1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* intel-tpmi : Driver to enumerate TPMI features and create devices
*
* Copyright (c) 2023, Intel Corporation.
* All Rights Reserved.
*
* The TPMI (Topology Aware Register and PM Capsule Interface) provides a
* flexible, extendable and PCIe enumerable MMIO interface for PM features.
*
* For example Intel RAPL (Running Average Power Limit) provides a MMIO
* interface using TPMI. This has advantage over traditional MSR
* (Model Specific Register) interface, where a thread needs to be scheduled
* on the target CPU to read or write. Also the RAPL features vary between
* CPU models, and hence lot of model specific code. Here TPMI provides an
* architectural interface by providing hierarchical tables and fields,
* which will not need any model specific implementation.
*
* The TPMI interface uses a PCI VSEC structure to expose the location of
* MMIO region.
*
* This VSEC structure is present in the PCI configuration space of the
* Intel Out-of-Band (OOB) device, which is handled by the Intel VSEC
* driver. The Intel VSEC driver parses VSEC structures present in the PCI
* configuration space of the given device and creates an auxiliary device
* object for each of them. In particular, it creates an auxiliary device
* object representing TPMI that can be bound by an auxiliary driver.
*
* This TPMI driver will bind to the TPMI auxiliary device object created
* by the Intel VSEC driver.
*
* The TPMI specification defines a PFS (PM Feature Structure) table.
* This table is present in the TPMI MMIO region. The starting address
* of PFS is derived from the tBIR (Bar Indicator Register) and "Address"
* field from the VSEC header.
*
* Each TPMI PM feature has one entry in the PFS with a unique TPMI
* ID and its access details. The TPMI driver creates device nodes
* for the supported PM features.
*
* The names of the devices created by the TPMI driver start with the
* "intel_vsec.tpmi-" prefix which is followed by a specific name of the
* given PM feature (for example, "intel_vsec.tpmi-rapl.0").
*
* The device nodes are create by using interface "intel_vsec_add_aux()"
* provided by the Intel VSEC driver.
*/
#include <linux/auxiliary_bus.h>
#include <linux/bitfield.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/intel_tpmi.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/security.h>
#include <linux/sizes.h>
#include <linux/string_helpers.h>
#include "vsec.h"
/**
* struct intel_tpmi_pfs_entry - TPMI PM Feature Structure (PFS) entry
* @tpmi_id: TPMI feature identifier (what the feature is and its data format).
* @num_entries: Number of feature interface instances present in the PFS.
* This represents the maximum number of Power domains in the SoC.
* @entry_size: Interface instance entry size in 32-bit words.
* @cap_offset: Offset from the PM_Features base address to the base of the PM VSEC
* register bank in KB.
* @attribute: Feature attribute: 0=BIOS. 1=OS. 2-3=Reserved.
* @reserved: Bits for use in the future.
*
* Represents one TPMI feature entry data in the PFS retrieved as is
* from the hardware.
*/
struct intel_tpmi_pfs_entry {
u64 tpmi_id:8;
u64 num_entries:8;
u64 entry_size:16;
u64 cap_offset:16;
u64 attribute:2;
u64 reserved:14;
} __packed;
/**
* struct intel_tpmi_pm_feature - TPMI PM Feature information for a TPMI ID
* @pfs_header: PFS header retireved from the hardware.
* @vsec_offset: Starting MMIO address for this feature in bytes. Essentially
* this offset = "Address" from VSEC header + PFS Capability
* offset for this feature entry.
* @vsec_dev: Pointer to intel_vsec_device structure for this TPMI device
*
* Represents TPMI instance information for one TPMI ID.
*/
struct intel_tpmi_pm_feature {
struct intel_tpmi_pfs_entry pfs_header;
unsigned int vsec_offset;
struct intel_vsec_device *vsec_dev;
};
/**
* struct intel_tpmi_info - TPMI information for all IDs in an instance
* @tpmi_features: Pointer to a list of TPMI feature instances
* @vsec_dev: Pointer to intel_vsec_device structure for this TPMI device
* @feature_count: Number of TPMI of TPMI instances pointed by tpmi_features
* @pfs_start: Start of PFS offset for the TPMI instances in this device
* @plat_info: Stores platform info which can be used by the client drivers
* @tpmi_control_mem: Memory mapped IO for getting control information
* @dbgfs_dir: debugfs entry pointer
*
* Stores the information for all TPMI devices enumerated from a single PCI device.
*/
struct intel_tpmi_info {
struct intel_tpmi_pm_feature *tpmi_features;
struct intel_vsec_device *vsec_dev;
int feature_count;
u64 pfs_start;
struct intel_tpmi_plat_info plat_info;
void __iomem *tpmi_control_mem;
struct dentry *dbgfs_dir;
};
/**
* struct tpmi_info_header - CPU package ID to PCI device mapping information
* @fn: PCI function number
* @dev: PCI device number
* @bus: PCI bus number
* @pkg: CPU Package id
* @reserved: Reserved for future use
* @lock: When set to 1 the register is locked and becomes read-only
* until next reset. Not for use by the OS driver.
*
* The structure to read hardware provided mapping information.
*/
struct tpmi_info_header {
u64 fn:3;
u64 dev:5;
u64 bus:8;
u64 pkg:8;
u64 reserved:39;
u64 lock:1;
} __packed;
/**
* struct tpmi_feature_state - Structure to read hardware state of a feature
* @enabled: Enable state of a feature, 1: enabled, 0: disabled
* @reserved_1: Reserved for future use
* @write_blocked: Writes are blocked means all write operations are ignored
* @read_blocked: Reads are blocked means will read 0xFFs
* @pcs_select: Interface used by out of band software, not used in OS
* @reserved_2: Reserved for future use
* @id: TPMI ID of the feature
* @reserved_3: Reserved for future use
* @locked: When set to 1, OS can't change this register.
*
* The structure is used to read hardware state of a TPMI feature. This
* information is used for debug and restricting operations for this feature.
*/
struct tpmi_feature_state {
u32 enabled:1;
u32 reserved_1:3;
u32 write_blocked:1;
u32 read_blocked:1;
u32 pcs_select:1;
u32 reserved_2:1;
u32 id:8;
u32 reserved_3:15;
u32 locked:1;
} __packed;
/*
* List of supported TMPI IDs.
* Some TMPI IDs are not used by Linux, so the numbers are not consecutive.
*/
enum intel_tpmi_id {
TPMI_ID_RAPL = 0, /* Running Average Power Limit */
TPMI_ID_PEM = 1, /* Power and Perf excursion Monitor */
TPMI_ID_UNCORE = 2, /* Uncore Frequency Scaling */
TPMI_ID_SST = 5, /* Speed Select Technology */
TPMI_CONTROL_ID = 0x80, /* Special ID for getting feature status */
TPMI_INFO_ID = 0x81, /* Special ID for PCI BDF and Package ID information */
};
/*
* The size from hardware is in u32 units. This size is from a trusted hardware,
* but better to verify for pre silicon platforms. Set size to 0, when invalid.
*/
#define TPMI_GET_SINGLE_ENTRY_SIZE(pfs) \
({ \
pfs->pfs_header.entry_size > SZ_1K ? 0 : pfs->pfs_header.entry_size << 2; \
})
/* Used during auxbus device creation */
static DEFINE_IDA(intel_vsec_tpmi_ida);
struct intel_tpmi_plat_info *tpmi_get_platform_data(struct auxiliary_device *auxdev)
{
struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev);
return vsec_dev->priv_data;
}
EXPORT_SYMBOL_NS_GPL(tpmi_get_platform_data, INTEL_TPMI);
int tpmi_get_resource_count(struct auxiliary_device *auxdev)
{
struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev);
if (vsec_dev)
return vsec_dev->num_resources;
return 0;
}
EXPORT_SYMBOL_NS_GPL(tpmi_get_resource_count, INTEL_TPMI);
struct resource *tpmi_get_resource_at_index(struct auxiliary_device *auxdev, int index)
{
struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev);
if (vsec_dev && index < vsec_dev->num_resources)
return &vsec_dev->resource[index];
return NULL;
}
EXPORT_SYMBOL_NS_GPL(tpmi_get_resource_at_index, INTEL_TPMI);
/* TPMI Control Interface */
#define TPMI_CONTROL_STATUS_OFFSET 0x00
#define TPMI_COMMAND_OFFSET 0x08
#define TMPI_CONTROL_DATA_VAL_OFFSET 0x0c
/*
* Spec is calling for max 1 seconds to get ownership at the worst
* case. Read at 10 ms timeouts and repeat up to 1 second.
*/
#define TPMI_CONTROL_TIMEOUT_US (10 * USEC_PER_MSEC)
#define TPMI_CONTROL_TIMEOUT_MAX_US (1 * USEC_PER_SEC)
#define TPMI_RB_TIMEOUT_US (10 * USEC_PER_MSEC)
#define TPMI_RB_TIMEOUT_MAX_US USEC_PER_SEC
/* TPMI Control status register defines */
#define TPMI_CONTROL_STATUS_RB BIT_ULL(0)
#define TPMI_CONTROL_STATUS_OWNER GENMASK_ULL(5, 4)
#define TPMI_OWNER_NONE 0
#define TPMI_OWNER_IN_BAND 1
#define TPMI_CONTROL_STATUS_CPL BIT_ULL(6)
#define TPMI_CONTROL_STATUS_RESULT GENMASK_ULL(15, 8)
#define TPMI_CONTROL_STATUS_LEN GENMASK_ULL(31, 16)
#define TPMI_CMD_PKT_LEN 2
#define TPMI_CMD_STATUS_SUCCESS 0x40
/* TPMI command data registers */
#define TMPI_CONTROL_DATA_CMD GENMASK_ULL(7, 0)
#define TPMI_CONTROL_DATA_VAL_FEATURE GENMASK_ULL(48, 40)
/* Command to send via control interface */
#define TPMI_CONTROL_GET_STATE_CMD 0x10
#define TPMI_CONTROL_CMD_MASK GENMASK_ULL(48, 40)
#define TPMI_CMD_LEN_MASK GENMASK_ULL(18, 16)
/* Mutex to complete get feature status without interruption */
static DEFINE_MUTEX(tpmi_dev_lock);
static int tpmi_wait_for_owner(struct intel_tpmi_info *tpmi_info, u8 owner)
{
u64 control;
return readq_poll_timeout(tpmi_info->tpmi_control_mem + TPMI_CONTROL_STATUS_OFFSET,
control, owner == FIELD_GET(TPMI_CONTROL_STATUS_OWNER, control),
TPMI_CONTROL_TIMEOUT_US, TPMI_CONTROL_TIMEOUT_MAX_US);
}
static int tpmi_read_feature_status(struct intel_tpmi_info *tpmi_info, int feature_id,
struct tpmi_feature_state *feature_state)
{
u64 control, data;
int ret;
if (!tpmi_info->tpmi_control_mem)
return -EFAULT;
mutex_lock(&tpmi_dev_lock);
/* Wait for owner bit set to 0 (none) */
ret = tpmi_wait_for_owner(tpmi_info, TPMI_OWNER_NONE);
if (ret)
goto err_unlock;
/* set command id to 0x10 for TPMI_GET_STATE */
data = FIELD_PREP(TMPI_CONTROL_DATA_CMD, TPMI_CONTROL_GET_STATE_CMD);
/* 32 bits for DATA offset and +8 for feature_id field */
data |= FIELD_PREP(TPMI_CONTROL_DATA_VAL_FEATURE, feature_id);
/* Write at command offset for qword access */
writeq(data, tpmi_info->tpmi_control_mem + TPMI_COMMAND_OFFSET);
/* Wait for owner bit set to in-band */
ret = tpmi_wait_for_owner(tpmi_info, TPMI_OWNER_IN_BAND);
if (ret)
goto err_unlock;
/* Set Run Busy and packet length of 2 dwords */
control = TPMI_CONTROL_STATUS_RB;
control |= FIELD_PREP(TPMI_CONTROL_STATUS_LEN, TPMI_CMD_PKT_LEN);
/* Write at status offset for qword access */
writeq(control, tpmi_info->tpmi_control_mem + TPMI_CONTROL_STATUS_OFFSET);
/* Wait for Run Busy clear */
ret = readq_poll_timeout(tpmi_info->tpmi_control_mem + TPMI_CONTROL_STATUS_OFFSET,
control, !(control & TPMI_CONTROL_STATUS_RB),
TPMI_RB_TIMEOUT_US, TPMI_RB_TIMEOUT_MAX_US);
if (ret)
goto done_proc;
control = FIELD_GET(TPMI_CONTROL_STATUS_RESULT, control);
if (control != TPMI_CMD_STATUS_SUCCESS) {
ret = -EBUSY;
goto done_proc;
}
/* Response is ready */
memcpy_fromio(feature_state, tpmi_info->tpmi_control_mem + TMPI_CONTROL_DATA_VAL_OFFSET,
sizeof(*feature_state));
ret = 0;
done_proc:
/* Set CPL "completion" bit */
writeq(TPMI_CONTROL_STATUS_CPL, tpmi_info->tpmi_control_mem + TPMI_CONTROL_STATUS_OFFSET);
err_unlock:
mutex_unlock(&tpmi_dev_lock);
return ret;
}
int tpmi_get_feature_status(struct auxiliary_device *auxdev, int feature_id,
int *locked, int *disabled)
{
struct intel_vsec_device *intel_vsec_dev = dev_to_ivdev(auxdev->dev.parent);
struct intel_tpmi_info *tpmi_info = auxiliary_get_drvdata(&intel_vsec_dev->auxdev);
struct tpmi_feature_state feature_state;
int ret;
ret = tpmi_read_feature_status(tpmi_info, feature_id, &feature_state);
if (ret)
return ret;
*locked = feature_state.locked;
*disabled = !feature_state.enabled;
return 0;
}
EXPORT_SYMBOL_NS_GPL(tpmi_get_feature_status, INTEL_TPMI);
static int tpmi_pfs_dbg_show(struct seq_file *s, void *unused)
{
struct intel_tpmi_info *tpmi_info = s->private;
int locked, disabled, read_blocked, write_blocked;
struct tpmi_feature_state feature_state;
struct intel_tpmi_pm_feature *pfs;
int ret, i;
seq_printf(s, "tpmi PFS start offset 0x:%llx\n", tpmi_info->pfs_start);
seq_puts(s, "tpmi_id\t\tentries\t\tsize\t\tcap_offset\tattribute\tvsec_offset\tlocked\tdisabled\tread_blocked\twrite_blocked\n");
for (i = 0; i < tpmi_info->feature_count; ++i) {
pfs = &tpmi_info->tpmi_features[i];
ret = tpmi_read_feature_status(tpmi_info, pfs->pfs_header.tpmi_id, &feature_state);
if (ret) {
locked = 'U';
disabled = 'U';
read_blocked = 'U';
write_blocked = 'U';
} else {
disabled = feature_state.enabled ? 'N' : 'Y';
locked = feature_state.locked ? 'Y' : 'N';
read_blocked = feature_state.read_blocked ? 'Y' : 'N';
write_blocked = feature_state.write_blocked ? 'Y' : 'N';
}
seq_printf(s, "0x%02x\t\t0x%02x\t\t0x%04x\t\t0x%04x\t\t0x%02x\t\t0x%08x\t%c\t%c\t\t%c\t\t%c\n",
pfs->pfs_header.tpmi_id, pfs->pfs_header.num_entries,
pfs->pfs_header.entry_size, pfs->pfs_header.cap_offset,
pfs->pfs_header.attribute, pfs->vsec_offset, locked, disabled,
read_blocked, write_blocked);
}
return 0;
}
DEFINE_SHOW_ATTRIBUTE(tpmi_pfs_dbg);
#define MEM_DUMP_COLUMN_COUNT 8
static int tpmi_mem_dump_show(struct seq_file *s, void *unused)
{
size_t row_size = MEM_DUMP_COLUMN_COUNT * sizeof(u32);
struct intel_tpmi_pm_feature *pfs = s->private;
int count, ret = 0;
void __iomem *mem;
u32 off, size;
u8 *buffer;
size = TPMI_GET_SINGLE_ENTRY_SIZE(pfs);
if (!size)
return -EIO;
buffer = kmalloc(size, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
off = pfs->vsec_offset;
mutex_lock(&tpmi_dev_lock);
for (count = 0; count < pfs->pfs_header.num_entries; ++count) {
seq_printf(s, "TPMI Instance:%d offset:0x%x\n", count, off);
mem = ioremap(off, size);
if (!mem) {
ret = -ENOMEM;
break;
}
memcpy_fromio(buffer, mem, size);
seq_hex_dump(s, " ", DUMP_PREFIX_OFFSET, row_size, sizeof(u32), buffer, size,
false);
iounmap(mem);
off += size;
}
mutex_unlock(&tpmi_dev_lock);
kfree(buffer);
return ret;
}
DEFINE_SHOW_ATTRIBUTE(tpmi_mem_dump);
static ssize_t mem_write(struct file *file, const char __user *userbuf, size_t len, loff_t *ppos)
{
struct seq_file *m = file->private_data;
struct intel_tpmi_pm_feature *pfs = m->private;
u32 addr, value, punit, size;
u32 num_elems, *array;
void __iomem *mem;
int ret;
size = TPMI_GET_SINGLE_ENTRY_SIZE(pfs);
if (!size)
return -EIO;
ret = parse_int_array_user(userbuf, len, (int **)&array);
if (ret < 0)
return ret;
num_elems = *array;
if (num_elems != 3) {
ret = -EINVAL;
goto exit_write;
}
punit = array[1];
addr = array[2];
value = array[3];
if (punit >= pfs->pfs_header.num_entries) {
ret = -EINVAL;
goto exit_write;
}
if (addr >= size) {
ret = -EINVAL;
goto exit_write;
}
mutex_lock(&tpmi_dev_lock);
mem = ioremap(pfs->vsec_offset + punit * size, size);
if (!mem) {
ret = -ENOMEM;
goto unlock_mem_write;
}
writel(value, mem + addr);
iounmap(mem);
ret = len;
unlock_mem_write:
mutex_unlock(&tpmi_dev_lock);
exit_write:
kfree(array);
return ret;
}
static int mem_write_show(struct seq_file *s, void *unused)
{
return 0;
}
static int mem_write_open(struct inode *inode, struct file *file)
{
return single_open(file, mem_write_show, inode->i_private);
}
static const struct file_operations mem_write_ops = {
.open = mem_write_open,
.read = seq_read,
.write = mem_write,
.llseek = seq_lseek,
.release = single_release,
};
#define tpmi_to_dev(info) (&info->vsec_dev->pcidev->dev)
static void tpmi_dbgfs_register(struct intel_tpmi_info *tpmi_info)
{
char name[64];
int i;
snprintf(name, sizeof(name), "tpmi-%s", dev_name(tpmi_to_dev(tpmi_info)));
tpmi_info->dbgfs_dir = debugfs_create_dir(name, NULL);
debugfs_create_file("pfs_dump", 0444, tpmi_info->dbgfs_dir, tpmi_info, &tpmi_pfs_dbg_fops);
for (i = 0; i < tpmi_info->feature_count; ++i) {
struct intel_tpmi_pm_feature *pfs;
struct dentry *dir;
pfs = &tpmi_info->tpmi_features[i];
snprintf(name, sizeof(name), "tpmi-id-%02x", pfs->pfs_header.tpmi_id);
dir = debugfs_create_dir(name, tpmi_info->dbgfs_dir);
debugfs_create_file("mem_dump", 0444, dir, pfs, &tpmi_mem_dump_fops);
debugfs_create_file("mem_write", 0644, dir, pfs, &mem_write_ops);
}
}
static void tpmi_set_control_base(struct auxiliary_device *auxdev,
struct intel_tpmi_info *tpmi_info,
struct intel_tpmi_pm_feature *pfs)
{
void __iomem *mem;
u32 size;
size = TPMI_GET_SINGLE_ENTRY_SIZE(pfs);
if (!size)
return;
mem = devm_ioremap(&auxdev->dev, pfs->vsec_offset, size);
if (!mem)
return;
/* mem is pointing to TPMI CONTROL base */
tpmi_info->tpmi_control_mem = mem;
}
static const char *intel_tpmi_name(enum intel_tpmi_id id)
{
switch (id) {
case TPMI_ID_RAPL:
return "rapl";
case TPMI_ID_PEM:
return "pem";
case TPMI_ID_UNCORE:
return "uncore";
case TPMI_ID_SST:
return "sst";
default:
return NULL;
}
}
/* String Length for tpmi-"feature_name(upto 8 bytes)" */
#define TPMI_FEATURE_NAME_LEN 14
static int tpmi_create_device(struct intel_tpmi_info *tpmi_info,
struct intel_tpmi_pm_feature *pfs,
u64 pfs_start)
{
struct intel_vsec_device *vsec_dev = tpmi_info->vsec_dev;
char feature_id_name[TPMI_FEATURE_NAME_LEN];
struct intel_vsec_device *feature_vsec_dev;
struct resource *res, *tmp;
const char *name;
int i;
name = intel_tpmi_name(pfs->pfs_header.tpmi_id);
if (!name)
return -EOPNOTSUPP;
res = kcalloc(pfs->pfs_header.num_entries, sizeof(*res), GFP_KERNEL);
if (!res)
return -ENOMEM;
feature_vsec_dev = kzalloc(sizeof(*feature_vsec_dev), GFP_KERNEL);
if (!feature_vsec_dev) {
kfree(res);
return -ENOMEM;
}
snprintf(feature_id_name, sizeof(feature_id_name), "tpmi-%s", name);
for (i = 0, tmp = res; i < pfs->pfs_header.num_entries; i++, tmp++) {
u64 entry_size_bytes = pfs->pfs_header.entry_size * sizeof(u32);
tmp->start = pfs->vsec_offset + entry_size_bytes * i;
tmp->end = tmp->start + entry_size_bytes - 1;
tmp->flags = IORESOURCE_MEM;
}
feature_vsec_dev->pcidev = vsec_dev->pcidev;
feature_vsec_dev->resource = res;
feature_vsec_dev->num_resources = pfs->pfs_header.num_entries;
feature_vsec_dev->priv_data = &tpmi_info->plat_info;
feature_vsec_dev->priv_data_size = sizeof(tpmi_info->plat_info);
feature_vsec_dev->ida = &intel_vsec_tpmi_ida;
/*
* intel_vsec_add_aux() is resource managed, no explicit
* delete is required on error or on module unload.
* feature_vsec_dev and res memory are also freed as part of
* device deletion.
*/
return intel_vsec_add_aux(vsec_dev->pcidev, &vsec_dev->auxdev.dev,
feature_vsec_dev, feature_id_name);
}
static int tpmi_create_devices(struct intel_tpmi_info *tpmi_info)
{
struct intel_vsec_device *vsec_dev = tpmi_info->vsec_dev;
int ret, i;
for (i = 0; i < vsec_dev->num_resources; i++) {
ret = tpmi_create_device(tpmi_info, &tpmi_info->tpmi_features[i],
tpmi_info->pfs_start);
/*
* Fail, if the supported features fails to create device,
* otherwise, continue. Even if one device failed to create,
* fail the loading of driver. Since intel_vsec_add_aux()
* is resource managed, no clean up is required for the
* successfully created devices.
*/
if (ret && ret != -EOPNOTSUPP)
return ret;
}
return 0;
}
#define TPMI_INFO_BUS_INFO_OFFSET 0x08
static int tpmi_process_info(struct intel_tpmi_info *tpmi_info,
struct intel_tpmi_pm_feature *pfs)
{
struct tpmi_info_header header;
void __iomem *info_mem;
info_mem = ioremap(pfs->vsec_offset + TPMI_INFO_BUS_INFO_OFFSET,
pfs->pfs_header.entry_size * sizeof(u32) - TPMI_INFO_BUS_INFO_OFFSET);
if (!info_mem)
return -ENOMEM;
memcpy_fromio(&header, info_mem, sizeof(header));
tpmi_info->plat_info.package_id = header.pkg;
tpmi_info->plat_info.bus_number = header.bus;
tpmi_info->plat_info.device_number = header.dev;
tpmi_info->plat_info.function_number = header.fn;
iounmap(info_mem);
return 0;
}
static int tpmi_fetch_pfs_header(struct intel_tpmi_pm_feature *pfs, u64 start, int size)
{
void __iomem *pfs_mem;
pfs_mem = ioremap(start, size);
if (!pfs_mem)
return -ENOMEM;
memcpy_fromio(&pfs->pfs_header, pfs_mem, sizeof(pfs->pfs_header));
iounmap(pfs_mem);
return 0;
}
#define TPMI_CAP_OFFSET_UNIT 1024
static int intel_vsec_tpmi_init(struct auxiliary_device *auxdev)
{
struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev);
struct pci_dev *pci_dev = vsec_dev->pcidev;
struct intel_tpmi_info *tpmi_info;
u64 pfs_start = 0;
int ret, i;
tpmi_info = devm_kzalloc(&auxdev->dev, sizeof(*tpmi_info), GFP_KERNEL);
if (!tpmi_info)
return -ENOMEM;
tpmi_info->vsec_dev = vsec_dev;
tpmi_info->feature_count = vsec_dev->num_resources;
tpmi_info->plat_info.bus_number = pci_dev->bus->number;
tpmi_info->tpmi_features = devm_kcalloc(&auxdev->dev, vsec_dev->num_resources,
sizeof(*tpmi_info->tpmi_features),
GFP_KERNEL);
if (!tpmi_info->tpmi_features)
return -ENOMEM;
for (i = 0; i < vsec_dev->num_resources; i++) {
struct intel_tpmi_pm_feature *pfs;
struct resource *res;
u64 res_start;
int size, ret;
pfs = &tpmi_info->tpmi_features[i];
pfs->vsec_dev = vsec_dev;
res = &vsec_dev->resource[i];
if (!res)
continue;
res_start = res->start;
size = resource_size(res);
if (size < 0)
continue;
ret = tpmi_fetch_pfs_header(pfs, res_start, size);
if (ret)
continue;
if (!pfs_start)
pfs_start = res_start;
pfs->vsec_offset = pfs_start + pfs->pfs_header.cap_offset * TPMI_CAP_OFFSET_UNIT;
/*
* Process TPMI_INFO to get PCI device to CPU package ID.
* Device nodes for TPMI features are not created in this
* for loop. So, the mapping information will be available
* when actual device nodes created outside this
* loop via tpmi_create_devices().
*/
if (pfs->pfs_header.tpmi_id == TPMI_INFO_ID)
tpmi_process_info(tpmi_info, pfs);
if (pfs->pfs_header.tpmi_id == TPMI_CONTROL_ID)
tpmi_set_control_base(auxdev, tpmi_info, pfs);
}
tpmi_info->pfs_start = pfs_start;
auxiliary_set_drvdata(auxdev, tpmi_info);
ret = tpmi_create_devices(tpmi_info);
if (ret)
return ret;
/*
* Allow debugfs when security policy allows. Everything this debugfs
* interface provides, can also be done via /dev/mem access. If
* /dev/mem interface is locked, don't allow debugfs to present any
* information. Also check for CAP_SYS_RAWIO as /dev/mem interface.
*/
if (!security_locked_down(LOCKDOWN_DEV_MEM) && capable(CAP_SYS_RAWIO))
tpmi_dbgfs_register(tpmi_info);
return 0;
}
static int tpmi_probe(struct auxiliary_device *auxdev,
const struct auxiliary_device_id *id)
{
return intel_vsec_tpmi_init(auxdev);
}
static void tpmi_remove(struct auxiliary_device *auxdev)
{
struct intel_tpmi_info *tpmi_info = auxiliary_get_drvdata(auxdev);
debugfs_remove_recursive(tpmi_info->dbgfs_dir);
}
static const struct auxiliary_device_id tpmi_id_table[] = {
{ .name = "intel_vsec.tpmi" },
{}
};
MODULE_DEVICE_TABLE(auxiliary, tpmi_id_table);
static struct auxiliary_driver tpmi_aux_driver = {
.id_table = tpmi_id_table,
.probe = tpmi_probe,
.remove = tpmi_remove,
};
module_auxiliary_driver(tpmi_aux_driver);
MODULE_IMPORT_NS(INTEL_VSEC);
MODULE_DESCRIPTION("Intel TPMI enumeration module");
MODULE_LICENSE("GPL");
|