epf_test_reg *reg)
{
	int ret;
	void __iomem *src_addr;
	void __iomem *dst_addr;
	phys_addr_t src_phys_addr;
	phys_addr_t dst_phys_addr;
	struct timespec64 start, end;
	struct pci_epf *epf = epf_test->epf;
	struct device *dev = &epf->dev;
	struct pci_epc *epc = epf->epc;

	src_addr = pci_epc_mem_alloc_addr(epc, &src_phys_addr, reg->size);
	if (!src_addr) {
		dev_err(dev, "Failed to allocate source address\n");
		reg->status = STATUS_SRC_ADDR_INVALID;
		ret = -ENOMEM;
		goto err;
	}

	ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, src_phys_addr,
			       reg->src_addr, reg->size);
	if (ret) {
		dev_err(dev, "Failed to map source address\n");
		reg->status = STATUS_SRC_ADDR_INVALID;
		goto err_src_addr;
	}

	dst_addr = pci_epc_mem_alloc_addr(epc, &dst_phys_addr, reg->size);
	if (!dst_addr) {
		dev_err(dev, "Failed to allocate destination address\n");
		reg->status = STATUS_DST_ADDR_INVALID;
		ret = -ENOMEM;
		goto err_src_map_addr;
	}

	ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, dst_phys_addr,
			       reg->dst_addr, reg->size);
	if (ret) {
		dev_err(dev, "Failed to map destination address\n");
		reg->status = STATUS_DST_ADDR_INVALID;
		goto err_dst_addr;
	}

	ktime_get_ts64(&start);
	if (reg->flags & FLAG_USE_DMA) {
		if (epf_test->dma_private) {
			dev_err(dev, "Cannot transfer data using DMA\n");
			ret = -EINVAL;
			goto err_map_addr;
		}

		ret = pci_epf_test_data_transfer(epf_test, dst_phys_addr,
						 src_phys_addr, reg->size, 0,
						 DMA_MEM_TO_MEM);
		if (ret)
			dev_err(dev, "Data transfer failed\n");
	} else {
		void *buf;

		buf = kzalloc(reg->size, GFP_KERNEL);
		if (!buf) {
			ret = -ENOMEM;
			goto err_map_addr;
		}

		memcpy_fromio(buf, src_addr, reg->size);
		memcpy_toio(dst_addr, buf, reg->size);
		kfree(buf);
	}
	ktime_get_ts64(&end);
	pci_epf_test_print_rate(epf_test, "COPY", reg->size, &start, &end,
				reg->flags & FLAG_USE_DMA);

err_map_addr:
	pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, dst_phys_addr);

err_dst_addr:
	pci_epc_mem_free_addr(epc, dst_phys_addr, dst_addr, reg->size);

err_src_map_addr:
	pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, src_phys_addr);

err_src_addr:
	pci_epc_mem_free_addr(epc, src_phys_addr, src_addr, reg->size);

err:
	if (!ret)
		reg->status |= STATUS_COPY_SUCCESS;
	else
		reg->status |= STATUS_COPY_FAIL;
}

static void pci_epf_test_read(struct pci_epf_test *epf_test,
			      struct pci_epf_test_reg *reg)
{
	int ret;
	void __iomem *src_addr;
	void *buf;
	u32 crc32;
	phys_addr_t phys_addr;
	phys_addr_t dst_phys_addr;
	struct timespec64 start, end;
	struct pci_epf *epf = epf_test->epf;
	struct device *dev = &epf->dev;
	struct pci_epc *epc = epf->epc;
	struct device *dma_dev = epf->epc->dev.parent;

	src_addr = pci_epc_mem_alloc_addr(epc, &phys_addr, reg->size);
	if (!src_addr) {
		dev_err(dev, "Failed to allocate address\n");
		reg->status = STATUS_SRC_ADDR_INVALID;
		ret = -ENOMEM;
		goto err;
	}

	ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, phys_addr,
			       reg->src_addr, reg->size);
	if (ret) {
		dev_err(dev, "Failed to map address\n");
		reg->status = STATUS_SRC_ADDR_INVALID;
		goto err_addr;
	}

	buf = kzalloc(reg->size, GFP_KERNEL);
	if (!buf) {
		ret = -ENOMEM;
		goto err_map_addr;
	}

	if (reg->flags & FLAG_USE_DMA) {
		dst_phys_addr = dma_map_single(dma_dev, buf, reg->size,
					       DMA_FROM_DEVICE);
		if (dma_mapping_error(dma_dev, dst_phys_addr)) {
			dev_err(dev, "Failed to map destination buffer addr\n");
			ret = -ENOMEM;
			goto err_dma_map;
		}

		ktime_get_ts64(&start);
		ret = pci_epf_test_data_transfer(epf_test, dst_phys_addr,
						 phys_addr, reg->size,
						 reg->src_addr, DMA_DEV_TO_MEM);
		if (ret)
			dev_err(dev, "Data transfer failed\n");
		ktime_get_ts64(&end);

		dma_unmap_single(dma_dev, dst_phys_addr, reg->size,
				 DMA_FROM_DEVICE);
	} else {
		ktime_get_ts64(&start);
		memcpy_fromio(buf, src_addr, reg->size);
		ktime_get_ts64(&end);
	}

	pci_epf_test_print_rate(epf_test, "READ", reg->size, &start, &end,
				reg->flags & FLAG_USE_DMA);

	crc32 = crc32_le(~0, buf, reg->size);
	if (crc32 != reg->checksum)
		ret = -EIO;

err_dma_map:
	kfree(buf);

err_map_addr:
	pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, phys_addr);

err_addr:
	pci_epc_mem_free_addr(epc, phys_addr, src_addr, reg->size);

err:
	if (!ret)
		reg->status |= STATUS_READ_SUCCESS;
	else
		reg->status |= STATUS_READ_FAIL;
}

static void pci_epf_test_write(struct pci_epf_test *epf_test,
			       struct pci_epf_test_reg *reg)
{
	int ret;
	void __iomem *dst_addr;
	void *buf;
	phys_addr_t phys_addr;
	phys_addr_t src_phys_addr;
	struct timespec64 start, end;
	struct pci_epf *epf = epf_test->epf;
	struct device *dev = &epf->dev;
	struct pci_epc *epc = epf->epc;
	struct device *dma_dev = epf->epc->dev.parent;

	dst_addr = pci_epc_mem_alloc_addr(epc, &phys_addr, reg->size);
	if (!dst_addr) {
		dev_err(dev, "Failed to allocate address\n");
		reg->status = STATUS_DST_ADDR_INVALID;
		ret = -ENOMEM;
		goto err;
	}

	ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, phys_addr,
			       reg->dst_addr, reg->size);
	if (ret) {
		dev_err(dev, "Failed to map address\n");
		reg->status = STATUS_DST_ADDR_INVALID;
		goto err_addr;
	}

	buf = kzalloc(reg->size, GFP_KERNEL);
	if (!buf) {
		ret = -ENOMEM;
		goto err_map_addr;
	}

	get_random_bytes(buf, reg->size);
	reg->checksum = crc32_le(~0, buf, reg->size);

	if (reg->flags & FLAG_USE_DMA) {
		src_phys_addr = dma_map_single(dma_dev, buf, reg->size,
					       DMA_TO_DEVICE);
		if (dma_mapping_error(dma_dev, src_phys_addr)) {
			dev_err(dev, "Failed to map source buffer addr\n");
			ret = -ENOMEM;
			goto err_dma_map;
		}

		ktime_get_ts64(&start);

		ret = pci_epf_test_data_transfer(epf_test, phys_addr,
						 src_phys_addr, reg->size,
						 reg->dst_addr,
						 DMA_MEM_TO_DEV);
		if (ret)
			dev_err(dev, "Data transfer failed\n");
		ktime_get_ts64(&end);

		dma_unmap_single(dma_dev, src_phys_addr, reg->size,
				 DMA_TO_DEVICE);
	} else {
		ktime_get_ts64(&start);
		memcpy_toio(dst_addr, buf, reg->size);
		ktime_get_ts64(&end);
	}

	pci_epf_test_print_rate(epf_test, "WRITE", reg->size, &start, &end,
				reg->flags & FLAG_USE_DMA);

	/*
	 * wait 1ms inorder for the write to complete. Without this delay L3
	 * error in observed in the host system.
	 */
	usleep_range(1000, 2000);

err_dma_map:
	kfree(buf);

err_map_addr:
	pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, phys_addr);

err_addr:
	pci_epc_mem_free_addr(epc, phys_addr, dst_addr, reg->size);

err:
	if (!ret)
		reg->status |= STATUS_WRITE_SUCCESS;
	else
		reg->status |= STATUS_WRITE_FAIL;
}

static void pci_epf_test_raise_irq(struct pci_epf_test *epf_test,
				   struct pci_epf_test_reg *reg)
{
	struct pci_epf *epf = epf_test->epf;
	struct device *dev = &epf->dev;
	struct pci_epc *epc = epf->epc;
	u32 status = reg->status | STATUS_IRQ_RAISED;
	int count;

	/*
	 * Set the status before raising the IRQ to ensure that the host sees
	 * the updated value when it gets the IRQ.
	 */
	WRITE_ONCE(reg->status, status);

	switch (reg->irq_type) {
	case IRQ_TYPE_INTX:
		pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no,
				  PCI_IRQ_INTX, 0);
		break;
	case IRQ_TYPE_MSI:
		count = pci_epc_get_msi(epc, epf->func_no, epf->vfunc_no);
		if (reg->irq_number > count || count <= 0) {
			dev_err(dev, "Invalid MSI IRQ number %d / %d\n",
				reg->irq_number, count);
			return;
		}
		pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no,
				  PCI_IRQ_MSI, reg->irq_number);
		break;
	case IRQ_TYPE_MSIX:
		count = pci_epc_get_msix(epc, epf->func_no, epf->vfunc_no);
		if (reg->irq_number > count || count <= 0) {
			dev_err(dev, "Invalid MSIX IRQ number %d / %d\n",
				reg->irq_number, count);
			return;
		}
		pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no,
				  PCI_IRQ_MSIX, reg->irq_number);
		break;
	default:
		dev_err(dev, "Failed to raise IRQ, unknown type\n");
		break;
	}
}

static void pci_epf_test_cmd_handler(struct work_struct *work)
{
	u32 command;
	struct pci_epf_test *epf_test = container_of(work, struct pci_epf_test,
						     cmd_handler.work);
	struct pci_epf *epf = epf_test->epf;
	struct device *dev = &epf->dev;
	enum pci_barno test_reg_bar = epf_test->test_reg_bar;
	struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];

	command = READ_ONCE(reg->command);
	if (!command)
		goto reset_handler;

	WRITE_ONCE(reg->command, 0);
	WRITE_ONCE(reg->status, 0);

	if ((READ_ONCE(reg->flags) & FLAG_USE_DMA) &&
	    !epf_test->dma_supported) {
		dev_err(dev, "Cannot transfer data using DMA\n");
		goto reset_handler;
	}

	if (reg->irq_type > IRQ_TYPE_MSIX) {
		dev_err(dev, "Failed to detect IRQ type\n");
		goto reset_handler;
	}

	switch (command) {
	case COMMAND_RAISE_INTX_IRQ:
	case COMMAND_RAISE_MSI_IRQ:
	case COMMAND_RAISE_MSIX_IRQ:
		pci_epf_test_raise_irq(epf_test, reg);
		break;
	case COMMAND_WRITE:
		pci_epf_test_write(epf_test, reg);
		pci_epf_test_raise_irq(epf_test, reg);
		break;
	case COMMAND_READ:
		pci_epf_test_read(epf_test, reg);
		pci_epf_test_raise_irq(epf_test, reg);
		break;
	case COMMAND_COPY:
		pci_epf_test_copy(epf_test, reg);
		pci_epf_test_raise_irq(epf_test, reg);
		break;
	default:
		dev_err(dev, "Invalid command 0x%x\n", command);
		break;
	}

reset_handler:
	queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler,
			   msecs_to_jiffies(1));
}

static void pci_epf_test_unbind(struct pci_epf *epf)
{
	struct pci_epf_test *epf_test = epf_get_drvdata(epf);
	struct pci_epc *epc = epf->epc;
	int bar;

	cancel_delayed_work(&epf_test->cmd_handler);
	pci_epf_test_clean_dma_chan(epf_test);
	for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
		if (!epf_test->reg[bar])
			continue;

		pci_epc_clear_bar(epc, epf->func_no, epf->vfunc_no,
				  &epf->bar[bar]);
		pci_epf_free_space(epf, epf_test->reg[bar], bar,
				   PRIMARY_INTERFACE);
	}
}

static int pci_epf_test_set_bar(struct pci_epf *epf)
{
	int bar, ret;
	struct pci_epc *epc = epf->epc;
	struct device *dev = &epf->dev;
	struct pci_epf_test *epf_test = epf_get_drvdata(epf);
	enum pci_barno test_reg_bar = epf_test->test_reg_bar;

	for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
		if (!epf_test->reg[bar])
			continue;

		ret = pci_epc_set_bar(epc, epf->func_no, epf->vfunc_no,
				      &epf->bar[bar]);
		if (ret) {
			pci_epf_free_space(epf, epf_test->reg[bar], bar,
					   PRIMARY_INTERFACE);
			dev_err(dev, "Failed to set BAR%d\n", bar);
			if (bar == test_reg_bar)
				return ret;
		}
	}

	return 0;
}

static int pci_epf_test_core_init(struct pci_epf *epf)
{
	struct pci_epf_test *epf_test = epf_get_drvdata(epf);
	struct pci_epf_header *header = epf->header;
	const struct pci_epc_features *epc_features = epf_test->epc_features;
	struct pci_epc *epc = epf->epc;
	struct device *dev = &epf->dev;
	bool linkup_notifier = false;
	int ret;

	if (epf->vfunc_no <= 1) {
		ret = pci_epc_write_header(epc, epf->func_no, epf->vfunc_no, header);
		if (ret) {
			dev_err(dev, "Configuration header write failed\n");
			return ret;
		}
	}

	ret = pci_epf_test_set_bar(epf);
	if (ret)
		return ret;

	if (epc_features->msi_capable) {
		ret = pci_epc_set_msi(epc, epf->func_no, epf->vfunc_no,
				      epf->msi_interrupts);
		if (ret) {
			dev_err(dev, "MSI configuration failed\n");
			return ret;
		}
	}

	if (epc_features->msix_capable) {
		ret = pci_epc_set_msix(epc, epf->func_no, epf->vfunc_no,
				       epf->msix_interrupts,
				       epf_test->test_reg_bar,
				       epf_test->msix_table_offset);
		if (ret) {
			dev_err(dev, "MSI-X configuration failed\n");
			return ret;
		}
	}

	linkup_notifier = epc_features->linkup_notifier;
	if (!linkup_notifier)
		queue_work(kpcitest_workqueue, &epf_test->cmd_handler.work);

	return 0;
}

static int pci_epf_test_link_up(struct pci_epf *epf)
{
	struct pci_epf_test *epf_test = epf_get_drvdata(epf);

	queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler,
			   msecs_to_jiffies(1));

	return 0;
}

static const struct pci_epc_event_ops pci_epf_test_event_ops = {
	.core_init = pci_epf_test_core_init,
	.link_up = pci_epf_test_link_up,
};

static int pci_epf_test_alloc_space(struct pci_epf *epf)
{
	struct pci_epf_test *epf_test = epf_get_drvdata(epf);
	struct device *dev = &epf->dev;
	size_t msix_table_size = 0;
	size_t test_reg_bar_size;
	size_t pba_size = 0;
	bool msix_capable;
	void *base;
	enum pci_barno test_reg_bar = epf_test->test_reg_bar;
	enum pci_barno bar;
	const struct pci_epc_features *epc_features;
	size_t test_reg_size;

	epc_features = epf_test->epc_features;

	test_reg_bar_size = ALIGN(sizeof(struct pci_epf_test_reg), 128);

	msix_capable = epc_features->msix_capable;
	if (msix_capable) {
		msix_table_size = PCI_MSIX_ENTRY_SIZE * epf->msix_interrupts;
		epf_test->msix_table_offset = test_reg_bar_size;
		/* Align to QWORD or 8 Bytes */
		pba_size = ALIGN(DIV_ROUND_UP(epf->msix_interrupts, 8), 8);
	}
	test_reg_size = test_reg_bar_size + msix_table_size + pba_size;

	base = pci_epf_alloc_space(epf, test_reg_size, test_reg_bar,
				   epc_features, PRIMARY_INTERFACE);
	if (!base) {
		dev_err(dev, "Failed to allocated register space\n");
		return -ENOMEM;
	}
	epf_test->reg[test_reg_bar] = base;

	for (bar = BAR_0; bar < PCI_STD_NUM_BARS; bar++) {
		bar = pci_epc_get_next_free_bar(epc_features, bar);
		if (bar == NO_BAR)
			break;

		if (bar == test_reg_bar)
			continue;

		base = pci_epf_alloc_space(epf, bar_size[bar], bar,
					   epc_features, PRIMARY_INTERFACE);
		if (!base)
			dev_err(dev, "Failed to allocate space for BAR%d\n",
				bar);
		epf_test->reg[bar] = base;
	}

	return 0;
}

static int pci_epf_test_bind(struct pci_epf *epf)
{
	int ret;
	struct pci_epf_test *epf_test = epf_get_drvdata(epf);
	const struct pci_epc_features *epc_features;
	enum pci_barno test_reg_bar = BAR_0;
	struct pci_epc *epc = epf->epc;

	if (WARN_ON_ONCE(!epc))
		return -EINVAL;

	epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no);
	if (!epc_features) {
		dev_err(&epf->dev, "epc_features not implemented\n");
		return -EOPNOTSUPP;
	}

	test_reg_bar = pci_epc_get_first_free_bar(epc_features);
	if (test_reg_bar < 0)
		return -EINVAL;

	epf_test->test_reg_bar = test_reg_bar;
	epf_test->epc_features = epc_features;

	ret = pci_epf_test_alloc_space(epf);
	if (ret)
		return ret;

	epf_test->dma_supported = true;

	ret = pci_epf_test_init_dma_chan(epf_test);
	if (ret)
		epf_test->dma_supported = false;

	return 0;
}

static const struct pci_epf_device_id pci_epf_test_ids[] = {
	{
		.name = "pci_epf_test",
	},
	{},
};

static int pci_epf_test_probe(struct pci_epf *epf,
			      const struct pci_epf_device_id *id)
{
	struct pci_epf_test *epf_test;
	struct device *dev = &epf->dev;

	epf_test = devm_kzalloc(dev, sizeof(*epf_test), GFP_KERNEL);
	if (!epf_test)
		return -ENOMEM;

	epf->header = &test_header;
	epf_test->epf = epf;

	INIT_DELAYED_WORK(&epf_test->cmd_handler, pci_epf_test_cmd_handler);

	epf->event_ops = &pci_epf_test_event_ops;

	epf_set_drvdata(epf, epf_test);
	return 0;
}

static const struct pci_epf_ops ops = {
	.unbind	= pci_epf_test_unbind,
	.bind	= pci_epf_test_bind,
};

static struct pci_epf_driver test_driver = {
	.driver.name	= "pci_epf_test",
	.probe		= pci_epf_test_probe,
	.id_table	= pci_epf_test_ids,
	.ops		= &ops,
	.owner		= THIS_MODULE,
};

static int __init pci_epf_test_init(void)
{
	int ret;

	kpcitest_workqueue = alloc_workqueue("kpcitest",
					     WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
	if (!kpcitest_workqueue) {
		pr_err("Failed to allocate the kpcitest work queue\n");
		return -ENOMEM;
	}

	ret = pci_epf_register_driver(&test_driver);
	if (ret) {
		destroy_workqueue(kpcitest_workqueue);
		pr_err("Failed to register pci epf test driver --> %d\n", ret);
		return ret;
	}

	return 0;
}
module_init(pci_epf_test_init);

static void __exit pci_epf_test_exit(void)
{
	if (kpcitest_workqueue)
		destroy_workqueue(kpcitest_workqueue);
	pci_epf_unregister_driver(&test_driver);
}
module_exit(pci_epf_test_exit);

MODULE_DESCRIPTION("PCI EPF TEST DRIVER");
MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
MODULE_LICENSE("GPL v2");