1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
|
.\" This manpage is copyright (C) 2001 Paul Sheer.
.\"
.\" SPDX-License-Identifier: Linux-man-pages-copyleft
.\"
.\" very minor changes, aeb
.\"
.\" Modified 5 June 2002, Michael Kerrisk <mtk.manpages@gmail.com>
.\" 2006-05-13, mtk, removed much material that is redundant with select.2
.\" various other changes
.\" 2008-01-26, mtk, substantial changes and rewrites
.\"
.TH SELECT_TUT 2 2023-10-31 "Linux man-pages 6.06"
.SH NAME
select, pselect \- synchronous I/O multiplexing
.SH LIBRARY
Standard C library
.RI ( libc ", " \-lc )
.SH SYNOPSIS
See
.BR select (2)
.SH DESCRIPTION
The
.BR select ()
and
.BR pselect ()
system calls are used to efficiently monitor multiple file descriptors,
to see if any of them is, or becomes, "ready";
that is, to see whether I/O becomes possible,
or an "exceptional condition" has occurred on any of the file descriptors.
.P
This page provides background and tutorial information
on the use of these system calls.
For details of the arguments and semantics of
.BR select ()
and
.BR pselect (),
see
.BR select (2).
.\"
.SS Combining signal and data events
.BR pselect ()
is useful if you are waiting for a signal as well as
for file descriptor(s) to become ready for I/O.
Programs that receive signals
normally use the signal handler only to raise a global flag.
The global flag will indicate that the event must be processed
in the main loop of the program.
A signal will cause the
.BR select ()
(or
.BR pselect ())
call to return with \fIerrno\fP set to \fBEINTR\fP.
This behavior is essential so that signals can be processed
in the main loop of the program, otherwise
.BR select ()
would block indefinitely.
.P
Now, somewhere
in the main loop will be a conditional to check the global flag.
So we must ask:
what if a signal arrives after the conditional, but before the
.BR select ()
call?
The answer is that
.BR select ()
would block indefinitely, even though an event is actually pending.
This race condition is solved by the
.BR pselect ()
call.
This call can be used to set the signal mask to a set of signals
that are to be received only within the
.BR pselect ()
call.
For instance, let us say that the event in question
was the exit of a child process.
Before the start of the main loop, we
would block \fBSIGCHLD\fP using
.BR sigprocmask (2).
Our
.BR pselect ()
call would enable
.B SIGCHLD
by using an empty signal mask.
Our program would look like:
.P
.EX
static volatile sig_atomic_t got_SIGCHLD = 0;
\&
static void
child_sig_handler(int sig)
{
got_SIGCHLD = 1;
}
\&
int
main(int argc, char *argv[])
{
sigset_t sigmask, empty_mask;
struct sigaction sa;
fd_set readfds, writefds, exceptfds;
int r;
\&
sigemptyset(&sigmask);
sigaddset(&sigmask, SIGCHLD);
if (sigprocmask(SIG_BLOCK, &sigmask, NULL) == \-1) {
perror("sigprocmask");
exit(EXIT_FAILURE);
}
\&
sa.sa_flags = 0;
sa.sa_handler = child_sig_handler;
sigemptyset(&sa.sa_mask);
if (sigaction(SIGCHLD, &sa, NULL) == \-1) {
perror("sigaction");
exit(EXIT_FAILURE);
}
\&
sigemptyset(&empty_mask);
\&
for (;;) { /* main loop */
/* Initialize readfds, writefds, and exceptfds
before the pselect() call. (Code omitted.) */
\&
r = pselect(nfds, &readfds, &writefds, &exceptfds,
NULL, &empty_mask);
if (r == \-1 && errno != EINTR) {
/* Handle error */
}
\&
if (got_SIGCHLD) {
got_SIGCHLD = 0;
\&
/* Handle signalled event here; e.g., wait() for all
terminated children. (Code omitted.) */
}
\&
/* main body of program */
}
}
.EE
.SS Practical
So what is the point of
.BR select ()?
Can't I just read and write to my file descriptors whenever I want?
The point of
.BR select ()
is that it watches
multiple descriptors at the same time and properly puts the process to
sleep if there is no activity.
UNIX programmers often find
themselves in a position where they have to handle I/O from more than one
file descriptor where the data flow may be intermittent.
If you were to merely create a sequence of
.BR read (2)
and
.BR write (2)
calls, you would
find that one of your calls may block waiting for data from/to a file
descriptor, while another file descriptor is unused though ready for I/O.
.BR select ()
efficiently copes with this situation.
.SS Select law
Many people who try to use
.BR select ()
come across behavior that is
difficult to understand and produces nonportable or borderline results.
For instance, the above program is carefully written not to
block at any point, even though it does not set its file descriptors to
nonblocking mode.
It is easy to introduce
subtle errors that will remove the advantage of using
.BR select (),
so here is a list of essentials to watch for when using
.BR select ().
.TP 4
1.
You should always try to use
.BR select ()
without a timeout.
Your program
should have nothing to do if there is no data available.
Code that
depends on timeouts is not usually portable and is difficult to debug.
.TP
2.
The value \fInfds\fP must be properly calculated for efficiency as
explained above.
.TP
3.
No file descriptor must be added to any set if you do not intend
to check its result after the
.BR select ()
call, and respond appropriately.
See next rule.
.TP
4.
After
.BR select ()
returns, all file descriptors in all sets
should be checked to see if they are ready.
.TP
5.
The functions
.BR read (2),
.BR recv (2),
.BR write (2),
and
.BR send (2)
do \fInot\fP necessarily read/write the full amount of data
that you have requested.
If they do read/write the full amount, it's
because you have a low traffic load and a fast stream.
This is not always going to be the case.
You should cope with the case of your
functions managing to send or receive only a single byte.
.TP
6.
Never read/write only in single bytes at a time unless you are really
sure that you have a small amount of data to process.
It is extremely
inefficient not to read/write as much data as you can buffer each time.
The buffers in the example below are 1024 bytes although they could
easily be made larger.
.TP
7.
Calls to
.BR read (2),
.BR recv (2),
.BR write (2),
.BR send (2),
and
.BR select ()
can fail with the error
\fBEINTR\fP,
and calls to
.BR read (2),
.BR recv (2),
.BR write (2),
and
.BR send (2)
can fail with
.I errno
set to \fBEAGAIN\fP (\fBEWOULDBLOCK\fP).
These results must be properly managed (not done properly above).
If your program is not going to receive any signals, then
it is unlikely you will get \fBEINTR\fP.
If your program does not set nonblocking I/O,
you will not get \fBEAGAIN\fP.
.\" Nonetheless, you should still cope with these errors for completeness.
.TP
8.
Never call
.BR read (2),
.BR recv (2),
.BR write (2),
or
.BR send (2)
with a buffer length of zero.
.TP
9.
If the functions
.BR read (2),
.BR recv (2),
.BR write (2),
and
.BR send (2)
fail with errors other than those listed in \fB7.\fP,
or one of the input functions returns 0, indicating end of file,
then you should \fInot\fP pass that file descriptor to
.BR select ()
again.
In the example below,
I close the file descriptor immediately, and then set it to \-1
to prevent it being included in a set.
.TP
10.
The timeout value must be initialized with each new call to
.BR select (),
since some operating systems modify the structure.
.BR pselect ()
however does not modify its timeout structure.
.TP
11.
Since
.BR select ()
modifies its file descriptor sets,
if the call is being used in a loop,
then the sets must be reinitialized before each call.
.\" "I have heard" does not fill me with confidence, and doesn't
.\" belong in a man page, so I've commented this point out.
.\" .TP
.\" 11.
.\" I have heard that the Windows socket layer does not cope with OOB data
.\" properly.
.\" It also does not cope with
.\" .BR select ()
.\" calls when no file descriptors are set at all.
.\" Having no file descriptors set is a useful
.\" way to sleep the process with subsecond precision by using the timeout.
.\" (See further on.)
.SH RETURN VALUE
See
.BR select (2).
.SH NOTES
Generally speaking,
all operating systems that support sockets also support
.BR select ().
.BR select ()
can be used to solve
many problems in a portable and efficient way that naive programmers try
to solve in a more complicated manner using
threads, forking, IPCs, signals, memory sharing, and so on.
.P
The
.BR poll (2)
system call has the same functionality as
.BR select (),
and is somewhat more efficient when monitoring sparse
file descriptor sets.
It is nowadays widely available, but historically was less portable than
.BR select ().
.P
The Linux-specific
.BR epoll (7)
API provides an interface that is more efficient than
.BR select (2)
and
.BR poll (2)
when monitoring large numbers of file descriptors.
.SH EXAMPLES
Here is an example that better demonstrates the true utility of
.BR select ().
The listing below is a TCP forwarding program that forwards
from one TCP port to another.
.P
.\" SRC BEGIN (select.c)
.EX
#include <arpa/inet.h>
#include <errno.h>
#include <netinet/in.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/select.h>
#include <sys/socket.h>
#include <unistd.h>
\&
static int forward_port;
\&
#undef max
#define max(x, y) ((x) > (y) ? (x) : (y))
\&
static int
listen_socket(int listen_port)
{
int lfd;
int yes;
struct sockaddr_in addr;
\&
lfd = socket(AF_INET, SOCK_STREAM, 0);
if (lfd == \-1) {
perror("socket");
return \-1;
}
\&
yes = 1;
if (setsockopt(lfd, SOL_SOCKET, SO_REUSEADDR,
&yes, sizeof(yes)) == \-1)
{
perror("setsockopt");
close(lfd);
return \-1;
}
\&
memset(&addr, 0, sizeof(addr));
addr.sin_port = htons(listen_port);
addr.sin_family = AF_INET;
if (bind(lfd, (struct sockaddr *) &addr, sizeof(addr)) == \-1) {
perror("bind");
close(lfd);
return \-1;
}
\&
printf("accepting connections on port %d\en", listen_port);
listen(lfd, 10);
return lfd;
}
\&
static int
connect_socket(int connect_port, char *address)
{
int cfd;
struct sockaddr_in addr;
\&
cfd = socket(AF_INET, SOCK_STREAM, 0);
if (cfd == \-1) {
perror("socket");
return \-1;
}
\&
memset(&addr, 0, sizeof(addr));
addr.sin_port = htons(connect_port);
addr.sin_family = AF_INET;
\&
if (!inet_aton(address, (struct in_addr *) &addr.sin_addr.s_addr)) {
fprintf(stderr, "inet_aton(): bad IP address format\en");
close(cfd);
return \-1;
}
\&
if (connect(cfd, (struct sockaddr *) &addr, sizeof(addr)) == \-1) {
perror("connect()");
shutdown(cfd, SHUT_RDWR);
close(cfd);
return \-1;
}
return cfd;
}
\&
#define SHUT_FD1 do { \e
if (fd1 >= 0) { \e
shutdown(fd1, SHUT_RDWR); \e
close(fd1); \e
fd1 = \-1; \e
} \e
} while (0)
\&
#define SHUT_FD2 do { \e
if (fd2 >= 0) { \e
shutdown(fd2, SHUT_RDWR); \e
close(fd2); \e
fd2 = \-1; \e
} \e
} while (0)
\&
#define BUF_SIZE 1024
\&
int
main(int argc, char *argv[])
{
int h;
int ready, nfds;
int fd1 = \-1, fd2 = \-1;
int buf1_avail = 0, buf1_written = 0;
int buf2_avail = 0, buf2_written = 0;
char buf1[BUF_SIZE], buf2[BUF_SIZE];
fd_set readfds, writefds, exceptfds;
ssize_t nbytes;
\&
if (argc != 4) {
fprintf(stderr, "Usage\en\etfwd <listen\-port> "
"<forward\-to\-port> <forward\-to\-ip\-address>\en");
exit(EXIT_FAILURE);
}
\&
signal(SIGPIPE, SIG_IGN);
\&
forward_port = atoi(argv[2]);
\&
h = listen_socket(atoi(argv[1]));
if (h == \-1)
exit(EXIT_FAILURE);
\&
for (;;) {
nfds = 0;
\&
FD_ZERO(&readfds);
FD_ZERO(&writefds);
FD_ZERO(&exceptfds);
FD_SET(h, &readfds);
nfds = max(nfds, h);
\&
if (fd1 > 0 && buf1_avail < BUF_SIZE)
FD_SET(fd1, &readfds);
/* Note: nfds is updated below, when fd1 is added to
exceptfds. */
if (fd2 > 0 && buf2_avail < BUF_SIZE)
FD_SET(fd2, &readfds);
\&
if (fd1 > 0 && buf2_avail \- buf2_written > 0)
FD_SET(fd1, &writefds);
if (fd2 > 0 && buf1_avail \- buf1_written > 0)
FD_SET(fd2, &writefds);
\&
if (fd1 > 0) {
FD_SET(fd1, &exceptfds);
nfds = max(nfds, fd1);
}
if (fd2 > 0) {
FD_SET(fd2, &exceptfds);
nfds = max(nfds, fd2);
}
\&
ready = select(nfds + 1, &readfds, &writefds, &exceptfds, NULL);
\&
if (ready == \-1 && errno == EINTR)
continue;
\&
if (ready == \-1) {
perror("select()");
exit(EXIT_FAILURE);
}
\&
if (FD_ISSET(h, &readfds)) {
socklen_t addrlen;
struct sockaddr_in client_addr;
int fd;
\&
addrlen = sizeof(client_addr);
memset(&client_addr, 0, addrlen);
fd = accept(h, (struct sockaddr *) &client_addr, &addrlen);
if (fd == \-1) {
perror("accept()");
} else {
SHUT_FD1;
SHUT_FD2;
buf1_avail = buf1_written = 0;
buf2_avail = buf2_written = 0;
fd1 = fd;
fd2 = connect_socket(forward_port, argv[3]);
if (fd2 == \-1)
SHUT_FD1;
else
printf("connect from %s\en",
inet_ntoa(client_addr.sin_addr));
\&
/* Skip any events on the old, closed file
descriptors. */
\&
continue;
}
}
\&
/* NB: read OOB data before normal reads. */
\&
if (fd1 > 0 && FD_ISSET(fd1, &exceptfds)) {
char c;
\&
nbytes = recv(fd1, &c, 1, MSG_OOB);
if (nbytes < 1)
SHUT_FD1;
else
send(fd2, &c, 1, MSG_OOB);
}
if (fd2 > 0 && FD_ISSET(fd2, &exceptfds)) {
char c;
\&
nbytes = recv(fd2, &c, 1, MSG_OOB);
if (nbytes < 1)
SHUT_FD2;
else
send(fd1, &c, 1, MSG_OOB);
}
if (fd1 > 0 && FD_ISSET(fd1, &readfds)) {
nbytes = read(fd1, buf1 + buf1_avail,
BUF_SIZE \- buf1_avail);
if (nbytes < 1)
SHUT_FD1;
else
buf1_avail += nbytes;
}
if (fd2 > 0 && FD_ISSET(fd2, &readfds)) {
nbytes = read(fd2, buf2 + buf2_avail,
BUF_SIZE \- buf2_avail);
if (nbytes < 1)
SHUT_FD2;
else
buf2_avail += nbytes;
}
if (fd1 > 0 && FD_ISSET(fd1, &writefds) && buf2_avail > 0) {
nbytes = write(fd1, buf2 + buf2_written,
buf2_avail \- buf2_written);
if (nbytes < 1)
SHUT_FD1;
else
buf2_written += nbytes;
}
if (fd2 > 0 && FD_ISSET(fd2, &writefds) && buf1_avail > 0) {
nbytes = write(fd2, buf1 + buf1_written,
buf1_avail \- buf1_written);
if (nbytes < 1)
SHUT_FD2;
else
buf1_written += nbytes;
}
\&
/* Check if write data has caught read data. */
\&
if (buf1_written == buf1_avail)
buf1_written = buf1_avail = 0;
if (buf2_written == buf2_avail)
buf2_written = buf2_avail = 0;
\&
/* One side has closed the connection, keep
writing to the other side until empty. */
\&
if (fd1 < 0 && buf1_avail \- buf1_written == 0)
SHUT_FD2;
if (fd2 < 0 && buf2_avail \- buf2_written == 0)
SHUT_FD1;
}
exit(EXIT_SUCCESS);
}
.EE
.\" SRC END
.P
The above program properly forwards most kinds of TCP connections
including OOB signal data transmitted by \fBtelnet\fP servers.
It handles the tricky problem of having data flow in both directions
simultaneously.
You might think it more efficient to use a
.BR fork (2)
call and devote a thread to each stream.
This becomes more tricky than you might suspect.
Another idea is to set nonblocking I/O using
.BR fcntl (2).
This also has its problems because you end up using
inefficient timeouts.
.P
The program does not handle more than one simultaneous connection at a
time, although it could easily be extended to do this with a linked list
of buffers\[em]one for each connection.
At the moment, new
connections cause the current connection to be dropped.
.SH SEE ALSO
.BR accept (2),
.BR connect (2),
.BR poll (2),
.BR read (2),
.BR recv (2),
.BR select (2),
.BR send (2),
.BR sigprocmask (2),
.BR write (2),
.BR epoll (7)
.\" .SH AUTHORS
.\" This man page was written by Paul Sheer.
|