diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-15 20:01:36 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-15 20:01:36 +0000 |
commit | 62e4c68907d8d33709c2c1f92a161dff00b3d5f2 (patch) | |
tree | adbbaf3acf88ea08f6eeec4b75ee98ad3b07fbdc /src/fmtlib/fmt/format.h | |
parent | Initial commit. (diff) | |
download | lnav-62e4c68907d8d33709c2c1f92a161dff00b3d5f2.tar.xz lnav-62e4c68907d8d33709c2c1f92a161dff00b3d5f2.zip |
Adding upstream version 0.11.2.upstream/0.11.2
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/fmtlib/fmt/format.h')
-rw-r--r-- | src/fmtlib/fmt/format.h | 4735 |
1 files changed, 4735 insertions, 0 deletions
diff --git a/src/fmtlib/fmt/format.h b/src/fmtlib/fmt/format.h new file mode 100644 index 0000000..ed8b29e --- /dev/null +++ b/src/fmtlib/fmt/format.h @@ -0,0 +1,4735 @@ +/* + Formatting library for C++ + + Copyright (c) 2012 - present, Victor Zverovich + + Permission is hereby granted, free of charge, to any person obtaining + a copy of this software and associated documentation files (the + "Software"), to deal in the Software without restriction, including + without limitation the rights to use, copy, modify, merge, publish, + distribute, sublicense, and/or sell copies of the Software, and to + permit persons to whom the Software is furnished to do so, subject to + the following conditions: + + The above copyright notice and this permission notice shall be + included in all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE + LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION + OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION + WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + + --- Optional exception to the license --- + + As an exception, if, as a result of your compiling your source code, portions + of this Software are embedded into a machine-executable object form of such + source code, you may redistribute such embedded portions in such object form + without including the above copyright and permission notices. + */ + +#ifndef FMT_FORMAT_H_ +#define FMT_FORMAT_H_ + +#include <cmath> // std::signbit +#include <cstdint> // uint32_t +#include <cstring> // std::memcpy +#include <initializer_list> // std::initializer_list +#include <limits> // std::numeric_limits +#include <memory> // std::uninitialized_copy +#include <stdexcept> // std::runtime_error +#include <system_error> // std::system_error + +#ifdef __cpp_lib_bit_cast +# include <bit> // std::bitcast +#endif + +#include "core.h" + +#ifndef FMT_BEGIN_DETAIL_NAMESPACE +# define FMT_BEGIN_DETAIL_NAMESPACE namespace detail { +# define FMT_END_DETAIL_NAMESPACE } +#endif + +#if FMT_HAS_CPP17_ATTRIBUTE(fallthrough) +# define FMT_FALLTHROUGH [[fallthrough]] +#elif defined(__clang__) +# define FMT_FALLTHROUGH [[clang::fallthrough]] +#elif FMT_GCC_VERSION >= 700 && \ + (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= 520) +# define FMT_FALLTHROUGH [[gnu::fallthrough]] +#else +# define FMT_FALLTHROUGH +#endif + +#ifndef FMT_DEPRECATED +# if FMT_HAS_CPP14_ATTRIBUTE(deprecated) || FMT_MSC_VERSION >= 1900 +# define FMT_DEPRECATED [[deprecated]] +# else +# if (defined(__GNUC__) && !defined(__LCC__)) || defined(__clang__) +# define FMT_DEPRECATED __attribute__((deprecated)) +# elif FMT_MSC_VERSION +# define FMT_DEPRECATED __declspec(deprecated) +# else +# define FMT_DEPRECATED /* deprecated */ +# endif +# endif +#endif + +#if FMT_GCC_VERSION +# define FMT_GCC_VISIBILITY_HIDDEN __attribute__((visibility("hidden"))) +#else +# define FMT_GCC_VISIBILITY_HIDDEN +#endif + +#ifdef __NVCC__ +# define FMT_CUDA_VERSION (__CUDACC_VER_MAJOR__ * 100 + __CUDACC_VER_MINOR__) +#else +# define FMT_CUDA_VERSION 0 +#endif + +#ifdef __has_builtin +# define FMT_HAS_BUILTIN(x) __has_builtin(x) +#else +# define FMT_HAS_BUILTIN(x) 0 +#endif + +#if FMT_GCC_VERSION || FMT_CLANG_VERSION +# define FMT_NOINLINE __attribute__((noinline)) +#else +# define FMT_NOINLINE +#endif + +#ifndef FMT_THROW +# if FMT_EXCEPTIONS +# if FMT_MSC_VERSION || defined(__NVCC__) +FMT_BEGIN_NAMESPACE +namespace detail { +template <typename Exception> inline void do_throw(const Exception& x) { + // Silence unreachable code warnings in MSVC and NVCC because these + // are nearly impossible to fix in a generic code. + volatile bool b = true; + if (b) throw x; +} +} // namespace detail +FMT_END_NAMESPACE +# define FMT_THROW(x) detail::do_throw(x) +# else +# define FMT_THROW(x) throw x +# endif +# else +# define FMT_THROW(x) \ + do { \ + FMT_ASSERT(false, (x).what()); \ + } while (false) +# endif +#endif + +#if FMT_EXCEPTIONS +# define FMT_TRY try +# define FMT_CATCH(x) catch (x) +#else +# define FMT_TRY if (true) +# define FMT_CATCH(x) if (false) +#endif + +#ifndef FMT_MAYBE_UNUSED +# if FMT_HAS_CPP17_ATTRIBUTE(maybe_unused) +# define FMT_MAYBE_UNUSED [[maybe_unused]] +# else +# define FMT_MAYBE_UNUSED +# endif +#endif + +#ifndef FMT_USE_USER_DEFINED_LITERALS +// EDG based compilers (Intel, NVIDIA, Elbrus, etc), GCC and MSVC support UDLs. +# if (FMT_HAS_FEATURE(cxx_user_literals) || FMT_GCC_VERSION >= 407 || \ + FMT_MSC_VERSION >= 1900) && \ + (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= /* UDL feature */ 480) +# define FMT_USE_USER_DEFINED_LITERALS 1 +# else +# define FMT_USE_USER_DEFINED_LITERALS 0 +# endif +#endif + +// Defining FMT_REDUCE_INT_INSTANTIATIONS to 1, will reduce the number of +// integer formatter template instantiations to just one by only using the +// largest integer type. This results in a reduction in binary size but will +// cause a decrease in integer formatting performance. +#if !defined(FMT_REDUCE_INT_INSTANTIATIONS) +# define FMT_REDUCE_INT_INSTANTIATIONS 0 +#endif + +// __builtin_clz is broken in clang with Microsoft CodeGen: +// https://github.com/fmtlib/fmt/issues/519. +#if !FMT_MSC_VERSION +# if FMT_HAS_BUILTIN(__builtin_clz) || FMT_GCC_VERSION || FMT_ICC_VERSION +# define FMT_BUILTIN_CLZ(n) __builtin_clz(n) +# endif +# if FMT_HAS_BUILTIN(__builtin_clzll) || FMT_GCC_VERSION || FMT_ICC_VERSION +# define FMT_BUILTIN_CLZLL(n) __builtin_clzll(n) +# endif +#endif + +// __builtin_ctz is broken in Intel Compiler Classic on Windows: +// https://github.com/fmtlib/fmt/issues/2510. +#ifndef __ICL +# if FMT_HAS_BUILTIN(__builtin_ctz) || FMT_GCC_VERSION || FMT_ICC_VERSION || \ + defined(__NVCOMPILER) +# define FMT_BUILTIN_CTZ(n) __builtin_ctz(n) +# endif +# if FMT_HAS_BUILTIN(__builtin_ctzll) || FMT_GCC_VERSION || \ + FMT_ICC_VERSION || defined(__NVCOMPILER) +# define FMT_BUILTIN_CTZLL(n) __builtin_ctzll(n) +# endif +#endif + +#if FMT_MSC_VERSION +# include <intrin.h> // _BitScanReverse[64], _BitScanForward[64], _umul128 +#endif + +// Some compilers masquerade as both MSVC and GCC-likes or otherwise support +// __builtin_clz and __builtin_clzll, so only define FMT_BUILTIN_CLZ using the +// MSVC intrinsics if the clz and clzll builtins are not available. +#if FMT_MSC_VERSION && !defined(FMT_BUILTIN_CLZLL) && \ + !defined(FMT_BUILTIN_CTZLL) +FMT_BEGIN_NAMESPACE +namespace detail { +// Avoid Clang with Microsoft CodeGen's -Wunknown-pragmas warning. +# if !defined(__clang__) +# pragma intrinsic(_BitScanForward) +# pragma intrinsic(_BitScanReverse) +# if defined(_WIN64) +# pragma intrinsic(_BitScanForward64) +# pragma intrinsic(_BitScanReverse64) +# endif +# endif + +inline auto clz(uint32_t x) -> int { + unsigned long r = 0; + _BitScanReverse(&r, x); + FMT_ASSERT(x != 0, ""); + // Static analysis complains about using uninitialized data + // "r", but the only way that can happen is if "x" is 0, + // which the callers guarantee to not happen. + FMT_MSC_WARNING(suppress : 6102) + return 31 ^ static_cast<int>(r); +} +# define FMT_BUILTIN_CLZ(n) detail::clz(n) + +inline auto clzll(uint64_t x) -> int { + unsigned long r = 0; +# ifdef _WIN64 + _BitScanReverse64(&r, x); +# else + // Scan the high 32 bits. + if (_BitScanReverse(&r, static_cast<uint32_t>(x >> 32))) + return 63 ^ static_cast<int>(r + 32); + // Scan the low 32 bits. + _BitScanReverse(&r, static_cast<uint32_t>(x)); +# endif + FMT_ASSERT(x != 0, ""); + FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning. + return 63 ^ static_cast<int>(r); +} +# define FMT_BUILTIN_CLZLL(n) detail::clzll(n) + +inline auto ctz(uint32_t x) -> int { + unsigned long r = 0; + _BitScanForward(&r, x); + FMT_ASSERT(x != 0, ""); + FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning. + return static_cast<int>(r); +} +# define FMT_BUILTIN_CTZ(n) detail::ctz(n) + +inline auto ctzll(uint64_t x) -> int { + unsigned long r = 0; + FMT_ASSERT(x != 0, ""); + FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning. +# ifdef _WIN64 + _BitScanForward64(&r, x); +# else + // Scan the low 32 bits. + if (_BitScanForward(&r, static_cast<uint32_t>(x))) return static_cast<int>(r); + // Scan the high 32 bits. + _BitScanForward(&r, static_cast<uint32_t>(x >> 32)); + r += 32; +# endif + return static_cast<int>(r); +} +# define FMT_BUILTIN_CTZLL(n) detail::ctzll(n) +} // namespace detail +FMT_END_NAMESPACE +#endif + +FMT_BEGIN_NAMESPACE + +template <typename...> struct disjunction : std::false_type {}; +template <typename P> struct disjunction<P> : P {}; +template <typename P1, typename... Pn> +struct disjunction<P1, Pn...> + : conditional_t<bool(P1::value), P1, disjunction<Pn...>> {}; + +template <typename...> struct conjunction : std::true_type {}; +template <typename P> struct conjunction<P> : P {}; +template <typename P1, typename... Pn> +struct conjunction<P1, Pn...> + : conditional_t<bool(P1::value), conjunction<Pn...>, P1> {}; + +namespace detail { + +FMT_CONSTEXPR inline void abort_fuzzing_if(bool condition) { + ignore_unused(condition); +#ifdef FMT_FUZZ + if (condition) throw std::runtime_error("fuzzing limit reached"); +#endif +} + +template <typename CharT, CharT... C> struct string_literal { + static constexpr CharT value[sizeof...(C)] = {C...}; + constexpr operator basic_string_view<CharT>() const { + return {value, sizeof...(C)}; + } +}; + +#if FMT_CPLUSPLUS < 201703L +template <typename CharT, CharT... C> +constexpr CharT string_literal<CharT, C...>::value[sizeof...(C)]; +#endif + +template <typename Streambuf> class formatbuf : public Streambuf { + private: + using char_type = typename Streambuf::char_type; + using streamsize = decltype(std::declval<Streambuf>().sputn(nullptr, 0)); + using int_type = typename Streambuf::int_type; + using traits_type = typename Streambuf::traits_type; + + buffer<char_type>& buffer_; + + public: + explicit formatbuf(buffer<char_type>& buf) : buffer_(buf) {} + + protected: + // The put area is always empty. This makes the implementation simpler and has + // the advantage that the streambuf and the buffer are always in sync and + // sputc never writes into uninitialized memory. A disadvantage is that each + // call to sputc always results in a (virtual) call to overflow. There is no + // disadvantage here for sputn since this always results in a call to xsputn. + + auto overflow(int_type ch) -> int_type override { + if (!traits_type::eq_int_type(ch, traits_type::eof())) + buffer_.push_back(static_cast<char_type>(ch)); + return ch; + } + + auto xsputn(const char_type* s, streamsize count) -> streamsize override { + buffer_.append(s, s + count); + return count; + } +}; + +// Implementation of std::bit_cast for pre-C++20. +template <typename To, typename From, FMT_ENABLE_IF(sizeof(To) == sizeof(From))> +FMT_CONSTEXPR20 auto bit_cast(const From& from) -> To { +#ifdef __cpp_lib_bit_cast + if (is_constant_evaluated()) return std::bit_cast<To>(from); +#endif + auto to = To(); + // The cast suppresses a bogus -Wclass-memaccess on GCC. + std::memcpy(static_cast<void*>(&to), &from, sizeof(to)); + return to; +} + +inline auto is_big_endian() -> bool { +#ifdef _WIN32 + return false; +#elif defined(__BIG_ENDIAN__) + return true; +#elif defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) + return __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__; +#else + struct bytes { + char data[sizeof(int)]; + }; + return bit_cast<bytes>(1).data[0] == 0; +#endif +} + +class uint128_fallback { + private: + uint64_t lo_, hi_; + + friend uint128_fallback umul128(uint64_t x, uint64_t y) noexcept; + + public: + constexpr uint128_fallback(uint64_t hi, uint64_t lo) : lo_(lo), hi_(hi) {} + constexpr uint128_fallback(uint64_t value = 0) : lo_(value), hi_(0) {} + + constexpr uint64_t high() const noexcept { return hi_; } + constexpr uint64_t low() const noexcept { return lo_; } + + template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)> + constexpr explicit operator T() const { + return static_cast<T>(lo_); + } + + friend constexpr auto operator==(const uint128_fallback& lhs, + const uint128_fallback& rhs) -> bool { + return lhs.hi_ == rhs.hi_ && lhs.lo_ == rhs.lo_; + } + friend constexpr auto operator!=(const uint128_fallback& lhs, + const uint128_fallback& rhs) -> bool { + return !(lhs == rhs); + } + friend constexpr auto operator>(const uint128_fallback& lhs, + const uint128_fallback& rhs) -> bool { + return lhs.hi_ != rhs.hi_ ? lhs.hi_ > rhs.hi_ : lhs.lo_ > rhs.lo_; + } + friend constexpr auto operator|(const uint128_fallback& lhs, + const uint128_fallback& rhs) + -> uint128_fallback { + return {lhs.hi_ | rhs.hi_, lhs.lo_ | rhs.lo_}; + } + friend constexpr auto operator&(const uint128_fallback& lhs, + const uint128_fallback& rhs) + -> uint128_fallback { + return {lhs.hi_ & rhs.hi_, lhs.lo_ & rhs.lo_}; + } + friend constexpr auto operator~(const uint128_fallback& n) + -> uint128_fallback { + return {~n.hi_, ~n.lo_}; + } + friend auto operator+(const uint128_fallback& lhs, + const uint128_fallback& rhs) -> uint128_fallback { + auto result = uint128_fallback(lhs); + result += rhs; + return result; + } + friend auto operator*(const uint128_fallback& lhs, uint32_t rhs) + -> uint128_fallback { + FMT_ASSERT(lhs.hi_ == 0, ""); + uint64_t hi = (lhs.lo_ >> 32) * rhs; + uint64_t lo = (lhs.lo_ & ~uint32_t()) * rhs; + uint64_t new_lo = (hi << 32) + lo; + return {(hi >> 32) + (new_lo < lo ? 1 : 0), new_lo}; + } + friend auto operator-(const uint128_fallback& lhs, uint64_t rhs) + -> uint128_fallback { + return {lhs.hi_ - (lhs.lo_ < rhs ? 1 : 0), lhs.lo_ - rhs}; + } + FMT_CONSTEXPR auto operator>>(int shift) const -> uint128_fallback { + if (shift == 64) return {0, hi_}; + if (shift > 64) return uint128_fallback(0, hi_) >> (shift - 64); + return {hi_ >> shift, (hi_ << (64 - shift)) | (lo_ >> shift)}; + } + FMT_CONSTEXPR auto operator<<(int shift) const -> uint128_fallback { + if (shift == 64) return {lo_, 0}; + if (shift > 64) return uint128_fallback(lo_, 0) << (shift - 64); + return {hi_ << shift | (lo_ >> (64 - shift)), (lo_ << shift)}; + } + FMT_CONSTEXPR auto operator>>=(int shift) -> uint128_fallback& { + return *this = *this >> shift; + } + FMT_CONSTEXPR void operator+=(uint128_fallback n) { + uint64_t new_lo = lo_ + n.lo_; + uint64_t new_hi = hi_ + n.hi_ + (new_lo < lo_ ? 1 : 0); + FMT_ASSERT(new_hi >= hi_, ""); + lo_ = new_lo; + hi_ = new_hi; + } + FMT_CONSTEXPR void operator&=(uint128_fallback n) { + lo_ &= n.lo_; + hi_ &= n.hi_; + } + + FMT_CONSTEXPR20 uint128_fallback& operator+=(uint64_t n) noexcept { + if (is_constant_evaluated()) { + lo_ += n; + hi_ += (lo_ < n ? 1 : 0); + return *this; + } +#if FMT_HAS_BUILTIN(__builtin_addcll) && !defined(__ibmxl__) + unsigned long long carry; + lo_ = __builtin_addcll(lo_, n, 0, &carry); + hi_ += carry; +#elif FMT_HAS_BUILTIN(__builtin_ia32_addcarryx_u64) && !defined(__ibmxl__) + unsigned long long result; + auto carry = __builtin_ia32_addcarryx_u64(0, lo_, n, &result); + lo_ = result; + hi_ += carry; +#elif defined(_MSC_VER) && defined(_M_X64) + auto carry = _addcarry_u64(0, lo_, n, &lo_); + _addcarry_u64(carry, hi_, 0, &hi_); +#else + lo_ += n; + hi_ += (lo_ < n ? 1 : 0); +#endif + return *this; + } +}; + +using uint128_t = conditional_t<FMT_USE_INT128, uint128_opt, uint128_fallback>; + +#ifdef UINTPTR_MAX +using uintptr_t = ::uintptr_t; +#else +using uintptr_t = uint128_t; +#endif + +// Returns the largest possible value for type T. Same as +// std::numeric_limits<T>::max() but shorter and not affected by the max macro. +template <typename T> constexpr auto max_value() -> T { + return (std::numeric_limits<T>::max)(); +} +template <typename T> constexpr auto num_bits() -> int { + return std::numeric_limits<T>::digits; +} +// std::numeric_limits<T>::digits may return 0 for 128-bit ints. +template <> constexpr auto num_bits<int128_opt>() -> int { return 128; } +template <> constexpr auto num_bits<uint128_t>() -> int { return 128; } + +// A heterogeneous bit_cast used for converting 96-bit long double to uint128_t +// and 128-bit pointers to uint128_fallback. +template <typename To, typename From, FMT_ENABLE_IF(sizeof(To) > sizeof(From))> +inline auto bit_cast(const From& from) -> To { + constexpr auto size = static_cast<int>(sizeof(From) / sizeof(unsigned)); + struct data_t { + unsigned value[static_cast<unsigned>(size)]; + } data = bit_cast<data_t>(from); + auto result = To(); + if (const_check(is_big_endian())) { + for (int i = 0; i < size; ++i) + result = (result << num_bits<unsigned>()) | data.value[i]; + } else { + for (int i = size - 1; i >= 0; --i) + result = (result << num_bits<unsigned>()) | data.value[i]; + } + return result; +} + +template <typename UInt> +FMT_CONSTEXPR20 inline auto countl_zero_fallback(UInt n) -> int { + int lz = 0; + constexpr UInt msb_mask = static_cast<UInt>(1) << (num_bits<UInt>() - 1); + for (; (n & msb_mask) == 0; n <<= 1) lz++; + return lz; +} + +FMT_CONSTEXPR20 inline auto countl_zero(uint32_t n) -> int { +#ifdef FMT_BUILTIN_CLZ + if (!is_constant_evaluated()) return FMT_BUILTIN_CLZ(n); +#endif + return countl_zero_fallback(n); +} + +FMT_CONSTEXPR20 inline auto countl_zero(uint64_t n) -> int { +#ifdef FMT_BUILTIN_CLZLL + if (!is_constant_evaluated()) return FMT_BUILTIN_CLZLL(n); +#endif + return countl_zero_fallback(n); +} + +FMT_INLINE void assume(bool condition) { + (void)condition; +#if FMT_HAS_BUILTIN(__builtin_assume) && !FMT_ICC_VERSION + __builtin_assume(condition); +#endif +} + +// An approximation of iterator_t for pre-C++20 systems. +template <typename T> +using iterator_t = decltype(std::begin(std::declval<T&>())); +template <typename T> using sentinel_t = decltype(std::end(std::declval<T&>())); + +// A workaround for std::string not having mutable data() until C++17. +template <typename Char> +inline auto get_data(std::basic_string<Char>& s) -> Char* { + return &s[0]; +} +template <typename Container> +inline auto get_data(Container& c) -> typename Container::value_type* { + return c.data(); +} + +#if defined(_SECURE_SCL) && _SECURE_SCL +// Make a checked iterator to avoid MSVC warnings. +template <typename T> using checked_ptr = stdext::checked_array_iterator<T*>; +template <typename T> +constexpr auto make_checked(T* p, size_t size) -> checked_ptr<T> { + return {p, size}; +} +#else +template <typename T> using checked_ptr = T*; +template <typename T> constexpr auto make_checked(T* p, size_t) -> T* { + return p; +} +#endif + +// Attempts to reserve space for n extra characters in the output range. +// Returns a pointer to the reserved range or a reference to it. +template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)> +#if FMT_CLANG_VERSION >= 307 && !FMT_ICC_VERSION +__attribute__((no_sanitize("undefined"))) +#endif +inline auto +reserve(std::back_insert_iterator<Container> it, size_t n) + -> checked_ptr<typename Container::value_type> { + Container& c = get_container(it); + size_t size = c.size(); + c.resize(size + n); + return make_checked(get_data(c) + size, n); +} + +template <typename T> +inline auto reserve(buffer_appender<T> it, size_t n) -> buffer_appender<T> { + buffer<T>& buf = get_container(it); + buf.try_reserve(buf.size() + n); + return it; +} + +template <typename Iterator> +constexpr auto reserve(Iterator& it, size_t) -> Iterator& { + return it; +} + +template <typename OutputIt> +using reserve_iterator = + remove_reference_t<decltype(reserve(std::declval<OutputIt&>(), 0))>; + +template <typename T, typename OutputIt> +constexpr auto to_pointer(OutputIt, size_t) -> T* { + return nullptr; +} +template <typename T> auto to_pointer(buffer_appender<T> it, size_t n) -> T* { + buffer<T>& buf = get_container(it); + auto size = buf.size(); + if (buf.capacity() < size + n) return nullptr; + buf.try_resize(size + n); + return buf.data() + size; +} + +template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)> +inline auto base_iterator(std::back_insert_iterator<Container>& it, + checked_ptr<typename Container::value_type>) + -> std::back_insert_iterator<Container> { + return it; +} + +template <typename Iterator> +constexpr auto base_iterator(Iterator, Iterator it) -> Iterator { + return it; +} + +// <algorithm> is spectacularly slow to compile in C++20 so use a simple fill_n +// instead (#1998). +template <typename OutputIt, typename Size, typename T> +FMT_CONSTEXPR auto fill_n(OutputIt out, Size count, const T& value) + -> OutputIt { + for (Size i = 0; i < count; ++i) *out++ = value; + return out; +} +template <typename T, typename Size> +FMT_CONSTEXPR20 auto fill_n(T* out, Size count, char value) -> T* { + if (is_constant_evaluated()) { + return fill_n<T*, Size, T>(out, count, value); + } + std::memset(out, value, to_unsigned(count)); + return out + count; +} + +#ifdef __cpp_char8_t +using char8_type = char8_t; +#else +enum char8_type : unsigned char {}; +#endif + +template <typename OutChar, typename InputIt, typename OutputIt> +FMT_CONSTEXPR FMT_NOINLINE auto copy_str_noinline(InputIt begin, InputIt end, + OutputIt out) -> OutputIt { + return copy_str<OutChar>(begin, end, out); +} + +// A public domain branchless UTF-8 decoder by Christopher Wellons: +// https://github.com/skeeto/branchless-utf8 +/* Decode the next character, c, from s, reporting errors in e. + * + * Since this is a branchless decoder, four bytes will be read from the + * buffer regardless of the actual length of the next character. This + * means the buffer _must_ have at least three bytes of zero padding + * following the end of the data stream. + * + * Errors are reported in e, which will be non-zero if the parsed + * character was somehow invalid: invalid byte sequence, non-canonical + * encoding, or a surrogate half. + * + * The function returns a pointer to the next character. When an error + * occurs, this pointer will be a guess that depends on the particular + * error, but it will always advance at least one byte. + */ +FMT_CONSTEXPR inline auto utf8_decode(const char* s, uint32_t* c, int* e) + -> const char* { + constexpr const int masks[] = {0x00, 0x7f, 0x1f, 0x0f, 0x07}; + constexpr const uint32_t mins[] = {4194304, 0, 128, 2048, 65536}; + constexpr const int shiftc[] = {0, 18, 12, 6, 0}; + constexpr const int shifte[] = {0, 6, 4, 2, 0}; + + int len = "\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\0\0\0\0\0\0\0\0\2\2\2\2\3\3\4" + [static_cast<unsigned char>(*s) >> 3]; + // Compute the pointer to the next character early so that the next + // iteration can start working on the next character. Neither Clang + // nor GCC figure out this reordering on their own. + const char* next = s + len + !len; + + using uchar = unsigned char; + + // Assume a four-byte character and load four bytes. Unused bits are + // shifted out. + *c = uint32_t(uchar(s[0]) & masks[len]) << 18; + *c |= uint32_t(uchar(s[1]) & 0x3f) << 12; + *c |= uint32_t(uchar(s[2]) & 0x3f) << 6; + *c |= uint32_t(uchar(s[3]) & 0x3f) << 0; + *c >>= shiftc[len]; + + // Accumulate the various error conditions. + *e = (*c < mins[len]) << 6; // non-canonical encoding + *e |= ((*c >> 11) == 0x1b) << 7; // surrogate half? + *e |= (*c > 0x10FFFF) << 8; // out of range? + *e |= (uchar(s[1]) & 0xc0) >> 2; + *e |= (uchar(s[2]) & 0xc0) >> 4; + *e |= uchar(s[3]) >> 6; + *e ^= 0x2a; // top two bits of each tail byte correct? + *e >>= shifte[len]; + + return next; +} + +constexpr FMT_INLINE_VARIABLE uint32_t invalid_code_point = ~uint32_t(); + +// Invokes f(cp, sv) for every code point cp in s with sv being the string view +// corresponding to the code point. cp is invalid_code_point on error. +template <typename F> +FMT_CONSTEXPR void for_each_codepoint(string_view s, F f) { + auto decode = [f](const char* buf_ptr, const char* ptr) { + auto cp = uint32_t(); + auto error = 0; + auto end = utf8_decode(buf_ptr, &cp, &error); + bool result = f(error ? invalid_code_point : cp, + string_view(ptr, error ? 1 : to_unsigned(end - buf_ptr))); + return result ? (error ? buf_ptr + 1 : end) : nullptr; + }; + auto p = s.data(); + const size_t block_size = 4; // utf8_decode always reads blocks of 4 chars. + if (s.size() >= block_size) { + for (auto end = p + s.size() - block_size + 1; p < end;) { + p = decode(p, p); + if (!p) return; + } + } + if (auto num_chars_left = s.data() + s.size() - p) { + char buf[2 * block_size - 1] = {}; + copy_str<char>(p, p + num_chars_left, buf); + const char* buf_ptr = buf; + do { + auto end = decode(buf_ptr, p); + if (!end) return; + p += end - buf_ptr; + buf_ptr = end; + } while (buf_ptr - buf < num_chars_left); + } +} + +template <typename Char> +inline auto compute_width(basic_string_view<Char> s) -> size_t { + return s.size(); +} + +// Computes approximate display width of a UTF-8 string. +FMT_CONSTEXPR inline size_t compute_width(string_view s) { + size_t num_code_points = 0; + // It is not a lambda for compatibility with C++14. + struct count_code_points { + size_t* count; + FMT_CONSTEXPR auto operator()(uint32_t cp, string_view) const -> bool { + *count += detail::to_unsigned( + 1 + + (cp >= 0x1100 && + (cp <= 0x115f || // Hangul Jamo init. consonants + cp == 0x2329 || // LEFT-POINTING ANGLE BRACKET + cp == 0x232a || // RIGHT-POINTING ANGLE BRACKET + // CJK ... Yi except IDEOGRAPHIC HALF FILL SPACE: + (cp >= 0x2e80 && cp <= 0xa4cf && cp != 0x303f) || + (cp >= 0xac00 && cp <= 0xd7a3) || // Hangul Syllables + (cp >= 0xf900 && cp <= 0xfaff) || // CJK Compatibility Ideographs + (cp >= 0xfe10 && cp <= 0xfe19) || // Vertical Forms + (cp >= 0xfe30 && cp <= 0xfe6f) || // CJK Compatibility Forms + (cp >= 0xff00 && cp <= 0xff60) || // Fullwidth Forms + (cp >= 0xffe0 && cp <= 0xffe6) || // Fullwidth Forms + (cp >= 0x20000 && cp <= 0x2fffd) || // CJK + (cp >= 0x30000 && cp <= 0x3fffd) || + // Miscellaneous Symbols and Pictographs + Emoticons: + (cp >= 0x1f300 && cp <= 0x1f64f) || + // Supplemental Symbols and Pictographs: + (cp >= 0x1f900 && cp <= 0x1f9ff)))); + return true; + } + }; + // We could avoid branches by using utf8_decode directly. + for_each_codepoint(s, count_code_points{&num_code_points}); + return num_code_points; +} + +inline auto compute_width(basic_string_view<char8_type> s) -> size_t { + return compute_width( + string_view(reinterpret_cast<const char*>(s.data()), s.size())); +} + +template <typename Char> +inline auto code_point_index(basic_string_view<Char> s, size_t n) -> size_t { + size_t size = s.size(); + return n < size ? n : size; +} + +// Calculates the index of the nth code point in a UTF-8 string. +inline auto code_point_index(string_view s, size_t n) -> size_t { + const char* data = s.data(); + size_t num_code_points = 0; + for (size_t i = 0, size = s.size(); i != size; ++i) { + if ((data[i] & 0xc0) != 0x80 && ++num_code_points > n) return i; + } + return s.size(); +} + +inline auto code_point_index(basic_string_view<char8_type> s, size_t n) + -> size_t { + return code_point_index( + string_view(reinterpret_cast<const char*>(s.data()), s.size()), n); +} + +template <typename T> struct is_integral : std::is_integral<T> {}; +template <> struct is_integral<int128_opt> : std::true_type {}; +template <> struct is_integral<uint128_t> : std::true_type {}; + +template <typename T> +using is_signed = + std::integral_constant<bool, std::numeric_limits<T>::is_signed || + std::is_same<T, int128_opt>::value>; + +template <typename T> +using is_integer = + bool_constant<is_integral<T>::value && !std::is_same<T, bool>::value && + !std::is_same<T, char>::value && + !std::is_same<T, wchar_t>::value>; + +#ifndef FMT_USE_FLOAT +# define FMT_USE_FLOAT 1 +#endif +#ifndef FMT_USE_DOUBLE +# define FMT_USE_DOUBLE 1 +#endif +#ifndef FMT_USE_LONG_DOUBLE +# define FMT_USE_LONG_DOUBLE 1 +#endif + +#ifndef FMT_USE_FLOAT128 +# ifdef __clang__ +// Clang emulates GCC, so it has to appear early. +# if FMT_HAS_INCLUDE(<quadmath.h>) +# define FMT_USE_FLOAT128 1 +# endif +# elif defined(__GNUC__) +// GNU C++: +# if defined(_GLIBCXX_USE_FLOAT128) && !defined(__STRICT_ANSI__) +# define FMT_USE_FLOAT128 1 +# endif +# endif +# ifndef FMT_USE_FLOAT128 +# define FMT_USE_FLOAT128 0 +# endif +#endif + +#if FMT_USE_FLOAT128 +using float128 = __float128; +#else +using float128 = void; +#endif +template <typename T> using is_float128 = std::is_same<T, float128>; + +template <typename T> +using is_floating_point = + bool_constant<std::is_floating_point<T>::value || is_float128<T>::value>; + +template <typename T, bool = std::is_floating_point<T>::value> +struct is_fast_float : bool_constant<std::numeric_limits<T>::is_iec559 && + sizeof(T) <= sizeof(double)> {}; +template <typename T> struct is_fast_float<T, false> : std::false_type {}; + +template <typename T> +using is_double_double = bool_constant<std::numeric_limits<T>::digits == 106>; + +#ifndef FMT_USE_FULL_CACHE_DRAGONBOX +# define FMT_USE_FULL_CACHE_DRAGONBOX 0 +#endif + +template <typename T> +template <typename U> +void buffer<T>::append(const U* begin, const U* end) { + while (begin != end) { + auto count = to_unsigned(end - begin); + try_reserve(size_ + count); + auto free_cap = capacity_ - size_; + if (free_cap < count) count = free_cap; + std::uninitialized_copy_n(begin, count, make_checked(ptr_ + size_, count)); + size_ += count; + begin += count; + } +} + +template <typename T, typename Enable = void> +struct is_locale : std::false_type {}; +template <typename T> +struct is_locale<T, void_t<decltype(T::classic())>> : std::true_type {}; +} // namespace detail + +FMT_BEGIN_EXPORT + +// The number of characters to store in the basic_memory_buffer object itself +// to avoid dynamic memory allocation. +enum { inline_buffer_size = 500 }; + +/** + \rst + A dynamically growing memory buffer for trivially copyable/constructible types + with the first ``SIZE`` elements stored in the object itself. + + You can use the ``memory_buffer`` type alias for ``char`` instead. + + **Example**:: + + auto out = fmt::memory_buffer(); + format_to(std::back_inserter(out), "The answer is {}.", 42); + + This will append the following output to the ``out`` object: + + .. code-block:: none + + The answer is 42. + + The output can be converted to an ``std::string`` with ``to_string(out)``. + \endrst + */ +template <typename T, size_t SIZE = inline_buffer_size, + typename Allocator = std::allocator<T>> +class basic_memory_buffer final : public detail::buffer<T> { + private: + T store_[SIZE]; + + // Don't inherit from Allocator avoid generating type_info for it. + Allocator alloc_; + + // Deallocate memory allocated by the buffer. + FMT_CONSTEXPR20 void deallocate() { + T* data = this->data(); + if (data != store_) alloc_.deallocate(data, this->capacity()); + } + + protected: + FMT_CONSTEXPR20 void grow(size_t size) override { + detail::abort_fuzzing_if(size > 5000); + const size_t max_size = std::allocator_traits<Allocator>::max_size(alloc_); + size_t old_capacity = this->capacity(); + size_t new_capacity = old_capacity + old_capacity / 2; + if (size > new_capacity) + new_capacity = size; + else if (new_capacity > max_size) + new_capacity = size > max_size ? size : max_size; + T* old_data = this->data(); + T* new_data = + std::allocator_traits<Allocator>::allocate(alloc_, new_capacity); + // The following code doesn't throw, so the raw pointer above doesn't leak. + std::uninitialized_copy(old_data, old_data + this->size(), + detail::make_checked(new_data, new_capacity)); + this->set(new_data, new_capacity); + // deallocate must not throw according to the standard, but even if it does, + // the buffer already uses the new storage and will deallocate it in + // destructor. + if (old_data != store_) alloc_.deallocate(old_data, old_capacity); + } + + public: + using value_type = T; + using const_reference = const T&; + + FMT_CONSTEXPR20 explicit basic_memory_buffer( + const Allocator& alloc = Allocator()) + : alloc_(alloc) { + this->set(store_, SIZE); + if (detail::is_constant_evaluated()) detail::fill_n(store_, SIZE, T()); + } + FMT_CONSTEXPR20 ~basic_memory_buffer() { deallocate(); } + + private: + // Move data from other to this buffer. + FMT_CONSTEXPR20 void move(basic_memory_buffer& other) { + alloc_ = std::move(other.alloc_); + T* data = other.data(); + size_t size = other.size(), capacity = other.capacity(); + if (data == other.store_) { + this->set(store_, capacity); + detail::copy_str<T>(other.store_, other.store_ + size, + detail::make_checked(store_, capacity)); + } else { + this->set(data, capacity); + // Set pointer to the inline array so that delete is not called + // when deallocating. + other.set(other.store_, 0); + other.clear(); + } + this->resize(size); + } + + public: + /** + \rst + Constructs a :class:`fmt::basic_memory_buffer` object moving the content + of the other object to it. + \endrst + */ + FMT_CONSTEXPR20 basic_memory_buffer(basic_memory_buffer&& other) noexcept { + move(other); + } + + /** + \rst + Moves the content of the other ``basic_memory_buffer`` object to this one. + \endrst + */ + auto operator=(basic_memory_buffer&& other) noexcept -> basic_memory_buffer& { + FMT_ASSERT(this != &other, ""); + deallocate(); + move(other); + return *this; + } + + // Returns a copy of the allocator associated with this buffer. + auto get_allocator() const -> Allocator { return alloc_; } + + /** + Resizes the buffer to contain *count* elements. If T is a POD type new + elements may not be initialized. + */ + FMT_CONSTEXPR20 void resize(size_t count) { this->try_resize(count); } + + /** Increases the buffer capacity to *new_capacity*. */ + void reserve(size_t new_capacity) { this->try_reserve(new_capacity); } + + // Directly append data into the buffer + using detail::buffer<T>::append; + template <typename ContiguousRange> + void append(const ContiguousRange& range) { + append(range.data(), range.data() + range.size()); + } +}; + +using memory_buffer = basic_memory_buffer<char>; + +template <typename T, size_t SIZE, typename Allocator> +struct is_contiguous<basic_memory_buffer<T, SIZE, Allocator>> : std::true_type { +}; + +FMT_END_EXPORT +namespace detail { +FMT_API bool write_console(std::FILE* f, string_view text); +FMT_API void print(std::FILE*, string_view); +} // namespace detail +FMT_BEGIN_EXPORT + +// Suppress a misleading warning in older versions of clang. +#if FMT_CLANG_VERSION +# pragma clang diagnostic ignored "-Wweak-vtables" +#endif + +/** An error reported from a formatting function. */ +class FMT_API format_error : public std::runtime_error { + public: + using std::runtime_error::runtime_error; +}; + +namespace detail_exported { +#if FMT_USE_NONTYPE_TEMPLATE_ARGS +template <typename Char, size_t N> struct fixed_string { + constexpr fixed_string(const Char (&str)[N]) { + detail::copy_str<Char, const Char*, Char*>(static_cast<const Char*>(str), + str + N, data); + } + Char data[N] = {}; +}; +#endif + +// Converts a compile-time string to basic_string_view. +template <typename Char, size_t N> +constexpr auto compile_string_to_view(const Char (&s)[N]) + -> basic_string_view<Char> { + // Remove trailing NUL character if needed. Won't be present if this is used + // with a raw character array (i.e. not defined as a string). + return {s, N - (std::char_traits<Char>::to_int_type(s[N - 1]) == 0 ? 1 : 0)}; +} +template <typename Char> +constexpr auto compile_string_to_view(detail::std_string_view<Char> s) + -> basic_string_view<Char> { + return {s.data(), s.size()}; +} +} // namespace detail_exported + +class loc_value { + private: + basic_format_arg<format_context> value_; + + public: + template <typename T, FMT_ENABLE_IF(!detail::is_float128<T>::value)> + loc_value(T value) : value_(detail::make_arg<format_context>(value)) {} + + template <typename T, FMT_ENABLE_IF(detail::is_float128<T>::value)> + loc_value(T) {} + + template <typename Visitor> auto visit(Visitor&& vis) -> decltype(vis(0)) { + return visit_format_arg(vis, value_); + } +}; + +// A locale facet that formats values in UTF-8. +// It is parameterized on the locale to avoid the heavy <locale> include. +template <typename Locale> class format_facet : public Locale::facet { + private: + std::string separator_; + std::string grouping_; + std::string decimal_point_; + + protected: + virtual auto do_put(appender out, loc_value val, + const format_specs<>& specs) const -> bool; + + public: + static FMT_API typename Locale::id id; + + explicit format_facet(Locale& loc); + explicit format_facet(string_view sep = "", + std::initializer_list<unsigned char> g = {3}, + std::string decimal_point = ".") + : separator_(sep.data(), sep.size()), + grouping_(g.begin(), g.end()), + decimal_point_(decimal_point) {} + + auto put(appender out, loc_value val, const format_specs<>& specs) const + -> bool { + return do_put(out, val, specs); + } +}; + +FMT_BEGIN_DETAIL_NAMESPACE + +// Returns true if value is negative, false otherwise. +// Same as `value < 0` but doesn't produce warnings if T is an unsigned type. +template <typename T, FMT_ENABLE_IF(is_signed<T>::value)> +constexpr auto is_negative(T value) -> bool { + return value < 0; +} +template <typename T, FMT_ENABLE_IF(!is_signed<T>::value)> +constexpr auto is_negative(T) -> bool { + return false; +} + +template <typename T> +FMT_CONSTEXPR auto is_supported_floating_point(T) -> bool { + if (std::is_same<T, float>()) return FMT_USE_FLOAT; + if (std::is_same<T, double>()) return FMT_USE_DOUBLE; + if (std::is_same<T, long double>()) return FMT_USE_LONG_DOUBLE; + return true; +} + +// Smallest of uint32_t, uint64_t, uint128_t that is large enough to +// represent all values of an integral type T. +template <typename T> +using uint32_or_64_or_128_t = + conditional_t<num_bits<T>() <= 32 && !FMT_REDUCE_INT_INSTANTIATIONS, + uint32_t, + conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>>; +template <typename T> +using uint64_or_128_t = conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>; + +#define FMT_POWERS_OF_10(factor) \ + factor * 10, (factor)*100, (factor)*1000, (factor)*10000, (factor)*100000, \ + (factor)*1000000, (factor)*10000000, (factor)*100000000, \ + (factor)*1000000000 + +// Converts value in the range [0, 100) to a string. +constexpr const char* digits2(size_t value) { + // GCC generates slightly better code when value is pointer-size. + return &"0001020304050607080910111213141516171819" + "2021222324252627282930313233343536373839" + "4041424344454647484950515253545556575859" + "6061626364656667686970717273747576777879" + "8081828384858687888990919293949596979899"[value * 2]; +} + +// Sign is a template parameter to workaround a bug in gcc 4.8. +template <typename Char, typename Sign> constexpr Char sign(Sign s) { +#if !FMT_GCC_VERSION || FMT_GCC_VERSION >= 604 + static_assert(std::is_same<Sign, sign_t>::value, ""); +#endif + return static_cast<Char>("\0-+ "[s]); +} + +template <typename T> FMT_CONSTEXPR auto count_digits_fallback(T n) -> int { + int count = 1; + for (;;) { + // Integer division is slow so do it for a group of four digits instead + // of for every digit. The idea comes from the talk by Alexandrescu + // "Three Optimization Tips for C++". See speed-test for a comparison. + if (n < 10) return count; + if (n < 100) return count + 1; + if (n < 1000) return count + 2; + if (n < 10000) return count + 3; + n /= 10000u; + count += 4; + } +} +#if FMT_USE_INT128 +FMT_CONSTEXPR inline auto count_digits(uint128_opt n) -> int { + return count_digits_fallback(n); +} +#endif + +#ifdef FMT_BUILTIN_CLZLL +// It is a separate function rather than a part of count_digits to workaround +// the lack of static constexpr in constexpr functions. +inline auto do_count_digits(uint64_t n) -> int { + // This has comparable performance to the version by Kendall Willets + // (https://github.com/fmtlib/format-benchmark/blob/master/digits10) + // but uses smaller tables. + // Maps bsr(n) to ceil(log10(pow(2, bsr(n) + 1) - 1)). + static constexpr uint8_t bsr2log10[] = { + 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, + 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, + 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15, + 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20}; + auto t = bsr2log10[FMT_BUILTIN_CLZLL(n | 1) ^ 63]; + static constexpr const uint64_t zero_or_powers_of_10[] = { + 0, 0, FMT_POWERS_OF_10(1U), FMT_POWERS_OF_10(1000000000ULL), + 10000000000000000000ULL}; + return t - (n < zero_or_powers_of_10[t]); +} +#endif + +// Returns the number of decimal digits in n. Leading zeros are not counted +// except for n == 0 in which case count_digits returns 1. +FMT_CONSTEXPR20 inline auto count_digits(uint64_t n) -> int { +#ifdef FMT_BUILTIN_CLZLL + if (!is_constant_evaluated()) { + return do_count_digits(n); + } +#endif + return count_digits_fallback(n); +} + +// Counts the number of digits in n. BITS = log2(radix). +template <int BITS, typename UInt> +FMT_CONSTEXPR auto count_digits(UInt n) -> int { +#ifdef FMT_BUILTIN_CLZ + if (!is_constant_evaluated() && num_bits<UInt>() == 32) + return (FMT_BUILTIN_CLZ(static_cast<uint32_t>(n) | 1) ^ 31) / BITS + 1; +#endif + // Lambda avoids unreachable code warnings from NVHPC. + return [](UInt m) { + int num_digits = 0; + do { + ++num_digits; + } while ((m >>= BITS) != 0); + return num_digits; + }(n); +} + +#ifdef FMT_BUILTIN_CLZ +// It is a separate function rather than a part of count_digits to workaround +// the lack of static constexpr in constexpr functions. +FMT_INLINE auto do_count_digits(uint32_t n) -> int { +// An optimization by Kendall Willets from https://bit.ly/3uOIQrB. +// This increments the upper 32 bits (log10(T) - 1) when >= T is added. +# define FMT_INC(T) (((sizeof(# T) - 1ull) << 32) - T) + static constexpr uint64_t table[] = { + FMT_INC(0), FMT_INC(0), FMT_INC(0), // 8 + FMT_INC(10), FMT_INC(10), FMT_INC(10), // 64 + FMT_INC(100), FMT_INC(100), FMT_INC(100), // 512 + FMT_INC(1000), FMT_INC(1000), FMT_INC(1000), // 4096 + FMT_INC(10000), FMT_INC(10000), FMT_INC(10000), // 32k + FMT_INC(100000), FMT_INC(100000), FMT_INC(100000), // 256k + FMT_INC(1000000), FMT_INC(1000000), FMT_INC(1000000), // 2048k + FMT_INC(10000000), FMT_INC(10000000), FMT_INC(10000000), // 16M + FMT_INC(100000000), FMT_INC(100000000), FMT_INC(100000000), // 128M + FMT_INC(1000000000), FMT_INC(1000000000), FMT_INC(1000000000), // 1024M + FMT_INC(1000000000), FMT_INC(1000000000) // 4B + }; + auto inc = table[FMT_BUILTIN_CLZ(n | 1) ^ 31]; + return static_cast<int>((n + inc) >> 32); +} +#endif + +// Optional version of count_digits for better performance on 32-bit platforms. +FMT_CONSTEXPR20 inline auto count_digits(uint32_t n) -> int { +#ifdef FMT_BUILTIN_CLZ + if (!is_constant_evaluated()) { + return do_count_digits(n); + } +#endif + return count_digits_fallback(n); +} + +template <typename Int> constexpr auto digits10() noexcept -> int { + return std::numeric_limits<Int>::digits10; +} +template <> constexpr auto digits10<int128_opt>() noexcept -> int { return 38; } +template <> constexpr auto digits10<uint128_t>() noexcept -> int { return 38; } + +template <typename Char> struct thousands_sep_result { + std::string grouping; + Char thousands_sep; +}; + +template <typename Char> +FMT_API auto thousands_sep_impl(locale_ref loc) -> thousands_sep_result<Char>; +template <typename Char> +inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<Char> { + auto result = thousands_sep_impl<char>(loc); + return {result.grouping, Char(result.thousands_sep)}; +} +template <> +inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<wchar_t> { + return thousands_sep_impl<wchar_t>(loc); +} + +template <typename Char> +FMT_API auto decimal_point_impl(locale_ref loc) -> Char; +template <typename Char> inline auto decimal_point(locale_ref loc) -> Char { + return Char(decimal_point_impl<char>(loc)); +} +template <> inline auto decimal_point(locale_ref loc) -> wchar_t { + return decimal_point_impl<wchar_t>(loc); +} + +// Compares two characters for equality. +template <typename Char> auto equal2(const Char* lhs, const char* rhs) -> bool { + return lhs[0] == Char(rhs[0]) && lhs[1] == Char(rhs[1]); +} +inline auto equal2(const char* lhs, const char* rhs) -> bool { + return memcmp(lhs, rhs, 2) == 0; +} + +// Copies two characters from src to dst. +template <typename Char> +FMT_CONSTEXPR20 FMT_INLINE void copy2(Char* dst, const char* src) { + if (!is_constant_evaluated() && sizeof(Char) == sizeof(char)) { + memcpy(dst, src, 2); + return; + } + *dst++ = static_cast<Char>(*src++); + *dst = static_cast<Char>(*src); +} + +template <typename Iterator> struct format_decimal_result { + Iterator begin; + Iterator end; +}; + +// Formats a decimal unsigned integer value writing into out pointing to a +// buffer of specified size. The caller must ensure that the buffer is large +// enough. +template <typename Char, typename UInt> +FMT_CONSTEXPR20 auto format_decimal(Char* out, UInt value, int size) + -> format_decimal_result<Char*> { + FMT_ASSERT(size >= count_digits(value), "invalid digit count"); + out += size; + Char* end = out; + while (value >= 100) { + // Integer division is slow so do it for a group of two digits instead + // of for every digit. The idea comes from the talk by Alexandrescu + // "Three Optimization Tips for C++". See speed-test for a comparison. + out -= 2; + copy2(out, digits2(static_cast<size_t>(value % 100))); + value /= 100; + } + if (value < 10) { + *--out = static_cast<Char>('0' + value); + return {out, end}; + } + out -= 2; + copy2(out, digits2(static_cast<size_t>(value))); + return {out, end}; +} + +template <typename Char, typename UInt, typename Iterator, + FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<Iterator>>::value)> +FMT_CONSTEXPR inline auto format_decimal(Iterator out, UInt value, int size) + -> format_decimal_result<Iterator> { + // Buffer is large enough to hold all digits (digits10 + 1). + Char buffer[digits10<UInt>() + 1] = {}; + auto end = format_decimal(buffer, value, size).end; + return {out, detail::copy_str_noinline<Char>(buffer, end, out)}; +} + +template <unsigned BASE_BITS, typename Char, typename UInt> +FMT_CONSTEXPR auto format_uint(Char* buffer, UInt value, int num_digits, + bool upper = false) -> Char* { + buffer += num_digits; + Char* end = buffer; + do { + const char* digits = upper ? "0123456789ABCDEF" : "0123456789abcdef"; + unsigned digit = static_cast<unsigned>(value & ((1 << BASE_BITS) - 1)); + *--buffer = static_cast<Char>(BASE_BITS < 4 ? static_cast<char>('0' + digit) + : digits[digit]); + } while ((value >>= BASE_BITS) != 0); + return end; +} + +template <unsigned BASE_BITS, typename Char, typename It, typename UInt> +inline auto format_uint(It out, UInt value, int num_digits, bool upper = false) + -> It { + if (auto ptr = to_pointer<Char>(out, to_unsigned(num_digits))) { + format_uint<BASE_BITS>(ptr, value, num_digits, upper); + return out; + } + // Buffer should be large enough to hold all digits (digits / BASE_BITS + 1). + char buffer[num_bits<UInt>() / BASE_BITS + 1]; + format_uint<BASE_BITS>(buffer, value, num_digits, upper); + return detail::copy_str_noinline<Char>(buffer, buffer + num_digits, out); +} + +// A converter from UTF-8 to UTF-16. +class utf8_to_utf16 { + private: + basic_memory_buffer<wchar_t> buffer_; + + public: + FMT_API explicit utf8_to_utf16(string_view s); + operator basic_string_view<wchar_t>() const { return {&buffer_[0], size()}; } + auto size() const -> size_t { return buffer_.size() - 1; } + auto c_str() const -> const wchar_t* { return &buffer_[0]; } + auto str() const -> std::wstring { return {&buffer_[0], size()}; } +}; + +// A converter from UTF-16/UTF-32 (host endian) to UTF-8. +template <typename WChar, typename Buffer = memory_buffer> +class unicode_to_utf8 { + private: + Buffer buffer_; + + public: + unicode_to_utf8() {} + explicit unicode_to_utf8(basic_string_view<WChar> s) { + static_assert(sizeof(WChar) == 2 || sizeof(WChar) == 4, + "Expect utf16 or utf32"); + + if (!convert(s)) + FMT_THROW(std::runtime_error(sizeof(WChar) == 2 ? "invalid utf16" + : "invalid utf32")); + } + operator string_view() const { return string_view(&buffer_[0], size()); } + size_t size() const { return buffer_.size() - 1; } + const char* c_str() const { return &buffer_[0]; } + std::string str() const { return std::string(&buffer_[0], size()); } + + // Performs conversion returning a bool instead of throwing exception on + // conversion error. This method may still throw in case of memory allocation + // error. + bool convert(basic_string_view<WChar> s) { + if (!convert(buffer_, s)) return false; + buffer_.push_back(0); + return true; + } + static bool convert(Buffer& buf, basic_string_view<WChar> s) { + for (auto p = s.begin(); p != s.end(); ++p) { + uint32_t c = static_cast<uint32_t>(*p); + if (sizeof(WChar) == 2 && c >= 0xd800 && c <= 0xdfff) { + // surrogate pair + ++p; + if (p == s.end() || (c & 0xfc00) != 0xd800 || (*p & 0xfc00) != 0xdc00) { + return false; + } + c = (c << 10) + static_cast<uint32_t>(*p) - 0x35fdc00; + } + if (c < 0x80) { + buf.push_back(static_cast<char>(c)); + } else if (c < 0x800) { + buf.push_back(static_cast<char>(0xc0 | (c >> 6))); + buf.push_back(static_cast<char>(0x80 | (c & 0x3f))); + } else if ((c >= 0x800 && c <= 0xd7ff) || (c >= 0xe000 && c <= 0xffff)) { + buf.push_back(static_cast<char>(0xe0 | (c >> 12))); + buf.push_back(static_cast<char>(0x80 | ((c & 0xfff) >> 6))); + buf.push_back(static_cast<char>(0x80 | (c & 0x3f))); + } else if (c >= 0x10000 && c <= 0x10ffff) { + buf.push_back(static_cast<char>(0xf0 | (c >> 18))); + buf.push_back(static_cast<char>(0x80 | ((c & 0x3ffff) >> 12))); + buf.push_back(static_cast<char>(0x80 | ((c & 0xfff) >> 6))); + buf.push_back(static_cast<char>(0x80 | (c & 0x3f))); + } else { + return false; + } + } + return true; + } +}; + +// Computes 128-bit result of multiplication of two 64-bit unsigned integers. +inline uint128_fallback umul128(uint64_t x, uint64_t y) noexcept { +#if FMT_USE_INT128 + auto p = static_cast<uint128_opt>(x) * static_cast<uint128_opt>(y); + return {static_cast<uint64_t>(p >> 64), static_cast<uint64_t>(p)}; +#elif defined(_MSC_VER) && defined(_M_X64) + auto result = uint128_fallback(); + result.lo_ = _umul128(x, y, &result.hi_); + return result; +#else + const uint64_t mask = static_cast<uint64_t>(max_value<uint32_t>()); + + uint64_t a = x >> 32; + uint64_t b = x & mask; + uint64_t c = y >> 32; + uint64_t d = y & mask; + + uint64_t ac = a * c; + uint64_t bc = b * c; + uint64_t ad = a * d; + uint64_t bd = b * d; + + uint64_t intermediate = (bd >> 32) + (ad & mask) + (bc & mask); + + return {ac + (intermediate >> 32) + (ad >> 32) + (bc >> 32), + (intermediate << 32) + (bd & mask)}; +#endif +} + +namespace dragonbox { +// Computes floor(log10(pow(2, e))) for e in [-2620, 2620] using the method from +// https://fmt.dev/papers/Dragonbox.pdf#page=28, section 6.1. +inline int floor_log10_pow2(int e) noexcept { + FMT_ASSERT(e <= 2620 && e >= -2620, "too large exponent"); + static_assert((-1 >> 1) == -1, "right shift is not arithmetic"); + return (e * 315653) >> 20; +} + +inline int floor_log2_pow10(int e) noexcept { + FMT_ASSERT(e <= 1233 && e >= -1233, "too large exponent"); + return (e * 1741647) >> 19; +} + +// Computes upper 64 bits of multiplication of two 64-bit unsigned integers. +inline uint64_t umul128_upper64(uint64_t x, uint64_t y) noexcept { +#if FMT_USE_INT128 + auto p = static_cast<uint128_opt>(x) * static_cast<uint128_opt>(y); + return static_cast<uint64_t>(p >> 64); +#elif defined(_MSC_VER) && defined(_M_X64) + return __umulh(x, y); +#else + return umul128(x, y).high(); +#endif +} + +// Computes upper 128 bits of multiplication of a 64-bit unsigned integer and a +// 128-bit unsigned integer. +inline uint128_fallback umul192_upper128(uint64_t x, + uint128_fallback y) noexcept { + uint128_fallback r = umul128(x, y.high()); + r += umul128_upper64(x, y.low()); + return r; +} + +FMT_API uint128_fallback get_cached_power(int k) noexcept; + +// Type-specific information that Dragonbox uses. +template <typename T, typename Enable = void> struct float_info; + +template <> struct float_info<float> { + using carrier_uint = uint32_t; + static const int exponent_bits = 8; + static const int kappa = 1; + static const int big_divisor = 100; + static const int small_divisor = 10; + static const int min_k = -31; + static const int max_k = 46; + static const int shorter_interval_tie_lower_threshold = -35; + static const int shorter_interval_tie_upper_threshold = -35; +}; + +template <> struct float_info<double> { + using carrier_uint = uint64_t; + static const int exponent_bits = 11; + static const int kappa = 2; + static const int big_divisor = 1000; + static const int small_divisor = 100; + static const int min_k = -292; + static const int max_k = 341; + static const int shorter_interval_tie_lower_threshold = -77; + static const int shorter_interval_tie_upper_threshold = -77; +}; + +// An 80- or 128-bit floating point number. +template <typename T> +struct float_info<T, enable_if_t<std::numeric_limits<T>::digits == 64 || + std::numeric_limits<T>::digits == 113 || + is_float128<T>::value>> { + using carrier_uint = detail::uint128_t; + static const int exponent_bits = 15; +}; + +// A double-double floating point number. +template <typename T> +struct float_info<T, enable_if_t<is_double_double<T>::value>> { + using carrier_uint = detail::uint128_t; +}; + +template <typename T> struct decimal_fp { + using significand_type = typename float_info<T>::carrier_uint; + significand_type significand; + int exponent; +}; + +template <typename T> FMT_API auto to_decimal(T x) noexcept -> decimal_fp<T>; +} // namespace dragonbox + +// Returns true iff Float has the implicit bit which is not stored. +template <typename Float> constexpr bool has_implicit_bit() { + // An 80-bit FP number has a 64-bit significand an no implicit bit. + return std::numeric_limits<Float>::digits != 64; +} + +// Returns the number of significand bits stored in Float. The implicit bit is +// not counted since it is not stored. +template <typename Float> constexpr int num_significand_bits() { + // std::numeric_limits may not support __float128. + return is_float128<Float>() ? 112 + : (std::numeric_limits<Float>::digits - + (has_implicit_bit<Float>() ? 1 : 0)); +} + +template <typename Float> +constexpr auto exponent_mask() -> + typename dragonbox::float_info<Float>::carrier_uint { + using float_uint = typename dragonbox::float_info<Float>::carrier_uint; + return ((float_uint(1) << dragonbox::float_info<Float>::exponent_bits) - 1) + << num_significand_bits<Float>(); +} +template <typename Float> constexpr auto exponent_bias() -> int { + // std::numeric_limits may not support __float128. + return is_float128<Float>() ? 16383 + : std::numeric_limits<Float>::max_exponent - 1; +} + +// Writes the exponent exp in the form "[+-]d{2,3}" to buffer. +template <typename Char, typename It> +FMT_CONSTEXPR auto write_exponent(int exp, It it) -> It { + FMT_ASSERT(-10000 < exp && exp < 10000, "exponent out of range"); + if (exp < 0) { + *it++ = static_cast<Char>('-'); + exp = -exp; + } else { + *it++ = static_cast<Char>('+'); + } + if (exp >= 100) { + const char* top = digits2(to_unsigned(exp / 100)); + if (exp >= 1000) *it++ = static_cast<Char>(top[0]); + *it++ = static_cast<Char>(top[1]); + exp %= 100; + } + const char* d = digits2(to_unsigned(exp)); + *it++ = static_cast<Char>(d[0]); + *it++ = static_cast<Char>(d[1]); + return it; +} + +// A floating-point number f * pow(2, e) where F is an unsigned type. +template <typename F> struct basic_fp { + F f; + int e; + + static constexpr const int num_significand_bits = + static_cast<int>(sizeof(F) * num_bits<unsigned char>()); + + constexpr basic_fp() : f(0), e(0) {} + constexpr basic_fp(uint64_t f_val, int e_val) : f(f_val), e(e_val) {} + + // Constructs fp from an IEEE754 floating-point number. + template <typename Float> FMT_CONSTEXPR basic_fp(Float n) { assign(n); } + + // Assigns n to this and return true iff predecessor is closer than successor. + template <typename Float, FMT_ENABLE_IF(!is_double_double<Float>::value)> + FMT_CONSTEXPR auto assign(Float n) -> bool { + static_assert(std::numeric_limits<Float>::digits <= 113, "unsupported FP"); + // Assume Float is in the format [sign][exponent][significand]. + using carrier_uint = typename dragonbox::float_info<Float>::carrier_uint; + const auto num_float_significand_bits = + detail::num_significand_bits<Float>(); + const auto implicit_bit = carrier_uint(1) << num_float_significand_bits; + const auto significand_mask = implicit_bit - 1; + auto u = bit_cast<carrier_uint>(n); + f = static_cast<F>(u & significand_mask); + auto biased_e = static_cast<int>((u & exponent_mask<Float>()) >> + num_float_significand_bits); + // The predecessor is closer if n is a normalized power of 2 (f == 0) + // other than the smallest normalized number (biased_e > 1). + auto is_predecessor_closer = f == 0 && biased_e > 1; + if (biased_e == 0) + biased_e = 1; // Subnormals use biased exponent 1 (min exponent). + else if (has_implicit_bit<Float>()) + f += static_cast<F>(implicit_bit); + e = biased_e - exponent_bias<Float>() - num_float_significand_bits; + if (!has_implicit_bit<Float>()) ++e; + return is_predecessor_closer; + } + + template <typename Float, FMT_ENABLE_IF(is_double_double<Float>::value)> + FMT_CONSTEXPR auto assign(Float n) -> bool { + static_assert(std::numeric_limits<double>::is_iec559, "unsupported FP"); + return assign(static_cast<double>(n)); + } +}; + +using fp = basic_fp<unsigned long long>; + +// Normalizes the value converted from double and multiplied by (1 << SHIFT). +template <int SHIFT = 0, typename F> +FMT_CONSTEXPR basic_fp<F> normalize(basic_fp<F> value) { + // Handle subnormals. + const auto implicit_bit = F(1) << num_significand_bits<double>(); + const auto shifted_implicit_bit = implicit_bit << SHIFT; + while ((value.f & shifted_implicit_bit) == 0) { + value.f <<= 1; + --value.e; + } + // Subtract 1 to account for hidden bit. + const auto offset = basic_fp<F>::num_significand_bits - + num_significand_bits<double>() - SHIFT - 1; + value.f <<= offset; + value.e -= offset; + return value; +} + +// Computes lhs * rhs / pow(2, 64) rounded to nearest with half-up tie breaking. +FMT_CONSTEXPR inline uint64_t multiply(uint64_t lhs, uint64_t rhs) { +#if FMT_USE_INT128 + auto product = static_cast<__uint128_t>(lhs) * rhs; + auto f = static_cast<uint64_t>(product >> 64); + return (static_cast<uint64_t>(product) & (1ULL << 63)) != 0 ? f + 1 : f; +#else + // Multiply 32-bit parts of significands. + uint64_t mask = (1ULL << 32) - 1; + uint64_t a = lhs >> 32, b = lhs & mask; + uint64_t c = rhs >> 32, d = rhs & mask; + uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d; + // Compute mid 64-bit of result and round. + uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31); + return ac + (ad >> 32) + (bc >> 32) + (mid >> 32); +#endif +} + +FMT_CONSTEXPR inline fp operator*(fp x, fp y) { + return {multiply(x.f, y.f), x.e + y.e + 64}; +} + +template <typename T = void> struct basic_data { + // Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340. + // These are generated by support/compute-powers.py. + static constexpr uint64_t pow10_significands[87] = { + 0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76, + 0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df, + 0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c, + 0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5, + 0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57, + 0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7, + 0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e, + 0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996, + 0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126, + 0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053, + 0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f, + 0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b, + 0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06, + 0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb, + 0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000, + 0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984, + 0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068, + 0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8, + 0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758, + 0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85, + 0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d, + 0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25, + 0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2, + 0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a, + 0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410, + 0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129, + 0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85, + 0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841, + 0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b, + }; + +#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409 +# pragma GCC diagnostic push +# pragma GCC diagnostic ignored "-Wnarrowing" +#endif + // Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding + // to significands above. + static constexpr int16_t pow10_exponents[87] = { + -1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954, + -927, -901, -874, -847, -821, -794, -768, -741, -715, -688, -661, + -635, -608, -582, -555, -529, -502, -475, -449, -422, -396, -369, + -343, -316, -289, -263, -236, -210, -183, -157, -130, -103, -77, + -50, -24, 3, 30, 56, 83, 109, 136, 162, 189, 216, + 242, 269, 295, 322, 348, 375, 402, 428, 455, 481, 508, + 534, 561, 588, 614, 641, 667, 694, 720, 747, 774, 800, + 827, 853, 880, 907, 933, 960, 986, 1013, 1039, 1066}; +#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409 +# pragma GCC diagnostic pop +#endif + + static constexpr uint64_t power_of_10_64[20] = { + 1, FMT_POWERS_OF_10(1ULL), FMT_POWERS_OF_10(1000000000ULL), + 10000000000000000000ULL}; + + // For checking rounding thresholds. + // The kth entry is chosen to be the smallest integer such that the + // upper 32-bits of 10^(k+1) times it is strictly bigger than 5 * 10^k. + static constexpr uint32_t fractional_part_rounding_thresholds[8] = { + 2576980378, // ceil(2^31 + 2^32/10^1) + 2190433321, // ceil(2^31 + 2^32/10^2) + 2151778616, // ceil(2^31 + 2^32/10^3) + 2147913145, // ceil(2^31 + 2^32/10^4) + 2147526598, // ceil(2^31 + 2^32/10^5) + 2147487943, // ceil(2^31 + 2^32/10^6) + 2147484078, // ceil(2^31 + 2^32/10^7) + 2147483691 // ceil(2^31 + 2^32/10^8) + }; +}; + +#if FMT_CPLUSPLUS < 201703L +template <typename T> constexpr uint64_t basic_data<T>::pow10_significands[]; +template <typename T> constexpr int16_t basic_data<T>::pow10_exponents[]; +template <typename T> constexpr uint64_t basic_data<T>::power_of_10_64[]; +template <typename T> +constexpr uint32_t basic_data<T>::fractional_part_rounding_thresholds[]; +#endif + +// This is a struct rather than an alias to avoid shadowing warnings in gcc. +struct data : basic_data<> {}; + +// Returns a cached power of 10 `c_k = c_k.f * pow(2, c_k.e)` such that its +// (binary) exponent satisfies `min_exponent <= c_k.e <= min_exponent + 28`. +FMT_CONSTEXPR inline fp get_cached_power(int min_exponent, + int& pow10_exponent) { + const int shift = 32; + // log10(2) = 0x0.4d104d427de7fbcc... + const int64_t significand = 0x4d104d427de7fbcc; + int index = static_cast<int>( + ((min_exponent + fp::num_significand_bits - 1) * (significand >> shift) + + ((int64_t(1) << shift) - 1)) // ceil + >> 32 // arithmetic shift + ); + // Decimal exponent of the first (smallest) cached power of 10. + const int first_dec_exp = -348; + // Difference between 2 consecutive decimal exponents in cached powers of 10. + const int dec_exp_step = 8; + index = (index - first_dec_exp - 1) / dec_exp_step + 1; + pow10_exponent = first_dec_exp + index * dec_exp_step; + // Using *(x + index) instead of x[index] avoids an issue with some compilers + // using the EDG frontend (e.g. nvhpc/22.3 in C++17 mode). + return {*(data::pow10_significands + index), + *(data::pow10_exponents + index)}; +} + +template <typename T> +using convert_float_result = + conditional_t<std::is_same<T, float>::value || + std::numeric_limits<T>::digits == + std::numeric_limits<double>::digits, + double, T>; + +template <typename T> +constexpr auto convert_float(T value) -> convert_float_result<T> { + return static_cast<convert_float_result<T>>(value); +} + +template <typename OutputIt, typename Char> +FMT_NOINLINE FMT_CONSTEXPR auto fill(OutputIt it, size_t n, + const fill_t<Char>& fill) -> OutputIt { + auto fill_size = fill.size(); + if (fill_size == 1) return detail::fill_n(it, n, fill[0]); + auto data = fill.data(); + for (size_t i = 0; i < n; ++i) + it = copy_str<Char>(data, data + fill_size, it); + return it; +} + +// Writes the output of f, padded according to format specifications in specs. +// size: output size in code units. +// width: output display width in (terminal) column positions. +template <align::type align = align::left, typename OutputIt, typename Char, + typename F> +FMT_CONSTEXPR auto write_padded(OutputIt out, const format_specs<Char>& specs, + size_t size, size_t width, F&& f) -> OutputIt { + static_assert(align == align::left || align == align::right, ""); + unsigned spec_width = to_unsigned(specs.width); + size_t padding = spec_width > width ? spec_width - width : 0; + // Shifts are encoded as string literals because static constexpr is not + // supported in constexpr functions. + auto* shifts = align == align::left ? "\x1f\x1f\x00\x01" : "\x00\x1f\x00\x01"; + size_t left_padding = padding >> shifts[specs.align]; + size_t right_padding = padding - left_padding; + auto it = reserve(out, size + padding * specs.fill.size()); + if (left_padding != 0) it = fill(it, left_padding, specs.fill); + it = f(it); + if (right_padding != 0) it = fill(it, right_padding, specs.fill); + return base_iterator(out, it); +} + +template <align::type align = align::left, typename OutputIt, typename Char, + typename F> +constexpr auto write_padded(OutputIt out, const format_specs<Char>& specs, + size_t size, F&& f) -> OutputIt { + return write_padded<align>(out, specs, size, size, f); +} + +template <align::type align = align::left, typename Char, typename OutputIt> +FMT_CONSTEXPR auto write_bytes(OutputIt out, string_view bytes, + const format_specs<Char>& specs) -> OutputIt { + return write_padded<align>( + out, specs, bytes.size(), [bytes](reserve_iterator<OutputIt> it) { + const char* data = bytes.data(); + return copy_str<Char>(data, data + bytes.size(), it); + }); +} + +template <typename Char, typename OutputIt, typename UIntPtr> +auto write_ptr(OutputIt out, UIntPtr value, const format_specs<Char>* specs) + -> OutputIt { + int num_digits = count_digits<4>(value); + auto size = to_unsigned(num_digits) + size_t(2); + auto write = [=](reserve_iterator<OutputIt> it) { + *it++ = static_cast<Char>('0'); + *it++ = static_cast<Char>('x'); + return format_uint<4, Char>(it, value, num_digits); + }; + return specs ? write_padded<align::right>(out, *specs, size, write) + : base_iterator(out, write(reserve(out, size))); +} + +// Returns true iff the code point cp is printable. +FMT_API auto is_printable(uint32_t cp) -> bool; + +inline auto needs_escape(uint32_t cp) -> bool { + return cp < 0x20 || cp == 0x7f || cp == '"' || cp == '\\' || + !is_printable(cp); +} + +template <typename Char> struct find_escape_result { + const Char* begin; + const Char* end; + uint32_t cp; +}; + +template <typename Char> +using make_unsigned_char = + typename conditional_t<std::is_integral<Char>::value, + std::make_unsigned<Char>, + type_identity<uint32_t>>::type; + +template <typename Char> +auto find_escape(const Char* begin, const Char* end) + -> find_escape_result<Char> { + for (; begin != end; ++begin) { + uint32_t cp = static_cast<make_unsigned_char<Char>>(*begin); + if (const_check(sizeof(Char) == 1) && cp >= 0x80) continue; + if (needs_escape(cp)) return {begin, begin + 1, cp}; + } + return {begin, nullptr, 0}; +} + +inline auto find_escape(const char* begin, const char* end) + -> find_escape_result<char> { + if (!is_utf8()) return find_escape<char>(begin, end); + auto result = find_escape_result<char>{end, nullptr, 0}; + for_each_codepoint(string_view(begin, to_unsigned(end - begin)), + [&](uint32_t cp, string_view sv) { + if (needs_escape(cp)) { + result = {sv.begin(), sv.end(), cp}; + return false; + } + return true; + }); + return result; +} + +#define FMT_STRING_IMPL(s, base, explicit) \ + [] { \ + /* Use the hidden visibility as a workaround for a GCC bug (#1973). */ \ + /* Use a macro-like name to avoid shadowing warnings. */ \ + struct FMT_GCC_VISIBILITY_HIDDEN FMT_COMPILE_STRING : base { \ + using char_type FMT_MAYBE_UNUSED = fmt::remove_cvref_t<decltype(s[0])>; \ + FMT_MAYBE_UNUSED FMT_CONSTEXPR explicit \ + operator fmt::basic_string_view<char_type>() const { \ + return fmt::detail_exported::compile_string_to_view<char_type>(s); \ + } \ + }; \ + return FMT_COMPILE_STRING(); \ + }() + +/** + \rst + Constructs a compile-time format string from a string literal *s*. + + **Example**:: + + // A compile-time error because 'd' is an invalid specifier for strings. + std::string s = fmt::format(FMT_STRING("{:d}"), "foo"); + \endrst + */ +#define FMT_STRING(s) FMT_STRING_IMPL(s, fmt::detail::compile_string, ) + +template <size_t width, typename Char, typename OutputIt> +auto write_codepoint(OutputIt out, char prefix, uint32_t cp) -> OutputIt { + *out++ = static_cast<Char>('\\'); + *out++ = static_cast<Char>(prefix); + Char buf[width]; + fill_n(buf, width, static_cast<Char>('0')); + format_uint<4>(buf, cp, width); + return copy_str<Char>(buf, buf + width, out); +} + +template <typename OutputIt, typename Char> +auto write_escaped_cp(OutputIt out, const find_escape_result<Char>& escape) + -> OutputIt { + auto c = static_cast<Char>(escape.cp); + switch (escape.cp) { + case '\n': + *out++ = static_cast<Char>('\\'); + c = static_cast<Char>('n'); + break; + case '\r': + *out++ = static_cast<Char>('\\'); + c = static_cast<Char>('r'); + break; + case '\t': + *out++ = static_cast<Char>('\\'); + c = static_cast<Char>('t'); + break; + case '"': + FMT_FALLTHROUGH; + case '\'': + FMT_FALLTHROUGH; + case '\\': + *out++ = static_cast<Char>('\\'); + break; + default: + if (escape.cp < 0x100) { + return write_codepoint<2, Char>(out, 'x', escape.cp); + } + if (escape.cp < 0x10000) { + return write_codepoint<4, Char>(out, 'u', escape.cp); + } + if (escape.cp < 0x110000) { + return write_codepoint<8, Char>(out, 'U', escape.cp); + } + for (Char escape_char : basic_string_view<Char>( + escape.begin, to_unsigned(escape.end - escape.begin))) { + out = write_codepoint<2, Char>(out, 'x', + static_cast<uint32_t>(escape_char) & 0xFF); + } + return out; + } + *out++ = c; + return out; +} + +template <typename Char, typename OutputIt> +auto write_escaped_string(OutputIt out, basic_string_view<Char> str) + -> OutputIt { + *out++ = static_cast<Char>('"'); + auto begin = str.begin(), end = str.end(); + do { + auto escape = find_escape(begin, end); + out = copy_str<Char>(begin, escape.begin, out); + begin = escape.end; + if (!begin) break; + out = write_escaped_cp<OutputIt, Char>(out, escape); + } while (begin != end); + *out++ = static_cast<Char>('"'); + return out; +} + +template <typename Char, typename OutputIt> +auto write_escaped_char(OutputIt out, Char v) -> OutputIt { + *out++ = static_cast<Char>('\''); + if ((needs_escape(static_cast<uint32_t>(v)) && v != static_cast<Char>('"')) || + v == static_cast<Char>('\'')) { + out = write_escaped_cp( + out, find_escape_result<Char>{&v, &v + 1, static_cast<uint32_t>(v)}); + } else { + *out++ = v; + } + *out++ = static_cast<Char>('\''); + return out; +} + +template <typename Char, typename OutputIt> +FMT_CONSTEXPR auto write_char(OutputIt out, Char value, + const format_specs<Char>& specs) -> OutputIt { + bool is_debug = specs.type == presentation_type::debug; + return write_padded(out, specs, 1, [=](reserve_iterator<OutputIt> it) { + if (is_debug) return write_escaped_char(it, value); + *it++ = value; + return it; + }); +} +template <typename Char, typename OutputIt> +FMT_CONSTEXPR auto write(OutputIt out, Char value, + const format_specs<Char>& specs, locale_ref loc = {}) + -> OutputIt { + // char is formatted as unsigned char for consistency across platforms. + using unsigned_type = + conditional_t<std::is_same<Char, char>::value, unsigned char, unsigned>; + return check_char_specs(specs) + ? write_char(out, value, specs) + : write(out, static_cast<unsigned_type>(value), specs, loc); +} + +// Data for write_int that doesn't depend on output iterator type. It is used to +// avoid template code bloat. +template <typename Char> struct write_int_data { + size_t size; + size_t padding; + + FMT_CONSTEXPR write_int_data(int num_digits, unsigned prefix, + const format_specs<Char>& specs) + : size((prefix >> 24) + to_unsigned(num_digits)), padding(0) { + if (specs.align == align::numeric) { + auto width = to_unsigned(specs.width); + if (width > size) { + padding = width - size; + size = width; + } + } else if (specs.precision > num_digits) { + size = (prefix >> 24) + to_unsigned(specs.precision); + padding = to_unsigned(specs.precision - num_digits); + } + } +}; + +// Writes an integer in the format +// <left-padding><prefix><numeric-padding><digits><right-padding> +// where <digits> are written by write_digits(it). +// prefix contains chars in three lower bytes and the size in the fourth byte. +template <typename OutputIt, typename Char, typename W> +FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, int num_digits, + unsigned prefix, + const format_specs<Char>& specs, + W write_digits) -> OutputIt { + // Slightly faster check for specs.width == 0 && specs.precision == -1. + if ((specs.width | (specs.precision + 1)) == 0) { + auto it = reserve(out, to_unsigned(num_digits) + (prefix >> 24)); + if (prefix != 0) { + for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8) + *it++ = static_cast<Char>(p & 0xff); + } + return base_iterator(out, write_digits(it)); + } + auto data = write_int_data<Char>(num_digits, prefix, specs); + return write_padded<align::right>( + out, specs, data.size, [=](reserve_iterator<OutputIt> it) { + for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8) + *it++ = static_cast<Char>(p & 0xff); + it = detail::fill_n(it, data.padding, static_cast<Char>('0')); + return write_digits(it); + }); +} + +template <typename Char> class digit_grouping { + private: + std::string grouping_; + std::basic_string<Char> thousands_sep_; + + struct next_state { + std::string::const_iterator group; + int pos; + }; + next_state initial_state() const { return {grouping_.begin(), 0}; } + + // Returns the next digit group separator position. + int next(next_state& state) const { + if (thousands_sep_.empty()) return max_value<int>(); + if (state.group == grouping_.end()) return state.pos += grouping_.back(); + if (*state.group <= 0 || *state.group == max_value<char>()) + return max_value<int>(); + state.pos += *state.group++; + return state.pos; + } + + public: + explicit digit_grouping(locale_ref loc, bool localized = true) { + if (!localized) return; + auto sep = thousands_sep<Char>(loc); + grouping_ = sep.grouping; + if (sep.thousands_sep) thousands_sep_.assign(1, sep.thousands_sep); + } + digit_grouping(std::string grouping, std::basic_string<Char> sep) + : grouping_(std::move(grouping)), thousands_sep_(std::move(sep)) {} + + bool has_separator() const { return !thousands_sep_.empty(); } + + int count_separators(int num_digits) const { + int count = 0; + auto state = initial_state(); + while (num_digits > next(state)) ++count; + return count; + } + + // Applies grouping to digits and write the output to out. + template <typename Out, typename C> + Out apply(Out out, basic_string_view<C> digits) const { + auto num_digits = static_cast<int>(digits.size()); + auto separators = basic_memory_buffer<int>(); + separators.push_back(0); + auto state = initial_state(); + while (int i = next(state)) { + if (i >= num_digits) break; + separators.push_back(i); + } + for (int i = 0, sep_index = static_cast<int>(separators.size() - 1); + i < num_digits; ++i) { + if (num_digits - i == separators[sep_index]) { + out = + copy_str<Char>(thousands_sep_.data(), + thousands_sep_.data() + thousands_sep_.size(), out); + --sep_index; + } + *out++ = static_cast<Char>(digits[to_unsigned(i)]); + } + return out; + } +}; + +// Writes a decimal integer with digit grouping. +template <typename OutputIt, typename UInt, typename Char> +auto write_int(OutputIt out, UInt value, unsigned prefix, + const format_specs<Char>& specs, + const digit_grouping<Char>& grouping) -> OutputIt { + static_assert(std::is_same<uint64_or_128_t<UInt>, UInt>::value, ""); + int num_digits = count_digits(value); + char digits[40]; + format_decimal(digits, value, num_digits); + unsigned size = to_unsigned((prefix != 0 ? 1 : 0) + num_digits + + grouping.count_separators(num_digits)); + return write_padded<align::right>( + out, specs, size, size, [&](reserve_iterator<OutputIt> it) { + if (prefix != 0) { + char sign = static_cast<char>(prefix); + *it++ = static_cast<Char>(sign); + } + return grouping.apply(it, string_view(digits, to_unsigned(num_digits))); + }); +} + +// Writes a localized value. +FMT_API auto write_loc(appender out, loc_value value, + const format_specs<>& specs, locale_ref loc) -> bool; +template <typename OutputIt, typename Char> +inline auto write_loc(OutputIt, loc_value, const format_specs<Char>&, + locale_ref) -> bool { + return false; +} + +FMT_CONSTEXPR inline void prefix_append(unsigned& prefix, unsigned value) { + prefix |= prefix != 0 ? value << 8 : value; + prefix += (1u + (value > 0xff ? 1 : 0)) << 24; +} + +template <typename UInt> struct write_int_arg { + UInt abs_value; + unsigned prefix; +}; + +template <typename T> +FMT_CONSTEXPR auto make_write_int_arg(T value, sign_t sign) + -> write_int_arg<uint32_or_64_or_128_t<T>> { + auto prefix = 0u; + auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value); + if (is_negative(value)) { + prefix = 0x01000000 | '-'; + abs_value = 0 - abs_value; + } else { + constexpr const unsigned prefixes[4] = {0, 0, 0x1000000u | '+', + 0x1000000u | ' '}; + prefix = prefixes[sign]; + } + return {abs_value, prefix}; +} + +template <typename Char = char> struct loc_writer { + buffer_appender<Char> out; + const format_specs<Char>& specs; + std::basic_string<Char> sep; + std::string grouping; + std::basic_string<Char> decimal_point; + + template <typename T, FMT_ENABLE_IF(is_integer<T>::value)> + auto operator()(T value) -> bool { + auto arg = make_write_int_arg(value, specs.sign); + write_int(out, static_cast<uint64_or_128_t<T>>(arg.abs_value), arg.prefix, + specs, digit_grouping<Char>(grouping, sep)); + return true; + } + + template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)> + auto operator()(T) -> bool { + return false; + } +}; + +template <typename Char, typename OutputIt, typename T> +FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, write_int_arg<T> arg, + const format_specs<Char>& specs, + locale_ref) -> OutputIt { + static_assert(std::is_same<T, uint32_or_64_or_128_t<T>>::value, ""); + auto abs_value = arg.abs_value; + auto prefix = arg.prefix; + switch (specs.type) { + case presentation_type::none: + case presentation_type::dec: { + auto num_digits = count_digits(abs_value); + return write_int( + out, num_digits, prefix, specs, [=](reserve_iterator<OutputIt> it) { + return format_decimal<Char>(it, abs_value, num_digits).end; + }); + } + case presentation_type::hex_lower: + case presentation_type::hex_upper: { + bool upper = specs.type == presentation_type::hex_upper; + if (specs.alt) + prefix_append(prefix, unsigned(upper ? 'X' : 'x') << 8 | '0'); + int num_digits = count_digits<4>(abs_value); + return write_int( + out, num_digits, prefix, specs, [=](reserve_iterator<OutputIt> it) { + return format_uint<4, Char>(it, abs_value, num_digits, upper); + }); + } + case presentation_type::bin_lower: + case presentation_type::bin_upper: { + bool upper = specs.type == presentation_type::bin_upper; + if (specs.alt) + prefix_append(prefix, unsigned(upper ? 'B' : 'b') << 8 | '0'); + int num_digits = count_digits<1>(abs_value); + return write_int(out, num_digits, prefix, specs, + [=](reserve_iterator<OutputIt> it) { + return format_uint<1, Char>(it, abs_value, num_digits); + }); + } + case presentation_type::oct: { + int num_digits = count_digits<3>(abs_value); + // Octal prefix '0' is counted as a digit, so only add it if precision + // is not greater than the number of digits. + if (specs.alt && specs.precision <= num_digits && abs_value != 0) + prefix_append(prefix, '0'); + return write_int(out, num_digits, prefix, specs, + [=](reserve_iterator<OutputIt> it) { + return format_uint<3, Char>(it, abs_value, num_digits); + }); + } + case presentation_type::chr: + return write_char(out, static_cast<Char>(abs_value), specs); + default: + throw_format_error("invalid format specifier"); + } + return out; +} +template <typename Char, typename OutputIt, typename T> +FMT_CONSTEXPR FMT_NOINLINE auto write_int_noinline( + OutputIt out, write_int_arg<T> arg, const format_specs<Char>& specs, + locale_ref loc) -> OutputIt { + return write_int(out, arg, specs, loc); +} +template <typename Char, typename OutputIt, typename T, + FMT_ENABLE_IF(is_integral<T>::value && + !std::is_same<T, bool>::value && + std::is_same<OutputIt, buffer_appender<Char>>::value)> +FMT_CONSTEXPR FMT_INLINE auto write(OutputIt out, T value, + const format_specs<Char>& specs, + locale_ref loc) -> OutputIt { + if (specs.localized && write_loc(out, value, specs, loc)) return out; + return write_int_noinline(out, make_write_int_arg(value, specs.sign), specs, + loc); +} +// An inlined version of write used in format string compilation. +template <typename Char, typename OutputIt, typename T, + FMT_ENABLE_IF(is_integral<T>::value && + !std::is_same<T, bool>::value && + !std::is_same<OutputIt, buffer_appender<Char>>::value)> +FMT_CONSTEXPR FMT_INLINE auto write(OutputIt out, T value, + const format_specs<Char>& specs, + locale_ref loc) -> OutputIt { + if (specs.localized && write_loc(out, value, specs, loc)) return out; + return write_int(out, make_write_int_arg(value, specs.sign), specs, loc); +} + +// An output iterator that counts the number of objects written to it and +// discards them. +class counting_iterator { + private: + size_t count_; + + public: + using iterator_category = std::output_iterator_tag; + using difference_type = std::ptrdiff_t; + using pointer = void; + using reference = void; + FMT_UNCHECKED_ITERATOR(counting_iterator); + + struct value_type { + template <typename T> FMT_CONSTEXPR void operator=(const T&) {} + }; + + FMT_CONSTEXPR counting_iterator() : count_(0) {} + + FMT_CONSTEXPR size_t count() const { return count_; } + + FMT_CONSTEXPR counting_iterator& operator++() { + ++count_; + return *this; + } + FMT_CONSTEXPR counting_iterator operator++(int) { + auto it = *this; + ++*this; + return it; + } + + FMT_CONSTEXPR friend counting_iterator operator+(counting_iterator it, + difference_type n) { + it.count_ += static_cast<size_t>(n); + return it; + } + + FMT_CONSTEXPR value_type operator*() const { return {}; } +}; + +template <typename Char, typename OutputIt> +FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> s, + const format_specs<Char>& specs) -> OutputIt { + auto data = s.data(); + auto size = s.size(); + if (specs.precision >= 0 && to_unsigned(specs.precision) < size) + size = code_point_index(s, to_unsigned(specs.precision)); + bool is_debug = specs.type == presentation_type::debug; + size_t width = 0; + if (specs.width != 0) { + if (is_debug) + width = write_escaped_string(counting_iterator{}, s).count(); + else + width = compute_width(basic_string_view<Char>(data, size)); + } + return write_padded(out, specs, size, width, + [=](reserve_iterator<OutputIt> it) { + if (is_debug) return write_escaped_string(it, s); + return copy_str<Char>(data, data + size, it); + }); +} +template <typename Char, typename OutputIt> +FMT_CONSTEXPR auto write(OutputIt out, + basic_string_view<type_identity_t<Char>> s, + const format_specs<Char>& specs, locale_ref) + -> OutputIt { + return write(out, s, specs); +} +template <typename Char, typename OutputIt> +FMT_CONSTEXPR auto write(OutputIt out, const Char* s, + const format_specs<Char>& specs, locale_ref) + -> OutputIt { + return specs.type != presentation_type::pointer + ? write(out, basic_string_view<Char>(s), specs, {}) + : write_ptr<Char>(out, bit_cast<uintptr_t>(s), &specs); +} + +template <typename Char, typename OutputIt, typename T, + FMT_ENABLE_IF(is_integral<T>::value && + !std::is_same<T, bool>::value && + !std::is_same<T, Char>::value)> +FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt { + auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value); + bool negative = is_negative(value); + // Don't do -abs_value since it trips unsigned-integer-overflow sanitizer. + if (negative) abs_value = ~abs_value + 1; + int num_digits = count_digits(abs_value); + auto size = (negative ? 1 : 0) + static_cast<size_t>(num_digits); + auto it = reserve(out, size); + if (auto ptr = to_pointer<Char>(it, size)) { + if (negative) *ptr++ = static_cast<Char>('-'); + format_decimal<Char>(ptr, abs_value, num_digits); + return out; + } + if (negative) *it++ = static_cast<Char>('-'); + it = format_decimal<Char>(it, abs_value, num_digits).end; + return base_iterator(out, it); +} + +// A floating-point presentation format. +enum class float_format : unsigned char { + general, // General: exponent notation or fixed point based on magnitude. + exp, // Exponent notation with the default precision of 6, e.g. 1.2e-3. + fixed, // Fixed point with the default precision of 6, e.g. 0.0012. + hex +}; + +struct float_specs { + int precision; + float_format format : 8; + sign_t sign : 8; + bool upper : 1; + bool locale : 1; + bool binary32 : 1; + bool showpoint : 1; +}; + +template <typename ErrorHandler = error_handler, typename Char> +FMT_CONSTEXPR auto parse_float_type_spec(const format_specs<Char>& specs, + ErrorHandler&& eh = {}) + -> float_specs { + auto result = float_specs(); + result.showpoint = specs.alt; + result.locale = specs.localized; + switch (specs.type) { + case presentation_type::none: + result.format = float_format::general; + break; + case presentation_type::general_upper: + result.upper = true; + FMT_FALLTHROUGH; + case presentation_type::general_lower: + result.format = float_format::general; + break; + case presentation_type::exp_upper: + result.upper = true; + FMT_FALLTHROUGH; + case presentation_type::exp_lower: + result.format = float_format::exp; + result.showpoint |= specs.precision != 0; + break; + case presentation_type::fixed_upper: + result.upper = true; + FMT_FALLTHROUGH; + case presentation_type::fixed_lower: + result.format = float_format::fixed; + result.showpoint |= specs.precision != 0; + break; + case presentation_type::hexfloat_upper: + result.upper = true; + FMT_FALLTHROUGH; + case presentation_type::hexfloat_lower: + result.format = float_format::hex; + break; + default: + eh.on_error("invalid format specifier"); + break; + } + return result; +} + +template <typename Char, typename OutputIt> +FMT_CONSTEXPR20 auto write_nonfinite(OutputIt out, bool isnan, + format_specs<Char> specs, + const float_specs& fspecs) -> OutputIt { + auto str = + isnan ? (fspecs.upper ? "NAN" : "nan") : (fspecs.upper ? "INF" : "inf"); + constexpr size_t str_size = 3; + auto sign = fspecs.sign; + auto size = str_size + (sign ? 1 : 0); + // Replace '0'-padding with space for non-finite values. + const bool is_zero_fill = + specs.fill.size() == 1 && *specs.fill.data() == static_cast<Char>('0'); + if (is_zero_fill) specs.fill[0] = static_cast<Char>(' '); + return write_padded(out, specs, size, [=](reserve_iterator<OutputIt> it) { + if (sign) *it++ = detail::sign<Char>(sign); + return copy_str<Char>(str, str + str_size, it); + }); +} + +// A decimal floating-point number significand * pow(10, exp). +struct big_decimal_fp { + const char* significand; + int significand_size; + int exponent; +}; + +constexpr auto get_significand_size(const big_decimal_fp& f) -> int { + return f.significand_size; +} +template <typename T> +inline auto get_significand_size(const dragonbox::decimal_fp<T>& f) -> int { + return count_digits(f.significand); +} + +template <typename Char, typename OutputIt> +constexpr auto write_significand(OutputIt out, const char* significand, + int significand_size) -> OutputIt { + return copy_str<Char>(significand, significand + significand_size, out); +} +template <typename Char, typename OutputIt, typename UInt> +inline auto write_significand(OutputIt out, UInt significand, + int significand_size) -> OutputIt { + return format_decimal<Char>(out, significand, significand_size).end; +} +template <typename Char, typename OutputIt, typename T, typename Grouping> +FMT_CONSTEXPR20 auto write_significand(OutputIt out, T significand, + int significand_size, int exponent, + const Grouping& grouping) -> OutputIt { + if (!grouping.has_separator()) { + out = write_significand<Char>(out, significand, significand_size); + return detail::fill_n(out, exponent, static_cast<Char>('0')); + } + auto buffer = memory_buffer(); + write_significand<char>(appender(buffer), significand, significand_size); + detail::fill_n(appender(buffer), exponent, '0'); + return grouping.apply(out, string_view(buffer.data(), buffer.size())); +} + +template <typename Char, typename UInt, + FMT_ENABLE_IF(std::is_integral<UInt>::value)> +inline auto write_significand(Char* out, UInt significand, int significand_size, + int integral_size, Char decimal_point) -> Char* { + if (!decimal_point) + return format_decimal(out, significand, significand_size).end; + out += significand_size + 1; + Char* end = out; + int floating_size = significand_size - integral_size; + for (int i = floating_size / 2; i > 0; --i) { + out -= 2; + copy2(out, digits2(static_cast<std::size_t>(significand % 100))); + significand /= 100; + } + if (floating_size % 2 != 0) { + *--out = static_cast<Char>('0' + significand % 10); + significand /= 10; + } + *--out = decimal_point; + format_decimal(out - integral_size, significand, integral_size); + return end; +} + +template <typename OutputIt, typename UInt, typename Char, + FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<OutputIt>>::value)> +inline auto write_significand(OutputIt out, UInt significand, + int significand_size, int integral_size, + Char decimal_point) -> OutputIt { + // Buffer is large enough to hold digits (digits10 + 1) and a decimal point. + Char buffer[digits10<UInt>() + 2]; + auto end = write_significand(buffer, significand, significand_size, + integral_size, decimal_point); + return detail::copy_str_noinline<Char>(buffer, end, out); +} + +template <typename OutputIt, typename Char> +FMT_CONSTEXPR auto write_significand(OutputIt out, const char* significand, + int significand_size, int integral_size, + Char decimal_point) -> OutputIt { + out = detail::copy_str_noinline<Char>(significand, + significand + integral_size, out); + if (!decimal_point) return out; + *out++ = decimal_point; + return detail::copy_str_noinline<Char>(significand + integral_size, + significand + significand_size, out); +} + +template <typename OutputIt, typename Char, typename T, typename Grouping> +FMT_CONSTEXPR20 auto write_significand(OutputIt out, T significand, + int significand_size, int integral_size, + Char decimal_point, + const Grouping& grouping) -> OutputIt { + if (!grouping.has_separator()) { + return write_significand(out, significand, significand_size, integral_size, + decimal_point); + } + auto buffer = basic_memory_buffer<Char>(); + write_significand(buffer_appender<Char>(buffer), significand, + significand_size, integral_size, decimal_point); + grouping.apply( + out, basic_string_view<Char>(buffer.data(), to_unsigned(integral_size))); + return detail::copy_str_noinline<Char>(buffer.data() + integral_size, + buffer.end(), out); +} + +template <typename OutputIt, typename DecimalFP, typename Char, + typename Grouping = digit_grouping<Char>> +FMT_CONSTEXPR20 auto do_write_float(OutputIt out, const DecimalFP& f, + const format_specs<Char>& specs, + float_specs fspecs, locale_ref loc) + -> OutputIt { + auto significand = f.significand; + int significand_size = get_significand_size(f); + const Char zero = static_cast<Char>('0'); + auto sign = fspecs.sign; + size_t size = to_unsigned(significand_size) + (sign ? 1 : 0); + using iterator = reserve_iterator<OutputIt>; + + Char decimal_point = + fspecs.locale ? detail::decimal_point<Char>(loc) : static_cast<Char>('.'); + + int output_exp = f.exponent + significand_size - 1; + auto use_exp_format = [=]() { + if (fspecs.format == float_format::exp) return true; + if (fspecs.format != float_format::general) return false; + // Use the fixed notation if the exponent is in [exp_lower, exp_upper), + // e.g. 0.0001 instead of 1e-04. Otherwise use the exponent notation. + const int exp_lower = -4, exp_upper = 16; + return output_exp < exp_lower || + output_exp >= (fspecs.precision > 0 ? fspecs.precision : exp_upper); + }; + if (use_exp_format()) { + int num_zeros = 0; + if (fspecs.showpoint) { + num_zeros = fspecs.precision - significand_size; + if (num_zeros < 0) num_zeros = 0; + size += to_unsigned(num_zeros); + } else if (significand_size == 1) { + decimal_point = Char(); + } + auto abs_output_exp = output_exp >= 0 ? output_exp : -output_exp; + int exp_digits = 2; + if (abs_output_exp >= 100) exp_digits = abs_output_exp >= 1000 ? 4 : 3; + + size += to_unsigned((decimal_point ? 1 : 0) + 2 + exp_digits); + char exp_char = fspecs.upper ? 'E' : 'e'; + auto write = [=](iterator it) { + if (sign) *it++ = detail::sign<Char>(sign); + // Insert a decimal point after the first digit and add an exponent. + it = write_significand(it, significand, significand_size, 1, + decimal_point); + if (num_zeros > 0) it = detail::fill_n(it, num_zeros, zero); + *it++ = static_cast<Char>(exp_char); + return write_exponent<Char>(output_exp, it); + }; + return specs.width > 0 ? write_padded<align::right>(out, specs, size, write) + : base_iterator(out, write(reserve(out, size))); + } + + int exp = f.exponent + significand_size; + if (f.exponent >= 0) { + // 1234e5 -> 123400000[.0+] + size += to_unsigned(f.exponent); + int num_zeros = fspecs.precision - exp; + abort_fuzzing_if(num_zeros > 5000); + if (fspecs.showpoint) { + ++size; + if (num_zeros <= 0 && fspecs.format != float_format::fixed) num_zeros = 0; + if (num_zeros > 0) size += to_unsigned(num_zeros); + } + auto grouping = Grouping(loc, fspecs.locale); + size += to_unsigned(grouping.count_separators(exp)); + return write_padded<align::right>(out, specs, size, [&](iterator it) { + if (sign) *it++ = detail::sign<Char>(sign); + it = write_significand<Char>(it, significand, significand_size, + f.exponent, grouping); + if (!fspecs.showpoint) return it; + *it++ = decimal_point; + return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it; + }); + } else if (exp > 0) { + // 1234e-2 -> 12.34[0+] + int num_zeros = fspecs.showpoint ? fspecs.precision - significand_size : 0; + size += 1 + to_unsigned(num_zeros > 0 ? num_zeros : 0); + auto grouping = Grouping(loc, fspecs.locale); + size += to_unsigned(grouping.count_separators(exp)); + return write_padded<align::right>(out, specs, size, [&](iterator it) { + if (sign) *it++ = detail::sign<Char>(sign); + it = write_significand(it, significand, significand_size, exp, + decimal_point, grouping); + return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it; + }); + } + // 1234e-6 -> 0.001234 + int num_zeros = -exp; + if (significand_size == 0 && fspecs.precision >= 0 && + fspecs.precision < num_zeros) { + num_zeros = fspecs.precision; + } + bool pointy = num_zeros != 0 || significand_size != 0 || fspecs.showpoint; + size += 1 + (pointy ? 1 : 0) + to_unsigned(num_zeros); + return write_padded<align::right>(out, specs, size, [&](iterator it) { + if (sign) *it++ = detail::sign<Char>(sign); + *it++ = zero; + if (!pointy) return it; + *it++ = decimal_point; + it = detail::fill_n(it, num_zeros, zero); + return write_significand<Char>(it, significand, significand_size); + }); +} + +template <typename Char> class fallback_digit_grouping { + public: + constexpr fallback_digit_grouping(locale_ref, bool) {} + + constexpr bool has_separator() const { return false; } + + constexpr int count_separators(int) const { return 0; } + + template <typename Out, typename C> + constexpr Out apply(Out out, basic_string_view<C>) const { + return out; + } +}; + +template <typename OutputIt, typename DecimalFP, typename Char> +FMT_CONSTEXPR20 auto write_float(OutputIt out, const DecimalFP& f, + const format_specs<Char>& specs, + float_specs fspecs, locale_ref loc) + -> OutputIt { + if (is_constant_evaluated()) { + return do_write_float<OutputIt, DecimalFP, Char, + fallback_digit_grouping<Char>>(out, f, specs, fspecs, + loc); + } else { + return do_write_float(out, f, specs, fspecs, loc); + } +} + +template <typename T> constexpr bool isnan(T value) { + return !(value >= value); // std::isnan doesn't support __float128. +} + +template <typename T, typename Enable = void> +struct has_isfinite : std::false_type {}; + +template <typename T> +struct has_isfinite<T, enable_if_t<sizeof(std::isfinite(T())) != 0>> + : std::true_type {}; + +template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value&& + has_isfinite<T>::value)> +FMT_CONSTEXPR20 bool isfinite(T value) { + constexpr T inf = T(std::numeric_limits<double>::infinity()); + if (is_constant_evaluated()) + return !detail::isnan(value) && value < inf && value > -inf; + return std::isfinite(value); +} +template <typename T, FMT_ENABLE_IF(!has_isfinite<T>::value)> +FMT_CONSTEXPR bool isfinite(T value) { + T inf = T(std::numeric_limits<double>::infinity()); + // std::isfinite doesn't support __float128. + return !detail::isnan(value) && value < inf && value > -inf; +} + +template <typename T, FMT_ENABLE_IF(is_floating_point<T>::value)> +FMT_INLINE FMT_CONSTEXPR bool signbit(T value) { + if (is_constant_evaluated()) { +#ifdef __cpp_if_constexpr + if constexpr (std::numeric_limits<double>::is_iec559) { + auto bits = detail::bit_cast<uint64_t>(static_cast<double>(value)); + return (bits >> (num_bits<uint64_t>() - 1)) != 0; + } +#endif + } + return std::signbit(static_cast<double>(value)); +} + +enum class round_direction { unknown, up, down }; + +// Given the divisor (normally a power of 10), the remainder = v % divisor for +// some number v and the error, returns whether v should be rounded up, down, or +// whether the rounding direction can't be determined due to error. +// error should be less than divisor / 2. +FMT_CONSTEXPR inline round_direction get_round_direction(uint64_t divisor, + uint64_t remainder, + uint64_t error) { + FMT_ASSERT(remainder < divisor, ""); // divisor - remainder won't overflow. + FMT_ASSERT(error < divisor, ""); // divisor - error won't overflow. + FMT_ASSERT(error < divisor - error, ""); // error * 2 won't overflow. + // Round down if (remainder + error) * 2 <= divisor. + if (remainder <= divisor - remainder && error * 2 <= divisor - remainder * 2) + return round_direction::down; + // Round up if (remainder - error) * 2 >= divisor. + if (remainder >= error && + remainder - error >= divisor - (remainder - error)) { + return round_direction::up; + } + return round_direction::unknown; +} + +namespace digits { +enum result { + more, // Generate more digits. + done, // Done generating digits. + error // Digit generation cancelled due to an error. +}; +} + +struct gen_digits_handler { + char* buf; + int size; + int precision; + int exp10; + bool fixed; + + FMT_CONSTEXPR digits::result on_digit(char digit, uint64_t divisor, + uint64_t remainder, uint64_t error, + bool integral) { + FMT_ASSERT(remainder < divisor, ""); + buf[size++] = digit; + if (!integral && error >= remainder) return digits::error; + if (size < precision) return digits::more; + if (!integral) { + // Check if error * 2 < divisor with overflow prevention. + // The check is not needed for the integral part because error = 1 + // and divisor > (1 << 32) there. + if (error >= divisor || error >= divisor - error) return digits::error; + } else { + FMT_ASSERT(error == 1 && divisor > 2, ""); + } + auto dir = get_round_direction(divisor, remainder, error); + if (dir != round_direction::up) + return dir == round_direction::down ? digits::done : digits::error; + ++buf[size - 1]; + for (int i = size - 1; i > 0 && buf[i] > '9'; --i) { + buf[i] = '0'; + ++buf[i - 1]; + } + if (buf[0] > '9') { + buf[0] = '1'; + if (fixed) + buf[size++] = '0'; + else + ++exp10; + } + return digits::done; + } +}; + +inline FMT_CONSTEXPR20 void adjust_precision(int& precision, int exp10) { + // Adjust fixed precision by exponent because it is relative to decimal + // point. + if (exp10 > 0 && precision > max_value<int>() - exp10) + FMT_THROW(format_error("number is too big")); + precision += exp10; +} + +// Generates output using the Grisu digit-gen algorithm. +// error: the size of the region (lower, upper) outside of which numbers +// definitely do not round to value (Delta in Grisu3). +FMT_INLINE FMT_CONSTEXPR20 auto grisu_gen_digits(fp value, uint64_t error, + int& exp, + gen_digits_handler& handler) + -> digits::result { + const fp one(1ULL << -value.e, value.e); + // The integral part of scaled value (p1 in Grisu) = value / one. It cannot be + // zero because it contains a product of two 64-bit numbers with MSB set (due + // to normalization) - 1, shifted right by at most 60 bits. + auto integral = static_cast<uint32_t>(value.f >> -one.e); + FMT_ASSERT(integral != 0, ""); + FMT_ASSERT(integral == value.f >> -one.e, ""); + // The fractional part of scaled value (p2 in Grisu) c = value % one. + uint64_t fractional = value.f & (one.f - 1); + exp = count_digits(integral); // kappa in Grisu. + // Non-fixed formats require at least one digit and no precision adjustment. + if (handler.fixed) { + adjust_precision(handler.precision, exp + handler.exp10); + // Check if precision is satisfied just by leading zeros, e.g. + // format("{:.2f}", 0.001) gives "0.00" without generating any digits. + if (handler.precision <= 0) { + if (handler.precision < 0) return digits::done; + // Divide by 10 to prevent overflow. + uint64_t divisor = data::power_of_10_64[exp - 1] << -one.e; + auto dir = get_round_direction(divisor, value.f / 10, error * 10); + if (dir == round_direction::unknown) return digits::error; + handler.buf[handler.size++] = dir == round_direction::up ? '1' : '0'; + return digits::done; + } + } + // Generate digits for the integral part. This can produce up to 10 digits. + do { + uint32_t digit = 0; + auto divmod_integral = [&](uint32_t divisor) { + digit = integral / divisor; + integral %= divisor; + }; + // This optimization by Milo Yip reduces the number of integer divisions by + // one per iteration. + switch (exp) { + case 10: + divmod_integral(1000000000); + break; + case 9: + divmod_integral(100000000); + break; + case 8: + divmod_integral(10000000); + break; + case 7: + divmod_integral(1000000); + break; + case 6: + divmod_integral(100000); + break; + case 5: + divmod_integral(10000); + break; + case 4: + divmod_integral(1000); + break; + case 3: + divmod_integral(100); + break; + case 2: + divmod_integral(10); + break; + case 1: + digit = integral; + integral = 0; + break; + default: + FMT_ASSERT(false, "invalid number of digits"); + } + --exp; + auto remainder = (static_cast<uint64_t>(integral) << -one.e) + fractional; + auto result = handler.on_digit(static_cast<char>('0' + digit), + data::power_of_10_64[exp] << -one.e, + remainder, error, true); + if (result != digits::more) return result; + } while (exp > 0); + // Generate digits for the fractional part. + for (;;) { + fractional *= 10; + error *= 10; + char digit = static_cast<char>('0' + (fractional >> -one.e)); + fractional &= one.f - 1; + --exp; + auto result = handler.on_digit(digit, one.f, fractional, error, false); + if (result != digits::more) return result; + } +} + +class bigint { + private: + // A bigint is stored as an array of bigits (big digits), with bigit at index + // 0 being the least significant one. + using bigit = uint32_t; + using double_bigit = uint64_t; + enum { bigits_capacity = 32 }; + basic_memory_buffer<bigit, bigits_capacity> bigits_; + int exp_; + + FMT_CONSTEXPR20 bigit operator[](int index) const { + return bigits_[to_unsigned(index)]; + } + FMT_CONSTEXPR20 bigit& operator[](int index) { + return bigits_[to_unsigned(index)]; + } + + static constexpr const int bigit_bits = num_bits<bigit>(); + + friend struct formatter<bigint>; + + FMT_CONSTEXPR20 void subtract_bigits(int index, bigit other, bigit& borrow) { + auto result = static_cast<double_bigit>((*this)[index]) - other - borrow; + (*this)[index] = static_cast<bigit>(result); + borrow = static_cast<bigit>(result >> (bigit_bits * 2 - 1)); + } + + FMT_CONSTEXPR20 void remove_leading_zeros() { + int num_bigits = static_cast<int>(bigits_.size()) - 1; + while (num_bigits > 0 && (*this)[num_bigits] == 0) --num_bigits; + bigits_.resize(to_unsigned(num_bigits + 1)); + } + + // Computes *this -= other assuming aligned bigints and *this >= other. + FMT_CONSTEXPR20 void subtract_aligned(const bigint& other) { + FMT_ASSERT(other.exp_ >= exp_, "unaligned bigints"); + FMT_ASSERT(compare(*this, other) >= 0, ""); + bigit borrow = 0; + int i = other.exp_ - exp_; + for (size_t j = 0, n = other.bigits_.size(); j != n; ++i, ++j) + subtract_bigits(i, other.bigits_[j], borrow); + while (borrow > 0) subtract_bigits(i, 0, borrow); + remove_leading_zeros(); + } + + FMT_CONSTEXPR20 void multiply(uint32_t value) { + const double_bigit wide_value = value; + bigit carry = 0; + for (size_t i = 0, n = bigits_.size(); i < n; ++i) { + double_bigit result = bigits_[i] * wide_value + carry; + bigits_[i] = static_cast<bigit>(result); + carry = static_cast<bigit>(result >> bigit_bits); + } + if (carry != 0) bigits_.push_back(carry); + } + + template <typename UInt, FMT_ENABLE_IF(std::is_same<UInt, uint64_t>::value || + std::is_same<UInt, uint128_t>::value)> + FMT_CONSTEXPR20 void multiply(UInt value) { + using half_uint = + conditional_t<std::is_same<UInt, uint128_t>::value, uint64_t, uint32_t>; + const int shift = num_bits<half_uint>() - bigit_bits; + const UInt lower = static_cast<half_uint>(value); + const UInt upper = value >> num_bits<half_uint>(); + UInt carry = 0; + for (size_t i = 0, n = bigits_.size(); i < n; ++i) { + UInt result = lower * bigits_[i] + static_cast<bigit>(carry); + carry = (upper * bigits_[i] << shift) + (result >> bigit_bits) + + (carry >> bigit_bits); + bigits_[i] = static_cast<bigit>(result); + } + while (carry != 0) { + bigits_.push_back(static_cast<bigit>(carry)); + carry >>= bigit_bits; + } + } + + template <typename UInt, FMT_ENABLE_IF(std::is_same<UInt, uint64_t>::value || + std::is_same<UInt, uint128_t>::value)> + FMT_CONSTEXPR20 void assign(UInt n) { + size_t num_bigits = 0; + do { + bigits_[num_bigits++] = static_cast<bigit>(n); + n >>= bigit_bits; + } while (n != 0); + bigits_.resize(num_bigits); + exp_ = 0; + } + + public: + FMT_CONSTEXPR20 bigint() : exp_(0) {} + explicit bigint(uint64_t n) { assign(n); } + + bigint(const bigint&) = delete; + void operator=(const bigint&) = delete; + + FMT_CONSTEXPR20 void assign(const bigint& other) { + auto size = other.bigits_.size(); + bigits_.resize(size); + auto data = other.bigits_.data(); + std::copy(data, data + size, make_checked(bigits_.data(), size)); + exp_ = other.exp_; + } + + template <typename Int> FMT_CONSTEXPR20 void operator=(Int n) { + FMT_ASSERT(n > 0, ""); + assign(uint64_or_128_t<Int>(n)); + } + + FMT_CONSTEXPR20 int num_bigits() const { + return static_cast<int>(bigits_.size()) + exp_; + } + + FMT_NOINLINE FMT_CONSTEXPR20 bigint& operator<<=(int shift) { + FMT_ASSERT(shift >= 0, ""); + exp_ += shift / bigit_bits; + shift %= bigit_bits; + if (shift == 0) return *this; + bigit carry = 0; + for (size_t i = 0, n = bigits_.size(); i < n; ++i) { + bigit c = bigits_[i] >> (bigit_bits - shift); + bigits_[i] = (bigits_[i] << shift) + carry; + carry = c; + } + if (carry != 0) bigits_.push_back(carry); + return *this; + } + + template <typename Int> FMT_CONSTEXPR20 bigint& operator*=(Int value) { + FMT_ASSERT(value > 0, ""); + multiply(uint32_or_64_or_128_t<Int>(value)); + return *this; + } + + friend FMT_CONSTEXPR20 int compare(const bigint& lhs, const bigint& rhs) { + int num_lhs_bigits = lhs.num_bigits(), num_rhs_bigits = rhs.num_bigits(); + if (num_lhs_bigits != num_rhs_bigits) + return num_lhs_bigits > num_rhs_bigits ? 1 : -1; + int i = static_cast<int>(lhs.bigits_.size()) - 1; + int j = static_cast<int>(rhs.bigits_.size()) - 1; + int end = i - j; + if (end < 0) end = 0; + for (; i >= end; --i, --j) { + bigit lhs_bigit = lhs[i], rhs_bigit = rhs[j]; + if (lhs_bigit != rhs_bigit) return lhs_bigit > rhs_bigit ? 1 : -1; + } + if (i != j) return i > j ? 1 : -1; + return 0; + } + + // Returns compare(lhs1 + lhs2, rhs). + friend FMT_CONSTEXPR20 int add_compare(const bigint& lhs1, const bigint& lhs2, + const bigint& rhs) { + auto minimum = [](int a, int b) { return a < b ? a : b; }; + auto maximum = [](int a, int b) { return a > b ? a : b; }; + int max_lhs_bigits = maximum(lhs1.num_bigits(), lhs2.num_bigits()); + int num_rhs_bigits = rhs.num_bigits(); + if (max_lhs_bigits + 1 < num_rhs_bigits) return -1; + if (max_lhs_bigits > num_rhs_bigits) return 1; + auto get_bigit = [](const bigint& n, int i) -> bigit { + return i >= n.exp_ && i < n.num_bigits() ? n[i - n.exp_] : 0; + }; + double_bigit borrow = 0; + int min_exp = minimum(minimum(lhs1.exp_, lhs2.exp_), rhs.exp_); + for (int i = num_rhs_bigits - 1; i >= min_exp; --i) { + double_bigit sum = + static_cast<double_bigit>(get_bigit(lhs1, i)) + get_bigit(lhs2, i); + bigit rhs_bigit = get_bigit(rhs, i); + if (sum > rhs_bigit + borrow) return 1; + borrow = rhs_bigit + borrow - sum; + if (borrow > 1) return -1; + borrow <<= bigit_bits; + } + return borrow != 0 ? -1 : 0; + } + + // Assigns pow(10, exp) to this bigint. + FMT_CONSTEXPR20 void assign_pow10(int exp) { + FMT_ASSERT(exp >= 0, ""); + if (exp == 0) return *this = 1; + // Find the top bit. + int bitmask = 1; + while (exp >= bitmask) bitmask <<= 1; + bitmask >>= 1; + // pow(10, exp) = pow(5, exp) * pow(2, exp). First compute pow(5, exp) by + // repeated squaring and multiplication. + *this = 5; + bitmask >>= 1; + while (bitmask != 0) { + square(); + if ((exp & bitmask) != 0) *this *= 5; + bitmask >>= 1; + } + *this <<= exp; // Multiply by pow(2, exp) by shifting. + } + + FMT_CONSTEXPR20 void square() { + int num_bigits = static_cast<int>(bigits_.size()); + int num_result_bigits = 2 * num_bigits; + basic_memory_buffer<bigit, bigits_capacity> n(std::move(bigits_)); + bigits_.resize(to_unsigned(num_result_bigits)); + auto sum = uint128_t(); + for (int bigit_index = 0; bigit_index < num_bigits; ++bigit_index) { + // Compute bigit at position bigit_index of the result by adding + // cross-product terms n[i] * n[j] such that i + j == bigit_index. + for (int i = 0, j = bigit_index; j >= 0; ++i, --j) { + // Most terms are multiplied twice which can be optimized in the future. + sum += static_cast<double_bigit>(n[i]) * n[j]; + } + (*this)[bigit_index] = static_cast<bigit>(sum); + sum >>= num_bits<bigit>(); // Compute the carry. + } + // Do the same for the top half. + for (int bigit_index = num_bigits; bigit_index < num_result_bigits; + ++bigit_index) { + for (int j = num_bigits - 1, i = bigit_index - j; i < num_bigits;) + sum += static_cast<double_bigit>(n[i++]) * n[j--]; + (*this)[bigit_index] = static_cast<bigit>(sum); + sum >>= num_bits<bigit>(); + } + remove_leading_zeros(); + exp_ *= 2; + } + + // If this bigint has a bigger exponent than other, adds trailing zero to make + // exponents equal. This simplifies some operations such as subtraction. + FMT_CONSTEXPR20 void align(const bigint& other) { + int exp_difference = exp_ - other.exp_; + if (exp_difference <= 0) return; + int num_bigits = static_cast<int>(bigits_.size()); + bigits_.resize(to_unsigned(num_bigits + exp_difference)); + for (int i = num_bigits - 1, j = i + exp_difference; i >= 0; --i, --j) + bigits_[j] = bigits_[i]; + std::uninitialized_fill_n(bigits_.data(), exp_difference, 0); + exp_ -= exp_difference; + } + + // Divides this bignum by divisor, assigning the remainder to this and + // returning the quotient. + FMT_CONSTEXPR20 int divmod_assign(const bigint& divisor) { + FMT_ASSERT(this != &divisor, ""); + if (compare(*this, divisor) < 0) return 0; + FMT_ASSERT(divisor.bigits_[divisor.bigits_.size() - 1u] != 0, ""); + align(divisor); + int quotient = 0; + do { + subtract_aligned(divisor); + ++quotient; + } while (compare(*this, divisor) >= 0); + return quotient; + } +}; + +// format_dragon flags. +enum dragon { + predecessor_closer = 1, + fixup = 2, // Run fixup to correct exp10 which can be off by one. + fixed = 4, +}; + +// Formats a floating-point number using a variation of the Fixed-Precision +// Positive Floating-Point Printout ((FPP)^2) algorithm by Steele & White: +// https://fmt.dev/papers/p372-steele.pdf. +FMT_CONSTEXPR20 inline void format_dragon(basic_fp<uint128_t> value, + unsigned flags, int num_digits, + buffer<char>& buf, int& exp10) { + bigint numerator; // 2 * R in (FPP)^2. + bigint denominator; // 2 * S in (FPP)^2. + // lower and upper are differences between value and corresponding boundaries. + bigint lower; // (M^- in (FPP)^2). + bigint upper_store; // upper's value if different from lower. + bigint* upper = nullptr; // (M^+ in (FPP)^2). + // Shift numerator and denominator by an extra bit or two (if lower boundary + // is closer) to make lower and upper integers. This eliminates multiplication + // by 2 during later computations. + bool is_predecessor_closer = (flags & dragon::predecessor_closer) != 0; + int shift = is_predecessor_closer ? 2 : 1; + if (value.e >= 0) { + numerator = value.f; + numerator <<= value.e + shift; + lower = 1; + lower <<= value.e; + if (is_predecessor_closer) { + upper_store = 1; + upper_store <<= value.e + 1; + upper = &upper_store; + } + denominator.assign_pow10(exp10); + denominator <<= shift; + } else if (exp10 < 0) { + numerator.assign_pow10(-exp10); + lower.assign(numerator); + if (is_predecessor_closer) { + upper_store.assign(numerator); + upper_store <<= 1; + upper = &upper_store; + } + numerator *= value.f; + numerator <<= shift; + denominator = 1; + denominator <<= shift - value.e; + } else { + numerator = value.f; + numerator <<= shift; + denominator.assign_pow10(exp10); + denominator <<= shift - value.e; + lower = 1; + if (is_predecessor_closer) { + upper_store = 1ULL << 1; + upper = &upper_store; + } + } + int even = static_cast<int>((value.f & 1) == 0); + if (!upper) upper = &lower; + if ((flags & dragon::fixup) != 0) { + if (add_compare(numerator, *upper, denominator) + even <= 0) { + --exp10; + numerator *= 10; + if (num_digits < 0) { + lower *= 10; + if (upper != &lower) *upper *= 10; + } + } + if ((flags & dragon::fixed) != 0) adjust_precision(num_digits, exp10 + 1); + } + // Invariant: value == (numerator / denominator) * pow(10, exp10). + if (num_digits < 0) { + // Generate the shortest representation. + num_digits = 0; + char* data = buf.data(); + for (;;) { + int digit = numerator.divmod_assign(denominator); + bool low = compare(numerator, lower) - even < 0; // numerator <[=] lower. + // numerator + upper >[=] pow10: + bool high = add_compare(numerator, *upper, denominator) + even > 0; + data[num_digits++] = static_cast<char>('0' + digit); + if (low || high) { + if (!low) { + ++data[num_digits - 1]; + } else if (high) { + int result = add_compare(numerator, numerator, denominator); + // Round half to even. + if (result > 0 || (result == 0 && (digit % 2) != 0)) + ++data[num_digits - 1]; + } + buf.try_resize(to_unsigned(num_digits)); + exp10 -= num_digits - 1; + return; + } + numerator *= 10; + lower *= 10; + if (upper != &lower) *upper *= 10; + } + } + // Generate the given number of digits. + exp10 -= num_digits - 1; + if (num_digits == 0) { + denominator *= 10; + auto digit = add_compare(numerator, numerator, denominator) > 0 ? '1' : '0'; + buf.push_back(digit); + return; + } + buf.try_resize(to_unsigned(num_digits)); + for (int i = 0; i < num_digits - 1; ++i) { + int digit = numerator.divmod_assign(denominator); + buf[i] = static_cast<char>('0' + digit); + numerator *= 10; + } + int digit = numerator.divmod_assign(denominator); + auto result = add_compare(numerator, numerator, denominator); + if (result > 0 || (result == 0 && (digit % 2) != 0)) { + if (digit == 9) { + const auto overflow = '0' + 10; + buf[num_digits - 1] = overflow; + // Propagate the carry. + for (int i = num_digits - 1; i > 0 && buf[i] == overflow; --i) { + buf[i] = '0'; + ++buf[i - 1]; + } + if (buf[0] == overflow) { + buf[0] = '1'; + ++exp10; + } + return; + } + ++digit; + } + buf[num_digits - 1] = static_cast<char>('0' + digit); +} + +// Formats a floating-point number using the hexfloat format. +template <typename Float, FMT_ENABLE_IF(!is_double_double<Float>::value)> +FMT_CONSTEXPR20 void format_hexfloat(Float value, int precision, + float_specs specs, buffer<char>& buf) { + // float is passed as double to reduce the number of instantiations and to + // simplify implementation. + static_assert(!std::is_same<Float, float>::value, ""); + + using info = dragonbox::float_info<Float>; + + // Assume Float is in the format [sign][exponent][significand]. + using carrier_uint = typename info::carrier_uint; + + constexpr auto num_float_significand_bits = + detail::num_significand_bits<Float>(); + + basic_fp<carrier_uint> f(value); + f.e += num_float_significand_bits; + if (!has_implicit_bit<Float>()) --f.e; + + constexpr auto num_fraction_bits = + num_float_significand_bits + (has_implicit_bit<Float>() ? 1 : 0); + constexpr auto num_xdigits = (num_fraction_bits + 3) / 4; + + constexpr auto leading_shift = ((num_xdigits - 1) * 4); + const auto leading_mask = carrier_uint(0xF) << leading_shift; + const auto leading_xdigit = + static_cast<uint32_t>((f.f & leading_mask) >> leading_shift); + if (leading_xdigit > 1) f.e -= (32 - countl_zero(leading_xdigit) - 1); + + int print_xdigits = num_xdigits - 1; + if (precision >= 0 && print_xdigits > precision) { + const int shift = ((print_xdigits - precision - 1) * 4); + const auto mask = carrier_uint(0xF) << shift; + const auto v = static_cast<uint32_t>((f.f & mask) >> shift); + + if (v >= 8) { + const auto inc = carrier_uint(1) << (shift + 4); + f.f += inc; + f.f &= ~(inc - 1); + } + + // Check long double overflow + if (!has_implicit_bit<Float>()) { + const auto implicit_bit = carrier_uint(1) << num_float_significand_bits; + if ((f.f & implicit_bit) == implicit_bit) { + f.f >>= 4; + f.e += 4; + } + } + + print_xdigits = precision; + } + + char xdigits[num_bits<carrier_uint>() / 4]; + detail::fill_n(xdigits, sizeof(xdigits), '0'); + format_uint<4>(xdigits, f.f, num_xdigits, specs.upper); + + // Remove zero tail + while (print_xdigits > 0 && xdigits[print_xdigits] == '0') --print_xdigits; + + buf.push_back('0'); + buf.push_back(specs.upper ? 'X' : 'x'); + buf.push_back(xdigits[0]); + if (specs.showpoint || print_xdigits > 0 || print_xdigits < precision) + buf.push_back('.'); + buf.append(xdigits + 1, xdigits + 1 + print_xdigits); + for (; print_xdigits < precision; ++print_xdigits) buf.push_back('0'); + + buf.push_back(specs.upper ? 'P' : 'p'); + + uint32_t abs_e; + if (f.e < 0) { + buf.push_back('-'); + abs_e = static_cast<uint32_t>(-f.e); + } else { + buf.push_back('+'); + abs_e = static_cast<uint32_t>(f.e); + } + format_decimal<char>(appender(buf), abs_e, detail::count_digits(abs_e)); +} + +template <typename Float, FMT_ENABLE_IF(is_double_double<Float>::value)> +FMT_CONSTEXPR20 void format_hexfloat(Float value, int precision, + float_specs specs, buffer<char>& buf) { + format_hexfloat(static_cast<double>(value), precision, specs, buf); +} + +template <typename Float> +FMT_CONSTEXPR20 auto format_float(Float value, int precision, float_specs specs, + buffer<char>& buf) -> int { + // float is passed as double to reduce the number of instantiations. + static_assert(!std::is_same<Float, float>::value, ""); + FMT_ASSERT(value >= 0, "value is negative"); + auto converted_value = convert_float(value); + + const bool fixed = specs.format == float_format::fixed; + if (value <= 0) { // <= instead of == to silence a warning. + if (precision <= 0 || !fixed) { + buf.push_back('0'); + return 0; + } + buf.try_resize(to_unsigned(precision)); + fill_n(buf.data(), precision, '0'); + return -precision; + } + + int exp = 0; + bool use_dragon = true; + unsigned dragon_flags = 0; + if (!is_fast_float<Float>()) { + const auto inv_log2_10 = 0.3010299956639812; // 1 / log2(10) + using info = dragonbox::float_info<decltype(converted_value)>; + const auto f = basic_fp<typename info::carrier_uint>(converted_value); + // Compute exp, an approximate power of 10, such that + // 10^(exp - 1) <= value < 10^exp or 10^exp <= value < 10^(exp + 1). + // This is based on log10(value) == log2(value) / log2(10) and approximation + // of log2(value) by e + num_fraction_bits idea from double-conversion. + exp = static_cast<int>( + std::ceil((f.e + count_digits<1>(f.f) - 1) * inv_log2_10 - 1e-10)); + dragon_flags = dragon::fixup; + } else if (!is_constant_evaluated() && precision < 0) { + // Use Dragonbox for the shortest format. + if (specs.binary32) { + auto dec = dragonbox::to_decimal(static_cast<float>(value)); + write<char>(buffer_appender<char>(buf), dec.significand); + return dec.exponent; + } + auto dec = dragonbox::to_decimal(static_cast<double>(value)); + write<char>(buffer_appender<char>(buf), dec.significand); + return dec.exponent; + } else if (is_constant_evaluated()) { + // Use Grisu + Dragon4 for the given precision: + // https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf. + const int min_exp = -60; // alpha in Grisu. + int cached_exp10 = 0; // K in Grisu. + fp normalized = normalize(fp(converted_value)); + const auto cached_pow = get_cached_power( + min_exp - (normalized.e + fp::num_significand_bits), cached_exp10); + normalized = normalized * cached_pow; + gen_digits_handler handler{buf.data(), 0, precision, -cached_exp10, fixed}; + if (grisu_gen_digits(normalized, 1, exp, handler) != digits::error && + !is_constant_evaluated()) { + exp += handler.exp10; + buf.try_resize(to_unsigned(handler.size)); + use_dragon = false; + } else { + exp += handler.size - cached_exp10 - 1; + precision = handler.precision; + } + } else { + // Extract significand bits and exponent bits. + using info = dragonbox::float_info<double>; + auto br = bit_cast<uint64_t>(static_cast<double>(value)); + + const uint64_t significand_mask = + (static_cast<uint64_t>(1) << num_significand_bits<double>()) - 1; + uint64_t significand = (br & significand_mask); + int exponent = static_cast<int>((br & exponent_mask<double>()) >> + num_significand_bits<double>()); + + if (exponent != 0) { // Check if normal. + exponent -= exponent_bias<double>() + num_significand_bits<double>(); + significand |= + (static_cast<uint64_t>(1) << num_significand_bits<double>()); + significand <<= 1; + } else { + // Normalize subnormal inputs. + FMT_ASSERT(significand != 0, "zeros should not appear hear"); + int shift = countl_zero(significand); + FMT_ASSERT(shift >= num_bits<uint64_t>() - num_significand_bits<double>(), + ""); + shift -= (num_bits<uint64_t>() - num_significand_bits<double>() - 2); + exponent = (std::numeric_limits<double>::min_exponent - + num_significand_bits<double>()) - + shift; + significand <<= shift; + } + + // Compute the first several nonzero decimal significand digits. + // We call the number we get the first segment. + const int k = info::kappa - dragonbox::floor_log10_pow2(exponent); + exp = -k; + const int beta = exponent + dragonbox::floor_log2_pow10(k); + uint64_t first_segment; + bool has_more_segments; + int digits_in_the_first_segment; + { + const auto r = dragonbox::umul192_upper128( + significand << beta, dragonbox::get_cached_power(k)); + first_segment = r.high(); + has_more_segments = r.low() != 0; + + // The first segment can have 18 ~ 19 digits. + if (first_segment >= 1000000000000000000ULL) { + digits_in_the_first_segment = 19; + } else { + // When it is of 18-digits, we align it to 19-digits by adding a bogus + // zero at the end. + digits_in_the_first_segment = 18; + first_segment *= 10; + } + } + + // Compute the actual number of decimal digits to print. + if (fixed) { + adjust_precision(precision, exp + digits_in_the_first_segment); + } + + // Use Dragon4 only when there might be not enough digits in the first + // segment. + if (digits_in_the_first_segment > precision) { + use_dragon = false; + + if (precision <= 0) { + exp += digits_in_the_first_segment; + + if (precision < 0) { + // Nothing to do, since all we have are just leading zeros. + buf.try_resize(0); + } else { + // We may need to round-up. + buf.try_resize(1); + if ((first_segment | static_cast<uint64_t>(has_more_segments)) > + 5000000000000000000ULL) { + buf[0] = '1'; + } else { + buf[0] = '0'; + } + } + } // precision <= 0 + else { + exp += digits_in_the_first_segment - precision; + + // When precision > 0, we divide the first segment into three + // subsegments, each with 9, 9, and 0 ~ 1 digits so that each fits + // in 32-bits which usually allows faster calculation than in + // 64-bits. Since some compiler (e.g. MSVC) doesn't know how to optimize + // division-by-constant for large 64-bit divisors, we do it here + // manually. The magic number 7922816251426433760 below is equal to + // ceil(2^(64+32) / 10^10). + const uint32_t first_subsegment = static_cast<uint32_t>( + dragonbox::umul128_upper64(first_segment, 7922816251426433760ULL) >> + 32); + const uint64_t second_third_subsegments = + first_segment - first_subsegment * 10000000000ULL; + + uint64_t prod; + uint32_t digits; + bool should_round_up; + int number_of_digits_to_print = precision > 9 ? 9 : precision; + + // Print a 9-digits subsegment, either the first or the second. + auto print_subsegment = [&](uint32_t subsegment, char* buffer) { + int number_of_digits_printed = 0; + + // If we want to print an odd number of digits from the subsegment, + if ((number_of_digits_to_print & 1) != 0) { + // Convert to 64-bit fixed-point fractional form with 1-digit + // integer part. The magic number 720575941 is a good enough + // approximation of 2^(32 + 24) / 10^8; see + // https://jk-jeon.github.io/posts/2022/12/fixed-precision-formatting/#fixed-length-case + // for details. + prod = ((subsegment * static_cast<uint64_t>(720575941)) >> 24) + 1; + digits = static_cast<uint32_t>(prod >> 32); + *buffer = static_cast<char>('0' + digits); + number_of_digits_printed++; + } + // If we want to print an even number of digits from the + // first_subsegment, + else { + // Convert to 64-bit fixed-point fractional form with 2-digits + // integer part. The magic number 450359963 is a good enough + // approximation of 2^(32 + 20) / 10^7; see + // https://jk-jeon.github.io/posts/2022/12/fixed-precision-formatting/#fixed-length-case + // for details. + prod = ((subsegment * static_cast<uint64_t>(450359963)) >> 20) + 1; + digits = static_cast<uint32_t>(prod >> 32); + copy2(buffer, digits2(digits)); + number_of_digits_printed += 2; + } + + // Print all digit pairs. + while (number_of_digits_printed < number_of_digits_to_print) { + prod = static_cast<uint32_t>(prod) * static_cast<uint64_t>(100); + digits = static_cast<uint32_t>(prod >> 32); + copy2(buffer + number_of_digits_printed, digits2(digits)); + number_of_digits_printed += 2; + } + }; + + // Print first subsegment. + print_subsegment(first_subsegment, buf.data()); + + // Perform rounding if the first subsegment is the last subsegment to + // print. + if (precision <= 9) { + // Rounding inside the subsegment. + // We round-up if: + // - either the fractional part is strictly larger than 1/2, or + // - the fractional part is exactly 1/2 and the last digit is odd. + // We rely on the following observations: + // - If fractional_part >= threshold, then the fractional part is + // strictly larger than 1/2. + // - If the MSB of fractional_part is set, then the fractional part + // must be at least 1/2. + // - When the MSB of fractional_part is set, either + // second_third_subsegments being nonzero or has_more_segments + // being true means there are further digits not printed, so the + // fractional part is strictly larger than 1/2. + if (precision < 9) { + uint32_t fractional_part = static_cast<uint32_t>(prod); + should_round_up = fractional_part >= + data::fractional_part_rounding_thresholds + [8 - number_of_digits_to_print] || + ((fractional_part >> 31) & + ((digits & 1) | (second_third_subsegments != 0) | + has_more_segments)) != 0; + } + // Rounding at the subsegment boundary. + // In this case, the fractional part is at least 1/2 if and only if + // second_third_subsegments >= 5000000000ULL, and is strictly larger + // than 1/2 if we further have either second_third_subsegments > + // 5000000000ULL or has_more_segments == true. + else { + should_round_up = second_third_subsegments > 5000000000ULL || + (second_third_subsegments == 5000000000ULL && + ((digits & 1) != 0 || has_more_segments)); + } + } + // Otherwise, print the second subsegment. + else { + // Compilers are not aware of how to leverage the maximum value of + // second_third_subsegments to find out a better magic number which + // allows us to eliminate an additional shift. 1844674407370955162 = + // ceil(2^64/10) < ceil(2^64*(10^9/(10^10 - 1))). + const uint32_t second_subsegment = + static_cast<uint32_t>(dragonbox::umul128_upper64( + second_third_subsegments, 1844674407370955162ULL)); + const uint32_t third_subsegment = + static_cast<uint32_t>(second_third_subsegments) - + second_subsegment * 10; + + number_of_digits_to_print = precision - 9; + print_subsegment(second_subsegment, buf.data() + 9); + + // Rounding inside the subsegment. + if (precision < 18) { + // The condition third_subsegment != 0 implies that the segment was + // of 19 digits, so in this case the third segment should be + // consisting of a genuine digit from the input. + uint32_t fractional_part = static_cast<uint32_t>(prod); + should_round_up = fractional_part >= + data::fractional_part_rounding_thresholds + [8 - number_of_digits_to_print] || + ((fractional_part >> 31) & + ((digits & 1) | (third_subsegment != 0) | + has_more_segments)) != 0; + } + // Rounding at the subsegment boundary. + else { + // In this case, the segment must be of 19 digits, thus + // the third subsegment should be consisting of a genuine digit from + // the input. + should_round_up = third_subsegment > 5 || + (third_subsegment == 5 && + ((digits & 1) != 0 || has_more_segments)); + } + } + + // Round-up if necessary. + if (should_round_up) { + ++buf[precision - 1]; + for (int i = precision - 1; i > 0 && buf[i] > '9'; --i) { + buf[i] = '0'; + ++buf[i - 1]; + } + if (buf[0] > '9') { + buf[0] = '1'; + if (fixed) + buf[precision++] = '0'; + else + ++exp; + } + } + buf.try_resize(to_unsigned(precision)); + } + } // if (digits_in_the_first_segment > precision) + else { + // Adjust the exponent for its use in Dragon4. + exp += digits_in_the_first_segment - 1; + } + } + if (use_dragon) { + auto f = basic_fp<uint128_t>(); + bool is_predecessor_closer = specs.binary32 + ? f.assign(static_cast<float>(value)) + : f.assign(converted_value); + if (is_predecessor_closer) dragon_flags |= dragon::predecessor_closer; + if (fixed) dragon_flags |= dragon::fixed; + // Limit precision to the maximum possible number of significant digits in + // an IEEE754 double because we don't need to generate zeros. + const int max_double_digits = 767; + if (precision > max_double_digits) precision = max_double_digits; + format_dragon(f, dragon_flags, precision, buf, exp); + } + if (!fixed && !specs.showpoint) { + // Remove trailing zeros. + auto num_digits = buf.size(); + while (num_digits > 0 && buf[num_digits - 1] == '0') { + --num_digits; + ++exp; + } + buf.try_resize(num_digits); + } + return exp; +} +template <typename Char, typename OutputIt, typename T> +FMT_CONSTEXPR20 auto write_float(OutputIt out, T value, + format_specs<Char> specs, locale_ref loc) + -> OutputIt { + float_specs fspecs = parse_float_type_spec(specs); + fspecs.sign = specs.sign; + if (detail::signbit(value)) { // value < 0 is false for NaN so use signbit. + fspecs.sign = sign::minus; + value = -value; + } else if (fspecs.sign == sign::minus) { + fspecs.sign = sign::none; + } + + if (!detail::isfinite(value)) + return write_nonfinite(out, detail::isnan(value), specs, fspecs); + + if (specs.align == align::numeric && fspecs.sign) { + auto it = reserve(out, 1); + *it++ = detail::sign<Char>(fspecs.sign); + out = base_iterator(out, it); + fspecs.sign = sign::none; + if (specs.width != 0) --specs.width; + } + + memory_buffer buffer; + if (fspecs.format == float_format::hex) { + if (fspecs.sign) buffer.push_back(detail::sign<char>(fspecs.sign)); + format_hexfloat(convert_float(value), specs.precision, fspecs, buffer); + return write_bytes<align::right>(out, {buffer.data(), buffer.size()}, + specs); + } + int precision = specs.precision >= 0 || specs.type == presentation_type::none + ? specs.precision + : 6; + if (fspecs.format == float_format::exp) { + if (precision == max_value<int>()) + throw_format_error("number is too big"); + else + ++precision; + } else if (fspecs.format != float_format::fixed && precision == 0) { + precision = 1; + } + if (const_check(std::is_same<T, float>())) fspecs.binary32 = true; + int exp = format_float(convert_float(value), precision, fspecs, buffer); + fspecs.precision = precision; + auto f = big_decimal_fp{buffer.data(), static_cast<int>(buffer.size()), exp}; + return write_float(out, f, specs, fspecs, loc); +} + +template <typename Char, typename OutputIt, typename T, + FMT_ENABLE_IF(is_floating_point<T>::value)> +FMT_CONSTEXPR20 auto write(OutputIt out, T value, format_specs<Char> specs, + locale_ref loc = {}) -> OutputIt { + if (const_check(!is_supported_floating_point(value))) return out; + return specs.localized && write_loc(out, value, specs, loc) + ? out + : write_float(out, value, specs, loc); +} + +template <typename Char, typename OutputIt, typename T, + FMT_ENABLE_IF(is_fast_float<T>::value)> +FMT_CONSTEXPR20 auto write(OutputIt out, T value) -> OutputIt { + if (is_constant_evaluated()) return write(out, value, format_specs<Char>()); + if (const_check(!is_supported_floating_point(value))) return out; + + auto fspecs = float_specs(); + if (detail::signbit(value)) { + fspecs.sign = sign::minus; + value = -value; + } + + constexpr auto specs = format_specs<Char>(); + using floaty = conditional_t<std::is_same<T, long double>::value, double, T>; + using floaty_uint = typename dragonbox::float_info<floaty>::carrier_uint; + floaty_uint mask = exponent_mask<floaty>(); + if ((bit_cast<floaty_uint>(value) & mask) == mask) + return write_nonfinite(out, std::isnan(value), specs, fspecs); + + auto dec = dragonbox::to_decimal(static_cast<floaty>(value)); + return write_float(out, dec, specs, fspecs, {}); +} + +template <typename Char, typename OutputIt, typename T, + FMT_ENABLE_IF(is_floating_point<T>::value && + !is_fast_float<T>::value)> +inline auto write(OutputIt out, T value) -> OutputIt { + return write(out, value, format_specs<Char>()); +} + +template <typename Char, typename OutputIt> +auto write(OutputIt out, monostate, format_specs<Char> = {}, locale_ref = {}) + -> OutputIt { + FMT_ASSERT(false, ""); + return out; +} + +template <typename Char, typename OutputIt> +FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> value) + -> OutputIt { + auto it = reserve(out, value.size()); + it = copy_str_noinline<Char>(value.begin(), value.end(), it); + return base_iterator(out, it); +} + +template <typename Char, typename OutputIt, typename T, + FMT_ENABLE_IF(is_string<T>::value)> +constexpr auto write(OutputIt out, const T& value) -> OutputIt { + return write<Char>(out, to_string_view(value)); +} + +// FMT_ENABLE_IF() condition separated to workaround an MSVC bug. +template < + typename Char, typename OutputIt, typename T, + bool check = + std::is_enum<T>::value && !std::is_same<T, Char>::value && + mapped_type_constant<T, basic_format_context<OutputIt, Char>>::value != + type::custom_type, + FMT_ENABLE_IF(check)> +FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt { + return write<Char>(out, static_cast<underlying_t<T>>(value)); +} + +template <typename Char, typename OutputIt, typename T, + FMT_ENABLE_IF(std::is_same<T, bool>::value)> +FMT_CONSTEXPR auto write(OutputIt out, T value, + const format_specs<Char>& specs = {}, locale_ref = {}) + -> OutputIt { + return specs.type != presentation_type::none && + specs.type != presentation_type::string + ? write(out, value ? 1 : 0, specs, {}) + : write_bytes(out, value ? "true" : "false", specs); +} + +template <typename Char, typename OutputIt> +FMT_CONSTEXPR auto write(OutputIt out, Char value) -> OutputIt { + auto it = reserve(out, 1); + *it++ = value; + return base_iterator(out, it); +} + +template <typename Char, typename OutputIt> +FMT_CONSTEXPR_CHAR_TRAITS auto write(OutputIt out, const Char* value) + -> OutputIt { + if (value) return write(out, basic_string_view<Char>(value)); + throw_format_error("string pointer is null"); + return out; +} + +template <typename Char, typename OutputIt, typename T, + FMT_ENABLE_IF(std::is_same<T, void>::value)> +auto write(OutputIt out, const T* value, const format_specs<Char>& specs = {}, + locale_ref = {}) -> OutputIt { + return write_ptr<Char>(out, bit_cast<uintptr_t>(value), &specs); +} + +// A write overload that handles implicit conversions. +template <typename Char, typename OutputIt, typename T, + typename Context = basic_format_context<OutputIt, Char>> +FMT_CONSTEXPR auto write(OutputIt out, const T& value) -> enable_if_t< + std::is_class<T>::value && !is_string<T>::value && + !is_floating_point<T>::value && !std::is_same<T, Char>::value && + !std::is_same<T, remove_cvref_t<decltype(arg_mapper<Context>().map( + value))>>::value, + OutputIt> { + return write<Char>(out, arg_mapper<Context>().map(value)); +} + +template <typename Char, typename OutputIt, typename T, + typename Context = basic_format_context<OutputIt, Char>> +FMT_CONSTEXPR auto write(OutputIt out, const T& value) + -> enable_if_t<mapped_type_constant<T, Context>::value == type::custom_type, + OutputIt> { + auto ctx = Context(out, {}, {}); + return typename Context::template formatter_type<T>().format(value, ctx); +} + +// An argument visitor that formats the argument and writes it via the output +// iterator. It's a class and not a generic lambda for compatibility with C++11. +template <typename Char> struct default_arg_formatter { + using iterator = buffer_appender<Char>; + using context = buffer_context<Char>; + + iterator out; + basic_format_args<context> args; + locale_ref loc; + + template <typename T> auto operator()(T value) -> iterator { + return write<Char>(out, value); + } + auto operator()(typename basic_format_arg<context>::handle h) -> iterator { + basic_format_parse_context<Char> parse_ctx({}); + context format_ctx(out, args, loc); + h.format(parse_ctx, format_ctx); + return format_ctx.out(); + } +}; + +template <typename Char> struct arg_formatter { + using iterator = buffer_appender<Char>; + using context = buffer_context<Char>; + + iterator out; + const format_specs<Char>& specs; + locale_ref locale; + + template <typename T> + FMT_CONSTEXPR FMT_INLINE auto operator()(T value) -> iterator { + return detail::write(out, value, specs, locale); + } + auto operator()(typename basic_format_arg<context>::handle) -> iterator { + // User-defined types are handled separately because they require access + // to the parse context. + return out; + } +}; + +template <typename Char> struct custom_formatter { + basic_format_parse_context<Char>& parse_ctx; + buffer_context<Char>& ctx; + + void operator()( + typename basic_format_arg<buffer_context<Char>>::handle h) const { + h.format(parse_ctx, ctx); + } + template <typename T> void operator()(T) const {} +}; + +template <typename ErrorHandler> class width_checker { + public: + explicit FMT_CONSTEXPR width_checker(ErrorHandler& eh) : handler_(eh) {} + + template <typename T, FMT_ENABLE_IF(is_integer<T>::value)> + FMT_CONSTEXPR auto operator()(T value) -> unsigned long long { + if (is_negative(value)) handler_.on_error("negative width"); + return static_cast<unsigned long long>(value); + } + + template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)> + FMT_CONSTEXPR auto operator()(T) -> unsigned long long { + handler_.on_error("width is not integer"); + return 0; + } + + private: + ErrorHandler& handler_; +}; + +template <typename ErrorHandler> class precision_checker { + public: + explicit FMT_CONSTEXPR precision_checker(ErrorHandler& eh) : handler_(eh) {} + + template <typename T, FMT_ENABLE_IF(is_integer<T>::value)> + FMT_CONSTEXPR auto operator()(T value) -> unsigned long long { + if (is_negative(value)) handler_.on_error("negative precision"); + return static_cast<unsigned long long>(value); + } + + template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)> + FMT_CONSTEXPR auto operator()(T) -> unsigned long long { + handler_.on_error("precision is not integer"); + return 0; + } + + private: + ErrorHandler& handler_; +}; + +template <template <typename> class Handler, typename FormatArg, + typename ErrorHandler> +FMT_CONSTEXPR auto get_dynamic_spec(FormatArg arg, ErrorHandler eh) -> int { + unsigned long long value = visit_format_arg(Handler<ErrorHandler>(eh), arg); + if (value > to_unsigned(max_value<int>())) eh.on_error("number is too big"); + return static_cast<int>(value); +} + +template <typename Context, typename ID> +FMT_CONSTEXPR auto get_arg(Context& ctx, ID id) -> + typename Context::format_arg { + auto arg = ctx.arg(id); + if (!arg) ctx.on_error("argument not found"); + return arg; +} + +template <template <typename> class Handler, typename Context> +FMT_CONSTEXPR void handle_dynamic_spec(int& value, + arg_ref<typename Context::char_type> ref, + Context& ctx) { + switch (ref.kind) { + case arg_id_kind::none: + break; + case arg_id_kind::index: + value = detail::get_dynamic_spec<Handler>(get_arg(ctx, ref.val.index), + ctx.error_handler()); + break; + case arg_id_kind::name: + value = detail::get_dynamic_spec<Handler>(get_arg(ctx, ref.val.name), + ctx.error_handler()); + break; + } +} + +#if FMT_USE_USER_DEFINED_LITERALS +template <typename Char> struct udl_formatter { + basic_string_view<Char> str; + + template <typename... T> + auto operator()(T&&... args) const -> std::basic_string<Char> { + return vformat(str, fmt::make_format_args<buffer_context<Char>>(args...)); + } +}; + +# if FMT_USE_NONTYPE_TEMPLATE_ARGS +template <typename T, typename Char, size_t N, + fmt::detail_exported::fixed_string<Char, N> Str> +struct statically_named_arg : view { + static constexpr auto name = Str.data; + + const T& value; + statically_named_arg(const T& v) : value(v) {} +}; + +template <typename T, typename Char, size_t N, + fmt::detail_exported::fixed_string<Char, N> Str> +struct is_named_arg<statically_named_arg<T, Char, N, Str>> : std::true_type {}; + +template <typename T, typename Char, size_t N, + fmt::detail_exported::fixed_string<Char, N> Str> +struct is_statically_named_arg<statically_named_arg<T, Char, N, Str>> + : std::true_type {}; + +template <typename Char, size_t N, + fmt::detail_exported::fixed_string<Char, N> Str> +struct udl_arg { + template <typename T> auto operator=(T&& value) const { + return statically_named_arg<T, Char, N, Str>(std::forward<T>(value)); + } +}; +# else +template <typename Char> struct udl_arg { + const Char* str; + + template <typename T> auto operator=(T&& value) const -> named_arg<Char, T> { + return {str, std::forward<T>(value)}; + } +}; +# endif +#endif // FMT_USE_USER_DEFINED_LITERALS + +template <typename Locale, typename Char> +auto vformat(const Locale& loc, basic_string_view<Char> fmt, + basic_format_args<buffer_context<type_identity_t<Char>>> args) + -> std::basic_string<Char> { + auto buf = basic_memory_buffer<Char>(); + detail::vformat_to(buf, fmt, args, detail::locale_ref(loc)); + return {buf.data(), buf.size()}; +} + +using format_func = void (*)(detail::buffer<char>&, int, const char*); + +FMT_API void format_error_code(buffer<char>& out, int error_code, + string_view message) noexcept; + +FMT_API void report_error(format_func func, int error_code, + const char* message) noexcept; +FMT_END_DETAIL_NAMESPACE + +FMT_API auto vsystem_error(int error_code, string_view format_str, + format_args args) -> std::system_error; + +/** + \rst + Constructs :class:`std::system_error` with a message formatted with + ``fmt::format(fmt, args...)``. + *error_code* is a system error code as given by ``errno``. + + **Example**:: + + // This throws std::system_error with the description + // cannot open file 'madeup': No such file or directory + // or similar (system message may vary). + const char* filename = "madeup"; + std::FILE* file = std::fopen(filename, "r"); + if (!file) + throw fmt::system_error(errno, "cannot open file '{}'", filename); + \endrst +*/ +template <typename... T> +auto system_error(int error_code, format_string<T...> fmt, T&&... args) + -> std::system_error { + return vsystem_error(error_code, fmt, fmt::make_format_args(args...)); +} + +/** + \rst + Formats an error message for an error returned by an operating system or a + language runtime, for example a file opening error, and writes it to *out*. + The format is the same as the one used by ``std::system_error(ec, message)`` + where ``ec`` is ``std::error_code(error_code, std::generic_category()})``. + It is implementation-defined but normally looks like: + + .. parsed-literal:: + *<message>*: *<system-message>* + + where *<message>* is the passed message and *<system-message>* is the system + message corresponding to the error code. + *error_code* is a system error code as given by ``errno``. + \endrst + */ +FMT_API void format_system_error(detail::buffer<char>& out, int error_code, + const char* message) noexcept; + +// Reports a system error without throwing an exception. +// Can be used to report errors from destructors. +FMT_API void report_system_error(int error_code, const char* message) noexcept; + +/** Fast integer formatter. */ +class format_int { + private: + // Buffer should be large enough to hold all digits (digits10 + 1), + // a sign and a null character. + enum { buffer_size = std::numeric_limits<unsigned long long>::digits10 + 3 }; + mutable char buffer_[buffer_size]; + char* str_; + + template <typename UInt> auto format_unsigned(UInt value) -> char* { + auto n = static_cast<detail::uint32_or_64_or_128_t<UInt>>(value); + return detail::format_decimal(buffer_, n, buffer_size - 1).begin; + } + + template <typename Int> auto format_signed(Int value) -> char* { + auto abs_value = static_cast<detail::uint32_or_64_or_128_t<Int>>(value); + bool negative = value < 0; + if (negative) abs_value = 0 - abs_value; + auto begin = format_unsigned(abs_value); + if (negative) *--begin = '-'; + return begin; + } + + public: + explicit format_int(int value) : str_(format_signed(value)) {} + explicit format_int(long value) : str_(format_signed(value)) {} + explicit format_int(long long value) : str_(format_signed(value)) {} + explicit format_int(unsigned value) : str_(format_unsigned(value)) {} + explicit format_int(unsigned long value) : str_(format_unsigned(value)) {} + explicit format_int(unsigned long long value) + : str_(format_unsigned(value)) {} + + /** Returns the number of characters written to the output buffer. */ + auto size() const -> size_t { + return detail::to_unsigned(buffer_ - str_ + buffer_size - 1); + } + + /** + Returns a pointer to the output buffer content. No terminating null + character is appended. + */ + auto data() const -> const char* { return str_; } + + /** + Returns a pointer to the output buffer content with terminating null + character appended. + */ + auto c_str() const -> const char* { + buffer_[buffer_size - 1] = '\0'; + return str_; + } + + /** + \rst + Returns the content of the output buffer as an ``std::string``. + \endrst + */ + auto str() const -> std::string { return std::string(str_, size()); } +}; + +template <typename T, typename Char> +struct formatter<T, Char, enable_if_t<detail::has_format_as<T>::value>> + : private formatter<detail::format_as_t<T>> { + using base = formatter<detail::format_as_t<T>>; + using base::parse; + + template <typename FormatContext> + auto format(const T& value, FormatContext& ctx) const -> decltype(ctx.out()) { + return base::format(format_as(value), ctx); + } +}; + +template <typename Char> +struct formatter<void*, Char> : formatter<const void*, Char> { + template <typename FormatContext> + auto format(void* val, FormatContext& ctx) const -> decltype(ctx.out()) { + return formatter<const void*, Char>::format(val, ctx); + } +}; + +template <typename Char, size_t N> +struct formatter<Char[N], Char> : formatter<basic_string_view<Char>, Char> { + template <typename FormatContext> + FMT_CONSTEXPR auto format(const Char* val, FormatContext& ctx) const + -> decltype(ctx.out()) { + return formatter<basic_string_view<Char>, Char>::format(val, ctx); + } +}; + +/** + \rst + Converts ``p`` to ``const void*`` for pointer formatting. + + **Example**:: + + auto s = fmt::format("{}", fmt::ptr(p)); + \endrst + */ +template <typename T> auto ptr(T p) -> const void* { + static_assert(std::is_pointer<T>::value, ""); + return detail::bit_cast<const void*>(p); +} +template <typename T, typename Deleter> +auto ptr(const std::unique_ptr<T, Deleter>& p) -> const void* { + return p.get(); +} +template <typename T> auto ptr(const std::shared_ptr<T>& p) -> const void* { + return p.get(); +} + +/** + \rst + Converts ``e`` to the underlying type. + + **Example**:: + + enum class color { red, green, blue }; + auto s = fmt::format("{}", fmt::underlying(color::red)); + \endrst + */ +template <typename Enum> +constexpr auto underlying(Enum e) noexcept -> underlying_t<Enum> { + return static_cast<underlying_t<Enum>>(e); +} + +namespace enums { +template <typename Enum, FMT_ENABLE_IF(std::is_enum<Enum>::value)> +constexpr auto format_as(Enum e) noexcept -> underlying_t<Enum> { + return static_cast<underlying_t<Enum>>(e); +} +} // namespace enums + +class bytes { + private: + string_view data_; + friend struct formatter<bytes>; + + public: + explicit bytes(string_view data) : data_(data) {} +}; + +template <> struct formatter<bytes> { + private: + detail::dynamic_format_specs<> specs_; + + public: + template <typename ParseContext> + FMT_CONSTEXPR auto parse(ParseContext& ctx) -> const char* { + return parse_format_specs(ctx.begin(), ctx.end(), specs_, ctx, + detail::type::string_type); + } + + template <typename FormatContext> + auto format(bytes b, FormatContext& ctx) -> decltype(ctx.out()) { + detail::handle_dynamic_spec<detail::width_checker>(specs_.width, + specs_.width_ref, ctx); + detail::handle_dynamic_spec<detail::precision_checker>( + specs_.precision, specs_.precision_ref, ctx); + return detail::write_bytes(ctx.out(), b.data_, specs_); + } +}; + +// group_digits_view is not derived from view because it copies the argument. +template <typename T> struct group_digits_view { T value; }; + +/** + \rst + Returns a view that formats an integer value using ',' as a locale-independent + thousands separator. + + **Example**:: + + fmt::print("{}", fmt::group_digits(12345)); + // Output: "12,345" + \endrst + */ +template <typename T> auto group_digits(T value) -> group_digits_view<T> { + return {value}; +} + +template <typename T> struct formatter<group_digits_view<T>> : formatter<T> { + private: + detail::dynamic_format_specs<> specs_; + + public: + template <typename ParseContext> + FMT_CONSTEXPR auto parse(ParseContext& ctx) -> const char* { + return parse_format_specs(ctx.begin(), ctx.end(), specs_, ctx, + detail::type::int_type); + } + + template <typename FormatContext> + auto format(group_digits_view<T> t, FormatContext& ctx) + -> decltype(ctx.out()) { + detail::handle_dynamic_spec<detail::width_checker>(specs_.width, + specs_.width_ref, ctx); + detail::handle_dynamic_spec<detail::precision_checker>( + specs_.precision, specs_.precision_ref, ctx); + return detail::write_int( + ctx.out(), static_cast<detail::uint64_or_128_t<T>>(t.value), 0, specs_, + detail::digit_grouping<char>("\3", ",")); + } +}; + +// DEPRECATED! join_view will be moved to ranges.h. +template <typename It, typename Sentinel, typename Char = char> +struct join_view : detail::view { + It begin; + Sentinel end; + basic_string_view<Char> sep; + + join_view(It b, Sentinel e, basic_string_view<Char> s) + : begin(b), end(e), sep(s) {} +}; + +template <typename It, typename Sentinel, typename Char> +struct formatter<join_view<It, Sentinel, Char>, Char> { + private: + using value_type = +#ifdef __cpp_lib_ranges + std::iter_value_t<It>; +#else + typename std::iterator_traits<It>::value_type; +#endif + formatter<remove_cvref_t<value_type>, Char> value_formatter_; + + public: + template <typename ParseContext> + FMT_CONSTEXPR auto parse(ParseContext& ctx) -> const Char* { + return value_formatter_.parse(ctx); + } + + template <typename FormatContext> + auto format(const join_view<It, Sentinel, Char>& value, + FormatContext& ctx) const -> decltype(ctx.out()) { + auto it = value.begin; + auto out = ctx.out(); + if (it != value.end) { + out = value_formatter_.format(*it, ctx); + ++it; + while (it != value.end) { + out = detail::copy_str<Char>(value.sep.begin(), value.sep.end(), out); + ctx.advance_to(out); + out = value_formatter_.format(*it, ctx); + ++it; + } + } + return out; + } +}; + +/** + Returns a view that formats the iterator range `[begin, end)` with elements + separated by `sep`. + */ +template <typename It, typename Sentinel> +auto join(It begin, Sentinel end, string_view sep) -> join_view<It, Sentinel> { + return {begin, end, sep}; +} + +/** + \rst + Returns a view that formats `range` with elements separated by `sep`. + + **Example**:: + + std::vector<int> v = {1, 2, 3}; + fmt::print("{}", fmt::join(v, ", ")); + // Output: "1, 2, 3" + + ``fmt::join`` applies passed format specifiers to the range elements:: + + fmt::print("{:02}", fmt::join(v, ", ")); + // Output: "01, 02, 03" + \endrst + */ +template <typename Range> +auto join(Range&& range, string_view sep) + -> join_view<detail::iterator_t<Range>, detail::sentinel_t<Range>> { + return join(std::begin(range), std::end(range), sep); +} + +/** + \rst + Converts *value* to ``std::string`` using the default format for type *T*. + + **Example**:: + + #include <fmt/format.h> + + std::string answer = fmt::to_string(42); + \endrst + */ +template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)> +inline auto to_string(const T& value) -> std::string { + auto buffer = memory_buffer(); + detail::write<char>(appender(buffer), value); + return {buffer.data(), buffer.size()}; +} + +template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)> +FMT_NODISCARD inline auto to_string(T value) -> std::string { + // The buffer should be large enough to store the number including the sign + // or "false" for bool. + constexpr int max_size = detail::digits10<T>() + 2; + char buffer[max_size > 5 ? static_cast<unsigned>(max_size) : 5]; + char* begin = buffer; + return std::string(begin, detail::write<char>(begin, value)); +} + +template <typename Char, size_t SIZE> +FMT_NODISCARD auto to_string(const basic_memory_buffer<Char, SIZE>& buf) + -> std::basic_string<Char> { + auto size = buf.size(); + detail::assume(size < std::basic_string<Char>().max_size()); + return std::basic_string<Char>(buf.data(), size); +} + +FMT_BEGIN_DETAIL_NAMESPACE + +template <typename Char> +void vformat_to(buffer<Char>& buf, basic_string_view<Char> fmt, + typename vformat_args<Char>::type args, locale_ref loc) { + auto out = buffer_appender<Char>(buf); + if (fmt.size() == 2 && equal2(fmt.data(), "{}")) { + auto arg = args.get(0); + if (!arg) error_handler().on_error("argument not found"); + visit_format_arg(default_arg_formatter<Char>{out, args, loc}, arg); + return; + } + + struct format_handler : error_handler { + basic_format_parse_context<Char> parse_context; + buffer_context<Char> context; + + format_handler(buffer_appender<Char> p_out, basic_string_view<Char> str, + basic_format_args<buffer_context<Char>> p_args, + locale_ref p_loc) + : parse_context(str), context(p_out, p_args, p_loc) {} + + void on_text(const Char* begin, const Char* end) { + auto text = basic_string_view<Char>(begin, to_unsigned(end - begin)); + context.advance_to(write<Char>(context.out(), text)); + } + + FMT_CONSTEXPR auto on_arg_id() -> int { + return parse_context.next_arg_id(); + } + FMT_CONSTEXPR auto on_arg_id(int id) -> int { + return parse_context.check_arg_id(id), id; + } + FMT_CONSTEXPR auto on_arg_id(basic_string_view<Char> id) -> int { + int arg_id = context.arg_id(id); + if (arg_id < 0) on_error("argument not found"); + return arg_id; + } + + FMT_INLINE void on_replacement_field(int id, const Char*) { + auto arg = get_arg(context, id); + context.advance_to(visit_format_arg( + default_arg_formatter<Char>{context.out(), context.args(), + context.locale()}, + arg)); + } + + auto on_format_specs(int id, const Char* begin, const Char* end) + -> const Char* { + auto arg = get_arg(context, id); + if (arg.type() == type::custom_type) { + parse_context.advance_to(begin); + visit_format_arg(custom_formatter<Char>{parse_context, context}, arg); + return parse_context.begin(); + } + auto specs = detail::dynamic_format_specs<Char>(); + begin = parse_format_specs(begin, end, specs, parse_context, arg.type()); + detail::handle_dynamic_spec<detail::width_checker>( + specs.width, specs.width_ref, context); + detail::handle_dynamic_spec<detail::precision_checker>( + specs.precision, specs.precision_ref, context); + if (begin == end || *begin != '}') + on_error("missing '}' in format string"); + auto f = arg_formatter<Char>{context.out(), specs, context.locale()}; + context.advance_to(visit_format_arg(f, arg)); + return begin; + } + }; + detail::parse_format_string<false>(fmt, format_handler(out, fmt, args, loc)); +} + +#ifndef FMT_HEADER_ONLY +extern template FMT_API void vformat_to(buffer<char>&, string_view, + typename vformat_args<>::type, + locale_ref); +extern template FMT_API auto thousands_sep_impl<char>(locale_ref) + -> thousands_sep_result<char>; +extern template FMT_API auto thousands_sep_impl<wchar_t>(locale_ref) + -> thousands_sep_result<wchar_t>; +extern template FMT_API auto decimal_point_impl(locale_ref) -> char; +extern template FMT_API auto decimal_point_impl(locale_ref) -> wchar_t; +#endif // FMT_HEADER_ONLY + +FMT_END_DETAIL_NAMESPACE + +#if FMT_USE_USER_DEFINED_LITERALS +inline namespace literals { +/** + \rst + User-defined literal equivalent of :func:`fmt::arg`. + + **Example**:: + + using namespace fmt::literals; + fmt::print("Elapsed time: {s:.2f} seconds", "s"_a=1.23); + \endrst + */ +# if FMT_USE_NONTYPE_TEMPLATE_ARGS +template <detail_exported::fixed_string Str> constexpr auto operator""_a() { + using char_t = remove_cvref_t<decltype(Str.data[0])>; + return detail::udl_arg<char_t, sizeof(Str.data) / sizeof(char_t), Str>(); +} +# else +constexpr auto operator"" _a(const char* s, size_t) -> detail::udl_arg<char> { + return {s}; +} +# endif +} // namespace literals +#endif // FMT_USE_USER_DEFINED_LITERALS + +template <typename Locale, FMT_ENABLE_IF(detail::is_locale<Locale>::value)> +inline auto vformat(const Locale& loc, string_view fmt, format_args args) + -> std::string { + return detail::vformat(loc, fmt, args); +} + +template <typename Locale, typename... T, + FMT_ENABLE_IF(detail::is_locale<Locale>::value)> +inline auto format(const Locale& loc, format_string<T...> fmt, T&&... args) + -> std::string { + return fmt::vformat(loc, string_view(fmt), fmt::make_format_args(args...)); +} + +template <typename OutputIt, typename Locale, + FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value&& + detail::is_locale<Locale>::value)> +auto vformat_to(OutputIt out, const Locale& loc, string_view fmt, + format_args args) -> OutputIt { + using detail::get_buffer; + auto&& buf = get_buffer<char>(out); + detail::vformat_to(buf, fmt, args, detail::locale_ref(loc)); + return detail::get_iterator(buf, out); +} + +template <typename OutputIt, typename Locale, typename... T, + FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value&& + detail::is_locale<Locale>::value)> +FMT_INLINE auto format_to(OutputIt out, const Locale& loc, + format_string<T...> fmt, T&&... args) -> OutputIt { + return vformat_to(out, loc, fmt, fmt::make_format_args(args...)); +} + +template <typename Locale, typename... T, + FMT_ENABLE_IF(detail::is_locale<Locale>::value)> +FMT_NODISCARD FMT_INLINE auto formatted_size(const Locale& loc, + format_string<T...> fmt, + T&&... args) -> size_t { + auto buf = detail::counting_buffer<>(); + detail::vformat_to<char>(buf, fmt, fmt::make_format_args(args...), + detail::locale_ref(loc)); + return buf.count(); +} + +FMT_END_EXPORT + +template <typename T, typename Char> +template <typename FormatContext> +FMT_CONSTEXPR FMT_INLINE auto +formatter<T, Char, + enable_if_t<detail::type_constant<T, Char>::value != + detail::type::custom_type>>::format(const T& val, + FormatContext& ctx) + const -> decltype(ctx.out()) { + if (specs_.width_ref.kind != detail::arg_id_kind::none || + specs_.precision_ref.kind != detail::arg_id_kind::none) { + auto specs = specs_; + detail::handle_dynamic_spec<detail::width_checker>(specs.width, + specs.width_ref, ctx); + detail::handle_dynamic_spec<detail::precision_checker>( + specs.precision, specs.precision_ref, ctx); + return detail::write<Char>(ctx.out(), val, specs, ctx.locale()); + } + return detail::write<Char>(ctx.out(), val, specs_, ctx.locale()); +} + +FMT_END_NAMESPACE + +#ifdef FMT_HEADER_ONLY +# define FMT_FUNC inline +# include "format-inl.h" +#else +# define FMT_FUNC +#endif + +#endif // FMT_FORMAT_H_ |