1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
|
// SPDX-License-Identifier: GPL-2.0
/*
* Driver for Atmel QSPI Controller
*
* Copyright (C) 2015 Atmel Corporation
* Copyright (C) 2018 Cryptera A/S
*
* Author: Cyrille Pitchen <cyrille.pitchen@atmel.com>
* Author: Piotr Bugalski <bugalski.piotr@gmail.com>
*
* This driver is based on drivers/mtd/spi-nor/fsl-quadspi.c from Freescale.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi-mem.h>
/* QSPI register offsets */
#define QSPI_CR 0x0000 /* Control Register */
#define QSPI_MR 0x0004 /* Mode Register */
#define QSPI_RD 0x0008 /* Receive Data Register */
#define QSPI_TD 0x000c /* Transmit Data Register */
#define QSPI_SR 0x0010 /* Status Register */
#define QSPI_IER 0x0014 /* Interrupt Enable Register */
#define QSPI_IDR 0x0018 /* Interrupt Disable Register */
#define QSPI_IMR 0x001c /* Interrupt Mask Register */
#define QSPI_SCR 0x0020 /* Serial Clock Register */
#define QSPI_IAR 0x0030 /* Instruction Address Register */
#define QSPI_ICR 0x0034 /* Instruction Code Register */
#define QSPI_WICR 0x0034 /* Write Instruction Code Register */
#define QSPI_IFR 0x0038 /* Instruction Frame Register */
#define QSPI_RICR 0x003C /* Read Instruction Code Register */
#define QSPI_SMR 0x0040 /* Scrambling Mode Register */
#define QSPI_SKR 0x0044 /* Scrambling Key Register */
#define QSPI_WPMR 0x00E4 /* Write Protection Mode Register */
#define QSPI_WPSR 0x00E8 /* Write Protection Status Register */
#define QSPI_VERSION 0x00FC /* Version Register */
/* Bitfields in QSPI_CR (Control Register) */
#define QSPI_CR_QSPIEN BIT(0)
#define QSPI_CR_QSPIDIS BIT(1)
#define QSPI_CR_SWRST BIT(7)
#define QSPI_CR_LASTXFER BIT(24)
/* Bitfields in QSPI_MR (Mode Register) */
#define QSPI_MR_SMM BIT(0)
#define QSPI_MR_LLB BIT(1)
#define QSPI_MR_WDRBT BIT(2)
#define QSPI_MR_SMRM BIT(3)
#define QSPI_MR_CSMODE_MASK GENMASK(5, 4)
#define QSPI_MR_CSMODE_NOT_RELOADED (0 << 4)
#define QSPI_MR_CSMODE_LASTXFER (1 << 4)
#define QSPI_MR_CSMODE_SYSTEMATICALLY (2 << 4)
#define QSPI_MR_NBBITS_MASK GENMASK(11, 8)
#define QSPI_MR_NBBITS(n) ((((n) - 8) << 8) & QSPI_MR_NBBITS_MASK)
#define QSPI_MR_DLYBCT_MASK GENMASK(23, 16)
#define QSPI_MR_DLYBCT(n) (((n) << 16) & QSPI_MR_DLYBCT_MASK)
#define QSPI_MR_DLYCS_MASK GENMASK(31, 24)
#define QSPI_MR_DLYCS(n) (((n) << 24) & QSPI_MR_DLYCS_MASK)
/* Bitfields in QSPI_SR/QSPI_IER/QSPI_IDR/QSPI_IMR */
#define QSPI_SR_RDRF BIT(0)
#define QSPI_SR_TDRE BIT(1)
#define QSPI_SR_TXEMPTY BIT(2)
#define QSPI_SR_OVRES BIT(3)
#define QSPI_SR_CSR BIT(8)
#define QSPI_SR_CSS BIT(9)
#define QSPI_SR_INSTRE BIT(10)
#define QSPI_SR_QSPIENS BIT(24)
#define QSPI_SR_CMD_COMPLETED (QSPI_SR_INSTRE | QSPI_SR_CSR)
/* Bitfields in QSPI_SCR (Serial Clock Register) */
#define QSPI_SCR_CPOL BIT(0)
#define QSPI_SCR_CPHA BIT(1)
#define QSPI_SCR_SCBR_MASK GENMASK(15, 8)
#define QSPI_SCR_SCBR(n) (((n) << 8) & QSPI_SCR_SCBR_MASK)
#define QSPI_SCR_DLYBS_MASK GENMASK(23, 16)
#define QSPI_SCR_DLYBS(n) (((n) << 16) & QSPI_SCR_DLYBS_MASK)
/* Bitfields in QSPI_ICR (Read/Write Instruction Code Register) */
#define QSPI_ICR_INST_MASK GENMASK(7, 0)
#define QSPI_ICR_INST(inst) (((inst) << 0) & QSPI_ICR_INST_MASK)
#define QSPI_ICR_OPT_MASK GENMASK(23, 16)
#define QSPI_ICR_OPT(opt) (((opt) << 16) & QSPI_ICR_OPT_MASK)
/* Bitfields in QSPI_IFR (Instruction Frame Register) */
#define QSPI_IFR_WIDTH_MASK GENMASK(2, 0)
#define QSPI_IFR_WIDTH_SINGLE_BIT_SPI (0 << 0)
#define QSPI_IFR_WIDTH_DUAL_OUTPUT (1 << 0)
#define QSPI_IFR_WIDTH_QUAD_OUTPUT (2 << 0)
#define QSPI_IFR_WIDTH_DUAL_IO (3 << 0)
#define QSPI_IFR_WIDTH_QUAD_IO (4 << 0)
#define QSPI_IFR_WIDTH_DUAL_CMD (5 << 0)
#define QSPI_IFR_WIDTH_QUAD_CMD (6 << 0)
#define QSPI_IFR_INSTEN BIT(4)
#define QSPI_IFR_ADDREN BIT(5)
#define QSPI_IFR_OPTEN BIT(6)
#define QSPI_IFR_DATAEN BIT(7)
#define QSPI_IFR_OPTL_MASK GENMASK(9, 8)
#define QSPI_IFR_OPTL_1BIT (0 << 8)
#define QSPI_IFR_OPTL_2BIT (1 << 8)
#define QSPI_IFR_OPTL_4BIT (2 << 8)
#define QSPI_IFR_OPTL_8BIT (3 << 8)
#define QSPI_IFR_ADDRL BIT(10)
#define QSPI_IFR_TFRTYP_MEM BIT(12)
#define QSPI_IFR_SAMA5D2_WRITE_TRSFR BIT(13)
#define QSPI_IFR_CRM BIT(14)
#define QSPI_IFR_NBDUM_MASK GENMASK(20, 16)
#define QSPI_IFR_NBDUM(n) (((n) << 16) & QSPI_IFR_NBDUM_MASK)
#define QSPI_IFR_APBTFRTYP_READ BIT(24) /* Defined in SAM9X60 */
/* Bitfields in QSPI_SMR (Scrambling Mode Register) */
#define QSPI_SMR_SCREN BIT(0)
#define QSPI_SMR_RVDIS BIT(1)
/* Bitfields in QSPI_WPMR (Write Protection Mode Register) */
#define QSPI_WPMR_WPEN BIT(0)
#define QSPI_WPMR_WPKEY_MASK GENMASK(31, 8)
#define QSPI_WPMR_WPKEY(wpkey) (((wpkey) << 8) & QSPI_WPMR_WPKEY_MASK)
/* Bitfields in QSPI_WPSR (Write Protection Status Register) */
#define QSPI_WPSR_WPVS BIT(0)
#define QSPI_WPSR_WPVSRC_MASK GENMASK(15, 8)
#define QSPI_WPSR_WPVSRC(src) (((src) << 8) & QSPI_WPSR_WPVSRC)
struct atmel_qspi_caps {
bool has_qspick;
bool has_ricr;
};
struct atmel_qspi {
void __iomem *regs;
void __iomem *mem;
struct clk *pclk;
struct clk *qspick;
struct platform_device *pdev;
const struct atmel_qspi_caps *caps;
resource_size_t mmap_size;
u32 pending;
u32 mr;
u32 scr;
struct completion cmd_completion;
};
struct atmel_qspi_mode {
u8 cmd_buswidth;
u8 addr_buswidth;
u8 data_buswidth;
u32 config;
};
static const struct atmel_qspi_mode atmel_qspi_modes[] = {
{ 1, 1, 1, QSPI_IFR_WIDTH_SINGLE_BIT_SPI },
{ 1, 1, 2, QSPI_IFR_WIDTH_DUAL_OUTPUT },
{ 1, 1, 4, QSPI_IFR_WIDTH_QUAD_OUTPUT },
{ 1, 2, 2, QSPI_IFR_WIDTH_DUAL_IO },
{ 1, 4, 4, QSPI_IFR_WIDTH_QUAD_IO },
{ 2, 2, 2, QSPI_IFR_WIDTH_DUAL_CMD },
{ 4, 4, 4, QSPI_IFR_WIDTH_QUAD_CMD },
};
#ifdef VERBOSE_DEBUG
static const char *atmel_qspi_reg_name(u32 offset, char *tmp, size_t sz)
{
switch (offset) {
case QSPI_CR:
return "CR";
case QSPI_MR:
return "MR";
case QSPI_RD:
return "MR";
case QSPI_TD:
return "TD";
case QSPI_SR:
return "SR";
case QSPI_IER:
return "IER";
case QSPI_IDR:
return "IDR";
case QSPI_IMR:
return "IMR";
case QSPI_SCR:
return "SCR";
case QSPI_IAR:
return "IAR";
case QSPI_ICR:
return "ICR/WICR";
case QSPI_IFR:
return "IFR";
case QSPI_RICR:
return "RICR";
case QSPI_SMR:
return "SMR";
case QSPI_SKR:
return "SKR";
case QSPI_WPMR:
return "WPMR";
case QSPI_WPSR:
return "WPSR";
case QSPI_VERSION:
return "VERSION";
default:
snprintf(tmp, sz, "0x%02x", offset);
break;
}
return tmp;
}
#endif /* VERBOSE_DEBUG */
static u32 atmel_qspi_read(struct atmel_qspi *aq, u32 offset)
{
u32 value = readl_relaxed(aq->regs + offset);
#ifdef VERBOSE_DEBUG
char tmp[8];
dev_vdbg(&aq->pdev->dev, "read 0x%08x from %s\n", value,
atmel_qspi_reg_name(offset, tmp, sizeof(tmp)));
#endif /* VERBOSE_DEBUG */
return value;
}
static void atmel_qspi_write(u32 value, struct atmel_qspi *aq, u32 offset)
{
#ifdef VERBOSE_DEBUG
char tmp[8];
dev_vdbg(&aq->pdev->dev, "write 0x%08x into %s\n", value,
atmel_qspi_reg_name(offset, tmp, sizeof(tmp)));
#endif /* VERBOSE_DEBUG */
writel_relaxed(value, aq->regs + offset);
}
static inline bool atmel_qspi_is_compatible(const struct spi_mem_op *op,
const struct atmel_qspi_mode *mode)
{
if (op->cmd.buswidth != mode->cmd_buswidth)
return false;
if (op->addr.nbytes && op->addr.buswidth != mode->addr_buswidth)
return false;
if (op->data.nbytes && op->data.buswidth != mode->data_buswidth)
return false;
return true;
}
static int atmel_qspi_find_mode(const struct spi_mem_op *op)
{
u32 i;
for (i = 0; i < ARRAY_SIZE(atmel_qspi_modes); i++)
if (atmel_qspi_is_compatible(op, &atmel_qspi_modes[i]))
return i;
return -EOPNOTSUPP;
}
static bool atmel_qspi_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
if (!spi_mem_default_supports_op(mem, op))
return false;
if (atmel_qspi_find_mode(op) < 0)
return false;
/* special case not supported by hardware */
if (op->addr.nbytes == 2 && op->cmd.buswidth != op->addr.buswidth &&
op->dummy.nbytes == 0)
return false;
return true;
}
static int atmel_qspi_set_cfg(struct atmel_qspi *aq,
const struct spi_mem_op *op, u32 *offset)
{
u32 iar, icr, ifr;
u32 dummy_cycles = 0;
int mode;
iar = 0;
icr = QSPI_ICR_INST(op->cmd.opcode);
ifr = QSPI_IFR_INSTEN;
mode = atmel_qspi_find_mode(op);
if (mode < 0)
return mode;
ifr |= atmel_qspi_modes[mode].config;
if (op->dummy.nbytes)
dummy_cycles = op->dummy.nbytes * 8 / op->dummy.buswidth;
/*
* The controller allows 24 and 32-bit addressing while NAND-flash
* requires 16-bit long. Handling 8-bit long addresses is done using
* the option field. For the 16-bit addresses, the workaround depends
* of the number of requested dummy bits. If there are 8 or more dummy
* cycles, the address is shifted and sent with the first dummy byte.
* Otherwise opcode is disabled and the first byte of the address
* contains the command opcode (works only if the opcode and address
* use the same buswidth). The limitation is when the 16-bit address is
* used without enough dummy cycles and the opcode is using a different
* buswidth than the address.
*/
if (op->addr.buswidth) {
switch (op->addr.nbytes) {
case 0:
break;
case 1:
ifr |= QSPI_IFR_OPTEN | QSPI_IFR_OPTL_8BIT;
icr |= QSPI_ICR_OPT(op->addr.val & 0xff);
break;
case 2:
if (dummy_cycles < 8 / op->addr.buswidth) {
ifr &= ~QSPI_IFR_INSTEN;
ifr |= QSPI_IFR_ADDREN;
iar = (op->cmd.opcode << 16) |
(op->addr.val & 0xffff);
} else {
ifr |= QSPI_IFR_ADDREN;
iar = (op->addr.val << 8) & 0xffffff;
dummy_cycles -= 8 / op->addr.buswidth;
}
break;
case 3:
ifr |= QSPI_IFR_ADDREN;
iar = op->addr.val & 0xffffff;
break;
case 4:
ifr |= QSPI_IFR_ADDREN | QSPI_IFR_ADDRL;
iar = op->addr.val & 0x7ffffff;
break;
default:
return -ENOTSUPP;
}
}
/* offset of the data access in the QSPI memory space */
*offset = iar;
/* Set number of dummy cycles */
if (dummy_cycles)
ifr |= QSPI_IFR_NBDUM(dummy_cycles);
/* Set data enable and data transfer type. */
if (op->data.nbytes) {
ifr |= QSPI_IFR_DATAEN;
if (op->addr.nbytes)
ifr |= QSPI_IFR_TFRTYP_MEM;
}
/*
* If the QSPI controller is set in regular SPI mode, set it in
* Serial Memory Mode (SMM).
*/
if (aq->mr != QSPI_MR_SMM) {
atmel_qspi_write(QSPI_MR_SMM, aq, QSPI_MR);
aq->mr = QSPI_MR_SMM;
}
/* Clear pending interrupts */
(void)atmel_qspi_read(aq, QSPI_SR);
/* Set QSPI Instruction Frame registers. */
if (op->addr.nbytes && !op->data.nbytes)
atmel_qspi_write(iar, aq, QSPI_IAR);
if (aq->caps->has_ricr) {
if (op->data.dir == SPI_MEM_DATA_IN)
atmel_qspi_write(icr, aq, QSPI_RICR);
else
atmel_qspi_write(icr, aq, QSPI_WICR);
} else {
if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
ifr |= QSPI_IFR_SAMA5D2_WRITE_TRSFR;
atmel_qspi_write(icr, aq, QSPI_ICR);
}
atmel_qspi_write(ifr, aq, QSPI_IFR);
return 0;
}
static int atmel_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
struct atmel_qspi *aq = spi_controller_get_devdata(mem->spi->controller);
u32 sr, offset;
int err;
/*
* Check if the address exceeds the MMIO window size. An improvement
* would be to add support for regular SPI mode and fall back to it
* when the flash memories overrun the controller's memory space.
*/
if (op->addr.val + op->data.nbytes > aq->mmap_size)
return -ENOTSUPP;
err = pm_runtime_resume_and_get(&aq->pdev->dev);
if (err < 0)
return err;
err = atmel_qspi_set_cfg(aq, op, &offset);
if (err)
goto pm_runtime_put;
/* Skip to the final steps if there is no data */
if (op->data.nbytes) {
/* Dummy read of QSPI_IFR to synchronize APB and AHB accesses */
(void)atmel_qspi_read(aq, QSPI_IFR);
/* Send/Receive data */
if (op->data.dir == SPI_MEM_DATA_IN)
memcpy_fromio(op->data.buf.in, aq->mem + offset,
op->data.nbytes);
else
memcpy_toio(aq->mem + offset, op->data.buf.out,
op->data.nbytes);
/* Release the chip-select */
atmel_qspi_write(QSPI_CR_LASTXFER, aq, QSPI_CR);
}
/* Poll INSTRuction End status */
sr = atmel_qspi_read(aq, QSPI_SR);
if ((sr & QSPI_SR_CMD_COMPLETED) == QSPI_SR_CMD_COMPLETED)
goto pm_runtime_put;
/* Wait for INSTRuction End interrupt */
reinit_completion(&aq->cmd_completion);
aq->pending = sr & QSPI_SR_CMD_COMPLETED;
atmel_qspi_write(QSPI_SR_CMD_COMPLETED, aq, QSPI_IER);
if (!wait_for_completion_timeout(&aq->cmd_completion,
msecs_to_jiffies(1000)))
err = -ETIMEDOUT;
atmel_qspi_write(QSPI_SR_CMD_COMPLETED, aq, QSPI_IDR);
pm_runtime_put:
pm_runtime_mark_last_busy(&aq->pdev->dev);
pm_runtime_put_autosuspend(&aq->pdev->dev);
return err;
}
static const char *atmel_qspi_get_name(struct spi_mem *spimem)
{
return dev_name(spimem->spi->dev.parent);
}
static const struct spi_controller_mem_ops atmel_qspi_mem_ops = {
.supports_op = atmel_qspi_supports_op,
.exec_op = atmel_qspi_exec_op,
.get_name = atmel_qspi_get_name
};
static int atmel_qspi_setup(struct spi_device *spi)
{
struct spi_controller *ctrl = spi->controller;
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
unsigned long src_rate;
u32 scbr;
int ret;
if (ctrl->busy)
return -EBUSY;
if (!spi->max_speed_hz)
return -EINVAL;
src_rate = clk_get_rate(aq->pclk);
if (!src_rate)
return -EINVAL;
/* Compute the QSPI baudrate */
scbr = DIV_ROUND_UP(src_rate, spi->max_speed_hz);
if (scbr > 0)
scbr--;
ret = pm_runtime_resume_and_get(ctrl->dev.parent);
if (ret < 0)
return ret;
aq->scr = QSPI_SCR_SCBR(scbr);
atmel_qspi_write(aq->scr, aq, QSPI_SCR);
pm_runtime_mark_last_busy(ctrl->dev.parent);
pm_runtime_put_autosuspend(ctrl->dev.parent);
return 0;
}
static int atmel_qspi_set_cs_timing(struct spi_device *spi)
{
struct spi_controller *ctrl = spi->controller;
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
unsigned long clk_rate;
u32 cs_setup;
int delay;
int ret;
delay = spi_delay_to_ns(&spi->cs_setup, NULL);
if (delay <= 0)
return delay;
clk_rate = clk_get_rate(aq->pclk);
if (!clk_rate)
return -EINVAL;
cs_setup = DIV_ROUND_UP((delay * DIV_ROUND_UP(clk_rate, 1000000)),
1000);
ret = pm_runtime_resume_and_get(ctrl->dev.parent);
if (ret < 0)
return ret;
aq->scr |= QSPI_SCR_DLYBS(cs_setup);
atmel_qspi_write(aq->scr, aq, QSPI_SCR);
pm_runtime_mark_last_busy(ctrl->dev.parent);
pm_runtime_put_autosuspend(ctrl->dev.parent);
return 0;
}
static void atmel_qspi_init(struct atmel_qspi *aq)
{
/* Reset the QSPI controller */
atmel_qspi_write(QSPI_CR_SWRST, aq, QSPI_CR);
/* Set the QSPI controller by default in Serial Memory Mode */
atmel_qspi_write(QSPI_MR_SMM, aq, QSPI_MR);
aq->mr = QSPI_MR_SMM;
/* Enable the QSPI controller */
atmel_qspi_write(QSPI_CR_QSPIEN, aq, QSPI_CR);
}
static irqreturn_t atmel_qspi_interrupt(int irq, void *dev_id)
{
struct atmel_qspi *aq = dev_id;
u32 status, mask, pending;
status = atmel_qspi_read(aq, QSPI_SR);
mask = atmel_qspi_read(aq, QSPI_IMR);
pending = status & mask;
if (!pending)
return IRQ_NONE;
aq->pending |= pending;
if ((aq->pending & QSPI_SR_CMD_COMPLETED) == QSPI_SR_CMD_COMPLETED)
complete(&aq->cmd_completion);
return IRQ_HANDLED;
}
static int atmel_qspi_probe(struct platform_device *pdev)
{
struct spi_controller *ctrl;
struct atmel_qspi *aq;
struct resource *res;
int irq, err = 0;
ctrl = devm_spi_alloc_host(&pdev->dev, sizeof(*aq));
if (!ctrl)
return -ENOMEM;
ctrl->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
ctrl->setup = atmel_qspi_setup;
ctrl->set_cs_timing = atmel_qspi_set_cs_timing;
ctrl->bus_num = -1;
ctrl->mem_ops = &atmel_qspi_mem_ops;
ctrl->num_chipselect = 1;
ctrl->dev.of_node = pdev->dev.of_node;
platform_set_drvdata(pdev, ctrl);
aq = spi_controller_get_devdata(ctrl);
init_completion(&aq->cmd_completion);
aq->pdev = pdev;
/* Map the registers */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_base");
aq->regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(aq->regs)) {
dev_err(&pdev->dev, "missing registers\n");
return PTR_ERR(aq->regs);
}
/* Map the AHB memory */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_mmap");
aq->mem = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(aq->mem)) {
dev_err(&pdev->dev, "missing AHB memory\n");
return PTR_ERR(aq->mem);
}
aq->mmap_size = resource_size(res);
/* Get the peripheral clock */
aq->pclk = devm_clk_get(&pdev->dev, "pclk");
if (IS_ERR(aq->pclk))
aq->pclk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(aq->pclk)) {
dev_err(&pdev->dev, "missing peripheral clock\n");
return PTR_ERR(aq->pclk);
}
/* Enable the peripheral clock */
err = clk_prepare_enable(aq->pclk);
if (err) {
dev_err(&pdev->dev, "failed to enable the peripheral clock\n");
return err;
}
aq->caps = of_device_get_match_data(&pdev->dev);
if (!aq->caps) {
dev_err(&pdev->dev, "Could not retrieve QSPI caps\n");
err = -EINVAL;
goto disable_pclk;
}
if (aq->caps->has_qspick) {
/* Get the QSPI system clock */
aq->qspick = devm_clk_get(&pdev->dev, "qspick");
if (IS_ERR(aq->qspick)) {
dev_err(&pdev->dev, "missing system clock\n");
err = PTR_ERR(aq->qspick);
goto disable_pclk;
}
/* Enable the QSPI system clock */
err = clk_prepare_enable(aq->qspick);
if (err) {
dev_err(&pdev->dev,
"failed to enable the QSPI system clock\n");
goto disable_pclk;
}
}
/* Request the IRQ */
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
err = irq;
goto disable_qspick;
}
err = devm_request_irq(&pdev->dev, irq, atmel_qspi_interrupt,
0, dev_name(&pdev->dev), aq);
if (err)
goto disable_qspick;
pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
pm_runtime_get_noresume(&pdev->dev);
atmel_qspi_init(aq);
err = spi_register_controller(ctrl);
if (err) {
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_dont_use_autosuspend(&pdev->dev);
goto disable_qspick;
}
pm_runtime_mark_last_busy(&pdev->dev);
pm_runtime_put_autosuspend(&pdev->dev);
return 0;
disable_qspick:
clk_disable_unprepare(aq->qspick);
disable_pclk:
clk_disable_unprepare(aq->pclk);
return err;
}
static void atmel_qspi_remove(struct platform_device *pdev)
{
struct spi_controller *ctrl = platform_get_drvdata(pdev);
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
int ret;
spi_unregister_controller(ctrl);
ret = pm_runtime_get_sync(&pdev->dev);
if (ret >= 0) {
atmel_qspi_write(QSPI_CR_QSPIDIS, aq, QSPI_CR);
clk_disable(aq->qspick);
clk_disable(aq->pclk);
} else {
/*
* atmel_qspi_runtime_{suspend,resume} just disable and enable
* the two clks respectively. So after resume failed these are
* off, and we skip hardware access and disabling these clks again.
*/
dev_warn(&pdev->dev, "Failed to resume device on remove\n");
}
clk_unprepare(aq->qspick);
clk_unprepare(aq->pclk);
pm_runtime_disable(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
}
static int __maybe_unused atmel_qspi_suspend(struct device *dev)
{
struct spi_controller *ctrl = dev_get_drvdata(dev);
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
int ret;
ret = pm_runtime_resume_and_get(dev);
if (ret < 0)
return ret;
atmel_qspi_write(QSPI_CR_QSPIDIS, aq, QSPI_CR);
pm_runtime_mark_last_busy(dev);
pm_runtime_force_suspend(dev);
clk_unprepare(aq->qspick);
clk_unprepare(aq->pclk);
return 0;
}
static int __maybe_unused atmel_qspi_resume(struct device *dev)
{
struct spi_controller *ctrl = dev_get_drvdata(dev);
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
int ret;
clk_prepare(aq->pclk);
clk_prepare(aq->qspick);
ret = pm_runtime_force_resume(dev);
if (ret < 0)
return ret;
atmel_qspi_init(aq);
atmel_qspi_write(aq->scr, aq, QSPI_SCR);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return 0;
}
static int __maybe_unused atmel_qspi_runtime_suspend(struct device *dev)
{
struct spi_controller *ctrl = dev_get_drvdata(dev);
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
clk_disable(aq->qspick);
clk_disable(aq->pclk);
return 0;
}
static int __maybe_unused atmel_qspi_runtime_resume(struct device *dev)
{
struct spi_controller *ctrl = dev_get_drvdata(dev);
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
int ret;
ret = clk_enable(aq->pclk);
if (ret)
return ret;
ret = clk_enable(aq->qspick);
if (ret)
clk_disable(aq->pclk);
return ret;
}
static const struct dev_pm_ops __maybe_unused atmel_qspi_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(atmel_qspi_suspend, atmel_qspi_resume)
SET_RUNTIME_PM_OPS(atmel_qspi_runtime_suspend,
atmel_qspi_runtime_resume, NULL)
};
static const struct atmel_qspi_caps atmel_sama5d2_qspi_caps = {};
static const struct atmel_qspi_caps atmel_sam9x60_qspi_caps = {
.has_qspick = true,
.has_ricr = true,
};
static const struct of_device_id atmel_qspi_dt_ids[] = {
{
.compatible = "atmel,sama5d2-qspi",
.data = &atmel_sama5d2_qspi_caps,
},
{
.compatible = "microchip,sam9x60-qspi",
.data = &atmel_sam9x60_qspi_caps,
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, atmel_qspi_dt_ids);
static struct platform_driver atmel_qspi_driver = {
.driver = {
.name = "atmel_qspi",
.of_match_table = atmel_qspi_dt_ids,
.pm = pm_ptr(&atmel_qspi_pm_ops),
},
.probe = atmel_qspi_probe,
.remove_new = atmel_qspi_remove,
};
module_platform_driver(atmel_qspi_driver);
MODULE_AUTHOR("Cyrille Pitchen <cyrille.pitchen@atmel.com>");
MODULE_AUTHOR("Piotr Bugalski <bugalski.piotr@gmail.com");
MODULE_DESCRIPTION("Atmel QSPI Controller driver");
MODULE_LICENSE("GPL v2");
|