1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Broadcom BCM7038 PWM driver
* Author: Florian Fainelli
*
* Copyright (C) 2015 Broadcom Corporation
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/clk.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pwm.h>
#include <linux/spinlock.h>
#define PWM_CTRL 0x00
#define CTRL_START BIT(0)
#define CTRL_OEB BIT(1)
#define CTRL_FORCE_HIGH BIT(2)
#define CTRL_OPENDRAIN BIT(3)
#define CTRL_CHAN_OFFS 4
#define PWM_CTRL2 0x04
#define CTRL2_OUT_SELECT BIT(0)
#define PWM_CH_SIZE 0x8
#define PWM_CWORD_MSB(ch) (0x08 + ((ch) * PWM_CH_SIZE))
#define PWM_CWORD_LSB(ch) (0x0c + ((ch) * PWM_CH_SIZE))
/* Number of bits for the CWORD value */
#define CWORD_BIT_SIZE 16
/*
* Maximum control word value allowed when variable-frequency PWM is used as a
* clock for the constant-frequency PMW.
*/
#define CONST_VAR_F_MAX 32768
#define CONST_VAR_F_MIN 1
#define PWM_ON(ch) (0x18 + ((ch) * PWM_CH_SIZE))
#define PWM_ON_MIN 1
#define PWM_PERIOD(ch) (0x1c + ((ch) * PWM_CH_SIZE))
#define PWM_PERIOD_MIN 0
#define PWM_ON_PERIOD_MAX 0xff
struct brcmstb_pwm {
void __iomem *base;
struct clk *clk;
};
static inline u32 brcmstb_pwm_readl(struct brcmstb_pwm *p,
unsigned int offset)
{
if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
return __raw_readl(p->base + offset);
else
return readl_relaxed(p->base + offset);
}
static inline void brcmstb_pwm_writel(struct brcmstb_pwm *p, u32 value,
unsigned int offset)
{
if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
__raw_writel(value, p->base + offset);
else
writel_relaxed(value, p->base + offset);
}
static inline struct brcmstb_pwm *to_brcmstb_pwm(struct pwm_chip *chip)
{
return pwmchip_get_drvdata(chip);
}
/*
* Fv is derived from the variable frequency output. The variable frequency
* output is configured using this formula:
*
* W = cword, if cword < 2 ^ 15 else 16-bit 2's complement of cword
*
* Fv = W x 2 ^ -16 x 27Mhz (reference clock)
*
* The period is: (period + 1) / Fv and "on" time is on / (period + 1)
*
* The PWM core framework specifies that the "duty_ns" parameter is in fact the
* "on" time, so this translates directly into our HW programming here.
*/
static int brcmstb_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
u64 duty_ns, u64 period_ns)
{
struct brcmstb_pwm *p = to_brcmstb_pwm(chip);
unsigned long pc, dc, cword = CONST_VAR_F_MAX;
unsigned int channel = pwm->hwpwm;
u32 value;
/*
* If asking for a duty_ns equal to period_ns, we need to substract
* the period value by 1 to make it shorter than the "on" time and
* produce a flat 100% duty cycle signal, and max out the "on" time
*/
if (duty_ns == period_ns) {
dc = PWM_ON_PERIOD_MAX;
pc = PWM_ON_PERIOD_MAX - 1;
goto done;
}
while (1) {
u64 rate;
/*
* Calculate the base rate from base frequency and current
* cword
*/
rate = (u64)clk_get_rate(p->clk) * (u64)cword;
rate >>= CWORD_BIT_SIZE;
pc = mul_u64_u64_div_u64(period_ns, rate, NSEC_PER_SEC);
dc = mul_u64_u64_div_u64(duty_ns + 1, rate, NSEC_PER_SEC);
/*
* We can be called with separate duty and period updates,
* so do not reject dc == 0 right away
*/
if (pc == PWM_PERIOD_MIN || (dc < PWM_ON_MIN && duty_ns))
return -EINVAL;
/* We converged on a calculation */
if (pc <= PWM_ON_PERIOD_MAX && dc <= PWM_ON_PERIOD_MAX)
break;
/*
* The cword needs to be a power of 2 for the variable
* frequency generator to output a 50% duty cycle variable
* frequency which is used as input clock to the fixed
* frequency generator.
*/
cword >>= 1;
/*
* Desired periods are too large, we do not have a divider
* for them
*/
if (cword < CONST_VAR_F_MIN)
return -EINVAL;
}
done:
/*
* Configure the defined "cword" value to have the variable frequency
* generator output a base frequency for the constant frequency
* generator to derive from.
*/
brcmstb_pwm_writel(p, cword >> 8, PWM_CWORD_MSB(channel));
brcmstb_pwm_writel(p, cword & 0xff, PWM_CWORD_LSB(channel));
/* Select constant frequency signal output */
value = brcmstb_pwm_readl(p, PWM_CTRL2);
value |= CTRL2_OUT_SELECT << (channel * CTRL_CHAN_OFFS);
brcmstb_pwm_writel(p, value, PWM_CTRL2);
/* Configure on and period value */
brcmstb_pwm_writel(p, pc, PWM_PERIOD(channel));
brcmstb_pwm_writel(p, dc, PWM_ON(channel));
return 0;
}
static inline void brcmstb_pwm_enable_set(struct brcmstb_pwm *p,
unsigned int channel, bool enable)
{
unsigned int shift = channel * CTRL_CHAN_OFFS;
u32 value;
value = brcmstb_pwm_readl(p, PWM_CTRL);
if (enable) {
value &= ~(CTRL_OEB << shift);
value |= (CTRL_START | CTRL_OPENDRAIN) << shift;
} else {
value &= ~((CTRL_START | CTRL_OPENDRAIN) << shift);
value |= CTRL_OEB << shift;
}
brcmstb_pwm_writel(p, value, PWM_CTRL);
}
static int brcmstb_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct brcmstb_pwm *p = to_brcmstb_pwm(chip);
int err;
if (state->polarity != PWM_POLARITY_NORMAL)
return -EINVAL;
if (!state->enabled) {
if (pwm->state.enabled)
brcmstb_pwm_enable_set(p, pwm->hwpwm, false);
return 0;
}
err = brcmstb_pwm_config(chip, pwm, state->duty_cycle, state->period);
if (err)
return err;
if (!pwm->state.enabled)
brcmstb_pwm_enable_set(p, pwm->hwpwm, true);
return 0;
}
static const struct pwm_ops brcmstb_pwm_ops = {
.apply = brcmstb_pwm_apply,
};
static const struct of_device_id brcmstb_pwm_of_match[] = {
{ .compatible = "brcm,bcm7038-pwm", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, brcmstb_pwm_of_match);
static int brcmstb_pwm_probe(struct platform_device *pdev)
{
struct pwm_chip *chip;
struct brcmstb_pwm *p;
int ret;
chip = devm_pwmchip_alloc(&pdev->dev, 2, sizeof(*p));
if (IS_ERR(chip))
return PTR_ERR(chip);
p = to_brcmstb_pwm(chip);
p->clk = devm_clk_get_enabled(&pdev->dev, NULL);
if (IS_ERR(p->clk))
return dev_err_probe(&pdev->dev, PTR_ERR(p->clk),
"failed to obtain clock\n");
platform_set_drvdata(pdev, p);
chip->ops = &brcmstb_pwm_ops;
p->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(p->base))
return PTR_ERR(p->base);
ret = devm_pwmchip_add(&pdev->dev, chip);
if (ret)
return dev_err_probe(&pdev->dev, ret, "failed to add PWM chip\n");
return 0;
}
static int brcmstb_pwm_suspend(struct device *dev)
{
struct brcmstb_pwm *p = dev_get_drvdata(dev);
clk_disable_unprepare(p->clk);
return 0;
}
static int brcmstb_pwm_resume(struct device *dev)
{
struct brcmstb_pwm *p = dev_get_drvdata(dev);
return clk_prepare_enable(p->clk);
}
static DEFINE_SIMPLE_DEV_PM_OPS(brcmstb_pwm_pm_ops, brcmstb_pwm_suspend,
brcmstb_pwm_resume);
static struct platform_driver brcmstb_pwm_driver = {
.probe = brcmstb_pwm_probe,
.driver = {
.name = "pwm-brcmstb",
.of_match_table = brcmstb_pwm_of_match,
.pm = pm_ptr(&brcmstb_pwm_pm_ops),
},
};
module_platform_driver(brcmstb_pwm_driver);
MODULE_AUTHOR("Florian Fainelli <f.fainelli@gmail.com>");
MODULE_DESCRIPTION("Broadcom STB PWM driver");
MODULE_ALIAS("platform:pwm-brcmstb");
MODULE_LICENSE("GPL");
|