summaryrefslogtreecommitdiffstats
path: root/drivers/pwm/pwm-microchip-core.c
blob: c0c53968f3e9d1a84c6f727b66bdb6396ec00f1b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
// SPDX-License-Identifier: GPL-2.0
/*
 * corePWM driver for Microchip "soft" FPGA IP cores.
 *
 * Copyright (c) 2021-2023 Microchip Corporation. All rights reserved.
 * Author: Conor Dooley <conor.dooley@microchip.com>
 * Documentation:
 * https://www.microsemi.com/document-portal/doc_download/1245275-corepwm-hb
 *
 * Limitations:
 * - If the IP block is configured without "shadow registers", all register
 *   writes will take effect immediately, causing glitches on the output.
 *   If shadow registers *are* enabled, setting the "SYNC_UPDATE" register
 *   notifies the core that it needs to update the registers defining the
 *   waveform from the contents of the "shadow registers". Otherwise, changes
 *   will take effective immediately, even for those channels.
 *   As setting the period/duty cycle takes 4 register writes, there is a window
 *   in which this races against the start of a new period.
 * - The IP block has no concept of a duty cycle, only rising/falling edges of
 *   the waveform. Unfortunately, if the rising & falling edges registers have
 *   the same value written to them the IP block will do whichever of a rising
 *   or a falling edge is possible. I.E. a 50% waveform at twice the requested
 *   period. Therefore to get a 0% waveform, the output is set the max high/low
 *   time depending on polarity.
 *   If the duty cycle is 0%, and the requested period is less than the
 *   available period resolution, this will manifest as a ~100% waveform (with
 *   some output glitches) rather than 50%.
 * - The PWM period is set for the whole IP block not per channel. The driver
 *   will only change the period if no other PWM output is enabled.
 */

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/ktime.h>
#include <linux/math.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pwm.h>

#define MCHPCOREPWM_PRESCALE_MAX	0xff
#define MCHPCOREPWM_PERIOD_STEPS_MAX	0xfe
#define MCHPCOREPWM_PERIOD_MAX		0xff00

#define MCHPCOREPWM_PRESCALE	0x00
#define MCHPCOREPWM_PERIOD	0x04
#define MCHPCOREPWM_EN(i)	(0x08 + 0x04 * (i)) /* 0x08, 0x0c */
#define MCHPCOREPWM_POSEDGE(i)	(0x10 + 0x08 * (i)) /* 0x10, 0x18, ..., 0x88 */
#define MCHPCOREPWM_NEGEDGE(i)	(0x14 + 0x08 * (i)) /* 0x14, 0x1c, ..., 0x8c */
#define MCHPCOREPWM_SYNC_UPD	0xe4
#define MCHPCOREPWM_TIMEOUT_MS	100u

struct mchp_core_pwm_chip {
	struct pwm_chip chip;
	struct clk *clk;
	void __iomem *base;
	struct mutex lock; /* protects the shared period */
	ktime_t update_timestamp;
	u32 sync_update_mask;
	u16 channel_enabled;
};

static inline struct mchp_core_pwm_chip *to_mchp_core_pwm(struct pwm_chip *chip)
{
	return container_of(chip, struct mchp_core_pwm_chip, chip);
}

static void mchp_core_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm,
				 bool enable, u64 period)
{
	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
	u8 channel_enable, reg_offset, shift;

	/*
	 * There are two adjacent 8 bit control regs, the lower reg controls
	 * 0-7 and the upper reg 8-15. Check if the pwm is in the upper reg
	 * and if so, offset by the bus width.
	 */
	reg_offset = MCHPCOREPWM_EN(pwm->hwpwm >> 3);
	shift = pwm->hwpwm & 7;

	channel_enable = readb_relaxed(mchp_core_pwm->base + reg_offset);
	channel_enable &= ~(1 << shift);
	channel_enable |= (enable << shift);

	writel_relaxed(channel_enable, mchp_core_pwm->base + reg_offset);
	mchp_core_pwm->channel_enabled &= ~BIT(pwm->hwpwm);
	mchp_core_pwm->channel_enabled |= enable << pwm->hwpwm;

	/*
	 * The updated values will not appear on the bus until they have been
	 * applied to the waveform at the beginning of the next period.
	 * This is a NO-OP if the channel does not have shadow registers.
	 */
	if (mchp_core_pwm->sync_update_mask & (1 << pwm->hwpwm))
		mchp_core_pwm->update_timestamp = ktime_add_ns(ktime_get(), period);
}

static void mchp_core_pwm_wait_for_sync_update(struct mchp_core_pwm_chip *mchp_core_pwm,
					       unsigned int channel)
{
	/*
	 * If a shadow register is used for this PWM channel, and iff there is
	 * a pending update to the waveform, we must wait for it to be applied
	 * before attempting to read its state. Reading the registers yields
	 * the currently implemented settings & the new ones are only readable
	 * once the current period has ended.
	 */

	if (mchp_core_pwm->sync_update_mask & (1 << channel)) {
		ktime_t current_time = ktime_get();
		s64 remaining_ns;
		u32 delay_us;

		remaining_ns = ktime_to_ns(ktime_sub(mchp_core_pwm->update_timestamp,
						     current_time));

		/*
		 * If the update has gone through, don't bother waiting for
		 * obvious reasons. Otherwise wait around for an appropriate
		 * amount of time for the update to go through.
		 */
		if (remaining_ns <= 0)
			return;

		delay_us = DIV_ROUND_UP_ULL(remaining_ns, NSEC_PER_USEC);
		fsleep(delay_us);
	}
}

static u64 mchp_core_pwm_calc_duty(const struct pwm_state *state, u64 clk_rate,
				   u8 prescale, u8 period_steps)
{
	u64 duty_steps, tmp;

	/*
	 * Calculate the duty cycle in multiples of the prescaled period:
	 * duty_steps = duty_in_ns / step_in_ns
	 * step_in_ns = (prescale * NSEC_PER_SEC) / clk_rate
	 * The code below is rearranged slightly to only divide once.
	 */
	tmp = (((u64)prescale) + 1) * NSEC_PER_SEC;
	duty_steps = mul_u64_u64_div_u64(state->duty_cycle, clk_rate, tmp);

	return duty_steps;
}

static void mchp_core_pwm_apply_duty(struct pwm_chip *chip, struct pwm_device *pwm,
				     const struct pwm_state *state, u64 duty_steps,
				     u16 period_steps)
{
	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
	u8 posedge, negedge;
	u8 first_edge = 0, second_edge = duty_steps;

	/*
	 * Setting posedge == negedge doesn't yield a constant output,
	 * so that's an unsuitable setting to model duty_steps = 0.
	 * In that case set the unwanted edge to a value that never
	 * triggers.
	 */
	if (duty_steps == 0)
		first_edge = period_steps + 1;

	if (state->polarity == PWM_POLARITY_INVERSED) {
		negedge = first_edge;
		posedge = second_edge;
	} else {
		posedge = first_edge;
		negedge = second_edge;
	}

	/*
	 * Set the sync bit which ensures that periods that already started are
	 * completed unaltered. At each counter reset event the values are
	 * updated from the shadow registers.
	 */
	writel_relaxed(posedge, mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm));
	writel_relaxed(negedge, mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm));
}

static int mchp_core_pwm_calc_period(const struct pwm_state *state, unsigned long clk_rate,
				     u16 *prescale, u16 *period_steps)
{
	u64 tmp;

	/*
	 * Calculate the period cycles and prescale values.
	 * The registers are each 8 bits wide & multiplied to compute the period
	 * using the formula:
	 *           (prescale + 1) * (period_steps + 1)
	 * period = -------------------------------------
	 *                      clk_rate
	 * so the maximum period that can be generated is 0x10000 times the
	 * period of the input clock.
	 * However, due to the design of the "hardware", it is not possible to
	 * attain a 100% duty cycle if the full range of period_steps is used.
	 * Therefore period_steps is restricted to 0xfe and the maximum multiple
	 * of the clock period attainable is (0xff + 1) * (0xfe + 1) = 0xff00
	 *
	 * The prescale and period_steps registers operate similarly to
	 * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that
	 * in the register plus one.
	 * It's therefore not possible to set a period lower than 1/clk_rate, so
	 * if tmp is 0, abort. Without aborting, we will set a period that is
	 * greater than that requested and, more importantly, will trigger the
	 * neg-/pos-edge issue described in the limitations.
	 */
	tmp = mul_u64_u64_div_u64(state->period, clk_rate, NSEC_PER_SEC);
	if (tmp >= MCHPCOREPWM_PERIOD_MAX) {
		*prescale = MCHPCOREPWM_PRESCALE_MAX;
		*period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX;

		return 0;
	}

	/*
	 * There are multiple strategies that could be used to choose the
	 * prescale & period_steps values.
	 * Here the idea is to pick values so that the selection of duty cycles
	 * is as finegrain as possible, while also keeping the period less than
	 * that requested.
	 *
	 * A simple way to satisfy the first condition is to always set
	 * period_steps to its maximum value. This neatly also satisfies the
	 * second condition too, since using the maximum value of period_steps
	 * to calculate prescale actually calculates its upper bound.
	 * Integer division will ensure a round down, so the period will thereby
	 * always be less than that requested.
	 *
	 * The downside of this approach is a significant degree of inaccuracy,
	 * especially as tmp approaches integer multiples of
	 * MCHPCOREPWM_PERIOD_STEPS_MAX.
	 *
	 * As we must produce a period less than that requested, and for the
	 * sake of creating a simple algorithm, disallow small values of tmp
	 * that would need special handling.
	 */
	if (tmp < MCHPCOREPWM_PERIOD_STEPS_MAX + 1)
		return -EINVAL;

	/*
	 * This "optimal" value for prescale is be calculated using the maximum
	 * permitted value of period_steps, 0xfe.
	 *
	 *                period * clk_rate
	 * prescale = ------------------------- - 1
	 *            NSEC_PER_SEC * (0xfe + 1)
	 *
	 *
	 *  period * clk_rate
	 * ------------------- was precomputed as `tmp`
	 *    NSEC_PER_SEC
	 */
	*prescale = ((u16)tmp) / (MCHPCOREPWM_PERIOD_STEPS_MAX + 1) - 1;

	/*
	 * period_steps can be computed from prescale:
	 *                      period * clk_rate
	 * period_steps = ----------------------------- - 1
	 *                NSEC_PER_SEC * (prescale + 1)
	 *
	 * However, in this approximation, we simply use the maximum value that
	 * was used to compute prescale.
	 */
	*period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX;

	return 0;
}

static int mchp_core_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
				      const struct pwm_state *state)
{
	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
	bool period_locked;
	unsigned long clk_rate;
	u64 duty_steps;
	u16 prescale, period_steps;
	int ret;

	if (!state->enabled) {
		mchp_core_pwm_enable(chip, pwm, false, pwm->state.period);
		return 0;
	}

	/*
	 * If clk_rate is too big, the following multiplication might overflow.
	 * However this is implausible, as the fabric of current FPGAs cannot
	 * provide clocks at a rate high enough.
	 */
	clk_rate = clk_get_rate(mchp_core_pwm->clk);
	if (clk_rate >= NSEC_PER_SEC)
		return -EINVAL;

	ret = mchp_core_pwm_calc_period(state, clk_rate, &prescale, &period_steps);
	if (ret)
		return ret;

	/*
	 * If the only thing that has changed is the duty cycle or the polarity,
	 * we can shortcut the calculations and just compute/apply the new duty
	 * cycle pos & neg edges
	 * As all the channels share the same period, do not allow it to be
	 * changed if any other channels are enabled.
	 * If the period is locked, it may not be possible to use a period
	 * less than that requested. In that case, we just abort.
	 */
	period_locked = mchp_core_pwm->channel_enabled & ~(1 << pwm->hwpwm);

	if (period_locked) {
		u16 hw_prescale;
		u16 hw_period_steps;

		hw_prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
		hw_period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD);

		if ((period_steps + 1) * (prescale + 1) <
		    (hw_period_steps + 1) * (hw_prescale + 1))
			return -EINVAL;

		/*
		 * It is possible that something could have set the period_steps
		 * register to 0xff, which would prevent us from setting a 100%
		 * or 0% relative duty cycle, as explained above in
		 * mchp_core_pwm_calc_period().
		 * The period is locked and we cannot change this, so we abort.
		 */
		if (hw_period_steps == MCHPCOREPWM_PERIOD_STEPS_MAX)
			return -EINVAL;

		prescale = hw_prescale;
		period_steps = hw_period_steps;
	}

	duty_steps = mchp_core_pwm_calc_duty(state, clk_rate, prescale, period_steps);

	/*
	 * Because the period is not per channel, it is possible that the
	 * requested duty cycle is longer than the period, in which case cap it
	 * to the period, IOW a 100% duty cycle.
	 */
	if (duty_steps > period_steps)
		duty_steps = period_steps + 1;

	if (!period_locked) {
		writel_relaxed(prescale, mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
		writel_relaxed(period_steps, mchp_core_pwm->base + MCHPCOREPWM_PERIOD);
	}

	mchp_core_pwm_apply_duty(chip, pwm, state, duty_steps, period_steps);

	mchp_core_pwm_enable(chip, pwm, true, pwm->state.period);

	return 0;
}

static int mchp_core_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
			       const struct pwm_state *state)
{
	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
	int ret;

	mutex_lock(&mchp_core_pwm->lock);

	mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm);

	ret = mchp_core_pwm_apply_locked(chip, pwm, state);

	mutex_unlock(&mchp_core_pwm->lock);

	return ret;
}

static int mchp_core_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
				   struct pwm_state *state)
{
	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
	u64 rate;
	u16 prescale, period_steps;
	u8 duty_steps, posedge, negedge;

	mutex_lock(&mchp_core_pwm->lock);

	mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm);

	if (mchp_core_pwm->channel_enabled & (1 << pwm->hwpwm))
		state->enabled = true;
	else
		state->enabled = false;

	rate = clk_get_rate(mchp_core_pwm->clk);

	/*
	 * Calculating the period:
	 * The registers are each 8 bits wide & multiplied to compute the period
	 * using the formula:
	 *           (prescale + 1) * (period_steps + 1)
	 * period = -------------------------------------
	 *                      clk_rate
	 *
	 * Note:
	 * The prescale and period_steps registers operate similarly to
	 * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that
	 * in the register plus one.
	 */
	prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
	period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD);

	state->period = (period_steps + 1) * (prescale + 1);
	state->period *= NSEC_PER_SEC;
	state->period = DIV64_U64_ROUND_UP(state->period, rate);

	posedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm));
	negedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm));

	mutex_unlock(&mchp_core_pwm->lock);

	if (negedge == posedge) {
		state->duty_cycle = state->period;
		state->period *= 2;
	} else {
		duty_steps = abs((s16)posedge - (s16)negedge);
		state->duty_cycle = duty_steps * (prescale + 1) * NSEC_PER_SEC;
		state->duty_cycle = DIV64_U64_ROUND_UP(state->duty_cycle, rate);
	}

	state->polarity = negedge < posedge ? PWM_POLARITY_INVERSED : PWM_POLARITY_NORMAL;

	return 0;
}

static const struct pwm_ops mchp_core_pwm_ops = {
	.apply = mchp_core_pwm_apply,
	.get_state = mchp_core_pwm_get_state,
};

static const struct of_device_id mchp_core_of_match[] = {
	{
		.compatible = "microchip,corepwm-rtl-v4",
	},
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mchp_core_of_match);

static int mchp_core_pwm_probe(struct platform_device *pdev)
{
	struct mchp_core_pwm_chip *mchp_core_pwm;
	struct resource *regs;
	int ret;

	mchp_core_pwm = devm_kzalloc(&pdev->dev, sizeof(*mchp_core_pwm), GFP_KERNEL);
	if (!mchp_core_pwm)
		return -ENOMEM;

	mchp_core_pwm->base = devm_platform_get_and_ioremap_resource(pdev, 0, &regs);
	if (IS_ERR(mchp_core_pwm->base))
		return PTR_ERR(mchp_core_pwm->base);

	mchp_core_pwm->clk = devm_clk_get_enabled(&pdev->dev, NULL);
	if (IS_ERR(mchp_core_pwm->clk))
		return dev_err_probe(&pdev->dev, PTR_ERR(mchp_core_pwm->clk),
				     "failed to get PWM clock\n");

	if (of_property_read_u32(pdev->dev.of_node, "microchip,sync-update-mask",
				 &mchp_core_pwm->sync_update_mask))
		mchp_core_pwm->sync_update_mask = 0;

	mutex_init(&mchp_core_pwm->lock);

	mchp_core_pwm->chip.dev = &pdev->dev;
	mchp_core_pwm->chip.ops = &mchp_core_pwm_ops;
	mchp_core_pwm->chip.npwm = 16;

	mchp_core_pwm->channel_enabled = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(0));
	mchp_core_pwm->channel_enabled |=
		readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(1)) << 8;

	/*
	 * Enable synchronous update mode for all channels for which shadow
	 * registers have been synthesised.
	 */
	writel_relaxed(1U, mchp_core_pwm->base + MCHPCOREPWM_SYNC_UPD);
	mchp_core_pwm->update_timestamp = ktime_get();

	ret = devm_pwmchip_add(&pdev->dev, &mchp_core_pwm->chip);
	if (ret)
		return dev_err_probe(&pdev->dev, ret, "Failed to add pwmchip\n");

	return 0;
}

static struct platform_driver mchp_core_pwm_driver = {
	.driver = {
		.name = "mchp-core-pwm",
		.of_match_table = mchp_core_of_match,
	},
	.probe = mchp_core_pwm_probe,
};
module_platform_driver(mchp_core_pwm_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Conor Dooley <conor.dooley@microchip.com>");
MODULE_DESCRIPTION("corePWM driver for Microchip FPGAs");