1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
|
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Symmetric key ciphers.
*
* Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
*/
#ifndef _CRYPTO_SKCIPHER_H
#define _CRYPTO_SKCIPHER_H
#include <linux/atomic.h>
#include <linux/container_of.h>
#include <linux/crypto.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/types.h>
/* Set this bit if the lskcipher operation is a continuation. */
#define CRYPTO_LSKCIPHER_FLAG_CONT 0x00000001
/* Set this bit if the lskcipher operation is final. */
#define CRYPTO_LSKCIPHER_FLAG_FINAL 0x00000002
/* The bit CRYPTO_TFM_REQ_MAY_SLEEP can also be set if needed. */
/* Set this bit if the skcipher operation is a continuation. */
#define CRYPTO_SKCIPHER_REQ_CONT 0x00000001
/* Set this bit if the skcipher operation is not final. */
#define CRYPTO_SKCIPHER_REQ_NOTFINAL 0x00000002
struct scatterlist;
/**
* struct skcipher_request - Symmetric key cipher request
* @cryptlen: Number of bytes to encrypt or decrypt
* @iv: Initialisation Vector
* @src: Source SG list
* @dst: Destination SG list
* @base: Underlying async request
* @__ctx: Start of private context data
*/
struct skcipher_request {
unsigned int cryptlen;
u8 *iv;
struct scatterlist *src;
struct scatterlist *dst;
struct crypto_async_request base;
void *__ctx[] CRYPTO_MINALIGN_ATTR;
};
struct crypto_skcipher {
unsigned int reqsize;
struct crypto_tfm base;
};
struct crypto_sync_skcipher {
struct crypto_skcipher base;
};
struct crypto_lskcipher {
struct crypto_tfm base;
};
/*
* struct skcipher_alg_common - common properties of skcipher_alg
* @min_keysize: Minimum key size supported by the transformation. This is the
* smallest key length supported by this transformation algorithm.
* This must be set to one of the pre-defined values as this is
* not hardware specific. Possible values for this field can be
* found via git grep "_MIN_KEY_SIZE" include/crypto/
* @max_keysize: Maximum key size supported by the transformation. This is the
* largest key length supported by this transformation algorithm.
* This must be set to one of the pre-defined values as this is
* not hardware specific. Possible values for this field can be
* found via git grep "_MAX_KEY_SIZE" include/crypto/
* @ivsize: IV size applicable for transformation. The consumer must provide an
* IV of exactly that size to perform the encrypt or decrypt operation.
* @chunksize: Equal to the block size except for stream ciphers such as
* CTR where it is set to the underlying block size.
* @statesize: Size of the internal state for the algorithm.
* @base: Definition of a generic crypto algorithm.
*/
#define SKCIPHER_ALG_COMMON { \
unsigned int min_keysize; \
unsigned int max_keysize; \
unsigned int ivsize; \
unsigned int chunksize; \
unsigned int statesize; \
\
struct crypto_alg base; \
}
struct skcipher_alg_common SKCIPHER_ALG_COMMON;
/**
* struct skcipher_alg - symmetric key cipher definition
* @setkey: Set key for the transformation. This function is used to either
* program a supplied key into the hardware or store the key in the
* transformation context for programming it later. Note that this
* function does modify the transformation context. This function can
* be called multiple times during the existence of the transformation
* object, so one must make sure the key is properly reprogrammed into
* the hardware. This function is also responsible for checking the key
* length for validity. In case a software fallback was put in place in
* the @cra_init call, this function might need to use the fallback if
* the algorithm doesn't support all of the key sizes.
* @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
* the supplied scatterlist containing the blocks of data. The crypto
* API consumer is responsible for aligning the entries of the
* scatterlist properly and making sure the chunks are correctly
* sized. In case a software fallback was put in place in the
* @cra_init call, this function might need to use the fallback if
* the algorithm doesn't support all of the key sizes. In case the
* key was stored in transformation context, the key might need to be
* re-programmed into the hardware in this function. This function
* shall not modify the transformation context, as this function may
* be called in parallel with the same transformation object.
* @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
* and the conditions are exactly the same.
* @export: Export partial state of the transformation. This function dumps the
* entire state of the ongoing transformation into a provided block of
* data so it can be @import 'ed back later on. This is useful in case
* you want to save partial result of the transformation after
* processing certain amount of data and reload this partial result
* multiple times later on for multiple re-use. No data processing
* happens at this point.
* @import: Import partial state of the transformation. This function loads the
* entire state of the ongoing transformation from a provided block of
* data so the transformation can continue from this point onward. No
* data processing happens at this point.
* @init: Initialize the cryptographic transformation object. This function
* is used to initialize the cryptographic transformation object.
* This function is called only once at the instantiation time, right
* after the transformation context was allocated. In case the
* cryptographic hardware has some special requirements which need to
* be handled by software, this function shall check for the precise
* requirement of the transformation and put any software fallbacks
* in place.
* @exit: Deinitialize the cryptographic transformation object. This is a
* counterpart to @init, used to remove various changes set in
* @init.
* @walksize: Equal to the chunk size except in cases where the algorithm is
* considerably more efficient if it can operate on multiple chunks
* in parallel. Should be a multiple of chunksize.
* @co: see struct skcipher_alg_common
*
* All fields except @ivsize are mandatory and must be filled.
*/
struct skcipher_alg {
int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen);
int (*encrypt)(struct skcipher_request *req);
int (*decrypt)(struct skcipher_request *req);
int (*export)(struct skcipher_request *req, void *out);
int (*import)(struct skcipher_request *req, const void *in);
int (*init)(struct crypto_skcipher *tfm);
void (*exit)(struct crypto_skcipher *tfm);
unsigned int walksize;
union {
struct SKCIPHER_ALG_COMMON;
struct skcipher_alg_common co;
};
};
/**
* struct lskcipher_alg - linear symmetric key cipher definition
* @setkey: Set key for the transformation. This function is used to either
* program a supplied key into the hardware or store the key in the
* transformation context for programming it later. Note that this
* function does modify the transformation context. This function can
* be called multiple times during the existence of the transformation
* object, so one must make sure the key is properly reprogrammed into
* the hardware. This function is also responsible for checking the key
* length for validity. In case a software fallback was put in place in
* the @cra_init call, this function might need to use the fallback if
* the algorithm doesn't support all of the key sizes.
* @encrypt: Encrypt a number of bytes. This function is used to encrypt
* the supplied data. This function shall not modify
* the transformation context, as this function may be called
* in parallel with the same transformation object. Data
* may be left over if length is not a multiple of blocks
* and there is more to come (final == false). The number of
* left-over bytes should be returned in case of success.
* The siv field shall be as long as ivsize + statesize with
* the IV placed at the front. The state will be used by the
* algorithm internally.
* @decrypt: Decrypt a number of bytes. This is a reverse counterpart to
* @encrypt and the conditions are exactly the same.
* @init: Initialize the cryptographic transformation object. This function
* is used to initialize the cryptographic transformation object.
* This function is called only once at the instantiation time, right
* after the transformation context was allocated.
* @exit: Deinitialize the cryptographic transformation object. This is a
* counterpart to @init, used to remove various changes set in
* @init.
* @co: see struct skcipher_alg_common
*/
struct lskcipher_alg {
int (*setkey)(struct crypto_lskcipher *tfm, const u8 *key,
unsigned int keylen);
int (*encrypt)(struct crypto_lskcipher *tfm, const u8 *src,
u8 *dst, unsigned len, u8 *siv, u32 flags);
int (*decrypt)(struct crypto_lskcipher *tfm, const u8 *src,
u8 *dst, unsigned len, u8 *siv, u32 flags);
int (*init)(struct crypto_lskcipher *tfm);
void (*exit)(struct crypto_lskcipher *tfm);
struct skcipher_alg_common co;
};
#define MAX_SYNC_SKCIPHER_REQSIZE 384
/*
* This performs a type-check against the "tfm" argument to make sure
* all users have the correct skcipher tfm for doing on-stack requests.
*/
#define SYNC_SKCIPHER_REQUEST_ON_STACK(name, tfm) \
char __##name##_desc[sizeof(struct skcipher_request) + \
MAX_SYNC_SKCIPHER_REQSIZE + \
(!(sizeof((struct crypto_sync_skcipher *)1 == \
(typeof(tfm))1))) \
] CRYPTO_MINALIGN_ATTR; \
struct skcipher_request *name = (void *)__##name##_desc
/**
* DOC: Symmetric Key Cipher API
*
* Symmetric key cipher API is used with the ciphers of type
* CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
*
* Asynchronous cipher operations imply that the function invocation for a
* cipher request returns immediately before the completion of the operation.
* The cipher request is scheduled as a separate kernel thread and therefore
* load-balanced on the different CPUs via the process scheduler. To allow
* the kernel crypto API to inform the caller about the completion of a cipher
* request, the caller must provide a callback function. That function is
* invoked with the cipher handle when the request completes.
*
* To support the asynchronous operation, additional information than just the
* cipher handle must be supplied to the kernel crypto API. That additional
* information is given by filling in the skcipher_request data structure.
*
* For the symmetric key cipher API, the state is maintained with the tfm
* cipher handle. A single tfm can be used across multiple calls and in
* parallel. For asynchronous block cipher calls, context data supplied and
* only used by the caller can be referenced the request data structure in
* addition to the IV used for the cipher request. The maintenance of such
* state information would be important for a crypto driver implementer to
* have, because when calling the callback function upon completion of the
* cipher operation, that callback function may need some information about
* which operation just finished if it invoked multiple in parallel. This
* state information is unused by the kernel crypto API.
*/
static inline struct crypto_skcipher *__crypto_skcipher_cast(
struct crypto_tfm *tfm)
{
return container_of(tfm, struct crypto_skcipher, base);
}
/**
* crypto_alloc_skcipher() - allocate symmetric key cipher handle
* @alg_name: is the cra_name / name or cra_driver_name / driver name of the
* skcipher cipher
* @type: specifies the type of the cipher
* @mask: specifies the mask for the cipher
*
* Allocate a cipher handle for an skcipher. The returned struct
* crypto_skcipher is the cipher handle that is required for any subsequent
* API invocation for that skcipher.
*
* Return: allocated cipher handle in case of success; IS_ERR() is true in case
* of an error, PTR_ERR() returns the error code.
*/
struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
u32 type, u32 mask);
struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(const char *alg_name,
u32 type, u32 mask);
/**
* crypto_alloc_lskcipher() - allocate linear symmetric key cipher handle
* @alg_name: is the cra_name / name or cra_driver_name / driver name of the
* lskcipher
* @type: specifies the type of the cipher
* @mask: specifies the mask for the cipher
*
* Allocate a cipher handle for an lskcipher. The returned struct
* crypto_lskcipher is the cipher handle that is required for any subsequent
* API invocation for that lskcipher.
*
* Return: allocated cipher handle in case of success; IS_ERR() is true in case
* of an error, PTR_ERR() returns the error code.
*/
struct crypto_lskcipher *crypto_alloc_lskcipher(const char *alg_name,
u32 type, u32 mask);
static inline struct crypto_tfm *crypto_skcipher_tfm(
struct crypto_skcipher *tfm)
{
return &tfm->base;
}
static inline struct crypto_tfm *crypto_lskcipher_tfm(
struct crypto_lskcipher *tfm)
{
return &tfm->base;
}
/**
* crypto_free_skcipher() - zeroize and free cipher handle
* @tfm: cipher handle to be freed
*
* If @tfm is a NULL or error pointer, this function does nothing.
*/
static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
{
crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
}
static inline void crypto_free_sync_skcipher(struct crypto_sync_skcipher *tfm)
{
crypto_free_skcipher(&tfm->base);
}
/**
* crypto_free_lskcipher() - zeroize and free cipher handle
* @tfm: cipher handle to be freed
*
* If @tfm is a NULL or error pointer, this function does nothing.
*/
static inline void crypto_free_lskcipher(struct crypto_lskcipher *tfm)
{
crypto_destroy_tfm(tfm, crypto_lskcipher_tfm(tfm));
}
/**
* crypto_has_skcipher() - Search for the availability of an skcipher.
* @alg_name: is the cra_name / name or cra_driver_name / driver name of the
* skcipher
* @type: specifies the type of the skcipher
* @mask: specifies the mask for the skcipher
*
* Return: true when the skcipher is known to the kernel crypto API; false
* otherwise
*/
int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask);
static inline const char *crypto_skcipher_driver_name(
struct crypto_skcipher *tfm)
{
return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
}
static inline const char *crypto_lskcipher_driver_name(
struct crypto_lskcipher *tfm)
{
return crypto_tfm_alg_driver_name(crypto_lskcipher_tfm(tfm));
}
static inline struct skcipher_alg_common *crypto_skcipher_alg_common(
struct crypto_skcipher *tfm)
{
return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
struct skcipher_alg_common, base);
}
static inline struct skcipher_alg *crypto_skcipher_alg(
struct crypto_skcipher *tfm)
{
return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
struct skcipher_alg, base);
}
static inline struct lskcipher_alg *crypto_lskcipher_alg(
struct crypto_lskcipher *tfm)
{
return container_of(crypto_lskcipher_tfm(tfm)->__crt_alg,
struct lskcipher_alg, co.base);
}
/**
* crypto_skcipher_ivsize() - obtain IV size
* @tfm: cipher handle
*
* The size of the IV for the skcipher referenced by the cipher handle is
* returned. This IV size may be zero if the cipher does not need an IV.
*
* Return: IV size in bytes
*/
static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
{
return crypto_skcipher_alg_common(tfm)->ivsize;
}
static inline unsigned int crypto_sync_skcipher_ivsize(
struct crypto_sync_skcipher *tfm)
{
return crypto_skcipher_ivsize(&tfm->base);
}
/**
* crypto_lskcipher_ivsize() - obtain IV size
* @tfm: cipher handle
*
* The size of the IV for the lskcipher referenced by the cipher handle is
* returned. This IV size may be zero if the cipher does not need an IV.
*
* Return: IV size in bytes
*/
static inline unsigned int crypto_lskcipher_ivsize(
struct crypto_lskcipher *tfm)
{
return crypto_lskcipher_alg(tfm)->co.ivsize;
}
/**
* crypto_skcipher_blocksize() - obtain block size of cipher
* @tfm: cipher handle
*
* The block size for the skcipher referenced with the cipher handle is
* returned. The caller may use that information to allocate appropriate
* memory for the data returned by the encryption or decryption operation
*
* Return: block size of cipher
*/
static inline unsigned int crypto_skcipher_blocksize(
struct crypto_skcipher *tfm)
{
return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
}
/**
* crypto_lskcipher_blocksize() - obtain block size of cipher
* @tfm: cipher handle
*
* The block size for the lskcipher referenced with the cipher handle is
* returned. The caller may use that information to allocate appropriate
* memory for the data returned by the encryption or decryption operation
*
* Return: block size of cipher
*/
static inline unsigned int crypto_lskcipher_blocksize(
struct crypto_lskcipher *tfm)
{
return crypto_tfm_alg_blocksize(crypto_lskcipher_tfm(tfm));
}
/**
* crypto_skcipher_chunksize() - obtain chunk size
* @tfm: cipher handle
*
* The block size is set to one for ciphers such as CTR. However,
* you still need to provide incremental updates in multiples of
* the underlying block size as the IV does not have sub-block
* granularity. This is known in this API as the chunk size.
*
* Return: chunk size in bytes
*/
static inline unsigned int crypto_skcipher_chunksize(
struct crypto_skcipher *tfm)
{
return crypto_skcipher_alg_common(tfm)->chunksize;
}
/**
* crypto_lskcipher_chunksize() - obtain chunk size
* @tfm: cipher handle
*
* The block size is set to one for ciphers such as CTR. However,
* you still need to provide incremental updates in multiples of
* the underlying block size as the IV does not have sub-block
* granularity. This is known in this API as the chunk size.
*
* Return: chunk size in bytes
*/
static inline unsigned int crypto_lskcipher_chunksize(
struct crypto_lskcipher *tfm)
{
return crypto_lskcipher_alg(tfm)->co.chunksize;
}
/**
* crypto_skcipher_statesize() - obtain state size
* @tfm: cipher handle
*
* Some algorithms cannot be chained with the IV alone. They carry
* internal state which must be replicated if data is to be processed
* incrementally. The size of that state can be obtained with this
* function.
*
* Return: state size in bytes
*/
static inline unsigned int crypto_skcipher_statesize(
struct crypto_skcipher *tfm)
{
return crypto_skcipher_alg_common(tfm)->statesize;
}
/**
* crypto_lskcipher_statesize() - obtain state size
* @tfm: cipher handle
*
* Some algorithms cannot be chained with the IV alone. They carry
* internal state which must be replicated if data is to be processed
* incrementally. The size of that state can be obtained with this
* function.
*
* Return: state size in bytes
*/
static inline unsigned int crypto_lskcipher_statesize(
struct crypto_lskcipher *tfm)
{
return crypto_lskcipher_alg(tfm)->co.statesize;
}
static inline unsigned int crypto_sync_skcipher_blocksize(
struct crypto_sync_skcipher *tfm)
{
return crypto_skcipher_blocksize(&tfm->base);
}
static inline unsigned int crypto_skcipher_alignmask(
struct crypto_skcipher *tfm)
{
return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
}
static inline unsigned int crypto_lskcipher_alignmask(
struct crypto_lskcipher *tfm)
{
return crypto_tfm_alg_alignmask(crypto_lskcipher_tfm(tfm));
}
static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
{
return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
}
static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
u32 flags)
{
crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
}
static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
u32 flags)
{
crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
}
static inline u32 crypto_sync_skcipher_get_flags(
struct crypto_sync_skcipher *tfm)
{
return crypto_skcipher_get_flags(&tfm->base);
}
static inline void crypto_sync_skcipher_set_flags(
struct crypto_sync_skcipher *tfm, u32 flags)
{
crypto_skcipher_set_flags(&tfm->base, flags);
}
static inline void crypto_sync_skcipher_clear_flags(
struct crypto_sync_skcipher *tfm, u32 flags)
{
crypto_skcipher_clear_flags(&tfm->base, flags);
}
static inline u32 crypto_lskcipher_get_flags(struct crypto_lskcipher *tfm)
{
return crypto_tfm_get_flags(crypto_lskcipher_tfm(tfm));
}
static inline void crypto_lskcipher_set_flags(struct crypto_lskcipher *tfm,
u32 flags)
{
crypto_tfm_set_flags(crypto_lskcipher_tfm(tfm), flags);
}
static inline void crypto_lskcipher_clear_flags(struct crypto_lskcipher *tfm,
u32 flags)
{
crypto_tfm_clear_flags(crypto_lskcipher_tfm(tfm), flags);
}
/**
* crypto_skcipher_setkey() - set key for cipher
* @tfm: cipher handle
* @key: buffer holding the key
* @keylen: length of the key in bytes
*
* The caller provided key is set for the skcipher referenced by the cipher
* handle.
*
* Note, the key length determines the cipher type. Many block ciphers implement
* different cipher modes depending on the key size, such as AES-128 vs AES-192
* vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
* is performed.
*
* Return: 0 if the setting of the key was successful; < 0 if an error occurred
*/
int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
const u8 *key, unsigned int keylen);
static inline int crypto_sync_skcipher_setkey(struct crypto_sync_skcipher *tfm,
const u8 *key, unsigned int keylen)
{
return crypto_skcipher_setkey(&tfm->base, key, keylen);
}
/**
* crypto_lskcipher_setkey() - set key for cipher
* @tfm: cipher handle
* @key: buffer holding the key
* @keylen: length of the key in bytes
*
* The caller provided key is set for the lskcipher referenced by the cipher
* handle.
*
* Note, the key length determines the cipher type. Many block ciphers implement
* different cipher modes depending on the key size, such as AES-128 vs AES-192
* vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
* is performed.
*
* Return: 0 if the setting of the key was successful; < 0 if an error occurred
*/
int crypto_lskcipher_setkey(struct crypto_lskcipher *tfm,
const u8 *key, unsigned int keylen);
static inline unsigned int crypto_skcipher_min_keysize(
struct crypto_skcipher *tfm)
{
return crypto_skcipher_alg_common(tfm)->min_keysize;
}
static inline unsigned int crypto_skcipher_max_keysize(
struct crypto_skcipher *tfm)
{
return crypto_skcipher_alg_common(tfm)->max_keysize;
}
static inline unsigned int crypto_lskcipher_min_keysize(
struct crypto_lskcipher *tfm)
{
return crypto_lskcipher_alg(tfm)->co.min_keysize;
}
static inline unsigned int crypto_lskcipher_max_keysize(
struct crypto_lskcipher *tfm)
{
return crypto_lskcipher_alg(tfm)->co.max_keysize;
}
/**
* crypto_skcipher_reqtfm() - obtain cipher handle from request
* @req: skcipher_request out of which the cipher handle is to be obtained
*
* Return the crypto_skcipher handle when furnishing an skcipher_request
* data structure.
*
* Return: crypto_skcipher handle
*/
static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
struct skcipher_request *req)
{
return __crypto_skcipher_cast(req->base.tfm);
}
static inline struct crypto_sync_skcipher *crypto_sync_skcipher_reqtfm(
struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
return container_of(tfm, struct crypto_sync_skcipher, base);
}
/**
* crypto_skcipher_encrypt() - encrypt plaintext
* @req: reference to the skcipher_request handle that holds all information
* needed to perform the cipher operation
*
* Encrypt plaintext data using the skcipher_request handle. That data
* structure and how it is filled with data is discussed with the
* skcipher_request_* functions.
*
* Return: 0 if the cipher operation was successful; < 0 if an error occurred
*/
int crypto_skcipher_encrypt(struct skcipher_request *req);
/**
* crypto_skcipher_decrypt() - decrypt ciphertext
* @req: reference to the skcipher_request handle that holds all information
* needed to perform the cipher operation
*
* Decrypt ciphertext data using the skcipher_request handle. That data
* structure and how it is filled with data is discussed with the
* skcipher_request_* functions.
*
* Return: 0 if the cipher operation was successful; < 0 if an error occurred
*/
int crypto_skcipher_decrypt(struct skcipher_request *req);
/**
* crypto_skcipher_export() - export partial state
* @req: reference to the skcipher_request handle that holds all information
* needed to perform the operation
* @out: output buffer of sufficient size that can hold the state
*
* Export partial state of the transformation. This function dumps the
* entire state of the ongoing transformation into a provided block of
* data so it can be @import 'ed back later on. This is useful in case
* you want to save partial result of the transformation after
* processing certain amount of data and reload this partial result
* multiple times later on for multiple re-use. No data processing
* happens at this point.
*
* Return: 0 if the cipher operation was successful; < 0 if an error occurred
*/
int crypto_skcipher_export(struct skcipher_request *req, void *out);
/**
* crypto_skcipher_import() - import partial state
* @req: reference to the skcipher_request handle that holds all information
* needed to perform the operation
* @in: buffer holding the state
*
* Import partial state of the transformation. This function loads the
* entire state of the ongoing transformation from a provided block of
* data so the transformation can continue from this point onward. No
* data processing happens at this point.
*
* Return: 0 if the cipher operation was successful; < 0 if an error occurred
*/
int crypto_skcipher_import(struct skcipher_request *req, const void *in);
/**
* crypto_lskcipher_encrypt() - encrypt plaintext
* @tfm: lskcipher handle
* @src: source buffer
* @dst: destination buffer
* @len: number of bytes to process
* @siv: IV + state for the cipher operation. The length of the IV must
* comply with the IV size defined by crypto_lskcipher_ivsize. The
* IV is then followed with a buffer with the length as specified by
* crypto_lskcipher_statesize.
* Encrypt plaintext data using the lskcipher handle.
*
* Return: >=0 if the cipher operation was successful, if positive
* then this many bytes have been left unprocessed;
* < 0 if an error occurred
*/
int crypto_lskcipher_encrypt(struct crypto_lskcipher *tfm, const u8 *src,
u8 *dst, unsigned len, u8 *siv);
/**
* crypto_lskcipher_decrypt() - decrypt ciphertext
* @tfm: lskcipher handle
* @src: source buffer
* @dst: destination buffer
* @len: number of bytes to process
* @siv: IV + state for the cipher operation. The length of the IV must
* comply with the IV size defined by crypto_lskcipher_ivsize. The
* IV is then followed with a buffer with the length as specified by
* crypto_lskcipher_statesize.
*
* Decrypt ciphertext data using the lskcipher handle.
*
* Return: >=0 if the cipher operation was successful, if positive
* then this many bytes have been left unprocessed;
* < 0 if an error occurred
*/
int crypto_lskcipher_decrypt(struct crypto_lskcipher *tfm, const u8 *src,
u8 *dst, unsigned len, u8 *siv);
/**
* DOC: Symmetric Key Cipher Request Handle
*
* The skcipher_request data structure contains all pointers to data
* required for the symmetric key cipher operation. This includes the cipher
* handle (which can be used by multiple skcipher_request instances), pointer
* to plaintext and ciphertext, asynchronous callback function, etc. It acts
* as a handle to the skcipher_request_* API calls in a similar way as
* skcipher handle to the crypto_skcipher_* API calls.
*/
/**
* crypto_skcipher_reqsize() - obtain size of the request data structure
* @tfm: cipher handle
*
* Return: number of bytes
*/
static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
{
return tfm->reqsize;
}
/**
* skcipher_request_set_tfm() - update cipher handle reference in request
* @req: request handle to be modified
* @tfm: cipher handle that shall be added to the request handle
*
* Allow the caller to replace the existing skcipher handle in the request
* data structure with a different one.
*/
static inline void skcipher_request_set_tfm(struct skcipher_request *req,
struct crypto_skcipher *tfm)
{
req->base.tfm = crypto_skcipher_tfm(tfm);
}
static inline void skcipher_request_set_sync_tfm(struct skcipher_request *req,
struct crypto_sync_skcipher *tfm)
{
skcipher_request_set_tfm(req, &tfm->base);
}
static inline struct skcipher_request *skcipher_request_cast(
struct crypto_async_request *req)
{
return container_of(req, struct skcipher_request, base);
}
/**
* skcipher_request_alloc() - allocate request data structure
* @tfm: cipher handle to be registered with the request
* @gfp: memory allocation flag that is handed to kmalloc by the API call.
*
* Allocate the request data structure that must be used with the skcipher
* encrypt and decrypt API calls. During the allocation, the provided skcipher
* handle is registered in the request data structure.
*
* Return: allocated request handle in case of success, or NULL if out of memory
*/
static inline struct skcipher_request *skcipher_request_alloc_noprof(
struct crypto_skcipher *tfm, gfp_t gfp)
{
struct skcipher_request *req;
req = kmalloc_noprof(sizeof(struct skcipher_request) +
crypto_skcipher_reqsize(tfm), gfp);
if (likely(req))
skcipher_request_set_tfm(req, tfm);
return req;
}
#define skcipher_request_alloc(...) alloc_hooks(skcipher_request_alloc_noprof(__VA_ARGS__))
/**
* skcipher_request_free() - zeroize and free request data structure
* @req: request data structure cipher handle to be freed
*/
static inline void skcipher_request_free(struct skcipher_request *req)
{
kfree_sensitive(req);
}
static inline void skcipher_request_zero(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
}
/**
* skcipher_request_set_callback() - set asynchronous callback function
* @req: request handle
* @flags: specify zero or an ORing of the flags
* CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
* increase the wait queue beyond the initial maximum size;
* CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
* @compl: callback function pointer to be registered with the request handle
* @data: The data pointer refers to memory that is not used by the kernel
* crypto API, but provided to the callback function for it to use. Here,
* the caller can provide a reference to memory the callback function can
* operate on. As the callback function is invoked asynchronously to the
* related functionality, it may need to access data structures of the
* related functionality which can be referenced using this pointer. The
* callback function can access the memory via the "data" field in the
* crypto_async_request data structure provided to the callback function.
*
* This function allows setting the callback function that is triggered once the
* cipher operation completes.
*
* The callback function is registered with the skcipher_request handle and
* must comply with the following template::
*
* void callback_function(struct crypto_async_request *req, int error)
*/
static inline void skcipher_request_set_callback(struct skcipher_request *req,
u32 flags,
crypto_completion_t compl,
void *data)
{
req->base.complete = compl;
req->base.data = data;
req->base.flags = flags;
}
/**
* skcipher_request_set_crypt() - set data buffers
* @req: request handle
* @src: source scatter / gather list
* @dst: destination scatter / gather list
* @cryptlen: number of bytes to process from @src
* @iv: IV for the cipher operation which must comply with the IV size defined
* by crypto_skcipher_ivsize
*
* This function allows setting of the source data and destination data
* scatter / gather lists.
*
* For encryption, the source is treated as the plaintext and the
* destination is the ciphertext. For a decryption operation, the use is
* reversed - the source is the ciphertext and the destination is the plaintext.
*/
static inline void skcipher_request_set_crypt(
struct skcipher_request *req,
struct scatterlist *src, struct scatterlist *dst,
unsigned int cryptlen, void *iv)
{
req->src = src;
req->dst = dst;
req->cryptlen = cryptlen;
req->iv = iv;
}
#endif /* _CRYPTO_SKCIPHER_H */
|