1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
|
.\" -*- mode: troff; coding: utf-8 -*-
.\" Automatically generated by Pod::Man 5.01 (Pod::Simple 3.43)
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" \*(C` and \*(C' are quotes in nroff, nothing in troff, for use with C<>.
.ie n \{\
. ds C` ""
. ds C' ""
'br\}
.el\{\
. ds C`
. ds C'
'br\}
.\"
.\" Escape single quotes in literal strings from groff's Unicode transform.
.ie \n(.g .ds Aq \(aq
.el .ds Aq '
.\"
.\" If the F register is >0, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
.\" entries marked with X<> in POD. Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.\"
.\" Avoid warning from groff about undefined register 'F'.
.de IX
..
.nr rF 0
.if \n(.g .if rF .nr rF 1
.if (\n(rF:(\n(.g==0)) \{\
. if \nF \{\
. de IX
. tm Index:\\$1\t\\n%\t"\\$2"
..
. if !\nF==2 \{\
. nr % 0
. nr F 2
. \}
. \}
.\}
.rr rF
.\" ========================================================================
.\"
.IX Title "PERLEBCDIC 1"
.TH PERLEBCDIC 1 2024-04-17 "perl v5.38.2" "Perl Programmers Reference Guide"
.\" For nroff, turn off justification. Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.if n .ad l
.nh
.SH NAME
perlebcdic \- Considerations for running Perl on EBCDIC platforms
.SH DESCRIPTION
.IX Header "DESCRIPTION"
An exploration of some of the issues facing Perl programmers
on EBCDIC based computers.
.PP
Portions of this document that are still incomplete are marked with XXX.
.PP
Early Perl versions worked on some EBCDIC machines, but the last known
version that ran on EBCDIC was v5.8.7, until v5.22, when the Perl core
again works on z/OS. Theoretically, it could work on OS/400 or Siemens'
BS2000 (or their successors), but this is untested. In v5.22 and 5.24,
not all
the modules found on CPAN but shipped with core Perl work on z/OS.
.PP
If you want to use Perl on a non\-z/OS EBCDIC machine, please let us know
at <https://github.com/Perl/perl5/issues>.
.PP
Writing Perl on an EBCDIC platform is really no different than writing
on an "ASCII" one, but with different underlying numbers, as we'll see
shortly. You'll have to know something about those "ASCII" platforms
because the documentation is biased and will frequently use example
numbers that don't apply to EBCDIC. There are also very few CPAN
modules that are written for EBCDIC and which don't work on ASCII;
instead the vast majority of CPAN modules are written for ASCII, and
some may happen to work on EBCDIC, while a few have been designed to
portably work on both.
.PP
If your code just uses the 52 letters A\-Z and a\-z, plus SPACE, the
digits 0\-9, and the punctuation characters that Perl uses, plus a few
controls that are denoted by escape sequences like \f(CW\*(C`\en\*(C'\fR and \f(CW\*(C`\et\*(C'\fR, then
there's nothing special about using Perl, and your code may very well
work on an ASCII machine without change.
.PP
But if you write code that uses \f(CW\*(C`\e005\*(C'\fR to mean a TAB or \f(CW\*(C`\exC1\*(C'\fR to mean
an "A", or \f(CW\*(C`\exDF\*(C'\fR to mean a "ÿ" (small \f(CW"y"\fR with a diaeresis),
then your code may well work on your EBCDIC platform, but not on an
ASCII one. That's fine to do if no one will ever want to run your code
on an ASCII platform; but the bias in this document will be towards writing
code portable between EBCDIC and ASCII systems. Again, if every
character you care about is easily enterable from your keyboard, you
don't have to know anything about ASCII, but many keyboards don't easily
allow you to directly enter, say, the character \f(CW\*(C`\exDF\*(C'\fR, so you have to
specify it indirectly, such as by using the \f(CW"\exDF"\fR escape sequence.
In those cases it's easiest to know something about the ASCII/Unicode
character sets. If you know that the small "ÿ" is \f(CW\*(C`U+00FF\*(C'\fR, then
you can instead specify it as \f(CW"\eN{U+FF}"\fR, and have the computer
automatically translate it to \f(CW\*(C`\exDF\*(C'\fR on your platform, and leave it as
\&\f(CW\*(C`\exFF\*(C'\fR on ASCII ones. Or you could specify it by name, \f(CW\*(C`\eN{LATIN
SMALL LETTER Y WITH DIAERESIS\*(C'\fR and not have to know the numbers.
Either way works, but both require familiarity with Unicode.
.SH "COMMON CHARACTER CODE SETS"
.IX Header "COMMON CHARACTER CODE SETS"
.SS ASCII
.IX Subsection "ASCII"
The American Standard Code for Information Interchange (ASCII or
US-ASCII) is a set of
integers running from 0 to 127 (decimal) that have standardized
interpretations by the computers which use ASCII. For example, 65 means
the letter "A".
The range 0..127 can be covered by setting various bits in a 7\-bit binary
digit, hence the set is sometimes referred to as "7\-bit ASCII".
ASCII was described by the American National Standards Institute
document ANSI X3.4\-1986. It was also described by ISO 646:1991
(with localization for currency symbols). The full ASCII set is
given in the table below as the first 128 elements.
Languages that
can be written adequately with the characters in ASCII include
English, Hawaiian, Indonesian, Swahili and some Native American
languages.
.PP
Most non-EBCDIC character sets are supersets of ASCII. That is the
integers 0\-127 mean what ASCII says they mean. But integers 128 and
above are specific to the character set.
.PP
Many of these fit entirely into 8 bits, using ASCII as 0\-127, while
specifying what 128\-255 mean, and not using anything above 255.
Thus, these are single-byte (or octet if you prefer) character sets.
One important one (since Unicode is a superset of it) is the ISO 8859\-1
character set.
.SS "ISO 8859"
.IX Subsection "ISO 8859"
The ISO 8859\-\fR\f(CB$n\fR\f(BI\fR\fI\fR are a collection of character code sets from the
International Organization for Standardization (ISO), each of which adds
characters to the ASCII set that are typically found in various
languages, many of which are based on the Roman, or Latin, alphabet.
Most are for European languages, but there are also ones for Arabic,
Greek, Hebrew, and Thai. There are good references on the web about
all these.
.SS "Latin 1 (ISO 8859\-1)"
.IX Subsection "Latin 1 (ISO 8859-1)"
A particular 8\-bit extension to ASCII that includes grave and acute
accented Latin characters. Languages that can employ ISO 8859\-1
include all the languages covered by ASCII as well as Afrikaans,
Albanian, Basque, Catalan, Danish, Faroese, Finnish, Norwegian,
Portuguese, Spanish, and Swedish. Dutch is covered albeit without
the ij ligature. French is covered too but without the oe ligature.
German can use ISO 8859\-1 but must do so without German-style
quotation marks. This set is based on Western European extensions
to ASCII and is commonly encountered in world wide web work.
In IBM character code set identification terminology, ISO 8859\-1 is
also known as CCSID 819 (or sometimes 0819 or even 00819).
.SS EBCDIC
.IX Subsection "EBCDIC"
The Extended Binary Coded Decimal Interchange Code refers to a
large collection of single\- and multi-byte coded character sets that are
quite different from ASCII and ISO 8859\-1, and are all slightly
different from each other; they typically run on host computers. The
EBCDIC encodings derive from 8\-bit byte extensions of Hollerith punched
card encodings, which long predate ASCII. The layout on the
cards was such that high bits were set for the upper and lower case
alphabetic
characters \f(CW\*(C`[a\-z]\*(C'\fR and \f(CW\*(C`[A\-Z]\*(C'\fR, but there were gaps within each Latin
alphabet range, visible in the table below. These gaps can
cause complications.
.PP
Some IBM EBCDIC character sets may be known by character code set
identification numbers (CCSID numbers) or code page numbers.
.PP
Perl can be compiled on platforms that run any of three commonly used EBCDIC
character sets, listed below.
.PP
\fIThe 13 variant characters\fR
.IX Subsection "The 13 variant characters"
.PP
Among IBM EBCDIC character code sets there are 13 characters that
are often mapped to different integer values. Those characters
are known as the 13 "variant" characters and are:
.PP
.Vb 1
\& \e [ ] { } ^ ~ ! # | $ @ \`
.Ve
.PP
When Perl is compiled for a platform, it looks at all of these characters to
guess which EBCDIC character set the platform uses, and adapts itself
accordingly to that platform. If the platform uses a character set that is not
one of the three Perl knows about, Perl will either fail to compile, or
mistakenly and silently choose one of the three.
.PP
The Line Feed (LF) character is actually a 14th variant character, and
Perl checks for that as well.
.PP
\fIEBCDIC code sets recognized by Perl\fR
.IX Subsection "EBCDIC code sets recognized by Perl"
.IP \fB0037\fR 4
.IX Item "0037"
Character code set ID 0037 is a mapping of the ASCII plus Latin\-1
characters (i.e. ISO 8859\-1) to an EBCDIC set. 0037 is used
in North American English locales on the OS/400 operating system
that runs on AS/400 computers. CCSID 0037 differs from ISO 8859\-1
in 236 places; in other words they agree on only 20 code point values.
.IP \fB1047\fR 4
.IX Item "1047"
Character code set ID 1047 is also a mapping of the ASCII plus
Latin\-1 characters (i.e. ISO 8859\-1) to an EBCDIC set. 1047 is
used under Unix System Services for OS/390 or z/OS, and OpenEdition
for VM/ESA. CCSID 1047 differs from CCSID 0037 in eight places,
and from ISO 8859\-1 in 236.
.IP \fBPOSIX-BC\fR 4
.IX Item "POSIX-BC"
The EBCDIC code page in use on Siemens' BS2000 system is distinct from
1047 and 0037. It is identified below as the POSIX-BC set.
Like 0037 and 1047, it is the same as ISO 8859\-1 in 20 code point
values.
.SS "Unicode code points versus EBCDIC code points"
.IX Subsection "Unicode code points versus EBCDIC code points"
In Unicode terminology a \fIcode point\fR is the number assigned to a
character: for example, in EBCDIC the character "A" is usually assigned
the number 193. In Unicode, the character "A" is assigned the number 65.
All the code points in ASCII and Latin\-1 (ISO 8859\-1) have the same
meaning in Unicode. All three of the recognized EBCDIC code sets have
256 code points, and in each code set, all 256 code points are mapped to
equivalent Latin1 code points. Obviously, "A" will map to "A", "B" =>
"B", "%" => "%", etc., for all printable characters in Latin1 and these
code pages.
.PP
It also turns out that EBCDIC has nearly precise equivalents for the
ASCII/Latin1 C0 controls and the DELETE control. (The C0 controls are
those whose ASCII code points are 0..0x1F; things like TAB, ACK, BEL,
etc.) A mapping is set up between these ASCII/EBCDIC controls. There
isn't such a precise mapping between the C1 controls on ASCII platforms
and the remaining EBCDIC controls. What has been done is to map these
controls, mostly arbitrarily, to some otherwise unmatched character in
the other character set. Most of these are very very rarely used
nowadays in EBCDIC anyway, and their names have been dropped, without
much complaint. For example the EO (Eight Ones) EBCDIC control
(consisting of eight one bits = 0xFF) is mapped to the C1 APC control
(0x9F), and you can't use the name "EO".
.PP
The EBCDIC controls provide three possible line terminator characters,
CR (0x0D), LF (0x25), and NL (0x15). On ASCII platforms, the symbols
"NL" and "LF" refer to the same character, but in strict EBCDIC
terminology they are different ones. The EBCDIC NL is mapped to the C1
control called "NEL" ("Next Line"; here's a case where the mapping makes
quite a bit of sense, and hence isn't just arbitrary). On some EBCDIC
platforms, this NL or NEL is the typical line terminator. This is true
of z/OS and BS2000. In these platforms, the C compilers will swap the
LF and NEL code points, so that \f(CW"\en"\fR is 0x15, and refers to NL. Perl
does that too; you can see it in the code chart below.
This makes things generally "just work" without you even having to be
aware that there is a swap.
.SS "Unicode and UTF"
.IX Subsection "Unicode and UTF"
UTF stands for "Unicode Transformation Format".
UTF\-8 is an encoding of Unicode into a sequence of 8\-bit byte chunks, based on
ASCII and Latin\-1.
The length of a sequence required to represent a Unicode code point
depends on the ordinal number of that code point,
with larger numbers requiring more bytes.
UTF-EBCDIC is like UTF\-8, but based on EBCDIC.
They are enough alike that often, casual usage will conflate the two
terms, and use "UTF\-8" to mean both the UTF\-8 found on ASCII platforms,
and the UTF-EBCDIC found on EBCDIC ones.
.PP
You may see the term "invariant" character or code point.
This simply means that the character has the same numeric
value and representation when encoded in UTF\-8 (or UTF-EBCDIC) as when
not. (Note that this is a very different concept from "The 13 variant
characters" mentioned above. Careful prose will use the term "UTF\-8
invariant" instead of just "invariant", but most often you'll see just
"invariant".) For example, the ordinal value of "A" is 193 in most
EBCDIC code pages, and also is 193 when encoded in UTF-EBCDIC. All
UTF\-8 (or UTF-EBCDIC) variant code points occupy at least two bytes when
encoded in UTF\-8 (or UTF-EBCDIC); by definition, the UTF\-8 (or
UTF-EBCDIC) invariant code points are exactly one byte whether encoded
in UTF\-8 (or UTF-EBCDIC), or not. (By now you see why people typically
just say "UTF\-8" when they also mean "UTF-EBCDIC". For the rest of this
document, we'll mostly be casual about it too.)
In ASCII UTF\-8, the code points corresponding to the lowest 128
ordinal numbers (0 \- 127: the ASCII characters) are invariant.
In UTF-EBCDIC, there are 160 invariant characters.
(If you care, the EBCDIC invariants are those characters
which have ASCII equivalents, plus those that correspond to
the C1 controls (128 \- 159 on ASCII platforms).)
.PP
A string encoded in UTF-EBCDIC may be longer (very rarely shorter) than
one encoded in UTF\-8. Perl extends both UTF\-8 and UTF-EBCDIC so that
they can encode code points above the Unicode maximum of U+10FFFF. Both
extensions are constructed to allow encoding of any code point that fits
in a 64\-bit word.
.PP
UTF-EBCDIC is defined by
Unicode Technical Report #16 <https://www.unicode.org/reports/tr16>
(often referred to as just TR16).
It is defined based on CCSID 1047, not allowing for the differences for
other code pages. This allows for easy interchange of text between
computers running different code pages, but makes it unusable, without
adaptation, for Perl on those other code pages.
.PP
The reason for this unusability is that a fundamental assumption of Perl
is that the characters it cares about for parsing and lexical analysis
are the same whether or not the text is in UTF\-8. For example, Perl
expects the character \f(CW"["\fR to have the same representation, no matter
if the string containing it (or program text) is UTF\-8 encoded or not.
To ensure this, Perl adapts UTF-EBCDIC to the particular code page so
that all characters it expects to be UTF\-8 invariant are in fact UTF\-8
invariant. This means that text generated on a computer running one
version of Perl's UTF-EBCDIC has to be translated to be intelligible to
a computer running another.
.PP
TR16 implies a method to extend UTF-EBCDIC to encode points up through
\&\f(CW\*(C`2\ **\ 31\ \-\ 1\*(C'\fR. Perl uses this method for code points up through
\&\f(CW\*(C`2\ **\ 30\ \-\ 1\*(C'\fR, but uses an incompatible method for larger ones, to
enable it to handle much larger code points than otherwise.
.SS "Using Encode"
.IX Subsection "Using Encode"
Starting from Perl 5.8 you can use the standard module Encode
to translate from EBCDIC to Latin\-1 code points.
Encode knows about more EBCDIC character sets than Perl can currently
be compiled to run on.
.PP
.Vb 1
\& use Encode \*(Aqfrom_to\*(Aq;
\&
\& my %ebcdic = ( 176 => \*(Aqcp37\*(Aq, 95 => \*(Aqcp1047\*(Aq, 106 => \*(Aqposix\-bc\*(Aq );
\&
\& # $a is in EBCDIC code points
\& from_to($a, $ebcdic{ord \*(Aq^\*(Aq}, \*(Aqlatin1\*(Aq);
\& # $a is ISO 8859\-1 code points
.Ve
.PP
and from Latin\-1 code points to EBCDIC code points
.PP
.Vb 1
\& use Encode \*(Aqfrom_to\*(Aq;
\&
\& my %ebcdic = ( 176 => \*(Aqcp37\*(Aq, 95 => \*(Aqcp1047\*(Aq, 106 => \*(Aqposix\-bc\*(Aq );
\&
\& # $a is ISO 8859\-1 code points
\& from_to($a, \*(Aqlatin1\*(Aq, $ebcdic{ord \*(Aq^\*(Aq});
\& # $a is in EBCDIC code points
.Ve
.PP
For doing I/O it is suggested that you use the autotranslating features
of PerlIO, see perluniintro.
.PP
Since version 5.8 Perl uses the PerlIO I/O library. This enables
you to use different encodings per IO channel. For example you may use
.PP
.Vb 9
\& use Encode;
\& open($f, ">:encoding(ascii)", "test.ascii");
\& print $f "Hello World!\en";
\& open($f, ">:encoding(cp37)", "test.ebcdic");
\& print $f "Hello World!\en";
\& open($f, ">:encoding(latin1)", "test.latin1");
\& print $f "Hello World!\en";
\& open($f, ">:encoding(utf8)", "test.utf8");
\& print $f "Hello World!\en";
.Ve
.PP
to get four files containing "Hello World!\en" in ASCII, CP 0037 EBCDIC,
ISO 8859\-1 (Latin\-1) (in this example identical to ASCII since only ASCII
characters were printed), and
UTF-EBCDIC (in this example identical to normal EBCDIC since only characters
that don't differ between EBCDIC and UTF-EBCDIC were printed). See the
documentation of Encode::PerlIO for details.
.PP
As the PerlIO layer uses raw IO (bytes) internally, all this totally
ignores things like the type of your filesystem (ASCII or EBCDIC).
.SH "SINGLE OCTET TABLES"
.IX Header "SINGLE OCTET TABLES"
The following tables list the ASCII and Latin 1 ordered sets including
the subsets: C0 controls (0..31), ASCII graphics (32..7e), delete (7f),
C1 controls (80..9f), and Latin\-1 (a.k.a. ISO 8859\-1) (a0..ff). In the
table names of the Latin 1
extensions to ASCII have been labelled with character names roughly
corresponding to \fIThe Unicode Standard, Version 6.1\fR albeit with
substitutions such as \f(CW\*(C`s/LATIN//\*(C'\fR and \f(CW\*(C`s/VULGAR//\*(C'\fR in all cases;
\&\f(CW\*(C`s/CAPITAL\ LETTER//\*(C'\fR in some cases; and
\&\f(CW\*(C`s/SMALL\ LETTER\ ([A\-Z])/\el$1/\*(C'\fR in some other
cases. Controls are listed using their Unicode 6.2 abbreviations.
The differences between the 0037 and 1047 sets are
flagged with \f(CW\*(C`**\*(C'\fR. The differences between the 1047 and POSIX-BC sets
are flagged with \f(CW\*(C`##.\*(C'\fR All \f(CWord()\fR numbers listed are decimal. If you
would rather see this table listing octal values, then run the table
(that is, the pod source text of this document, since this recipe may not
work with a pod2_other_format translation) through:
.IP "recipe 0" 4
.IX Item "recipe 0"
.PP
.Vb 3
\& perl \-ne \*(Aqif(/(.{29})(\ed+)\es+(\ed+)\es+(\ed+)\es+(\ed+)/)\*(Aq \e
\& \-e \*(Aq{printf("%s%\-5.03o%\-5.03o%\-5.03o%.03o\en",$1,$2,$3,$4,$5)}\*(Aq \e
\& perlebcdic.pod
.Ve
.PP
If you want to retain the UTF-x code points then in script form you
might want to write:
.IP "recipe 1" 4
.IX Item "recipe 1"
.PP
.Vb 10
\& open(FH,"<perlebcdic.pod") or die "Could not open perlebcdic.pod: $!";
\& while (<FH>) {
\& if (/(.{29})(\ed+)\es+(\ed+)\es+(\ed+)\es+(\ed+)\es+(\ed+)\e.?(\ed*)
\& \es+(\ed+)\e.?(\ed*)/x)
\& {
\& if ($7 ne \*(Aq\*(Aq && $9 ne \*(Aq\*(Aq) {
\& printf(
\& "%s%\-5.03o%\-5.03o%\-5.03o%\-5.03o%\-3o.%\-5o%\-3o.%.03o\en",
\& $1,$2,$3,$4,$5,$6,$7,$8,$9);
\& }
\& elsif ($7 ne \*(Aq\*(Aq) {
\& printf("%s%\-5.03o%\-5.03o%\-5.03o%\-5.03o%\-3o.%\-5o%.03o\en",
\& $1,$2,$3,$4,$5,$6,$7,$8);
\& }
\& else {
\& printf("%s%\-5.03o%\-5.03o%\-5.03o%\-5.03o%\-5.03o%.03o\en",
\& $1,$2,$3,$4,$5,$6,$8);
\& }
\& }
\& }
.Ve
.PP
If you would rather see this table listing hexadecimal values then
run the table through:
.IP "recipe 2" 4
.IX Item "recipe 2"
.PP
.Vb 3
\& perl \-ne \*(Aqif(/(.{29})(\ed+)\es+(\ed+)\es+(\ed+)\es+(\ed+)/)\*(Aq \e
\& \-e \*(Aq{printf("%s%\-5.02X%\-5.02X%\-5.02X%.02X\en",$1,$2,$3,$4,$5)}\*(Aq \e
\& perlebcdic.pod
.Ve
.PP
Or, in order to retain the UTF-x code points in hexadecimal:
.IP "recipe 3" 4
.IX Item "recipe 3"
.PP
.Vb 10
\& open(FH,"<perlebcdic.pod") or die "Could not open perlebcdic.pod: $!";
\& while (<FH>) {
\& if (/(.{29})(\ed+)\es+(\ed+)\es+(\ed+)\es+(\ed+)\es+(\ed+)\e.?(\ed*)
\& \es+(\ed+)\e.?(\ed*)/x)
\& {
\& if ($7 ne \*(Aq\*(Aq && $9 ne \*(Aq\*(Aq) {
\& printf(
\& "%s%\-5.02X%\-5.02X%\-5.02X%\-5.02X%\-2X.%\-6.02X%02X.%02X\en",
\& $1,$2,$3,$4,$5,$6,$7,$8,$9);
\& }
\& elsif ($7 ne \*(Aq\*(Aq) {
\& printf("%s%\-5.02X%\-5.02X%\-5.02X%\-5.02X%\-2X.%\-6.02X%02X\en",
\& $1,$2,$3,$4,$5,$6,$7,$8);
\& }
\& else {
\& printf("%s%\-5.02X%\-5.02X%\-5.02X%\-5.02X%\-5.02X%02X\en",
\& $1,$2,$3,$4,$5,$6,$8);
\& }
\& }
\& }
\&
\&
\& ISO
\& 8859\-1 POS\- CCSID
\& CCSID CCSID CCSID IX\- 1047
\& chr 0819 0037 1047 BC UTF\-8 UTF\-EBCDIC
\& \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-
\& <NUL> 0 0 0 0 0 0
\& <SOH> 1 1 1 1 1 1
\& <STX> 2 2 2 2 2 2
\& <ETX> 3 3 3 3 3 3
\& <EOT> 4 55 55 55 4 55
\& <ENQ> 5 45 45 45 5 45
\& <ACK> 6 46 46 46 6 46
\& <BEL> 7 47 47 47 7 47
\& <BS> 8 22 22 22 8 22
\& <HT> 9 5 5 5 9 5
\& <LF> 10 37 21 21 10 21 **
\& <VT> 11 11 11 11 11 11
\& <FF> 12 12 12 12 12 12
\& <CR> 13 13 13 13 13 13
\& <SO> 14 14 14 14 14 14
\& <SI> 15 15 15 15 15 15
\& <DLE> 16 16 16 16 16 16
\& <DC1> 17 17 17 17 17 17
\& <DC2> 18 18 18 18 18 18
\& <DC3> 19 19 19 19 19 19
\& <DC4> 20 60 60 60 20 60
\& <NAK> 21 61 61 61 21 61
\& <SYN> 22 50 50 50 22 50
\& <ETB> 23 38 38 38 23 38
\& <CAN> 24 24 24 24 24 24
\& <EOM> 25 25 25 25 25 25
\& <SUB> 26 63 63 63 26 63
\& <ESC> 27 39 39 39 27 39
\& <FS> 28 28 28 28 28 28
\& <GS> 29 29 29 29 29 29
\& <RS> 30 30 30 30 30 30
\& <US> 31 31 31 31 31 31
\& <SPACE> 32 64 64 64 32 64
\& ! 33 90 90 90 33 90
\& " 34 127 127 127 34 127
\& # 35 123 123 123 35 123
\& $ 36 91 91 91 36 91
\& % 37 108 108 108 37 108
\& & 38 80 80 80 38 80
\& \*(Aq 39 125 125 125 39 125
\& ( 40 77 77 77 40 77
\& ) 41 93 93 93 41 93
\& * 42 92 92 92 42 92
\& + 43 78 78 78 43 78
\& , 44 107 107 107 44 107
\& \- 45 96 96 96 45 96
\& . 46 75 75 75 46 75
\& / 47 97 97 97 47 97
\& 0 48 240 240 240 48 240
\& 1 49 241 241 241 49 241
\& 2 50 242 242 242 50 242
\& 3 51 243 243 243 51 243
\& 4 52 244 244 244 52 244
\& 5 53 245 245 245 53 245
\& 6 54 246 246 246 54 246
\& 7 55 247 247 247 55 247
\& 8 56 248 248 248 56 248
\& 9 57 249 249 249 57 249
\& : 58 122 122 122 58 122
\& ; 59 94 94 94 59 94
\& < 60 76 76 76 60 76
\& = 61 126 126 126 61 126
\& > 62 110 110 110 62 110
\& ? 63 111 111 111 63 111
\& @ 64 124 124 124 64 124
\& A 65 193 193 193 65 193
\& B 66 194 194 194 66 194
\& C 67 195 195 195 67 195
\& D 68 196 196 196 68 196
\& E 69 197 197 197 69 197
\& F 70 198 198 198 70 198
\& G 71 199 199 199 71 199
\& H 72 200 200 200 72 200
\& I 73 201 201 201 73 201
\& J 74 209 209 209 74 209
\& K 75 210 210 210 75 210
\& L 76 211 211 211 76 211
\& M 77 212 212 212 77 212
\& N 78 213 213 213 78 213
\& O 79 214 214 214 79 214
\& P 80 215 215 215 80 215
\& Q 81 216 216 216 81 216
\& R 82 217 217 217 82 217
\& S 83 226 226 226 83 226
\& T 84 227 227 227 84 227
\& U 85 228 228 228 85 228
\& V 86 229 229 229 86 229
\& W 87 230 230 230 87 230
\& X 88 231 231 231 88 231
\& Y 89 232 232 232 89 232
\& Z 90 233 233 233 90 233
\& [ 91 186 173 187 91 173 ** ##
\& \e 92 224 224 188 92 224 ##
\& ] 93 187 189 189 93 189 **
\& ^ 94 176 95 106 94 95 ** ##
\& _ 95 109 109 109 95 109
\& \` 96 121 121 74 96 121 ##
\& a 97 129 129 129 97 129
\& b 98 130 130 130 98 130
\& c 99 131 131 131 99 131
\& d 100 132 132 132 100 132
\& e 101 133 133 133 101 133
\& f 102 134 134 134 102 134
\& g 103 135 135 135 103 135
\& h 104 136 136 136 104 136
\& i 105 137 137 137 105 137
\& j 106 145 145 145 106 145
\& k 107 146 146 146 107 146
\& l 108 147 147 147 108 147
\& m 109 148 148 148 109 148
\& n 110 149 149 149 110 149
\& o 111 150 150 150 111 150
\& p 112 151 151 151 112 151
\& q 113 152 152 152 113 152
\& r 114 153 153 153 114 153
\& s 115 162 162 162 115 162
\& t 116 163 163 163 116 163
\& u 117 164 164 164 117 164
\& v 118 165 165 165 118 165
\& w 119 166 166 166 119 166
\& x 120 167 167 167 120 167
\& y 121 168 168 168 121 168
\& z 122 169 169 169 122 169
\& { 123 192 192 251 123 192 ##
\& | 124 79 79 79 124 79
\& } 125 208 208 253 125 208 ##
\& ~ 126 161 161 255 126 161 ##
\& <DEL> 127 7 7 7 127 7
\& <PAD> 128 32 32 32 194.128 32
\& <HOP> 129 33 33 33 194.129 33
\& <BPH> 130 34 34 34 194.130 34
\& <NBH> 131 35 35 35 194.131 35
\& <IND> 132 36 36 36 194.132 36
\& <NEL> 133 21 37 37 194.133 37 **
\& <SSA> 134 6 6 6 194.134 6
\& <ESA> 135 23 23 23 194.135 23
\& <HTS> 136 40 40 40 194.136 40
\& <HTJ> 137 41 41 41 194.137 41
\& <VTS> 138 42 42 42 194.138 42
\& <PLD> 139 43 43 43 194.139 43
\& <PLU> 140 44 44 44 194.140 44
\& <RI> 141 9 9 9 194.141 9
\& <SS2> 142 10 10 10 194.142 10
\& <SS3> 143 27 27 27 194.143 27
\& <DCS> 144 48 48 48 194.144 48
\& <PU1> 145 49 49 49 194.145 49
\& <PU2> 146 26 26 26 194.146 26
\& <STS> 147 51 51 51 194.147 51
\& <CCH> 148 52 52 52 194.148 52
\& <MW> 149 53 53 53 194.149 53
\& <SPA> 150 54 54 54 194.150 54
\& <EPA> 151 8 8 8 194.151 8
\& <SOS> 152 56 56 56 194.152 56
\& <SGC> 153 57 57 57 194.153 57
\& <SCI> 154 58 58 58 194.154 58
\& <CSI> 155 59 59 59 194.155 59
\& <ST> 156 4 4 4 194.156 4
\& <OSC> 157 20 20 20 194.157 20
\& <PM> 158 62 62 62 194.158 62
\& <APC> 159 255 255 95 194.159 255 ##
\& <NON\-BREAKING SPACE> 160 65 65 65 194.160 128.65
\& <INVERTED "!" > 161 170 170 170 194.161 128.66
\& <CENT SIGN> 162 74 74 176 194.162 128.67 ##
\& <POUND SIGN> 163 177 177 177 194.163 128.68
\& <CURRENCY SIGN> 164 159 159 159 194.164 128.69
\& <YEN SIGN> 165 178 178 178 194.165 128.70
\& <BROKEN BAR> 166 106 106 208 194.166 128.71 ##
\& <SECTION SIGN> 167 181 181 181 194.167 128.72
\& <DIAERESIS> 168 189 187 121 194.168 128.73 ** ##
\& <COPYRIGHT SIGN> 169 180 180 180 194.169 128.74
\& <FEMININE ORDINAL> 170 154 154 154 194.170 128.81
\& <LEFT POINTING GUILLEMET> 171 138 138 138 194.171 128.82
\& <NOT SIGN> 172 95 176 186 194.172 128.83 ** ##
\& <SOFT HYPHEN> 173 202 202 202 194.173 128.84
\& <REGISTERED TRADE MARK> 174 175 175 175 194.174 128.85
\& <MACRON> 175 188 188 161 194.175 128.86 ##
\& <DEGREE SIGN> 176 144 144 144 194.176 128.87
\& <PLUS\-OR\-MINUS SIGN> 177 143 143 143 194.177 128.88
\& <SUPERSCRIPT TWO> 178 234 234 234 194.178 128.89
\& <SUPERSCRIPT THREE> 179 250 250 250 194.179 128.98
\& <ACUTE ACCENT> 180 190 190 190 194.180 128.99
\& <MICRO SIGN> 181 160 160 160 194.181 128.100
\& <PARAGRAPH SIGN> 182 182 182 182 194.182 128.101
\& <MIDDLE DOT> 183 179 179 179 194.183 128.102
\& <CEDILLA> 184 157 157 157 194.184 128.103
\& <SUPERSCRIPT ONE> 185 218 218 218 194.185 128.104
\& <MASC. ORDINAL INDICATOR> 186 155 155 155 194.186 128.105
\& <RIGHT POINTING GUILLEMET> 187 139 139 139 194.187 128.106
\& <FRACTION ONE QUARTER> 188 183 183 183 194.188 128.112
\& <FRACTION ONE HALF> 189 184 184 184 194.189 128.113
\& <FRACTION THREE QUARTERS> 190 185 185 185 194.190 128.114
\& <INVERTED QUESTION MARK> 191 171 171 171 194.191 128.115
\& <A WITH GRAVE> 192 100 100 100 195.128 138.65
\& <A WITH ACUTE> 193 101 101 101 195.129 138.66
\& <A WITH CIRCUMFLEX> 194 98 98 98 195.130 138.67
\& <A WITH TILDE> 195 102 102 102 195.131 138.68
\& <A WITH DIAERESIS> 196 99 99 99 195.132 138.69
\& <A WITH RING ABOVE> 197 103 103 103 195.133 138.70
\& <CAPITAL LIGATURE AE> 198 158 158 158 195.134 138.71
\& <C WITH CEDILLA> 199 104 104 104 195.135 138.72
\& <E WITH GRAVE> 200 116 116 116 195.136 138.73
\& <E WITH ACUTE> 201 113 113 113 195.137 138.74
\& <E WITH CIRCUMFLEX> 202 114 114 114 195.138 138.81
\& <E WITH DIAERESIS> 203 115 115 115 195.139 138.82
\& <I WITH GRAVE> 204 120 120 120 195.140 138.83
\& <I WITH ACUTE> 205 117 117 117 195.141 138.84
\& <I WITH CIRCUMFLEX> 206 118 118 118 195.142 138.85
\& <I WITH DIAERESIS> 207 119 119 119 195.143 138.86
\& <CAPITAL LETTER ETH> 208 172 172 172 195.144 138.87
\& <N WITH TILDE> 209 105 105 105 195.145 138.88
\& <O WITH GRAVE> 210 237 237 237 195.146 138.89
\& <O WITH ACUTE> 211 238 238 238 195.147 138.98
\& <O WITH CIRCUMFLEX> 212 235 235 235 195.148 138.99
\& <O WITH TILDE> 213 239 239 239 195.149 138.100
\& <O WITH DIAERESIS> 214 236 236 236 195.150 138.101
\& <MULTIPLICATION SIGN> 215 191 191 191 195.151 138.102
\& <O WITH STROKE> 216 128 128 128 195.152 138.103
\& <U WITH GRAVE> 217 253 253 224 195.153 138.104 ##
\& <U WITH ACUTE> 218 254 254 254 195.154 138.105
\& <U WITH CIRCUMFLEX> 219 251 251 221 195.155 138.106 ##
\& <U WITH DIAERESIS> 220 252 252 252 195.156 138.112
\& <Y WITH ACUTE> 221 173 186 173 195.157 138.113 ** ##
\& <CAPITAL LETTER THORN> 222 174 174 174 195.158 138.114
\& <SMALL LETTER SHARP S> 223 89 89 89 195.159 138.115
\& <a WITH GRAVE> 224 68 68 68 195.160 139.65
\& <a WITH ACUTE> 225 69 69 69 195.161 139.66
\& <a WITH CIRCUMFLEX> 226 66 66 66 195.162 139.67
\& <a WITH TILDE> 227 70 70 70 195.163 139.68
\& <a WITH DIAERESIS> 228 67 67 67 195.164 139.69
\& <a WITH RING ABOVE> 229 71 71 71 195.165 139.70
\& <SMALL LIGATURE ae> 230 156 156 156 195.166 139.71
\& <c WITH CEDILLA> 231 72 72 72 195.167 139.72
\& <e WITH GRAVE> 232 84 84 84 195.168 139.73
\& <e WITH ACUTE> 233 81 81 81 195.169 139.74
\& <e WITH CIRCUMFLEX> 234 82 82 82 195.170 139.81
\& <e WITH DIAERESIS> 235 83 83 83 195.171 139.82
\& <i WITH GRAVE> 236 88 88 88 195.172 139.83
\& <i WITH ACUTE> 237 85 85 85 195.173 139.84
\& <i WITH CIRCUMFLEX> 238 86 86 86 195.174 139.85
\& <i WITH DIAERESIS> 239 87 87 87 195.175 139.86
\& <SMALL LETTER eth> 240 140 140 140 195.176 139.87
\& <n WITH TILDE> 241 73 73 73 195.177 139.88
\& <o WITH GRAVE> 242 205 205 205 195.178 139.89
\& <o WITH ACUTE> 243 206 206 206 195.179 139.98
\& <o WITH CIRCUMFLEX> 244 203 203 203 195.180 139.99
\& <o WITH TILDE> 245 207 207 207 195.181 139.100
\& <o WITH DIAERESIS> 246 204 204 204 195.182 139.101
\& <DIVISION SIGN> 247 225 225 225 195.183 139.102
\& <o WITH STROKE> 248 112 112 112 195.184 139.103
\& <u WITH GRAVE> 249 221 221 192 195.185 139.104 ##
\& <u WITH ACUTE> 250 222 222 222 195.186 139.105
\& <u WITH CIRCUMFLEX> 251 219 219 219 195.187 139.106
\& <u WITH DIAERESIS> 252 220 220 220 195.188 139.112
\& <y WITH ACUTE> 253 141 141 141 195.189 139.113
\& <SMALL LETTER thorn> 254 142 142 142 195.190 139.114
\& <y WITH DIAERESIS> 255 223 223 223 195.191 139.115
.Ve
.PP
If you would rather see the above table in CCSID 0037 order rather than
ASCII + Latin\-1 order then run the table through:
.IP "recipe 4" 4
.IX Item "recipe 4"
.PP
.Vb 6
\& perl \e
\& \-ne \*(Aqif(/.{29}\ed{1,3}\es{2,4}\ed{1,3}\es{2,4}\ed{1,3}\es{2,4}\ed{1,3}/)\*(Aq\e
\& \-e \*(Aq{push(@l,$_)}\*(Aq \e
\& \-e \*(AqEND{print map{$_\->[0]}\*(Aq \e
\& \-e \*(Aq sort{$a\->[1] <=> $b\->[1]}\*(Aq \e
\& \-e \*(Aq map{[$_,substr($_,34,3)]}@l;}\*(Aq perlebcdic.pod
.Ve
.PP
If you would rather see it in CCSID 1047 order then change the number
34 in the last line to 39, like this:
.IP "recipe 5" 4
.IX Item "recipe 5"
.PP
.Vb 6
\& perl \e
\& \-ne \*(Aqif(/.{29}\ed{1,3}\es{2,4}\ed{1,3}\es{2,4}\ed{1,3}\es{2,4}\ed{1,3}/)\*(Aq\e
\& \-e \*(Aq{push(@l,$_)}\*(Aq \e
\& \-e \*(AqEND{print map{$_\->[0]}\*(Aq \e
\& \-e \*(Aq sort{$a\->[1] <=> $b\->[1]}\*(Aq \e
\& \-e \*(Aq map{[$_,substr($_,39,3)]}@l;}\*(Aq perlebcdic.pod
.Ve
.PP
If you would rather see it in POSIX-BC order then change the number
34 in the last line to 44, like this:
.IP "recipe 6" 4
.IX Item "recipe 6"
.PP
.Vb 6
\& perl \e
\& \-ne \*(Aqif(/.{29}\ed{1,3}\es{2,4}\ed{1,3}\es{2,4}\ed{1,3}\es{2,4}\ed{1,3}/)\*(Aq\e
\& \-e \*(Aq{push(@l,$_)}\*(Aq \e
\& \-e \*(AqEND{print map{$_\->[0]}\*(Aq \e
\& \-e \*(Aq sort{$a\->[1] <=> $b\->[1]}\*(Aq \e
\& \-e \*(Aq map{[$_,substr($_,44,3)]}@l;}\*(Aq perlebcdic.pod
.Ve
.SS "Table in hex, sorted in 1047 order"
.IX Subsection "Table in hex, sorted in 1047 order"
Since this document was first written, the convention has become more
and more to use hexadecimal notation for code points. To do this with
the recipes and to also sort is a multi-step process, so here, for
convenience, is the table from above, re-sorted to be in Code Page 1047
order, and using hex notation.
.PP
.Vb 10
\& ISO
\& 8859\-1 POS\- CCSID
\& CCSID CCSID CCSID IX\- 1047
\& chr 0819 0037 1047 BC UTF\-8 UTF\-EBCDIC
\& \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-
\& <NUL> 00 00 00 00 00 00
\& <SOH> 01 01 01 01 01 01
\& <STX> 02 02 02 02 02 02
\& <ETX> 03 03 03 03 03 03
\& <ST> 9C 04 04 04 C2.9C 04
\& <HT> 09 05 05 05 09 05
\& <SSA> 86 06 06 06 C2.86 06
\& <DEL> 7F 07 07 07 7F 07
\& <EPA> 97 08 08 08 C2.97 08
\& <RI> 8D 09 09 09 C2.8D 09
\& <SS2> 8E 0A 0A 0A C2.8E 0A
\& <VT> 0B 0B 0B 0B 0B 0B
\& <FF> 0C 0C 0C 0C 0C 0C
\& <CR> 0D 0D 0D 0D 0D 0D
\& <SO> 0E 0E 0E 0E 0E 0E
\& <SI> 0F 0F 0F 0F 0F 0F
\& <DLE> 10 10 10 10 10 10
\& <DC1> 11 11 11 11 11 11
\& <DC2> 12 12 12 12 12 12
\& <DC3> 13 13 13 13 13 13
\& <OSC> 9D 14 14 14 C2.9D 14
\& <LF> 0A 25 15 15 0A 15 **
\& <BS> 08 16 16 16 08 16
\& <ESA> 87 17 17 17 C2.87 17
\& <CAN> 18 18 18 18 18 18
\& <EOM> 19 19 19 19 19 19
\& <PU2> 92 1A 1A 1A C2.92 1A
\& <SS3> 8F 1B 1B 1B C2.8F 1B
\& <FS> 1C 1C 1C 1C 1C 1C
\& <GS> 1D 1D 1D 1D 1D 1D
\& <RS> 1E 1E 1E 1E 1E 1E
\& <US> 1F 1F 1F 1F 1F 1F
\& <PAD> 80 20 20 20 C2.80 20
\& <HOP> 81 21 21 21 C2.81 21
\& <BPH> 82 22 22 22 C2.82 22
\& <NBH> 83 23 23 23 C2.83 23
\& <IND> 84 24 24 24 C2.84 24
\& <NEL> 85 15 25 25 C2.85 25 **
\& <ETB> 17 26 26 26 17 26
\& <ESC> 1B 27 27 27 1B 27
\& <HTS> 88 28 28 28 C2.88 28
\& <HTJ> 89 29 29 29 C2.89 29
\& <VTS> 8A 2A 2A 2A C2.8A 2A
\& <PLD> 8B 2B 2B 2B C2.8B 2B
\& <PLU> 8C 2C 2C 2C C2.8C 2C
\& <ENQ> 05 2D 2D 2D 05 2D
\& <ACK> 06 2E 2E 2E 06 2E
\& <BEL> 07 2F 2F 2F 07 2F
\& <DCS> 90 30 30 30 C2.90 30
\& <PU1> 91 31 31 31 C2.91 31
\& <SYN> 16 32 32 32 16 32
\& <STS> 93 33 33 33 C2.93 33
\& <CCH> 94 34 34 34 C2.94 34
\& <MW> 95 35 35 35 C2.95 35
\& <SPA> 96 36 36 36 C2.96 36
\& <EOT> 04 37 37 37 04 37
\& <SOS> 98 38 38 38 C2.98 38
\& <SGC> 99 39 39 39 C2.99 39
\& <SCI> 9A 3A 3A 3A C2.9A 3A
\& <CSI> 9B 3B 3B 3B C2.9B 3B
\& <DC4> 14 3C 3C 3C 14 3C
\& <NAK> 15 3D 3D 3D 15 3D
\& <PM> 9E 3E 3E 3E C2.9E 3E
\& <SUB> 1A 3F 3F 3F 1A 3F
\& <SPACE> 20 40 40 40 20 40
\& <NON\-BREAKING SPACE> A0 41 41 41 C2.A0 80.41
\& <a WITH CIRCUMFLEX> E2 42 42 42 C3.A2 8B.43
\& <a WITH DIAERESIS> E4 43 43 43 C3.A4 8B.45
\& <a WITH GRAVE> E0 44 44 44 C3.A0 8B.41
\& <a WITH ACUTE> E1 45 45 45 C3.A1 8B.42
\& <a WITH TILDE> E3 46 46 46 C3.A3 8B.44
\& <a WITH RING ABOVE> E5 47 47 47 C3.A5 8B.46
\& <c WITH CEDILLA> E7 48 48 48 C3.A7 8B.48
\& <n WITH TILDE> F1 49 49 49 C3.B1 8B.58
\& <CENT SIGN> A2 4A 4A B0 C2.A2 80.43 ##
\& . 2E 4B 4B 4B 2E 4B
\& < 3C 4C 4C 4C 3C 4C
\& ( 28 4D 4D 4D 28 4D
\& + 2B 4E 4E 4E 2B 4E
\& | 7C 4F 4F 4F 7C 4F
\& & 26 50 50 50 26 50
\& <e WITH ACUTE> E9 51 51 51 C3.A9 8B.4A
\& <e WITH CIRCUMFLEX> EA 52 52 52 C3.AA 8B.51
\& <e WITH DIAERESIS> EB 53 53 53 C3.AB 8B.52
\& <e WITH GRAVE> E8 54 54 54 C3.A8 8B.49
\& <i WITH ACUTE> ED 55 55 55 C3.AD 8B.54
\& <i WITH CIRCUMFLEX> EE 56 56 56 C3.AE 8B.55
\& <i WITH DIAERESIS> EF 57 57 57 C3.AF 8B.56
\& <i WITH GRAVE> EC 58 58 58 C3.AC 8B.53
\& <SMALL LETTER SHARP S> DF 59 59 59 C3.9F 8A.73
\& ! 21 5A 5A 5A 21 5A
\& $ 24 5B 5B 5B 24 5B
\& * 2A 5C 5C 5C 2A 5C
\& ) 29 5D 5D 5D 29 5D
\& ; 3B 5E 5E 5E 3B 5E
\& ^ 5E B0 5F 6A 5E 5F ** ##
\& \- 2D 60 60 60 2D 60
\& / 2F 61 61 61 2F 61
\& <A WITH CIRCUMFLEX> C2 62 62 62 C3.82 8A.43
\& <A WITH DIAERESIS> C4 63 63 63 C3.84 8A.45
\& <A WITH GRAVE> C0 64 64 64 C3.80 8A.41
\& <A WITH ACUTE> C1 65 65 65 C3.81 8A.42
\& <A WITH TILDE> C3 66 66 66 C3.83 8A.44
\& <A WITH RING ABOVE> C5 67 67 67 C3.85 8A.46
\& <C WITH CEDILLA> C7 68 68 68 C3.87 8A.48
\& <N WITH TILDE> D1 69 69 69 C3.91 8A.58
\& <BROKEN BAR> A6 6A 6A D0 C2.A6 80.47 ##
\& , 2C 6B 6B 6B 2C 6B
\& % 25 6C 6C 6C 25 6C
\& _ 5F 6D 6D 6D 5F 6D
\& > 3E 6E 6E 6E 3E 6E
\& ? 3F 6F 6F 6F 3F 6F
\& <o WITH STROKE> F8 70 70 70 C3.B8 8B.67
\& <E WITH ACUTE> C9 71 71 71 C3.89 8A.4A
\& <E WITH CIRCUMFLEX> CA 72 72 72 C3.8A 8A.51
\& <E WITH DIAERESIS> CB 73 73 73 C3.8B 8A.52
\& <E WITH GRAVE> C8 74 74 74 C3.88 8A.49
\& <I WITH ACUTE> CD 75 75 75 C3.8D 8A.54
\& <I WITH CIRCUMFLEX> CE 76 76 76 C3.8E 8A.55
\& <I WITH DIAERESIS> CF 77 77 77 C3.8F 8A.56
\& <I WITH GRAVE> CC 78 78 78 C3.8C 8A.53
\& \` 60 79 79 4A 60 79 ##
\& : 3A 7A 7A 7A 3A 7A
\& # 23 7B 7B 7B 23 7B
\& @ 40 7C 7C 7C 40 7C
\& \*(Aq 27 7D 7D 7D 27 7D
\& = 3D 7E 7E 7E 3D 7E
\& " 22 7F 7F 7F 22 7F
\& <O WITH STROKE> D8 80 80 80 C3.98 8A.67
\& a 61 81 81 81 61 81
\& b 62 82 82 82 62 82
\& c 63 83 83 83 63 83
\& d 64 84 84 84 64 84
\& e 65 85 85 85 65 85
\& f 66 86 86 86 66 86
\& g 67 87 87 87 67 87
\& h 68 88 88 88 68 88
\& i 69 89 89 89 69 89
\& <LEFT POINTING GUILLEMET> AB 8A 8A 8A C2.AB 80.52
\& <RIGHT POINTING GUILLEMET> BB 8B 8B 8B C2.BB 80.6A
\& <SMALL LETTER eth> F0 8C 8C 8C C3.B0 8B.57
\& <y WITH ACUTE> FD 8D 8D 8D C3.BD 8B.71
\& <SMALL LETTER thorn> FE 8E 8E 8E C3.BE 8B.72
\& <PLUS\-OR\-MINUS SIGN> B1 8F 8F 8F C2.B1 80.58
\& <DEGREE SIGN> B0 90 90 90 C2.B0 80.57
\& j 6A 91 91 91 6A 91
\& k 6B 92 92 92 6B 92
\& l 6C 93 93 93 6C 93
\& m 6D 94 94 94 6D 94
\& n 6E 95 95 95 6E 95
\& o 6F 96 96 96 6F 96
\& p 70 97 97 97 70 97
\& q 71 98 98 98 71 98
\& r 72 99 99 99 72 99
\& <FEMININE ORDINAL> AA 9A 9A 9A C2.AA 80.51
\& <MASC. ORDINAL INDICATOR> BA 9B 9B 9B C2.BA 80.69
\& <SMALL LIGATURE ae> E6 9C 9C 9C C3.A6 8B.47
\& <CEDILLA> B8 9D 9D 9D C2.B8 80.67
\& <CAPITAL LIGATURE AE> C6 9E 9E 9E C3.86 8A.47
\& <CURRENCY SIGN> A4 9F 9F 9F C2.A4 80.45
\& <MICRO SIGN> B5 A0 A0 A0 C2.B5 80.64
\& ~ 7E A1 A1 FF 7E A1 ##
\& s 73 A2 A2 A2 73 A2
\& t 74 A3 A3 A3 74 A3
\& u 75 A4 A4 A4 75 A4
\& v 76 A5 A5 A5 76 A5
\& w 77 A6 A6 A6 77 A6
\& x 78 A7 A7 A7 78 A7
\& y 79 A8 A8 A8 79 A8
\& z 7A A9 A9 A9 7A A9
\& <INVERTED "!" > A1 AA AA AA C2.A1 80.42
\& <INVERTED QUESTION MARK> BF AB AB AB C2.BF 80.73
\& <CAPITAL LETTER ETH> D0 AC AC AC C3.90 8A.57
\& [ 5B BA AD BB 5B AD ** ##
\& <CAPITAL LETTER THORN> DE AE AE AE C3.9E 8A.72
\& <REGISTERED TRADE MARK> AE AF AF AF C2.AE 80.55
\& <NOT SIGN> AC 5F B0 BA C2.AC 80.53 ** ##
\& <POUND SIGN> A3 B1 B1 B1 C2.A3 80.44
\& <YEN SIGN> A5 B2 B2 B2 C2.A5 80.46
\& <MIDDLE DOT> B7 B3 B3 B3 C2.B7 80.66
\& <COPYRIGHT SIGN> A9 B4 B4 B4 C2.A9 80.4A
\& <SECTION SIGN> A7 B5 B5 B5 C2.A7 80.48
\& <PARAGRAPH SIGN> B6 B6 B6 B6 C2.B6 80.65
\& <FRACTION ONE QUARTER> BC B7 B7 B7 C2.BC 80.70
\& <FRACTION ONE HALF> BD B8 B8 B8 C2.BD 80.71
\& <FRACTION THREE QUARTERS> BE B9 B9 B9 C2.BE 80.72
\& <Y WITH ACUTE> DD AD BA AD C3.9D 8A.71 ** ##
\& <DIAERESIS> A8 BD BB 79 C2.A8 80.49 ** ##
\& <MACRON> AF BC BC A1 C2.AF 80.56 ##
\& ] 5D BB BD BD 5D BD **
\& <ACUTE ACCENT> B4 BE BE BE C2.B4 80.63
\& <MULTIPLICATION SIGN> D7 BF BF BF C3.97 8A.66
\& { 7B C0 C0 FB 7B C0 ##
\& A 41 C1 C1 C1 41 C1
\& B 42 C2 C2 C2 42 C2
\& C 43 C3 C3 C3 43 C3
\& D 44 C4 C4 C4 44 C4
\& E 45 C5 C5 C5 45 C5
\& F 46 C6 C6 C6 46 C6
\& G 47 C7 C7 C7 47 C7
\& H 48 C8 C8 C8 48 C8
\& I 49 C9 C9 C9 49 C9
\& <SOFT HYPHEN> AD CA CA CA C2.AD 80.54
\& <o WITH CIRCUMFLEX> F4 CB CB CB C3.B4 8B.63
\& <o WITH DIAERESIS> F6 CC CC CC C3.B6 8B.65
\& <o WITH GRAVE> F2 CD CD CD C3.B2 8B.59
\& <o WITH ACUTE> F3 CE CE CE C3.B3 8B.62
\& <o WITH TILDE> F5 CF CF CF C3.B5 8B.64
\& } 7D D0 D0 FD 7D D0 ##
\& J 4A D1 D1 D1 4A D1
\& K 4B D2 D2 D2 4B D2
\& L 4C D3 D3 D3 4C D3
\& M 4D D4 D4 D4 4D D4
\& N 4E D5 D5 D5 4E D5
\& O 4F D6 D6 D6 4F D6
\& P 50 D7 D7 D7 50 D7
\& Q 51 D8 D8 D8 51 D8
\& R 52 D9 D9 D9 52 D9
\& <SUPERSCRIPT ONE> B9 DA DA DA C2.B9 80.68
\& <u WITH CIRCUMFLEX> FB DB DB DB C3.BB 8B.6A
\& <u WITH DIAERESIS> FC DC DC DC C3.BC 8B.70
\& <u WITH GRAVE> F9 DD DD C0 C3.B9 8B.68 ##
\& <u WITH ACUTE> FA DE DE DE C3.BA 8B.69
\& <y WITH DIAERESIS> FF DF DF DF C3.BF 8B.73
\& \e 5C E0 E0 BC 5C E0 ##
\& <DIVISION SIGN> F7 E1 E1 E1 C3.B7 8B.66
\& S 53 E2 E2 E2 53 E2
\& T 54 E3 E3 E3 54 E3
\& U 55 E4 E4 E4 55 E4
\& V 56 E5 E5 E5 56 E5
\& W 57 E6 E6 E6 57 E6
\& X 58 E7 E7 E7 58 E7
\& Y 59 E8 E8 E8 59 E8
\& Z 5A E9 E9 E9 5A E9
\& <SUPERSCRIPT TWO> B2 EA EA EA C2.B2 80.59
\& <O WITH CIRCUMFLEX> D4 EB EB EB C3.94 8A.63
\& <O WITH DIAERESIS> D6 EC EC EC C3.96 8A.65
\& <O WITH GRAVE> D2 ED ED ED C3.92 8A.59
\& <O WITH ACUTE> D3 EE EE EE C3.93 8A.62
\& <O WITH TILDE> D5 EF EF EF C3.95 8A.64
\& 0 30 F0 F0 F0 30 F0
\& 1 31 F1 F1 F1 31 F1
\& 2 32 F2 F2 F2 32 F2
\& 3 33 F3 F3 F3 33 F3
\& 4 34 F4 F4 F4 34 F4
\& 5 35 F5 F5 F5 35 F5
\& 6 36 F6 F6 F6 36 F6
\& 7 37 F7 F7 F7 37 F7
\& 8 38 F8 F8 F8 38 F8
\& 9 39 F9 F9 F9 39 F9
\& <SUPERSCRIPT THREE> B3 FA FA FA C2.B3 80.62
\& <U WITH CIRCUMFLEX> DB FB FB DD C3.9B 8A.6A ##
\& <U WITH DIAERESIS> DC FC FC FC C3.9C 8A.70
\& <U WITH GRAVE> D9 FD FD E0 C3.99 8A.68 ##
\& <U WITH ACUTE> DA FE FE FE C3.9A 8A.69
\& <APC> 9F FF FF 5F C2.9F FF ##
.Ve
.SH "IDENTIFYING CHARACTER CODE SETS"
.IX Header "IDENTIFYING CHARACTER CODE SETS"
It is possible to determine which character set you are operating under.
But first you need to be really really sure you need to do this. Your
code will be simpler and probably just as portable if you don't have
to test the character set and do different things, depending. There are
actually only very few circumstances where it's not easy to write
straight-line code portable to all character sets. See
"Unicode and EBCDIC" in perluniintro for how to portably specify
characters.
.PP
But there are some cases where you may want to know which character set
you are running under. One possible example is doing
sorting in inner loops where performance is critical.
.PP
To determine if you are running under ASCII or EBCDIC, you can use the
return value of \f(CWord()\fR or \f(CWchr()\fR to test one or more character
values. For example:
.PP
.Vb 4
\& $is_ascii = "A" eq chr(65);
\& $is_ebcdic = "A" eq chr(193);
\& $is_ascii = ord("A") == 65;
\& $is_ebcdic = ord("A") == 193;
.Ve
.PP
There's even less need to distinguish between EBCDIC code pages, but to
do so try looking at one or more of the characters that differ between
them.
.PP
.Vb 4
\& $is_ascii = ord(\*(Aq[\*(Aq) == 91;
\& $is_ebcdic_37 = ord(\*(Aq[\*(Aq) == 186;
\& $is_ebcdic_1047 = ord(\*(Aq[\*(Aq) == 173;
\& $is_ebcdic_POSIX_BC = ord(\*(Aq[\*(Aq) == 187;
.Ve
.PP
However, it would be unwise to write tests such as:
.PP
.Vb 2
\& $is_ascii = "\er" ne chr(13); # WRONG
\& $is_ascii = "\en" ne chr(10); # ILL ADVISED
.Ve
.PP
Obviously the first of these will fail to distinguish most ASCII
platforms from either a CCSID 0037, a 1047, or a POSIX-BC EBCDIC
platform since \f(CW\*(C`"\er"\ eq\ chr(13)\*(C'\fR under all of those coded character
sets. But note too that because \f(CW"\en"\fR is \f(CWchr(13)\fR and \f(CW"\er"\fR is
\&\f(CWchr(10)\fR on old Macintosh (which is an ASCII platform) the second
\&\f(CW$is_ascii\fR test will lead to trouble there.
.PP
To determine whether or not perl was built under an EBCDIC
code page you can use the Config module like so:
.PP
.Vb 2
\& use Config;
\& $is_ebcdic = $Config{\*(Aqebcdic\*(Aq} eq \*(Aqdefine\*(Aq;
.Ve
.SH CONVERSIONS
.IX Header "CONVERSIONS"
.ie n .SS "utf8::unicode_to_native() and utf8::native_to_unicode()"
.el .SS "\f(CWutf8::unicode_to_native()\fP and \f(CWutf8::native_to_unicode()\fP"
.IX Subsection "utf8::unicode_to_native() and utf8::native_to_unicode()"
These functions take an input numeric code point in one encoding and
return what its equivalent value is in the other.
.PP
See utf8.
.SS tr///
.IX Subsection "tr///"
In order to convert a string of characters from one character set to
another a simple list of numbers, such as in the right columns in the
above table, along with Perl's \f(CW\*(C`tr///\*(C'\fR operator is all that is needed.
The data in the table are in ASCII/Latin1 order, hence the EBCDIC columns
provide easy-to-use ASCII/Latin1 to EBCDIC operations that are also easily
reversed.
.PP
For example, to convert ASCII/Latin1 to code page 037 take the output of the
second numbers column from the output of recipe 2 (modified to add
\&\f(CW"\e"\fR characters), and use it in \f(CW\*(C`tr///\*(C'\fR like so:
.PP
.Vb 10
\& $cp_037 =
\& \*(Aq\ex00\ex01\ex02\ex03\ex37\ex2D\ex2E\ex2F\ex16\ex05\ex25\ex0B\ex0C\ex0D\ex0E\ex0F\*(Aq .
\& \*(Aq\ex10\ex11\ex12\ex13\ex3C\ex3D\ex32\ex26\ex18\ex19\ex3F\ex27\ex1C\ex1D\ex1E\ex1F\*(Aq .
\& \*(Aq\ex40\ex5A\ex7F\ex7B\ex5B\ex6C\ex50\ex7D\ex4D\ex5D\ex5C\ex4E\ex6B\ex60\ex4B\ex61\*(Aq .
\& \*(Aq\exF0\exF1\exF2\exF3\exF4\exF5\exF6\exF7\exF8\exF9\ex7A\ex5E\ex4C\ex7E\ex6E\ex6F\*(Aq .
\& \*(Aq\ex7C\exC1\exC2\exC3\exC4\exC5\exC6\exC7\exC8\exC9\exD1\exD2\exD3\exD4\exD5\exD6\*(Aq .
\& \*(Aq\exD7\exD8\exD9\exE2\exE3\exE4\exE5\exE6\exE7\exE8\exE9\exBA\exE0\exBB\exB0\ex6D\*(Aq .
\& \*(Aq\ex79\ex81\ex82\ex83\ex84\ex85\ex86\ex87\ex88\ex89\ex91\ex92\ex93\ex94\ex95\ex96\*(Aq .
\& \*(Aq\ex97\ex98\ex99\exA2\exA3\exA4\exA5\exA6\exA7\exA8\exA9\exC0\ex4F\exD0\exA1\ex07\*(Aq .
\& \*(Aq\ex20\ex21\ex22\ex23\ex24\ex15\ex06\ex17\ex28\ex29\ex2A\ex2B\ex2C\ex09\ex0A\ex1B\*(Aq .
\& \*(Aq\ex30\ex31\ex1A\ex33\ex34\ex35\ex36\ex08\ex38\ex39\ex3A\ex3B\ex04\ex14\ex3E\exFF\*(Aq .
\& \*(Aq\ex41\exAA\ex4A\exB1\ex9F\exB2\ex6A\exB5\exBD\exB4\ex9A\ex8A\ex5F\exCA\exAF\exBC\*(Aq .
\& \*(Aq\ex90\ex8F\exEA\exFA\exBE\exA0\exB6\exB3\ex9D\exDA\ex9B\ex8B\exB7\exB8\exB9\exAB\*(Aq .
\& \*(Aq\ex64\ex65\ex62\ex66\ex63\ex67\ex9E\ex68\ex74\ex71\ex72\ex73\ex78\ex75\ex76\ex77\*(Aq .
\& \*(Aq\exAC\ex69\exED\exEE\exEB\exEF\exEC\exBF\ex80\exFD\exFE\exFB\exFC\exAD\exAE\ex59\*(Aq .
\& \*(Aq\ex44\ex45\ex42\ex46\ex43\ex47\ex9C\ex48\ex54\ex51\ex52\ex53\ex58\ex55\ex56\ex57\*(Aq .
\& \*(Aq\ex8C\ex49\exCD\exCE\exCB\exCF\exCC\exE1\ex70\exDD\exDE\exDB\exDC\ex8D\ex8E\exDF\*(Aq;
\&
\& my $ebcdic_string = $ascii_string;
\& eval \*(Aq$ebcdic_string =~ tr/\e000\-\e377/\*(Aq . $cp_037 . \*(Aq/\*(Aq;
.Ve
.PP
To convert from EBCDIC 037 to ASCII just reverse the order of the tr///
arguments like so:
.PP
.Vb 2
\& my $ascii_string = $ebcdic_string;
\& eval \*(Aq$ascii_string =~ tr/\*(Aq . $cp_037 . \*(Aq/\e000\-\e377/\*(Aq;
.Ve
.PP
Similarly one could take the output of the third numbers column from recipe 2
to obtain a \f(CW$cp_1047\fR table. The fourth numbers column of the output from
recipe 2 could provide a \f(CW$cp_posix_bc\fR table suitable for transcoding as
well.
.PP
If you wanted to see the inverse tables, you would first have to sort on the
desired numbers column as in recipes 4, 5 or 6, then take the output of the
first numbers column.
.SS iconv
.IX Subsection "iconv"
XPG operability often implies the presence of an \fIiconv\fR utility
available from the shell or from the C library. Consult your system's
documentation for information on iconv.
.PP
On OS/390 or z/OS see the \fBiconv\fR\|(1) manpage. One way to invoke the \f(CW\*(C`iconv\*(C'\fR
shell utility from within perl would be to:
.PP
.Vb 2
\& # OS/390 or z/OS example
\& $ascii_data = \`echo \*(Aq$ebcdic_data\*(Aq| iconv \-f IBM\-1047 \-t ISO8859\-1\`
.Ve
.PP
or the inverse map:
.PP
.Vb 2
\& # OS/390 or z/OS example
\& $ebcdic_data = \`echo \*(Aq$ascii_data\*(Aq| iconv \-f ISO8859\-1 \-t IBM\-1047\`
.Ve
.PP
For other Perl-based conversion options see the \f(CW\*(C`Convert::*\*(C'\fR modules on CPAN.
.SS "C RTL"
.IX Subsection "C RTL"
The OS/390 and z/OS C run-time libraries provide \f(CW_atoe()\fR and \f(CW_etoa()\fR functions.
.SH "OPERATOR DIFFERENCES"
.IX Header "OPERATOR DIFFERENCES"
The \f(CW\*(C`..\*(C'\fR range operator treats certain character ranges with
care on EBCDIC platforms. For example the following array
will have twenty six elements on either an EBCDIC platform
or an ASCII platform:
.PP
.Vb 1
\& @alphabet = (\*(AqA\*(Aq..\*(AqZ\*(Aq); # $#alphabet == 25
.Ve
.PP
The bitwise operators such as & ^ | may return different results
when operating on string or character data in a Perl program running
on an EBCDIC platform than when run on an ASCII platform. Here is
an example adapted from the one in perlop:
.PP
.Vb 5
\& # EBCDIC\-based examples
\& print "j p \en" ^ " a h"; # prints "JAPH\en"
\& print "JA" | " ph\en"; # prints "japh\en"
\& print "JAPH\enJunk" & "\e277\e277\e277\e277\e277"; # prints "japh\en";
\& print \*(Aqp N$\*(Aq ^ " E<H\en"; # prints "Perl\en";
.Ve
.PP
An interesting property of the 32 C0 control characters
in the ASCII table is that they can "literally" be constructed
as control characters in Perl, e.g. \f(CW\*(C`(chr(0)\*(C'\fR eq \f(CW\*(C`\ec@\*(C'\fR)>
\&\f(CW\*(C`(chr(1)\*(C'\fR eq \f(CW\*(C`\ecA\*(C'\fR)>, and so on. Perl on EBCDIC platforms has been
ported to take \f(CW\*(C`\ec@\*(C'\fR to \f(CWchr(0)\fR and \f(CW\*(C`\ecA\*(C'\fR to \f(CWchr(1)\fR, etc. as well, but the
characters that result depend on which code page you are
using. The table below uses the standard acronyms for the controls.
The POSIX-BC and 1047 sets are
identical throughout this range and differ from the 0037 set at only
one spot (21 decimal). Note that the line terminator character
may be generated by \f(CW\*(C`\ecJ\*(C'\fR on ASCII platforms but by \f(CW\*(C`\ecU\*(C'\fR on 1047 or POSIX-BC
platforms and cannot be generated as a \f(CW"\ec.letter."\fR control character on
0037 platforms. Note also that \f(CW\*(C`\ec\e\*(C'\fR cannot be the final element in a string
or regex, as it will absorb the terminator. But \f(CW\*(C`\ec\e\fR\f(CIX\fR\f(CW\*(C'\fR is a \f(CW\*(C`FILE
SEPARATOR\*(C'\fR concatenated with \fIX\fR for all \fIX\fR.
The outlier \f(CW\*(C`\ec?\*(C'\fR on ASCII, which yields a non\-C0 control \f(CW\*(C`DEL\*(C'\fR,
yields the outlier control \f(CW\*(C`APC\*(C'\fR on EBCDIC, the one that isn't in the
block of contiguous controls. Note that a subtlety of this is that
\&\f(CW\*(C`\ec?\*(C'\fR on ASCII platforms is an ASCII character, while it isn't
equivalent to any ASCII character in EBCDIC platforms.
.PP
.Vb 10
\& chr ord 8859\-1 0037 1047 && POSIX\-BC
\& \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-
\& \ec@ 0 <NUL> <NUL> <NUL>
\& \ecA 1 <SOH> <SOH> <SOH>
\& \ecB 2 <STX> <STX> <STX>
\& \ecC 3 <ETX> <ETX> <ETX>
\& \ecD 4 <EOT> <ST> <ST>
\& \ecE 5 <ENQ> <HT> <HT>
\& \ecF 6 <ACK> <SSA> <SSA>
\& \ecG 7 <BEL> <DEL> <DEL>
\& \ecH 8 <BS> <EPA> <EPA>
\& \ecI 9 <HT> <RI> <RI>
\& \ecJ 10 <LF> <SS2> <SS2>
\& \ecK 11 <VT> <VT> <VT>
\& \ecL 12 <FF> <FF> <FF>
\& \ecM 13 <CR> <CR> <CR>
\& \ecN 14 <SO> <SO> <SO>
\& \ecO 15 <SI> <SI> <SI>
\& \ecP 16 <DLE> <DLE> <DLE>
\& \ecQ 17 <DC1> <DC1> <DC1>
\& \ecR 18 <DC2> <DC2> <DC2>
\& \ecS 19 <DC3> <DC3> <DC3>
\& \ecT 20 <DC4> <OSC> <OSC>
\& \ecU 21 <NAK> <NEL> <LF> **
\& \ecV 22 <SYN> <BS> <BS>
\& \ecW 23 <ETB> <ESA> <ESA>
\& \ecX 24 <CAN> <CAN> <CAN>
\& \ecY 25 <EOM> <EOM> <EOM>
\& \ecZ 26 <SUB> <PU2> <PU2>
\& \ec[ 27 <ESC> <SS3> <SS3>
\& \ec\eX 28 <FS>X <FS>X <FS>X
\& \ec] 29 <GS> <GS> <GS>
\& \ec^ 30 <RS> <RS> <RS>
\& \ec_ 31 <US> <US> <US>
\& \ec? * <DEL> <APC> <APC>
.Ve
.PP
\&\f(CW\*(C`*\*(C'\fR Note: \f(CW\*(C`\ec?\*(C'\fR maps to ordinal 127 (\f(CW\*(C`DEL\*(C'\fR) on ASCII platforms, but
since ordinal 127 is a not a control character on EBCDIC machines,
\&\f(CW\*(C`\ec?\*(C'\fR instead maps on them to \f(CW\*(C`APC\*(C'\fR, which is 255 in 0037 and 1047,
and 95 in POSIX-BC.
.SH "FUNCTION DIFFERENCES"
.IX Header "FUNCTION DIFFERENCES"
.ie n .IP chr() 8
.el .IP \f(CWchr()\fR 8
.IX Item "chr()"
\&\f(CWchr()\fR must be given an EBCDIC code number argument to yield a desired
character return value on an EBCDIC platform. For example:
.Sp
.Vb 1
\& $CAPITAL_LETTER_A = chr(193);
.Ve
.ie n .IP ord() 8
.el .IP \f(CWord()\fR 8
.IX Item "ord()"
\&\f(CWord()\fR will return EBCDIC code number values on an EBCDIC platform.
For example:
.Sp
.Vb 1
\& $the_number_193 = ord("A");
.Ve
.ie n .IP pack() 8
.el .IP \f(CWpack()\fR 8
.IX Item "pack()"
The \f(CW"c"\fR and \f(CW"C"\fR templates for \f(CWpack()\fR are dependent upon character set
encoding. Examples of usage on EBCDIC include:
.Sp
.Vb 4
\& $foo = pack("CCCC",193,194,195,196);
\& # $foo eq "ABCD"
\& $foo = pack("C4",193,194,195,196);
\& # same thing
\&
\& $foo = pack("ccxxcc",193,194,195,196);
\& # $foo eq "AB\e0\e0CD"
.Ve
.Sp
The \f(CW"U"\fR template has been ported to mean "Unicode" on all platforms so
that
.Sp
.Vb 1
\& pack("U", 65) eq \*(AqA\*(Aq
.Ve
.Sp
is true on all platforms. If you want native code points for the low
256, use the \f(CW"W"\fR template. This means that the equivalences
.Sp
.Vb 2
\& pack("W", ord($character)) eq $character
\& unpack("W", $character) == ord $character
.Ve
.Sp
will hold.
.ie n .IP print() 8
.el .IP \f(CWprint()\fR 8
.IX Item "print()"
One must be careful with scalars and strings that are passed to
print that contain ASCII encodings. One common place
for this to occur is in the output of the MIME type header for
CGI script writing. For example, many Perl programming guides
recommend something similar to:
.Sp
.Vb 2
\& print "Content\-type:\ettext/html\e015\e012\e015\e012";
\& # this may be wrong on EBCDIC
.Ve
.Sp
You can instead write
.Sp
.Vb 1
\& print "Content\-type:\ettext/html\er\en\er\en"; # OK for DGW et al
.Ve
.Sp
and have it work portably.
.Sp
That is because the translation from EBCDIC to ASCII is done
by the web server in this case. Consult your web server's documentation for
further details.
.ie n .IP printf() 8
.el .IP \f(CWprintf()\fR 8
.IX Item "printf()"
The formats that can convert characters to numbers and vice versa
will be different from their ASCII counterparts when executed
on an EBCDIC platform. Examples include:
.Sp
.Vb 1
\& printf("%c%c%c",193,194,195); # prints ABC
.Ve
.ie n .IP sort() 8
.el .IP \f(CWsort()\fR 8
.IX Item "sort()"
EBCDIC sort results may differ from ASCII sort results especially for
mixed case strings. This is discussed in more detail below.
.ie n .IP sprintf() 8
.el .IP \f(CWsprintf()\fR 8
.IX Item "sprintf()"
See the discussion of \f(CW"printf()"\fR above. An example of the use
of sprintf would be:
.Sp
.Vb 1
\& $CAPITAL_LETTER_A = sprintf("%c",193);
.Ve
.ie n .IP unpack() 8
.el .IP \f(CWunpack()\fR 8
.IX Item "unpack()"
See the discussion of \f(CW"pack()"\fR above.
.PP
Note that it is possible to write portable code for these by specifying
things in Unicode numbers, and using a conversion function:
.PP
.Vb 3
\& printf("%c",utf8::unicode_to_native(65)); # prints A on all
\& # platforms
\& print utf8::native_to_unicode(ord("A")); # Likewise, prints 65
.Ve
.PP
See "Unicode and EBCDIC" in perluniintro and "CONVERSIONS"
for other options.
.SH "REGULAR EXPRESSION DIFFERENCES"
.IX Header "REGULAR EXPRESSION DIFFERENCES"
You can write your regular expressions just like someone on an ASCII
platform would do. But keep in mind that using octal or hex notation to
specify a particular code point will give you the character that the
EBCDIC code page natively maps to it. (This is also true of all
double-quoted strings.) If you want to write portably, just use the
\&\f(CW\*(C`\eN{U+...}\*(C'\fR notation everywhere where you would have used \f(CW\*(C`\ex{...}\*(C'\fR,
and don't use octal notation at all.
.PP
Starting in Perl v5.22, this applies to ranges in bracketed character
classes. If you say, for example, \f(CW\*(C`qr/[\eN{U+20}\-\eN{U+7F}]/\*(C'\fR, it means
the characters \f(CW\*(C`\eN{U+20}\*(C'\fR, \f(CW\*(C`\eN{U+21}\*(C'\fR, ..., \f(CW\*(C`\eN{U+7F}\*(C'\fR. This range
is all the printable characters that the ASCII character set contains.
.PP
Prior to v5.22, you couldn't specify any ranges portably, except
(starting in Perl v5.5.3) all subsets of the \f(CW\*(C`[A\-Z]\*(C'\fR and \f(CW\*(C`[a\-z]\*(C'\fR
ranges are specially coded to not pick up gap characters. For example,
characters such as "ô" (\f(CW\*(C`o WITH CIRCUMFLEX\*(C'\fR) that lie between
"I" and "J" would not be matched by the regular expression range
\&\f(CW\*(C`/[H\-K]/\*(C'\fR. But if either of the range end points is explicitly numeric
(and neither is specified by \f(CW\*(C`\eN{U+...}\*(C'\fR), the gap characters are
matched:
.PP
.Vb 1
\& /[\ex89\-\ex91]/
.Ve
.PP
will match \f(CW\*(C`\ex8e\*(C'\fR, even though \f(CW\*(C`\ex89\*(C'\fR is "i" and \f(CW\*(C`\ex91 \*(C'\fR is "j",
and \f(CW\*(C`\ex8e\*(C'\fR is a gap character, from the alphabetic viewpoint.
.PP
Another construct to be wary of is the inappropriate use of hex (unless
you use \f(CW\*(C`\eN{U+...}\*(C'\fR) or
octal constants in regular expressions. Consider the following
set of subs:
.PP
.Vb 4
\& sub is_c0 {
\& my $char = substr(shift,0,1);
\& $char =~ /[\e000\-\e037]/;
\& }
\&
\& sub is_print_ascii {
\& my $char = substr(shift,0,1);
\& $char =~ /[\e040\-\e176]/;
\& }
\&
\& sub is_delete {
\& my $char = substr(shift,0,1);
\& $char eq "\e177";
\& }
\&
\& sub is_c1 {
\& my $char = substr(shift,0,1);
\& $char =~ /[\e200\-\e237]/;
\& }
\&
\& sub is_latin_1 { # But not ASCII; not C1
\& my $char = substr(shift,0,1);
\& $char =~ /[\e240\-\e377]/;
\& }
.Ve
.PP
These are valid only on ASCII platforms. Starting in Perl v5.22, simply
changing the octal constants to equivalent \f(CW\*(C`\eN{U+...}\*(C'\fR values makes
them portable:
.PP
.Vb 4
\& sub is_c0 {
\& my $char = substr(shift,0,1);
\& $char =~ /[\eN{U+00}\-\eN{U+1F}]/;
\& }
\&
\& sub is_print_ascii {
\& my $char = substr(shift,0,1);
\& $char =~ /[\eN{U+20}\-\eN{U+7E}]/;
\& }
\&
\& sub is_delete {
\& my $char = substr(shift,0,1);
\& $char eq "\eN{U+7F}";
\& }
\&
\& sub is_c1 {
\& my $char = substr(shift,0,1);
\& $char =~ /[\eN{U+80}\-\eN{U+9F}]/;
\& }
\&
\& sub is_latin_1 { # But not ASCII; not C1
\& my $char = substr(shift,0,1);
\& $char =~ /[\eN{U+A0}\-\eN{U+FF}]/;
\& }
.Ve
.PP
And here are some alternative portable ways to write them:
.PP
.Vb 3
\& sub Is_c0 {
\& my $char = substr(shift,0,1);
\& return $char =~ /[[:cntrl:]]/a && ! Is_delete($char);
\&
\& # Alternatively:
\& # return $char =~ /[[:cntrl:]]/
\& # && $char =~ /[[:ascii:]]/
\& # && ! Is_delete($char);
\& }
\&
\& sub Is_print_ascii {
\& my $char = substr(shift,0,1);
\&
\& return $char =~ /[[:print:]]/a;
\&
\& # Alternatively:
\& # return $char =~ /[[:print:]]/ && $char =~ /[[:ascii:]]/;
\&
\& # Or
\& # return $char
\& # =~ /[ !"\e#\e$%&\*(Aq()*+,\e\-.\e/0\-9:;<=>?\e@A\-Z[\e\e\e]^_\`a\-z{|}~]/;
\& }
\&
\& sub Is_delete {
\& my $char = substr(shift,0,1);
\& return utf8::native_to_unicode(ord $char) == 0x7F;
\& }
\&
\& sub Is_c1 {
\& use feature \*(Aqunicode_strings\*(Aq;
\& my $char = substr(shift,0,1);
\& return $char =~ /[[:cntrl:]]/ && $char !~ /[[:ascii:]]/;
\& }
\&
\& sub Is_latin_1 { # But not ASCII; not C1
\& use feature \*(Aqunicode_strings\*(Aq;
\& my $char = substr(shift,0,1);
\& return ord($char) < 256
\& && $char !~ /[[:ascii:]]/
\& && $char !~ /[[:cntrl:]]/;
\& }
.Ve
.PP
Another way to write \f(CWIs_latin_1()\fR would be
to use the characters in the range explicitly:
.PP
.Vb 5
\& sub Is_latin_1 {
\& my $char = substr(shift,0,1);
\& $char =~ /[\ ¡¢£¤¥¦§¨©ª«¬\%®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏ]
\& [ÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ]/x;
\& }
.Ve
.PP
Although that form may run into trouble in network transit (due to the
presence of 8 bit characters) or on non ISO-Latin character sets. But
it does allow \f(CW\*(C`Is_c1\*(C'\fR to be rewritten so it works on Perls that don't
have \f(CW\*(Aqunicode_strings\*(Aq\fR (earlier than v5.14):
.PP
.Vb 6
\& sub Is_latin_1 { # But not ASCII; not C1
\& my $char = substr(shift,0,1);
\& return ord($char) < 256
\& && $char !~ /[[:ascii:]]/
\& && ! Is_latin1($char);
\& }
.Ve
.SH SOCKETS
.IX Header "SOCKETS"
Most socket programming assumes ASCII character encodings in network
byte order. Exceptions can include CGI script writing under a
host web server where the server may take care of translation for you.
Most host web servers convert EBCDIC data to ISO\-8859\-1 or Unicode on
output.
.SH SORTING
.IX Header "SORTING"
One big difference between ASCII-based character sets and EBCDIC ones
are the relative positions of the characters when sorted in native
order. Of most concern are the upper\- and lowercase letters, the
digits, and the underscore (\f(CW"_"\fR). On ASCII platforms the native sort
order has the digits come before the uppercase letters which come before
the underscore which comes before the lowercase letters. On EBCDIC, the
underscore comes first, then the lowercase letters, then the uppercase
ones, and the digits last. If sorted on an ASCII-based platform, the
two-letter abbreviation for a physician comes before the two letter
abbreviation for drive; that is:
.PP
.Vb 2
\& @sorted = sort(qw(Dr. dr.)); # @sorted holds (\*(AqDr.\*(Aq,\*(Aqdr.\*(Aq) on ASCII,
\& # but (\*(Aqdr.\*(Aq,\*(AqDr.\*(Aq) on EBCDIC
.Ve
.PP
The property of lowercase before uppercase letters in EBCDIC is
even carried to the Latin 1 EBCDIC pages such as 0037 and 1047.
An example would be that "Ë" (\f(CW\*(C`E WITH DIAERESIS\*(C'\fR, 203) comes
before "ë" (\f(CW\*(C`e WITH DIAERESIS\*(C'\fR, 235) on an ASCII platform, but
the latter (83) comes before the former (115) on an EBCDIC platform.
(Astute readers will note that the uppercase version of "ß"
\&\f(CW\*(C`SMALL LETTER SHARP S\*(C'\fR is simply "SS" and that the upper case versions
of "ÿ" (small \f(CW\*(C`y WITH DIAERESIS\*(C'\fR) and "µ" (\f(CW\*(C`MICRO SIGN\*(C'\fR)
are not in the 0..255 range but are in Unicode, in a Unicode enabled
Perl).
.PP
The sort order will cause differences between results obtained on
ASCII platforms versus EBCDIC platforms. What follows are some suggestions
on how to deal with these differences.
.SS "Ignore ASCII vs. EBCDIC sort differences."
.IX Subsection "Ignore ASCII vs. EBCDIC sort differences."
This is the least computationally expensive strategy. It may require
some user education.
.SS "Use a sort helper function"
.IX Subsection "Use a sort helper function"
This is completely general, but the most computationally expensive
strategy. Choose one or the other character set and transform to that
for every sort comparison. Here's a complete example that transforms
to ASCII sort order:
.PP
.Vb 2
\& sub native_to_uni($) {
\& my $string = shift;
\&
\& # Saves time on an ASCII platform
\& return $string if ord \*(AqA\*(Aq == 65;
\&
\& my $output = "";
\& for my $i (0 .. length($string) \- 1) {
\& $output
\& .= chr(utf8::native_to_unicode(ord(substr($string, $i, 1))));
\& }
\&
\& # Preserve utf8ness of input onto the output, even if it didn\*(Aqt need
\& # to be utf8
\& utf8::upgrade($output) if utf8::is_utf8($string);
\&
\& return $output;
\& }
\&
\& sub ascii_order { # Sort helper
\& return native_to_uni($a) cmp native_to_uni($b);
\& }
\&
\& sort ascii_order @list;
.Ve
.SS "MONO CASE then sort data (for non-digits, non-underscore)"
.IX Subsection "MONO CASE then sort data (for non-digits, non-underscore)"
If you don't care about where digits and underscore sort to, you can do
something like this
.PP
.Vb 3
\& sub case_insensitive_order { # Sort helper
\& return lc($a) cmp lc($b)
\& }
\&
\& sort case_insensitive_order @list;
.Ve
.PP
If performance is an issue, and you don't care if the output is in the
same case as the input, Use \f(CW\*(C`tr///\*(C'\fR to transform to the case most
employed within the data. If the data are primarily UPPERCASE
non\-Latin1, then apply \f(CW\*(C`tr/[a\-z]/[A\-Z]/\*(C'\fR, and then \f(CWsort()\fR. If the
data are primarily lowercase non Latin1 then apply \f(CW\*(C`tr/[A\-Z]/[a\-z]/\*(C'\fR
before sorting. If the data are primarily UPPERCASE and include Latin\-1
characters then apply:
.PP
.Vb 3
\& tr/[a\-z]/[A\-Z]/;
\& tr/[àáâãäåæçèéêëìíîïðñòóôõöøùúûüýþ]/[ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖØÙÚÛÜÝÞ/;
\& s/ß/SS/g;
.Ve
.PP
then \f(CWsort()\fR. If you have a choice, it's better to lowercase things
to avoid the problems of the two Latin\-1 characters whose uppercase is
outside Latin\-1: "ÿ" (small \f(CW\*(C`y WITH DIAERESIS\*(C'\fR) and "µ"
(\f(CW\*(C`MICRO SIGN\*(C'\fR). If you do need to upppercase, you can; with a
Unicode-enabled Perl, do:
.PP
.Vb 2
\& tr/ÿ/\ex{178}/;
\& tr/µ/\ex{39C}/;
.Ve
.SS "Perform sorting on one type of platform only."
.IX Subsection "Perform sorting on one type of platform only."
This strategy can employ a network connection. As such
it would be computationally expensive.
.SH "TRANSFORMATION FORMATS"
.IX Header "TRANSFORMATION FORMATS"
There are a variety of ways of transforming data with an intra character set
mapping that serve a variety of purposes. Sorting was discussed in the
previous section and a few of the other more popular mapping techniques are
discussed next.
.SS "URL decoding and encoding"
.IX Subsection "URL decoding and encoding"
Note that some URLs have hexadecimal ASCII code points in them in an
attempt to overcome character or protocol limitation issues. For example
the tilde character is not on every keyboard hence a URL of the form:
.PP
.Vb 1
\& http://www.pvhp.com/~pvhp/
.Ve
.PP
may also be expressed as either of:
.PP
.Vb 1
\& http://www.pvhp.com/%7Epvhp/
\&
\& http://www.pvhp.com/%7epvhp/
.Ve
.PP
where 7E is the hexadecimal ASCII code point for "~". Here is an example
of decoding such a URL in any EBCDIC code page:
.PP
.Vb 3
\& $url = \*(Aqhttp://www.pvhp.com/%7Epvhp/\*(Aq;
\& $url =~ s/%([0\-9a\-fA\-F]{2})/
\& pack("c",utf8::unicode_to_native(hex($1)))/xge;
.Ve
.PP
Conversely, here is a partial solution for the task of encoding such
a URL in any EBCDIC code page:
.PP
.Vb 5
\& $url = \*(Aqhttp://www.pvhp.com/~pvhp/\*(Aq;
\& # The following regular expression does not address the
\& # mappings for: (\*(Aq.\*(Aq => \*(Aq%2E\*(Aq, \*(Aq/\*(Aq => \*(Aq%2F\*(Aq, \*(Aq:\*(Aq => \*(Aq%3A\*(Aq)
\& $url =~ s/([\et "#%&\e(\e),;<=>\e?\e@\e[\e\e\e]^\`{|}~])/
\& sprintf("%%%02X",utf8::native_to_unicode(ord($1)))/xge;
.Ve
.PP
where a more complete solution would split the URL into components
and apply a full s/// substitution only to the appropriate parts.
.SS "uu encoding and decoding"
.IX Subsection "uu encoding and decoding"
The \f(CW\*(C`u\*(C'\fR template to \f(CWpack()\fR or \f(CWunpack()\fR will render EBCDIC data in
EBCDIC characters equivalent to their ASCII counterparts. For example,
the following will print "Yes indeed\en" on either an ASCII or EBCDIC
computer:
.PP
.Vb 10
\& $all_byte_chrs = \*(Aq\*(Aq;
\& for (0..255) { $all_byte_chrs .= chr($_); }
\& $uuencode_byte_chrs = pack(\*(Aqu\*(Aq, $all_byte_chrs);
\& ($uu = <<\*(AqENDOFHEREDOC\*(Aq) =~ s/^\es*//gm;
\& M\`\`$"\`P0%!@<("0H+#\`T.#Q\`1$A,4%187&!D:&QP=\*(AqA\e@(2(C)"4F)R@I*BLL
\& M+2XO,#$R,S0U\-C<X.3H[/#T^/T!!0D\-$149\*(Aq2$E*2TQ\-3D]045)35%565UA9
\& M6EM<75Y?8&%B8V1E9F=H:6IK;&UN;W!Q<G\-T=79W>\*(AqEZ>WQ]?G^\`@8*#A(6&
\& MAXB)BHN,C8Z/D)&2DY25EI>8F9J;G)V>GZ"AHJ.DI::GJ*FJJZRMKJ^PL;*S
\& MM+6VM[BYNKN\eO;Z_P,\*(Aq"P\e3%QL?(R<K+S,W.S]#1TM/4U=;7V\-G:V]S=WM_@
\& ?X>+CY.7FY^CIZNOL[>[O\e/\*(AqR\e_3U]O?X^?K[_/W^_P\`\`
\& ENDOFHEREDOC
\& if ($uuencode_byte_chrs eq $uu) {
\& print "Yes ";
\& }
\& $uudecode_byte_chrs = unpack(\*(Aqu\*(Aq, $uuencode_byte_chrs);
\& if ($uudecode_byte_chrs eq $all_byte_chrs) {
\& print "indeed\en";
\& }
.Ve
.PP
Here is a very spartan uudecoder that will work on EBCDIC:
.PP
.Vb 10
\& #!/usr/local/bin/perl
\& $_ = <> until ($mode,$file) = /^begin\es*(\ed*)\es*(\eS*)/;
\& open(OUT, "> $file") if $file ne "";
\& while(<>) {
\& last if /^end/;
\& next if /[a\-z]/;
\& next unless int((((utf8::native_to_unicode(ord()) \- 32 ) & 077)
\& + 2) / 3)
\& == int(length() / 4);
\& print OUT unpack("u", $_);
\& }
\& close(OUT);
\& chmod oct($mode), $file;
.Ve
.SS "Quoted-Printable encoding and decoding"
.IX Subsection "Quoted-Printable encoding and decoding"
On ASCII-encoded platforms it is possible to strip characters outside of
the printable set using:
.PP
.Vb 3
\& # This QP encoder works on ASCII only
\& $qp_string =~ s/([=\ex00\-\ex1F\ex80\-\exFF])/
\& sprintf("=%02X",ord($1))/xge;
.Ve
.PP
Starting in Perl v5.22, this is trivially changeable to work portably on
both ASCII and EBCDIC platforms.
.PP
.Vb 3
\& # This QP encoder works on both ASCII and EBCDIC
\& $qp_string =~ s/([=\eN{U+00}\-\eN{U+1F}\eN{U+80}\-\eN{U+FF}])/
\& sprintf("=%02X",ord($1))/xge;
.Ve
.PP
For earlier Perls, a QP encoder that works on both ASCII and EBCDIC
platforms would look somewhat like the following:
.PP
.Vb 4
\& $delete = utf8::unicode_to_native(ord("\ex7F"));
\& $qp_string =~
\& s/([^[:print:]$delete])/
\& sprintf("=%02X",utf8::native_to_unicode(ord($1)))/xage;
.Ve
.PP
(although in production code the substitutions might be done
in the EBCDIC branch with the function call and separately in the
ASCII branch without the expense of the identity map; in Perl v5.22, the
identity map is optimized out so there is no expense, but the
alternative above is simpler and is also available in v5.22).
.PP
Such QP strings can be decoded with:
.PP
.Vb 3
\& # This QP decoder is limited to ASCII only
\& $string =~ s/=([[:xdigit:][[:xdigit:])/chr hex $1/ge;
\& $string =~ s/=[\en\er]+$//;
.Ve
.PP
Whereas a QP decoder that works on both ASCII and EBCDIC platforms
would look somewhat like the following:
.PP
.Vb 3
\& $string =~ s/=([[:xdigit:][:xdigit:]])/
\& chr utf8::native_to_unicode(hex $1)/xge;
\& $string =~ s/=[\en\er]+$//;
.Ve
.SS "Caesarean ciphers"
.IX Subsection "Caesarean ciphers"
The practice of shifting an alphabet one or more characters for encipherment
dates back thousands of years and was explicitly detailed by Gaius Julius
Caesar in his \fBGallic Wars\fR text. A single alphabet shift is sometimes
referred to as a rotation and the shift amount is given as a number \f(CW$n\fR after
the string 'rot' or "rot$n". Rot0 and rot26 would designate identity maps
on the 26\-letter English version of the Latin alphabet. Rot13 has the
interesting property that alternate subsequent invocations are identity maps
(thus rot13 is its own non-trivial inverse in the group of 26 alphabet
rotations). Hence the following is a rot13 encoder and decoder that will
work on ASCII and EBCDIC platforms:
.PP
.Vb 1
\& #!/usr/local/bin/perl
\&
\& while(<>){
\& tr/n\-za\-mN\-ZA\-M/a\-zA\-Z/;
\& print;
\& }
.Ve
.PP
In one-liner form:
.PP
.Vb 1
\& perl \-ne \*(Aqtr/n\-za\-mN\-ZA\-M/a\-zA\-Z/;print\*(Aq
.Ve
.SH "Hashing order and checksums"
.IX Header "Hashing order and checksums"
Perl deliberately randomizes hash order for security purposes on both
ASCII and EBCDIC platforms.
.PP
EBCDIC checksums will differ for the same file translated into ASCII
and vice versa.
.SH "I18N AND L10N"
.IX Header "I18N AND L10N"
Internationalization (I18N) and localization (L10N) are supported at least
in principle even on EBCDIC platforms. The details are system-dependent
and discussed under the "OS ISSUES" section below.
.SH "MULTI-OCTET CHARACTER SETS"
.IX Header "MULTI-OCTET CHARACTER SETS"
Perl works with UTF-EBCDIC, a multi-byte encoding. In Perls earlier
than v5.22, there may be various bugs in this regard.
.PP
Legacy multi byte EBCDIC code pages XXX.
.SH "OS ISSUES"
.IX Header "OS ISSUES"
There may be a few system-dependent issues
of concern to EBCDIC Perl programmers.
.SS OS/400
.IX Subsection "OS/400"
.IP PASE 8
.IX Item "PASE"
The PASE environment is a runtime environment for OS/400 that can run
executables built for PowerPC AIX in OS/400; see perlos400. PASE
is ASCII-based, not EBCDIC-based as the ILE.
.IP "IFS access" 8
.IX Item "IFS access"
XXX.
.SS "OS/390, z/OS"
.IX Subsection "OS/390, z/OS"
Perl runs under Unix Systems Services or USS.
.ie n .IP """sigaction""" 8
.el .IP \f(CWsigaction\fR 8
.IX Item "sigaction"
\&\f(CW\*(C`SA_SIGINFO\*(C'\fR can have segmentation faults.
.ie n .IP """chcp""" 8
.el .IP \f(CWchcp\fR 8
.IX Item "chcp"
\&\fBchcp\fR is supported as a shell utility for displaying and changing
one's code page. See also \fBchcp\fR\|(1).
.IP "dataset access" 8
.IX Item "dataset access"
For sequential data set access try:
.Sp
.Vb 1
\& my @ds_records = \`cat //DSNAME\`;
.Ve
.Sp
or:
.Sp
.Vb 1
\& my @ds_records = \`cat //\*(AqHLQ.DSNAME\*(Aq\`;
.Ve
.Sp
See also the OS390::Stdio module on CPAN.
.ie n .IP """iconv""" 8
.el .IP \f(CWiconv\fR 8
.IX Item "iconv"
\&\fBiconv\fR is supported as both a shell utility and a C RTL routine.
See also the \fBiconv\fR\|(1) and \fBiconv\fR\|(3) manual pages.
.IP locales 8
.IX Item "locales"
Locales are supported. There may be glitches when a locale is another
EBCDIC code page which has some of the
code-page variant characters in other
positions.
.Sp
There aren't currently any real UTF\-8 locales, even though some locale
names contain the string "UTF\-8".
.Sp
See perllocale for information on locales. The L10N files
are in \fI/usr/nls/locale\fR. \f(CW$Config{d_setlocale}\fR is \f(CW\*(Aqdefine\*(Aq\fR on
OS/390 or z/OS.
.SS POSIX-BC?
.IX Subsection "POSIX-BC?"
XXX.
.SH BUGS
.IX Header "BUGS"
.IP \(bu 4
Not all shells will allow multiple \f(CW\*(C`\-e\*(C'\fR string arguments to perl to
be concatenated together properly as recipes in this document
0, 2, 4, 5, and 6 might
seem to imply.
.IP \(bu 4
There are a significant number of test failures in the CPAN modules
shipped with Perl v5.22 and 5.24. These are only in modules not primarily
maintained by Perl 5 porters. Some of these are failures in the tests
only: they don't realize that it is proper to get different results on
EBCDIC platforms. And some of the failures are real bugs. If you
compile and do a \f(CW\*(C`make test\*(C'\fR on Perl, all tests on the \f(CW\*(C`/cpan\*(C'\fR
directory are skipped.
.Sp
Encode partially works.
.IP \(bu 4
In earlier Perl versions, when byte and character data were
concatenated, the new string was sometimes created by
decoding the byte strings as \fIISO 8859\-1 (Latin\-1)\fR, even if the
old Unicode string used EBCDIC.
.SH "SEE ALSO"
.IX Header "SEE ALSO"
perllocale, perlfunc, perlunicode, utf8.
.SH REFERENCES
.IX Header "REFERENCES"
<http://std.dkuug.dk/i18n/charmaps>
.PP
<https://www.unicode.org/>
.PP
<https://www.unicode.org/reports/tr16/>
.PP
<https://www.sr\-ix.com/Archive/CharCodeHist/index.html>
\&\fBASCII: American Standard Code for Information Infiltration\fR Tom Jennings,
September 1999.
.PP
\&\fBThe Unicode Standard, Version 3.0\fR The Unicode Consortium, Lisa Moore ed.,
ISBN 0\-201\-61633\-5, Addison Wesley Developers Press, February 2000.
.PP
\&\fBCDRA: IBM \- Character Data Representation Architecture \-
Reference and Registry\fR, IBM SC09\-2190\-00, December 1996.
.PP
"Demystifying Character Sets", Andrea Vine, Multilingual Computing
& Technology, \fB#26 Vol. 10 Issue 4\fR, August/September 1999;
ISSN 1523\-0309; Multilingual Computing Inc. Sandpoint ID, USA.
.PP
\&\fBCodes, Ciphers, and Other Cryptic and Clandestine Communication\fR
Fred B. Wrixon, ISBN 1\-57912\-040\-7, Black Dog & Leventhal Publishers,
1998.
.PP
<http://www.bobbemer.com/P\-BIT.HTM>
\&\fBIBM \- EBCDIC and the P\-bit; The biggest Computer Goof Ever\fR Robert Bemer.
.SH HISTORY
.IX Header "HISTORY"
15 April 2001: added UTF\-8 and UTF-EBCDIC to main table, pvhp.
.SH AUTHOR
.IX Header "AUTHOR"
Peter Prymmer pvhp@best.com wrote this in 1999 and 2000
with CCSID 0819 and 0037 help from Chris Leach and
André Pirard A.Pirard@ulg.ac.be as well as POSIX-BC
help from Thomas Dorner Thomas.Dorner@start.de.
Thanks also to Vickie Cooper, Philip Newton, William Raffloer, and
Joe Smith. Trademarks, registered trademarks, service marks and
registered service marks used in this document are the property of
their respective owners.
.PP
Now maintained by Perl5 Porters.
|