summaryrefslogtreecommitdiffstats
path: root/tools/testing/selftests/seccomp/seccomp_benchmark.c
blob: 94886c82ae609f890965b03a4207f53a8b5ec3f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
/*
 * Strictly speaking, this is not a test. But it can report during test
 * runs so relative performace can be measured.
 */
#define _GNU_SOURCE
#include <assert.h>
#include <err.h>
#include <limits.h>
#include <sched.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <unistd.h>
#include <linux/filter.h>
#include <linux/seccomp.h>
#include <sys/param.h>
#include <sys/prctl.h>
#include <sys/syscall.h>
#include <sys/types.h>

#include "../kselftest.h"

unsigned long long timing(clockid_t clk_id, unsigned long long samples)
{
	struct timespec start, finish;
	unsigned long long i;
	pid_t pid, ret;

	pid = getpid();
	assert(clock_gettime(clk_id, &start) == 0);
	for (i = 0; i < samples; i++) {
		ret = syscall(__NR_getpid);
		assert(pid == ret);
	}
	assert(clock_gettime(clk_id, &finish) == 0);

	i = finish.tv_sec - start.tv_sec;
	i *= 1000000000ULL;
	i += finish.tv_nsec - start.tv_nsec;

	ksft_print_msg("%lu.%09lu - %lu.%09lu = %llu (%.1fs)\n",
		       finish.tv_sec, finish.tv_nsec,
		       start.tv_sec, start.tv_nsec,
		       i, (double)i / 1000000000.0);

	return i;
}

unsigned long long calibrate(void)
{
	struct timespec start, finish;
	unsigned long long i, samples, step = 9973;
	pid_t pid, ret;
	int seconds = 15;

	ksft_print_msg("Calibrating sample size for %d seconds worth of syscalls ...\n", seconds);

	samples = 0;
	pid = getpid();
	assert(clock_gettime(CLOCK_MONOTONIC, &start) == 0);
	do {
		for (i = 0; i < step; i++) {
			ret = syscall(__NR_getpid);
			assert(pid == ret);
		}
		assert(clock_gettime(CLOCK_MONOTONIC, &finish) == 0);

		samples += step;
		i = finish.tv_sec - start.tv_sec;
		i *= 1000000000ULL;
		i += finish.tv_nsec - start.tv_nsec;
	} while (i < 1000000000ULL);

	return samples * seconds;
}

bool approx(int i_one, int i_two)
{
	/*
	 * This continues to be a noisy test. Instead of a 1% comparison
	 * go with 10%.
	 */
	double one = i_one, one_bump = one * 0.1;
	double two = i_two, two_bump = two * 0.1;

	one_bump = one + MAX(one_bump, 2.0);
	two_bump = two + MAX(two_bump, 2.0);

	/* Equal to, or within 1% or 2 digits */
	if (one == two ||
	    (one > two && one <= two_bump) ||
	    (two > one && two <= one_bump))
		return true;
	return false;
}

bool le(int i_one, int i_two)
{
	if (i_one <= i_two)
		return true;
	return false;
}

long compare(const char *name_one, const char *name_eval, const char *name_two,
	     unsigned long long one, bool (*eval)(int, int), unsigned long long two,
	     bool skip)
{
	bool good;

	if (skip) {
		ksft_test_result_skip("%s %s %s\n", name_one, name_eval,
				      name_two);
		return 0;
	}

	ksft_print_msg("\t%s %s %s (%lld %s %lld): ", name_one, name_eval, name_two,
		       (long long)one, name_eval, (long long)two);
	if (one > INT_MAX) {
		ksft_print_msg("Miscalculation! Measurement went negative: %lld\n", (long long)one);
		good = false;
		goto out;
	}
	if (two > INT_MAX) {
		ksft_print_msg("Miscalculation! Measurement went negative: %lld\n", (long long)two);
		good = false;
		goto out;
	}

	good = eval(one, two);
	printf("%s\n", good ? "✔️" : "❌");

out:
	ksft_test_result(good, "%s %s %s\n", name_one, name_eval, name_two);

	return good ? 0 : 1;
}

/* Pin to a single CPU so the benchmark won't bounce around the system. */
void affinity(void)
{
	long cpu;
	ulong ncores = sysconf(_SC_NPROCESSORS_CONF);
	cpu_set_t *setp = CPU_ALLOC(ncores);
	ulong setsz = CPU_ALLOC_SIZE(ncores);

	/*
	 * Totally unscientific way to avoid CPUs that might be busier:
	 * choose the highest CPU instead of the lowest.
	 */
	for (cpu = ncores - 1; cpu >= 0; cpu--) {
		CPU_ZERO_S(setsz, setp);
		CPU_SET_S(cpu, setsz, setp);
		if (sched_setaffinity(getpid(), setsz, setp) == -1)
			continue;
		printf("Pinned to CPU %lu of %lu\n", cpu + 1, ncores);
		goto out;
	}
	fprintf(stderr, "Could not set CPU affinity -- calibration may not work well");

out:
	CPU_FREE(setp);
}

int main(int argc, char *argv[])
{
	struct sock_filter bitmap_filter[] = {
		BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, nr)),
		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
	};
	struct sock_fprog bitmap_prog = {
		.len = (unsigned short)ARRAY_SIZE(bitmap_filter),
		.filter = bitmap_filter,
	};
	struct sock_filter filter[] = {
		BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, args[0])),
		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
	};
	struct sock_fprog prog = {
		.len = (unsigned short)ARRAY_SIZE(filter),
		.filter = filter,
	};

	long ret, bits;
	unsigned long long samples, calc;
	unsigned long long native, filter1, filter2, bitmap1, bitmap2;
	unsigned long long entry, per_filter1, per_filter2;
	bool skip = false;

	setbuf(stdout, NULL);

	ksft_print_header();
	ksft_set_plan(7);

	ksft_print_msg("Running on:\n");
	ksft_print_msg("%s", "");
	system("uname -a");

	ksft_print_msg("Current BPF sysctl settings:\n");
	/* Avoid using "sysctl" which may not be installed. */
	ksft_print_msg("%s", "");
	system("grep -H . /proc/sys/net/core/bpf_jit_enable");
	ksft_print_msg("%s", "");
	system("grep -H . /proc/sys/net/core/bpf_jit_harden");

	affinity();

	if (argc > 1)
		samples = strtoull(argv[1], NULL, 0);
	else
		samples = calibrate();

	ksft_print_msg("Benchmarking %llu syscalls...\n", samples);

	/* Native call */
	native = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples;
	ksft_print_msg("getpid native: %llu ns\n", native);

	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
	assert(ret == 0);

	/* One filter resulting in a bitmap */
	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &bitmap_prog);
	assert(ret == 0);

	bitmap1 = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples;
	ksft_print_msg("getpid RET_ALLOW 1 filter (bitmap): %llu ns\n", bitmap1);

	/* Second filter resulting in a bitmap */
	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &bitmap_prog);
	assert(ret == 0);

	bitmap2 = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples;
	ksft_print_msg("getpid RET_ALLOW 2 filters (bitmap): %llu ns\n", bitmap2);

	/* Third filter, can no longer be converted to bitmap */
	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog);
	assert(ret == 0);

	filter1 = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples;
	ksft_print_msg("getpid RET_ALLOW 3 filters (full): %llu ns\n", filter1);

	/* Fourth filter, can not be converted to bitmap because of filter 3 */
	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &bitmap_prog);
	assert(ret == 0);

	filter2 = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples;
	ksft_print_msg("getpid RET_ALLOW 4 filters (full): %llu ns\n", filter2);

	/* Estimations */
#define ESTIMATE(fmt, var, what)	do {			\
		var = (what);					\
		ksft_print_msg("Estimated " fmt ": %llu ns\n", var);	\
		if (var > INT_MAX) {				\
			skip = true;				\
			ret |= 1;				\
		}						\
	} while (0)

	ESTIMATE("total seccomp overhead for 1 bitmapped filter", calc,
		 bitmap1 - native);
	ESTIMATE("total seccomp overhead for 2 bitmapped filters", calc,
		 bitmap2 - native);
	ESTIMATE("total seccomp overhead for 3 full filters", calc,
		 filter1 - native);
	ESTIMATE("total seccomp overhead for 4 full filters", calc,
		 filter2 - native);
	ESTIMATE("seccomp entry overhead", entry,
		 bitmap1 - native - (bitmap2 - bitmap1));
	ESTIMATE("seccomp per-filter overhead (last 2 diff)", per_filter1,
		 filter2 - filter1);
	ESTIMATE("seccomp per-filter overhead (filters / 4)", per_filter2,
		 (filter2 - native - entry) / 4);

	ksft_print_msg("Expectations:\n");
	ret |= compare("native", "≤", "1 bitmap", native, le, bitmap1,
		       skip);
	bits = compare("native", "≤", "1 filter", native, le, filter1,
		       skip);
	if (bits)
		skip = true;

	ret |= compare("per-filter (last 2 diff)", "≈", "per-filter (filters / 4)",
		       per_filter1, approx, per_filter2, skip);

	bits = compare("1 bitmapped", "≈", "2 bitmapped",
		       bitmap1 - native, approx, bitmap2 - native, skip);
	if (bits) {
		ksft_print_msg("Skipping constant action bitmap expectations: they appear unsupported.\n");
		skip = true;
	}

	ret |= compare("entry", "≈", "1 bitmapped", entry, approx,
		       bitmap1 - native, skip);
	ret |= compare("entry", "≈", "2 bitmapped", entry, approx,
		       bitmap2 - native, skip);
	ret |= compare("native + entry + (per filter * 4)", "≈", "4 filters total",
		       entry + (per_filter1 * 4) + native, approx, filter2,
		       skip);

	if (ret)
		ksft_print_msg("Saw unexpected benchmark result. Try running again with more samples?\n");

	ksft_finished();
}