summaryrefslogtreecommitdiffstats
path: root/upstream/mageia-cauldron/man1/perlapi.1
blob: 3350748dbee0ebb65ad307a16af31631dba4bec6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867
24868
24869
24870
24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
24896
24897
24898
24899
24900
24901
24902
24903
24904
24905
24906
24907
24908
24909
24910
24911
24912
24913
24914
24915
24916
24917
24918
24919
24920
24921
24922
24923
24924
24925
24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
24970
24971
24972
24973
24974
24975
24976
24977
24978
24979
24980
24981
24982
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
24994
24995
24996
24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
25009
25010
25011
25012
25013
25014
25015
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
25078
25079
25080
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682
25683
25684
25685
25686
25687
25688
25689
25690
25691
25692
25693
25694
25695
25696
25697
25698
25699
25700
25701
25702
25703
25704
25705
25706
25707
25708
25709
25710
25711
25712
25713
25714
25715
25716
25717
25718
25719
25720
25721
25722
25723
25724
25725
25726
25727
25728
25729
25730
25731
25732
25733
25734
25735
25736
25737
25738
25739
25740
25741
25742
25743
25744
25745
25746
25747
25748
25749
25750
25751
25752
25753
25754
25755
25756
25757
25758
25759
25760
25761
25762
25763
25764
25765
25766
25767
25768
25769
25770
25771
25772
25773
25774
25775
25776
25777
25778
25779
25780
25781
25782
25783
25784
25785
25786
25787
25788
25789
25790
25791
25792
25793
25794
25795
25796
25797
25798
25799
25800
25801
25802
25803
25804
25805
25806
25807
25808
25809
25810
25811
25812
25813
25814
25815
25816
25817
25818
25819
25820
25821
25822
25823
25824
25825
25826
25827
25828
25829
25830
25831
25832
25833
25834
25835
25836
25837
25838
25839
25840
25841
25842
25843
25844
25845
25846
25847
25848
25849
25850
25851
25852
25853
25854
25855
25856
25857
25858
25859
25860
25861
25862
25863
25864
25865
25866
25867
25868
25869
25870
25871
25872
25873
25874
25875
25876
25877
25878
25879
25880
25881
25882
25883
25884
25885
25886
25887
25888
25889
25890
25891
25892
25893
25894
25895
25896
25897
25898
25899
25900
25901
25902
25903
25904
25905
25906
25907
25908
25909
25910
25911
25912
25913
25914
25915
25916
25917
25918
25919
25920
25921
25922
25923
25924
25925
25926
25927
25928
25929
25930
25931
25932
25933
25934
25935
25936
25937
25938
25939
25940
25941
25942
25943
25944
25945
25946
25947
25948
25949
25950
25951
25952
25953
25954
25955
25956
25957
25958
25959
25960
25961
25962
25963
25964
25965
25966
25967
25968
25969
25970
25971
25972
25973
25974
25975
25976
25977
25978
25979
25980
25981
25982
25983
25984
25985
25986
25987
25988
25989
25990
25991
25992
25993
25994
25995
25996
25997
25998
25999
26000
26001
26002
26003
26004
26005
26006
26007
26008
26009
26010
26011
26012
26013
26014
26015
26016
26017
26018
26019
26020
26021
26022
26023
26024
26025
26026
26027
26028
26029
26030
26031
26032
26033
26034
26035
26036
26037
26038
26039
26040
26041
26042
26043
26044
26045
26046
26047
26048
26049
26050
26051
26052
26053
26054
26055
26056
26057
26058
26059
26060
26061
26062
26063
26064
26065
26066
26067
26068
26069
26070
26071
26072
26073
26074
26075
26076
26077
26078
26079
26080
26081
26082
26083
26084
26085
26086
26087
26088
26089
26090
26091
26092
26093
26094
26095
26096
26097
26098
26099
26100
26101
26102
26103
26104
26105
26106
26107
26108
26109
26110
26111
26112
26113
26114
26115
26116
26117
26118
26119
26120
26121
26122
26123
26124
26125
26126
26127
26128
26129
26130
26131
26132
26133
26134
26135
26136
26137
26138
26139
26140
26141
26142
26143
26144
26145
26146
26147
26148
26149
26150
26151
26152
26153
26154
26155
26156
26157
26158
26159
26160
26161
26162
26163
26164
26165
26166
26167
26168
26169
26170
26171
26172
26173
26174
26175
26176
26177
26178
26179
26180
26181
26182
26183
26184
26185
26186
26187
26188
26189
26190
26191
26192
26193
26194
26195
26196
26197
26198
26199
26200
26201
26202
26203
26204
26205
26206
26207
26208
26209
26210
26211
26212
26213
26214
26215
26216
26217
26218
26219
26220
26221
26222
26223
26224
26225
26226
26227
26228
26229
26230
26231
26232
26233
26234
26235
26236
26237
26238
26239
26240
26241
26242
26243
26244
26245
26246
26247
26248
26249
26250
26251
26252
26253
26254
26255
26256
26257
26258
26259
26260
26261
26262
26263
26264
26265
26266
26267
26268
26269
26270
26271
26272
26273
26274
26275
26276
26277
26278
26279
26280
26281
26282
26283
26284
26285
26286
26287
26288
26289
26290
26291
26292
26293
26294
26295
26296
26297
26298
26299
26300
26301
26302
26303
26304
26305
26306
26307
26308
26309
26310
26311
26312
26313
26314
26315
26316
26317
26318
26319
26320
26321
26322
26323
26324
26325
26326
26327
26328
26329
26330
26331
26332
26333
26334
26335
26336
26337
26338
26339
26340
26341
26342
26343
26344
26345
26346
26347
26348
26349
26350
26351
26352
26353
26354
26355
26356
26357
26358
26359
26360
26361
26362
26363
26364
26365
26366
26367
26368
26369
26370
26371
26372
26373
26374
26375
26376
26377
26378
26379
26380
26381
26382
26383
26384
26385
26386
26387
26388
26389
26390
26391
26392
26393
26394
26395
26396
26397
26398
26399
26400
26401
26402
26403
26404
26405
26406
26407
26408
26409
26410
26411
26412
26413
26414
26415
26416
26417
26418
26419
26420
26421
26422
26423
26424
26425
26426
26427
26428
26429
26430
26431
26432
26433
26434
26435
26436
26437
26438
26439
26440
26441
26442
26443
26444
26445
26446
26447
26448
26449
26450
26451
26452
26453
26454
26455
26456
26457
26458
26459
26460
26461
26462
26463
26464
26465
26466
26467
26468
26469
26470
26471
26472
26473
26474
26475
26476
26477
26478
26479
26480
26481
26482
26483
26484
26485
26486
26487
26488
26489
26490
26491
26492
26493
26494
26495
26496
26497
26498
26499
26500
26501
26502
26503
26504
26505
26506
26507
26508
26509
26510
26511
26512
26513
26514
26515
26516
26517
26518
26519
26520
26521
26522
26523
26524
26525
26526
26527
26528
26529
26530
26531
26532
26533
26534
26535
26536
26537
26538
26539
26540
26541
26542
26543
26544
26545
26546
26547
26548
26549
26550
26551
26552
26553
26554
26555
26556
26557
26558
26559
26560
26561
26562
26563
26564
26565
26566
26567
26568
26569
26570
26571
26572
26573
26574
26575
26576
26577
26578
26579
26580
26581
26582
26583
26584
26585
26586
26587
26588
26589
26590
26591
26592
26593
26594
26595
26596
26597
26598
26599
26600
26601
26602
26603
26604
26605
26606
26607
26608
26609
26610
26611
26612
26613
26614
26615
26616
26617
26618
26619
26620
26621
26622
26623
26624
26625
26626
26627
26628
26629
26630
26631
26632
26633
26634
26635
26636
26637
26638
26639
26640
26641
26642
26643
26644
26645
26646
26647
26648
26649
26650
26651
26652
26653
26654
26655
26656
26657
26658
26659
26660
26661
26662
26663
26664
26665
26666
26667
26668
26669
26670
26671
26672
26673
26674
26675
26676
26677
26678
26679
26680
26681
26682
26683
26684
26685
26686
26687
26688
26689
26690
26691
26692
26693
26694
26695
26696
26697
26698
26699
26700
26701
26702
26703
26704
26705
26706
26707
26708
26709
26710
26711
26712
26713
26714
26715
26716
26717
26718
26719
26720
26721
26722
26723
26724
26725
26726
26727
26728
26729
26730
26731
26732
26733
26734
26735
26736
26737
26738
26739
26740
26741
26742
26743
26744
26745
26746
26747
26748
26749
26750
26751
26752
26753
26754
26755
26756
26757
26758
26759
26760
26761
26762
26763
26764
26765
26766
26767
26768
26769
26770
26771
26772
26773
26774
26775
26776
26777
26778
26779
26780
26781
26782
26783
26784
26785
26786
26787
26788
26789
26790
26791
26792
26793
26794
26795
26796
26797
26798
26799
26800
26801
26802
26803
26804
26805
26806
26807
26808
26809
26810
26811
26812
26813
26814
26815
26816
26817
26818
26819
26820
26821
26822
26823
26824
26825
26826
26827
26828
26829
26830
26831
26832
26833
26834
26835
26836
26837
26838
26839
26840
26841
26842
26843
26844
26845
26846
26847
26848
26849
26850
26851
26852
26853
26854
26855
26856
26857
26858
26859
26860
26861
26862
26863
26864
26865
26866
26867
26868
26869
26870
26871
26872
26873
26874
26875
26876
26877
26878
26879
26880
26881
26882
26883
26884
26885
26886
26887
26888
26889
26890
26891
26892
26893
26894
26895
26896
26897
26898
26899
26900
26901
26902
26903
26904
26905
26906
26907
26908
26909
26910
26911
26912
26913
26914
26915
26916
26917
26918
26919
26920
26921
26922
26923
26924
26925
26926
26927
26928
26929
26930
26931
26932
26933
26934
26935
26936
26937
26938
26939
26940
26941
26942
26943
26944
26945
26946
26947
26948
26949
26950
26951
26952
26953
26954
26955
26956
26957
26958
26959
26960
26961
26962
26963
26964
26965
26966
26967
26968
26969
26970
26971
26972
26973
26974
26975
26976
26977
26978
26979
26980
26981
26982
26983
26984
26985
26986
26987
26988
26989
26990
26991
26992
26993
26994
26995
26996
26997
26998
26999
27000
27001
27002
27003
27004
27005
27006
27007
27008
27009
27010
27011
27012
27013
27014
27015
27016
27017
27018
27019
27020
27021
27022
27023
27024
27025
27026
27027
27028
27029
27030
27031
27032
27033
27034
27035
27036
27037
27038
27039
27040
27041
27042
27043
27044
27045
27046
27047
27048
27049
27050
27051
27052
27053
27054
27055
27056
27057
27058
27059
27060
27061
27062
27063
27064
27065
27066
27067
27068
27069
27070
27071
27072
27073
27074
27075
27076
27077
27078
27079
27080
27081
27082
27083
27084
27085
27086
27087
27088
27089
27090
27091
27092
27093
27094
27095
27096
27097
27098
27099
27100
27101
27102
27103
27104
27105
27106
27107
27108
27109
27110
27111
27112
27113
27114
27115
27116
27117
27118
27119
27120
27121
27122
27123
27124
27125
27126
27127
27128
27129
27130
27131
27132
27133
27134
27135
27136
27137
27138
27139
27140
27141
27142
27143
27144
27145
27146
27147
27148
27149
27150
27151
27152
27153
27154
27155
27156
27157
27158
27159
27160
27161
27162
27163
27164
27165
27166
27167
27168
27169
27170
27171
27172
27173
27174
27175
27176
27177
27178
27179
27180
27181
27182
27183
27184
27185
27186
27187
27188
27189
27190
27191
27192
27193
27194
27195
27196
27197
27198
27199
27200
27201
27202
27203
27204
27205
27206
27207
27208
27209
27210
27211
27212
27213
27214
27215
27216
27217
27218
27219
27220
27221
27222
27223
27224
27225
27226
27227
27228
27229
27230
27231
27232
27233
27234
27235
27236
27237
27238
27239
27240
27241
27242
27243
27244
27245
27246
27247
27248
27249
27250
27251
27252
27253
27254
27255
27256
27257
27258
27259
27260
27261
27262
27263
27264
27265
27266
27267
27268
27269
27270
27271
27272
27273
27274
27275
27276
27277
27278
27279
27280
27281
27282
27283
27284
27285
27286
27287
27288
27289
27290
27291
27292
27293
27294
27295
27296
27297
27298
27299
27300
27301
27302
27303
27304
27305
27306
27307
27308
27309
27310
27311
27312
27313
27314
27315
27316
27317
27318
27319
27320
27321
27322
27323
27324
27325
27326
27327
27328
27329
27330
27331
27332
27333
27334
27335
27336
27337
27338
27339
27340
27341
27342
27343
27344
27345
27346
27347
27348
27349
27350
27351
27352
27353
27354
27355
27356
27357
27358
27359
27360
27361
27362
27363
27364
27365
27366
27367
27368
27369
27370
27371
27372
27373
27374
27375
27376
27377
27378
27379
27380
27381
27382
27383
27384
27385
27386
27387
27388
27389
27390
27391
27392
27393
27394
27395
27396
27397
27398
27399
27400
27401
27402
27403
27404
27405
27406
27407
27408
27409
27410
27411
27412
27413
27414
27415
27416
27417
27418
27419
27420
27421
27422
27423
27424
27425
27426
27427
27428
27429
27430
27431
27432
27433
27434
27435
27436
27437
27438
27439
27440
27441
27442
27443
27444
27445
27446
27447
27448
27449
27450
27451
27452
27453
27454
27455
27456
27457
27458
27459
27460
27461
27462
27463
27464
27465
27466
27467
27468
27469
27470
27471
27472
27473
27474
27475
27476
27477
27478
27479
27480
27481
27482
27483
27484
27485
27486
27487
27488
27489
27490
27491
27492
27493
27494
27495
27496
27497
27498
27499
27500
27501
27502
27503
27504
27505
27506
27507
27508
27509
27510
27511
27512
27513
27514
27515
27516
27517
27518
27519
27520
27521
27522
27523
27524
27525
27526
27527
27528
27529
27530
27531
27532
27533
27534
27535
27536
27537
27538
27539
27540
27541
27542
27543
27544
27545
27546
27547
27548
27549
27550
27551
27552
27553
27554
27555
27556
27557
27558
27559
27560
27561
27562
27563
27564
27565
27566
27567
27568
27569
27570
27571
27572
27573
27574
27575
27576
27577
27578
27579
27580
27581
27582
27583
27584
27585
27586
27587
27588
27589
27590
27591
27592
27593
27594
27595
27596
27597
27598
27599
27600
27601
27602
27603
27604
27605
27606
27607
27608
27609
27610
27611
27612
27613
27614
27615
27616
27617
27618
27619
27620
27621
27622
27623
27624
27625
27626
27627
27628
27629
27630
27631
27632
27633
27634
27635
27636
27637
27638
27639
27640
27641
27642
27643
27644
27645
27646
27647
27648
27649
27650
27651
27652
27653
27654
27655
27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
27668
27669
27670
27671
27672
27673
27674
27675
27676
27677
27678
27679
27680
27681
27682
27683
27684
27685
27686
27687
27688
27689
27690
27691
27692
27693
27694
27695
27696
27697
27698
27699
27700
27701
27702
27703
27704
27705
27706
27707
27708
27709
27710
27711
27712
27713
27714
27715
27716
27717
27718
27719
27720
27721
27722
27723
27724
27725
27726
27727
27728
27729
27730
27731
27732
27733
27734
27735
27736
27737
27738
27739
27740
27741
27742
27743
27744
27745
27746
27747
27748
27749
27750
27751
27752
27753
27754
27755
27756
27757
27758
27759
27760
27761
27762
27763
27764
27765
27766
27767
27768
27769
27770
27771
27772
27773
27774
27775
27776
27777
27778
27779
27780
27781
27782
27783
27784
27785
27786
27787
27788
27789
27790
27791
27792
27793
27794
27795
27796
27797
27798
27799
27800
27801
27802
27803
27804
27805
27806
27807
27808
27809
27810
27811
27812
27813
27814
27815
27816
27817
27818
27819
27820
27821
27822
27823
27824
27825
27826
27827
27828
27829
27830
27831
27832
27833
27834
27835
27836
27837
27838
27839
27840
27841
27842
27843
27844
27845
27846
27847
27848
27849
27850
27851
27852
27853
27854
27855
27856
27857
27858
27859
27860
27861
27862
27863
27864
27865
27866
27867
27868
27869
27870
27871
27872
27873
27874
27875
27876
27877
27878
27879
27880
27881
27882
27883
27884
27885
27886
27887
27888
27889
27890
27891
27892
27893
27894
27895
27896
27897
27898
27899
27900
27901
27902
27903
27904
27905
27906
27907
27908
27909
27910
27911
27912
27913
27914
27915
27916
27917
27918
27919
27920
27921
27922
27923
27924
27925
27926
27927
27928
27929
27930
27931
27932
27933
27934
27935
27936
27937
27938
27939
27940
27941
27942
27943
27944
27945
27946
27947
27948
27949
27950
27951
27952
27953
27954
27955
27956
27957
27958
27959
27960
27961
27962
27963
27964
27965
27966
27967
27968
27969
27970
27971
27972
27973
27974
27975
27976
27977
27978
27979
27980
27981
27982
27983
27984
27985
27986
27987
27988
27989
27990
27991
27992
27993
27994
27995
27996
27997
27998
27999
28000
28001
28002
28003
28004
28005
28006
28007
28008
28009
28010
28011
28012
28013
28014
28015
28016
28017
28018
28019
28020
28021
28022
28023
28024
28025
28026
28027
28028
28029
28030
28031
28032
28033
28034
28035
28036
28037
28038
28039
28040
28041
28042
28043
28044
28045
28046
28047
28048
28049
28050
28051
28052
28053
28054
28055
28056
28057
28058
28059
28060
28061
28062
28063
28064
28065
28066
28067
28068
28069
28070
28071
28072
28073
28074
28075
28076
28077
28078
28079
28080
28081
28082
28083
28084
28085
28086
28087
28088
28089
28090
28091
28092
28093
28094
28095
28096
28097
28098
28099
28100
28101
28102
28103
28104
28105
28106
28107
28108
28109
28110
28111
28112
28113
28114
28115
28116
28117
28118
28119
28120
28121
28122
28123
28124
28125
28126
28127
28128
28129
28130
28131
28132
28133
28134
28135
28136
28137
28138
28139
28140
28141
28142
28143
28144
28145
28146
28147
28148
28149
28150
28151
28152
28153
28154
28155
28156
28157
28158
28159
28160
28161
28162
28163
28164
28165
28166
28167
28168
28169
28170
28171
28172
28173
28174
28175
28176
28177
28178
28179
28180
28181
28182
28183
28184
28185
28186
28187
28188
28189
28190
28191
28192
28193
28194
28195
28196
28197
28198
28199
28200
28201
28202
28203
28204
28205
28206
28207
28208
28209
28210
28211
28212
28213
28214
28215
28216
28217
28218
28219
28220
28221
28222
28223
28224
28225
28226
28227
28228
28229
28230
28231
28232
28233
28234
28235
28236
28237
28238
28239
28240
28241
28242
28243
28244
28245
28246
28247
28248
28249
28250
28251
28252
28253
28254
28255
28256
28257
28258
28259
28260
28261
28262
28263
28264
28265
28266
28267
28268
28269
28270
28271
28272
28273
28274
28275
28276
28277
28278
28279
28280
28281
28282
28283
28284
28285
28286
28287
28288
28289
28290
28291
28292
28293
28294
28295
28296
28297
28298
28299
28300
28301
28302
28303
28304
28305
28306
28307
28308
28309
28310
28311
28312
28313
28314
28315
28316
28317
28318
28319
28320
28321
28322
28323
28324
28325
28326
28327
28328
28329
28330
28331
28332
28333
28334
28335
28336
28337
28338
28339
28340
28341
28342
28343
28344
28345
28346
28347
28348
28349
28350
28351
28352
28353
28354
28355
28356
28357
28358
28359
28360
28361
28362
28363
28364
28365
28366
28367
28368
28369
28370
28371
28372
28373
28374
28375
28376
28377
28378
28379
28380
28381
28382
28383
28384
28385
28386
28387
28388
28389
28390
28391
28392
28393
28394
28395
28396
28397
28398
28399
28400
28401
28402
28403
28404
28405
28406
28407
28408
28409
28410
28411
28412
28413
28414
28415
28416
28417
28418
28419
28420
28421
28422
28423
28424
28425
28426
28427
28428
28429
28430
28431
28432
28433
28434
28435
28436
28437
28438
28439
28440
28441
28442
28443
28444
28445
28446
28447
28448
28449
28450
28451
28452
28453
28454
28455
28456
28457
28458
28459
28460
28461
28462
28463
28464
28465
28466
28467
28468
28469
28470
28471
28472
28473
28474
28475
28476
28477
28478
28479
28480
28481
28482
28483
28484
28485
28486
28487
28488
28489
28490
28491
28492
28493
28494
28495
28496
28497
28498
28499
28500
28501
28502
28503
28504
28505
28506
28507
28508
28509
28510
28511
28512
28513
28514
28515
28516
28517
28518
28519
28520
28521
28522
28523
28524
28525
28526
28527
28528
28529
28530
28531
28532
28533
28534
28535
28536
28537
28538
28539
28540
28541
28542
28543
28544
28545
28546
28547
28548
28549
28550
28551
28552
28553
28554
28555
28556
28557
28558
28559
28560
28561
28562
28563
28564
28565
28566
28567
28568
28569
28570
28571
28572
28573
28574
28575
28576
28577
28578
28579
28580
28581
28582
28583
28584
28585
28586
28587
28588
28589
28590
28591
28592
28593
28594
28595
28596
28597
28598
28599
28600
28601
28602
28603
28604
28605
28606
28607
28608
28609
28610
28611
28612
28613
28614
28615
28616
28617
28618
28619
28620
28621
28622
28623
28624
28625
28626
28627
28628
28629
28630
28631
28632
28633
28634
28635
28636
28637
28638
28639
28640
28641
28642
28643
28644
28645
28646
28647
28648
28649
28650
28651
28652
28653
28654
28655
28656
28657
28658
28659
28660
28661
28662
28663
28664
28665
28666
28667
28668
28669
28670
28671
28672
28673
28674
28675
28676
28677
28678
28679
28680
28681
28682
28683
28684
28685
28686
28687
28688
28689
28690
28691
28692
28693
28694
28695
28696
28697
28698
28699
28700
28701
28702
28703
28704
28705
28706
28707
28708
28709
28710
28711
28712
28713
28714
28715
28716
28717
28718
28719
28720
28721
28722
28723
28724
28725
28726
28727
28728
28729
28730
28731
28732
28733
28734
28735
28736
28737
28738
28739
28740
28741
28742
28743
28744
28745
28746
28747
28748
28749
28750
28751
28752
28753
28754
28755
28756
28757
28758
28759
28760
28761
28762
28763
28764
28765
28766
28767
28768
28769
28770
28771
28772
28773
28774
28775
28776
28777
28778
28779
28780
28781
28782
28783
28784
28785
28786
28787
28788
28789
28790
28791
28792
28793
28794
28795
28796
28797
28798
28799
28800
28801
28802
28803
28804
28805
28806
28807
28808
28809
28810
28811
28812
28813
28814
28815
28816
28817
28818
28819
28820
28821
28822
28823
28824
28825
28826
28827
28828
28829
28830
28831
28832
28833
28834
28835
28836
28837
28838
28839
28840
28841
28842
28843
28844
28845
28846
28847
28848
28849
28850
28851
28852
28853
28854
28855
28856
28857
28858
28859
28860
28861
28862
28863
28864
28865
28866
28867
28868
28869
28870
28871
28872
28873
28874
28875
28876
28877
28878
28879
28880
28881
28882
28883
28884
28885
28886
28887
28888
28889
28890
28891
28892
28893
28894
28895
28896
28897
28898
28899
28900
28901
28902
28903
28904
28905
28906
28907
28908
28909
28910
28911
28912
28913
28914
28915
28916
28917
28918
28919
28920
28921
28922
28923
28924
28925
28926
28927
28928
28929
28930
28931
28932
28933
28934
28935
28936
28937
28938
28939
28940
28941
28942
28943
28944
28945
28946
28947
28948
28949
28950
28951
28952
28953
28954
28955
28956
28957
28958
28959
28960
28961
28962
28963
28964
28965
28966
28967
28968
28969
28970
28971
28972
28973
28974
28975
28976
28977
28978
28979
28980
28981
28982
28983
28984
28985
28986
28987
28988
28989
28990
28991
28992
28993
28994
28995
28996
28997
28998
28999
29000
29001
29002
29003
29004
29005
29006
29007
29008
29009
29010
29011
29012
29013
29014
29015
29016
29017
29018
29019
29020
29021
29022
29023
29024
29025
29026
29027
29028
29029
29030
29031
29032
29033
29034
29035
29036
29037
29038
29039
29040
29041
29042
29043
29044
29045
29046
29047
29048
29049
29050
29051
29052
29053
29054
29055
29056
29057
29058
29059
29060
29061
29062
29063
29064
29065
29066
29067
29068
29069
29070
29071
29072
29073
29074
29075
29076
29077
29078
29079
29080
29081
29082
29083
29084
29085
29086
29087
29088
29089
29090
29091
29092
29093
29094
29095
29096
29097
29098
29099
29100
29101
29102
29103
29104
29105
29106
29107
29108
29109
29110
29111
29112
29113
29114
29115
29116
29117
29118
29119
29120
29121
29122
29123
29124
29125
29126
29127
29128
29129
29130
29131
29132
29133
29134
29135
29136
29137
29138
29139
29140
29141
29142
29143
29144
29145
29146
29147
29148
29149
29150
29151
29152
29153
29154
29155
29156
29157
29158
29159
29160
29161
29162
29163
29164
29165
29166
29167
29168
29169
29170
29171
29172
29173
29174
29175
29176
29177
29178
29179
29180
29181
29182
29183
29184
29185
29186
29187
29188
29189
29190
29191
29192
29193
29194
29195
29196
29197
29198
29199
29200
29201
29202
29203
29204
29205
29206
29207
29208
29209
29210
29211
29212
29213
29214
29215
29216
29217
29218
29219
29220
29221
29222
29223
29224
29225
29226
29227
29228
29229
29230
29231
29232
29233
29234
29235
29236
29237
29238
29239
29240
29241
29242
29243
29244
29245
29246
29247
29248
29249
29250
29251
29252
29253
29254
29255
29256
29257
29258
29259
29260
29261
29262
29263
29264
29265
29266
29267
29268
29269
29270
29271
29272
29273
29274
29275
29276
29277
29278
29279
29280
29281
29282
29283
29284
29285
29286
29287
29288
29289
29290
29291
29292
29293
29294
29295
29296
29297
29298
29299
29300
29301
29302
29303
29304
29305
29306
29307
29308
29309
29310
29311
29312
29313
29314
29315
29316
29317
29318
29319
29320
29321
29322
29323
29324
29325
29326
29327
29328
29329
29330
29331
29332
29333
29334
29335
29336
29337
29338
29339
29340
29341
29342
29343
29344
29345
29346
29347
29348
29349
29350
29351
29352
29353
29354
29355
29356
29357
29358
29359
29360
29361
29362
29363
29364
29365
29366
29367
29368
29369
29370
29371
29372
29373
29374
29375
29376
29377
29378
29379
29380
29381
29382
29383
29384
29385
29386
29387
29388
29389
29390
29391
29392
29393
29394
29395
29396
29397
29398
29399
29400
29401
29402
29403
29404
29405
29406
29407
29408
29409
29410
29411
29412
29413
29414
29415
29416
29417
29418
29419
29420
29421
29422
29423
29424
29425
29426
29427
29428
29429
29430
29431
29432
29433
29434
29435
29436
29437
29438
29439
29440
29441
29442
29443
29444
29445
29446
29447
29448
29449
29450
29451
29452
29453
29454
29455
29456
29457
29458
29459
29460
29461
29462
29463
29464
29465
29466
29467
29468
29469
29470
29471
29472
29473
29474
29475
29476
29477
29478
29479
29480
29481
29482
29483
29484
29485
29486
29487
29488
29489
29490
29491
29492
29493
29494
29495
29496
29497
29498
29499
29500
29501
29502
29503
29504
29505
29506
29507
29508
29509
29510
29511
29512
29513
29514
29515
29516
29517
29518
29519
29520
29521
29522
29523
29524
29525
29526
29527
29528
29529
29530
29531
29532
29533
29534
29535
29536
29537
29538
29539
29540
29541
29542
29543
29544
29545
29546
29547
29548
29549
29550
29551
29552
29553
29554
29555
29556
29557
29558
29559
29560
29561
29562
29563
29564
29565
29566
29567
29568
29569
29570
29571
29572
29573
29574
29575
29576
29577
29578
29579
29580
29581
29582
29583
29584
29585
29586
29587
29588
29589
29590
29591
29592
29593
29594
29595
29596
29597
29598
29599
29600
29601
29602
29603
29604
29605
29606
29607
29608
29609
29610
29611
29612
29613
29614
29615
29616
29617
29618
29619
29620
29621
29622
29623
29624
29625
29626
29627
29628
29629
29630
29631
29632
29633
29634
29635
29636
29637
29638
29639
29640
29641
29642
29643
29644
29645
29646
29647
29648
29649
29650
29651
29652
29653
29654
29655
29656
29657
29658
29659
29660
29661
29662
29663
29664
29665
29666
29667
29668
29669
29670
29671
29672
29673
29674
29675
29676
29677
29678
29679
29680
29681
29682
29683
29684
29685
29686
29687
29688
29689
29690
29691
29692
29693
29694
29695
29696
29697
29698
29699
29700
29701
29702
29703
29704
29705
29706
29707
29708
29709
29710
29711
29712
29713
29714
29715
29716
29717
29718
29719
29720
29721
29722
29723
29724
29725
29726
29727
29728
29729
29730
29731
29732
29733
29734
29735
29736
29737
29738
29739
29740
29741
29742
29743
29744
29745
29746
29747
29748
29749
29750
29751
29752
29753
29754
29755
29756
29757
29758
29759
29760
29761
29762
29763
29764
29765
29766
29767
29768
29769
29770
29771
29772
29773
29774
29775
29776
29777
29778
29779
29780
29781
29782
29783
29784
29785
29786
29787
29788
29789
29790
29791
29792
29793
29794
29795
29796
29797
29798
29799
29800
29801
29802
29803
29804
29805
29806
29807
29808
29809
29810
29811
29812
29813
29814
29815
29816
29817
29818
29819
29820
29821
29822
29823
29824
29825
29826
29827
29828
29829
29830
29831
29832
29833
29834
29835
29836
29837
29838
29839
29840
29841
29842
29843
29844
29845
29846
29847
29848
29849
29850
29851
29852
29853
29854
29855
29856
29857
29858
29859
29860
29861
29862
29863
29864
29865
29866
29867
29868
29869
29870
29871
29872
29873
29874
29875
29876
29877
29878
29879
29880
29881
29882
29883
29884
29885
29886
29887
29888
29889
29890
29891
29892
29893
29894
29895
29896
29897
29898
29899
29900
29901
29902
29903
29904
29905
29906
29907
29908
29909
29910
29911
29912
29913
29914
29915
29916
29917
29918
29919
29920
29921
29922
29923
29924
29925
29926
29927
29928
29929
29930
29931
29932
29933
29934
29935
29936
29937
29938
29939
29940
29941
29942
29943
29944
29945
29946
29947
29948
29949
29950
29951
29952
29953
29954
29955
29956
29957
29958
29959
29960
29961
29962
29963
29964
29965
29966
29967
29968
29969
29970
29971
29972
29973
29974
29975
29976
29977
29978
29979
29980
29981
.\" -*- mode: troff; coding: utf-8 -*-
.\" Automatically generated by Pod::Man 5.01 (Pod::Simple 3.43)
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" \*(C` and \*(C' are quotes in nroff, nothing in troff, for use with C<>.
.ie n \{\
.    ds C` ""
.    ds C' ""
'br\}
.el\{\
.    ds C`
.    ds C'
'br\}
.\"
.\" Escape single quotes in literal strings from groff's Unicode transform.
.ie \n(.g .ds Aq \(aq
.el       .ds Aq '
.\"
.\" If the F register is >0, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
.\" entries marked with X<> in POD.  Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.\"
.\" Avoid warning from groff about undefined register 'F'.
.de IX
..
.nr rF 0
.if \n(.g .if rF .nr rF 1
.if (\n(rF:(\n(.g==0)) \{\
.    if \nF \{\
.        de IX
.        tm Index:\\$1\t\\n%\t"\\$2"
..
.        if !\nF==2 \{\
.            nr % 0
.            nr F 2
.        \}
.    \}
.\}
.rr rF
.\" ========================================================================
.\"
.IX Title "PERLAPI 1"
.TH PERLAPI 1 2024-04-05 "perl v5.38.2" "Perl Programmers Reference Guide"
.\" For nroff, turn off justification.  Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.if n .ad l
.nh
.SH NAME
perlapi \- autogenerated documentation for the perl public API
.SH DESCRIPTION
.IX Xref "Perl API API api"
.IX Header "DESCRIPTION"
This file contains most of the documentation of the perl public API, as
generated by \fIembed.pl\fR.  Specifically, it is a listing of functions,
macros, flags, and variables that may be used by extension writers.  Besides
perlintern and \fIconfig.h\fR, some items are listed here as being actually
documented in another pod.
.PP
At the end is a list of functions which have yet
to be documented.  Patches welcome!  The interfaces of these are subject to
change without notice.
.PP
Some of the functions documented here are consolidated so that a single entry
serves for multiple functions which all do basically the same thing, but have
some slight differences.  For example, one form might process magic, while
another doesn't.  The name of each variation is listed at the top of the
single entry.  But if all have the same signature (arguments and return type)
except for their names, only the usage for the base form is shown.  If any
one of the forms has a different signature (such as returning \f(CW\*(C`const\*(C'\fR or
not) every function's signature is explicitly displayed.
.PP
Anything not listed here or in the other mentioned pods is not part of the
public API, and should not be used by extension writers at all.  For these
reasons, blindly using functions listed in \fIproto.h\fR is to be avoided when
writing extensions.
.PP
In Perl, unlike C, a string of characters may generally contain embedded
\&\f(CW\*(C`NUL\*(C'\fR characters.  Sometimes in the documentation a Perl string is referred
to as a "buffer" to distinguish it from a C string, but sometimes they are
both just referred to as strings.
.PP
Note that all Perl API global variables must be referenced with the \f(CW\*(C`PL_\*(C'\fR
prefix.  Again, those not listed here are not to be used by extension writers,
and may be changed or removed without notice; same with macros.
Some macros are provided for compatibility with the older,
unadorned names, but this support may be disabled in a future release.
.PP
Perl was originally written to handle US-ASCII only (that is characters
whose ordinal numbers are in the range 0 \- 127).
And documentation and comments may still use the term ASCII, when
sometimes in fact the entire range from 0 \- 255 is meant.
.PP
The non-ASCII characters below 256 can have various meanings, depending on
various things.  (See, most notably, perllocale.)  But usually the whole
range can be referred to as ISO\-8859\-1.  Often, the term "Latin\-1" (or
"Latin1") is used as an equivalent for ISO\-8859\-1.  But some people treat
"Latin1" as referring just to the characters in the range 128 through 255, or
sometimes from 160 through 255.
This documentation uses "Latin1" and "Latin\-1" to refer to all 256 characters.
.PP
Note that Perl can be compiled and run under either ASCII or EBCDIC (See
perlebcdic).  Most of the documentation (and even comments in the code)
ignore the EBCDIC possibility.
For almost all purposes the differences are transparent.
As an example, under EBCDIC,
instead of UTF\-8, UTF-EBCDIC is used to encode Unicode strings, and so
whenever this documentation refers to \f(CW\*(C`utf8\*(C'\fR
(and variants of that name, including in function names),
it also (essentially transparently) means \f(CW\*(C`UTF\-EBCDIC\*(C'\fR.
But the ordinals of characters differ between ASCII, EBCDIC, and
the UTF\- encodings, and a string encoded in UTF-EBCDIC may occupy a different
number of bytes than in UTF\-8.
.PP
The organization of this document is tentative and subject to change.
Suggestions and patches welcome
perl5\-porters@perl.org <mailto:perl5-porters@perl.org>.
.PP
The sections in this document currently are
.IP """AV Handling""" 4
.IX Item """AV Handling"""
.PD 0
.IP """Callback Functions""" 4
.IX Item """Callback Functions"""
.IP """Casting""" 4
.IX Item """Casting"""
.IP """Character case changing""" 4
.IX Item """Character case changing"""
.IP """Character classification""" 4
.IX Item """Character classification"""
.IP """Compiler and Preprocessor information""" 4
.IX Item """Compiler and Preprocessor information"""
.IP """Compiler directives""" 4
.IX Item """Compiler directives"""
.IP """Compile-time scope hooks""" 4
.IX Item """Compile-time scope hooks"""
.IP """Concurrency""" 4
.IX Item """Concurrency"""
.IP """COPs and Hint Hashes""" 4
.IX Item """COPs and Hint Hashes"""
.IP """Custom Operators""" 4
.IX Item """Custom Operators"""
.IP """CV Handling""" 4
.IX Item """CV Handling"""
.IP """Debugging""" 4
.IX Item """Debugging"""
.IP """Display functions""" 4
.IX Item """Display functions"""
.IP """Embedding, Threads, and Interpreter Cloning""" 4
.IX Item """Embedding, Threads, and Interpreter Cloning"""
.IP """Errno""" 4
.IX Item """Errno"""
.IP """Exception Handling (simple) Macros""" 4
.IX Item """Exception Handling (simple) Macros"""
.IP """Filesystem configuration values""" 4
.IX Item """Filesystem configuration values"""
.IP """Floating point""" 4
.IX Item """Floating point"""
.IP """General Configuration""" 4
.IX Item """General Configuration"""
.IP """Global Variables""" 4
.IX Item """Global Variables"""
.IP """GV Handling and Stashes""" 4
.IX Item """GV Handling and Stashes"""
.IP """Hook manipulation""" 4
.IX Item """Hook manipulation"""
.IP """HV Handling""" 4
.IX Item """HV Handling"""
.IP """Input/Output""" 4
.IX Item """Input/Output"""
.IP """Integer""" 4
.IX Item """Integer"""
.IP """I/O Formats""" 4
.IX Item """I/O Formats"""
.IP """Lexer interface""" 4
.IX Item """Lexer interface"""
.IP """Locales""" 4
.IX Item """Locales"""
.IP """Magic""" 4
.IX Item """Magic"""
.IP """Memory Management""" 4
.IX Item """Memory Management"""
.IP """MRO""" 4
.IX Item """MRO"""
.IP """Multicall Functions""" 4
.IX Item """Multicall Functions"""
.IP """Numeric Functions""" 4
.IX Item """Numeric Functions"""
.IP """Optrees""" 4
.IX Item """Optrees"""
.IP """Pack and Unpack""" 4
.IX Item """Pack and Unpack"""
.IP """Pad Data Structures""" 4
.IX Item """Pad Data Structures"""
.IP """Password and Group access""" 4
.IX Item """Password and Group access"""
.IP """Paths to system commands""" 4
.IX Item """Paths to system commands"""
.IP """Prototype information""" 4
.IX Item """Prototype information"""
.IP """REGEXP Functions""" 4
.IX Item """REGEXP Functions"""
.IP """Reports and Formats""" 4
.IX Item """Reports and Formats"""
.IP """Signals""" 4
.IX Item """Signals"""
.IP """Site configuration""" 4
.IX Item """Site configuration"""
.IP """Sockets configuration values""" 4
.IX Item """Sockets configuration values"""
.IP """Source Filters""" 4
.IX Item """Source Filters"""
.IP """Stack Manipulation Macros""" 4
.IX Item """Stack Manipulation Macros"""
.IP """String Handling""" 4
.IX Item """String Handling"""
.IP """SV Flags""" 4
.IX Item """SV Flags"""
.IP """SV Handling""" 4
.IX Item """SV Handling"""
.IP """Tainting""" 4
.IX Item """Tainting"""
.IP """Time""" 4
.IX Item """Time"""
.IP """Typedef names""" 4
.IX Item """Typedef names"""
.IP """Unicode Support""" 4
.IX Item """Unicode Support"""
.IP """Utility Functions""" 4
.IX Item """Utility Functions"""
.IP """Versioning""" 4
.IX Item """Versioning"""
.IP """Warning and Dieing""" 4
.IX Item """Warning and Dieing"""
.IP """XS""" 4
.IX Item """XS"""
.IP """Undocumented elements""" 4
.IX Item """Undocumented elements"""
.PD
.PP
The listing below is alphabetical, case insensitive.
.SH "AV Handling"
.IX Header "AV Handling"
.ie n .IP """AV""" 4
.el .IP \f(CWAV\fR 4
.IX Item "AV"
Described in perlguts.
.ie n .IP """AvALLOC""" 4
.el .IP \f(CWAvALLOC\fR 4
.IX Item "AvALLOC"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\&   AvALLOC(AV* av)
.Ve
.RE
.RS 4
.RE
.ie n .IP """AvARRAY""" 4
.el .IP \f(CWAvARRAY\fR 4
.IX Xref "AvARRAY"
.IX Item "AvARRAY"
Returns a pointer to the AV's internal SV* array.
.Sp
This is useful for doing pointer arithmetic on the array.
If all you need is to look up an array element, then prefer \f(CW\*(C`av_fetch\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& SV**  AvARRAY(AV* av)
.Ve
.RE
.RS 4
.RE
.ie n .IP """av_clear""" 4
.el .IP \f(CWav_clear\fR 4
.IX Xref "av_clear"
.IX Item "av_clear"
Frees all the elements of an array, leaving it empty.
The XS equivalent of \f(CW\*(C`@array = ()\*(C'\fR.  See also "av_undef".
.Sp
Note that it is possible that the actions of a destructor called directly
or indirectly by freeing an element of the array could cause the reference
count of the array itself to be reduced (e.g. by deleting an entry in the
symbol table). So it is a possibility that the AV could have been freed
(or even reallocated) on return from the call unless you hold a reference
to it.
.RS 4
.Sp
.Vb 1
\& void  av_clear(AV *av)
.Ve
.RE
.RS 4
.RE
.ie n .IP """av_count""" 4
.el .IP \f(CWav_count\fR 4
.IX Xref "av_count"
.IX Item "av_count"
Returns the number of elements in the array \f(CW\*(C`av\*(C'\fR.  This is the true length of
the array, including any undefined elements.  It is always the same as
\&\f(CW\*(C`av_top_index(av)\ +\ 1\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& Size_t  av_count(AV *av)
.Ve
.RE
.RS 4
.RE
.ie n .IP """av_create_and_push""" 4
.el .IP \f(CWav_create_and_push\fR 4
.IX Xref "av_create_and_push"
.IX Item "av_create_and_push"
Push an SV onto the end of the array, creating the array if necessary.
A small internal helper function to remove a commonly duplicated idiom.
.Sp
NOTE: \f(CW\*(C`av_create_and_push\*(C'\fR must be explicitly called as
\&\f(CW\*(C`Perl_av_create_and_push\*(C'\fR
with an \f(CW\*(C`aTHX_\*(C'\fR parameter.
.RS 4
.Sp
.Vb 2
\& void  Perl_av_create_and_push(pTHX_ AV ** const avp,
\&                               SV * const val)
.Ve
.RE
.RS 4
.RE
.ie n .IP """av_create_and_unshift_one""" 4
.el .IP \f(CWav_create_and_unshift_one\fR 4
.IX Xref "av_create_and_unshift_one"
.IX Item "av_create_and_unshift_one"
Unshifts an SV onto the beginning of the array, creating the array if
necessary.
A small internal helper function to remove a commonly duplicated idiom.
.Sp
NOTE: \f(CW\*(C`av_create_and_unshift_one\*(C'\fR must be explicitly called as
\&\f(CW\*(C`Perl_av_create_and_unshift_one\*(C'\fR
with an \f(CW\*(C`aTHX_\*(C'\fR parameter.
.RS 4
.Sp
.Vb 2
\& SV **  Perl_av_create_and_unshift_one(pTHX_ AV ** const avp,
\&                                       SV * const val)
.Ve
.RE
.RS 4
.RE
.ie n .IP """av_delete""" 4
.el .IP \f(CWav_delete\fR 4
.IX Xref "av_delete"
.IX Item "av_delete"
Deletes the element indexed by \f(CW\*(C`key\*(C'\fR from the array, makes the element
mortal, and returns it.  If \f(CW\*(C`flags\*(C'\fR equals \f(CW\*(C`G_DISCARD\*(C'\fR, the element is
freed and NULL is returned. NULL is also returned if \f(CW\*(C`key\*(C'\fR is out of
range.
.Sp
Perl equivalent: \f(CW\*(C`splice(@myarray,\ $key,\ 1,\ undef)\*(C'\fR (with the
\&\f(CW\*(C`splice\*(C'\fR in void context if \f(CW\*(C`G_DISCARD\*(C'\fR is present).
.RS 4
.Sp
.Vb 1
\& SV *  av_delete(AV *av, SSize_t key, I32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """av_exists""" 4
.el .IP \f(CWav_exists\fR 4
.IX Xref "av_exists"
.IX Item "av_exists"
Returns true if the element indexed by \f(CW\*(C`key\*(C'\fR has been initialized.
.Sp
This relies on the fact that uninitialized array elements are set to
\&\f(CW\*(C`NULL\*(C'\fR.
.Sp
Perl equivalent: \f(CWexists($myarray[$key])\fR.
.RS 4
.Sp
.Vb 1
\& bool  av_exists(AV *av, SSize_t key)
.Ve
.RE
.RS 4
.RE
.ie n .IP """av_extend""" 4
.el .IP \f(CWav_extend\fR 4
.IX Xref "av_extend"
.IX Item "av_extend"
Pre-extend an array so that it is capable of storing values at indexes
\&\f(CW\*(C`0..key\*(C'\fR. Thus \f(CW\*(C`av_extend(av,99)\*(C'\fR guarantees that the array can store 100
elements, i.e. that \f(CW\*(C`av_store(av, 0, sv)\*(C'\fR through \f(CW\*(C`av_store(av, 99, sv)\*(C'\fR
on a plain array will work without any further memory allocation.
.Sp
If the av argument is a tied array then will call the \f(CW\*(C`EXTEND\*(C'\fR tied
array method with an argument of \f(CW\*(C`(key+1)\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& void  av_extend(AV *av, SSize_t key)
.Ve
.RE
.RS 4
.RE
.ie n .IP """av_fetch""" 4
.el .IP \f(CWav_fetch\fR 4
.IX Xref "av_fetch"
.IX Item "av_fetch"
Returns the SV at the specified index in the array.  The \f(CW\*(C`key\*(C'\fR is the
index.  If \f(CW\*(C`lval\*(C'\fR is true, you are guaranteed to get a real SV back (in case
it wasn't real before), which you can then modify.  Check that the return
value is non-NULL before dereferencing it to a \f(CW\*(C`SV*\*(C'\fR.
.Sp
See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for
more information on how to use this function on tied arrays.
.Sp
The rough perl equivalent is \f(CW$myarray[$key]\fR.
.RS 4
.Sp
.Vb 1
\& SV **  av_fetch(AV *av, SSize_t key, I32 lval)
.Ve
.RE
.RS 4
.RE
.ie n .IP """AvFILL""" 4
.el .IP \f(CWAvFILL\fR 4
.IX Xref "AvFILL"
.IX Item "AvFILL"
Same as \f(CW"av_top_index"\fR or \f(CW"av_tindex"\fR.
.RS 4
.Sp
.Vb 1
\& SSize_t  AvFILL(AV* av)
.Ve
.RE
.RS 4
.RE
.ie n .IP """av_fill""" 4
.el .IP \f(CWav_fill\fR 4
.IX Xref "av_fill"
.IX Item "av_fill"
Set the highest index in the array to the given number, equivalent to
Perl's \f(CW\*(C`$#array\ =\ $fill;\*(C'\fR.
.Sp
The number of elements in the array will be \f(CW\*(C`fill\ +\ 1\*(C'\fR after
\&\f(CWav_fill()\fR returns.  If the array was previously shorter, then the
additional elements appended are set to NULL.  If the array
was longer, then the excess elements are freed.  \f(CW\*(C`av_fill(av,\ \-1)\*(C'\fR is
the same as \f(CWav_clear(av)\fR.
.RS 4
.Sp
.Vb 1
\& void  av_fill(AV *av, SSize_t fill)
.Ve
.RE
.RS 4
.RE
.ie n .IP """av_len""" 4
.el .IP \f(CWav_len\fR 4
.IX Xref "av_len"
.IX Item "av_len"
Same as "av_top_index".  Note that, unlike what the name implies, it returns
the maximum index in the array.  This is unlike "sv_len", which returns what
you would expect.
.Sp
\&\fBTo get the true number of elements in the array, instead use \fR\f(CB"av_count"\fR.
.RS 4
.Sp
.Vb 1
\& SSize_t  av_len(AV *av)
.Ve
.RE
.RS 4
.RE
.ie n .IP """av_make""" 4
.el .IP \f(CWav_make\fR 4
.IX Xref "av_make"
.IX Item "av_make"
Creates a new AV and populates it with a list (\f(CW**strp\fR, length \f(CW\*(C`size\*(C'\fR) of
SVs.  A copy is made of each SV, so their refcounts are not changed.  The new
AV will have a reference count of 1.
.Sp
Perl equivalent: \f(CW\*(C`my @new_array = ($scalar1, $scalar2, $scalar3...);\*(C'\fR
.RS 4
.Sp
.Vb 1
\& AV *  av_make(SSize_t size, SV **strp)
.Ve
.RE
.RS 4
.RE
.ie n .IP """av_pop""" 4
.el .IP \f(CWav_pop\fR 4
.IX Xref "av_pop"
.IX Item "av_pop"
Removes one SV from the end of the array, reducing its size by one and
returning the SV (transferring control of one reference count) to the
caller.  Returns \f(CW&PL_sv_undef\fR if the array is empty.
.Sp
Perl equivalent: \f(CW\*(C`pop(@myarray);\*(C'\fR
.RS 4
.Sp
.Vb 1
\& SV *  av_pop(AV *av)
.Ve
.RE
.RS 4
.RE
.ie n .IP """av_push""" 4
.el .IP \f(CWav_push\fR 4
.IX Xref "av_push"
.IX Item "av_push"
Pushes an SV (transferring control of one reference count) onto the end of the
array.  The array will grow automatically to accommodate the addition.
.Sp
Perl equivalent: \f(CW\*(C`push @myarray, $val;\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& void  av_push(AV *av, SV *val)
.Ve
.RE
.RS 4
.RE
.ie n .IP """av_push_simple""" 4
.el .IP \f(CWav_push_simple\fR 4
.IX Xref "av_push_simple"
.IX Item "av_push_simple"
This is a cut-down version of av_push that assumes that the array is very
straightforward \- no magic, not readonly, and AvREAL \- and that \f(CW\*(C`key\*(C'\fR is
not less than \-1. This function MUST NOT be used in situations where any
of those assumptions may not hold.
.Sp
Pushes an SV (transferring control of one reference count) onto the end of the
array.  The array will grow automatically to accommodate the addition.
.Sp
Perl equivalent: \f(CW\*(C`push @myarray, $val;\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& void  av_push_simple(AV *av, SV *val)
.Ve
.RE
.RS 4
.RE
.ie n .IP """av_shift""" 4
.el .IP \f(CWav_shift\fR 4
.IX Xref "av_shift"
.IX Item "av_shift"
Removes one SV from the start of the array, reducing its size by one and
returning the SV (transferring control of one reference count) to the
caller.  Returns \f(CW&PL_sv_undef\fR if the array is empty.
.Sp
Perl equivalent: \f(CW\*(C`shift(@myarray);\*(C'\fR
.RS 4
.Sp
.Vb 1
\& SV *  av_shift(AV *av)
.Ve
.RE
.RS 4
.RE
.ie n .IP """av_store""" 4
.el .IP \f(CWav_store\fR 4
.IX Xref "av_store"
.IX Item "av_store"
Stores an SV in an array.  The array index is specified as \f(CW\*(C`key\*(C'\fR.  The
return value will be \f(CW\*(C`NULL\*(C'\fR if the operation failed or if the value did not
need to be actually stored within the array (as in the case of tied
arrays).  Otherwise, it can be dereferenced
to get the \f(CW\*(C`SV*\*(C'\fR that was stored
there (= \f(CW\*(C`val\*(C'\fR)).
.Sp
Note that the caller is responsible for suitably incrementing the reference
count of \f(CW\*(C`val\*(C'\fR before the call, and decrementing it if the function
returned \f(CW\*(C`NULL\*(C'\fR.
.Sp
Approximate Perl equivalent: \f(CW\*(C`splice(@myarray, $key, 1, $val)\*(C'\fR.
.Sp
See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for
more information on how to use this function on tied arrays.
.RS 4
.Sp
.Vb 1
\& SV **  av_store(AV *av, SSize_t key, SV *val)
.Ve
.RE
.RS 4
.RE
.ie n .IP """av_tindex""" 4
.el .IP \f(CWav_tindex\fR 4
.IX Item "av_tindex"
.PD 0
.ie n .IP """av_top_index""" 4
.el .IP \f(CWav_top_index\fR 4
.IX Xref "av_tindex av_top_index"
.IX Item "av_top_index"
.PD
These behave identically.
If the array \f(CW\*(C`av\*(C'\fR is empty, these return \-1; otherwise they return the maximum
value of the indices of all the array elements which are currently defined in
\&\f(CW\*(C`av\*(C'\fR.
.Sp
They process 'get' magic.
.Sp
The Perl equivalent for these is \f(CW$#av\fR.
.Sp
Use \f(CW"av_count"\fR to get the number of elements in an array.
.RS 4
.Sp
.Vb 1
\& SSize_t  av_tindex(AV *av)
.Ve
.RE
.RS 4
.RE
.ie n .IP """av_undef""" 4
.el .IP \f(CWav_undef\fR 4
.IX Xref "av_undef"
.IX Item "av_undef"
Undefines the array. The XS equivalent of \f(CWundef(@array)\fR.
.Sp
As well as freeing all the elements of the array (like \f(CWav_clear()\fR), this
also frees the memory used by the av to store its list of scalars.
.Sp
See "av_clear" for a note about the array possibly being invalid on
return.
.RS 4
.Sp
.Vb 1
\& void  av_undef(AV *av)
.Ve
.RE
.RS 4
.RE
.ie n .IP """av_unshift""" 4
.el .IP \f(CWav_unshift\fR 4
.IX Xref "av_unshift"
.IX Item "av_unshift"
Unshift the given number of \f(CW\*(C`undef\*(C'\fR values onto the beginning of the
array.  The array will grow automatically to accommodate the addition.
.Sp
Perl equivalent: \f(CW\*(C`unshift\ @myarray,\ ((undef)\ x\ $num);\*(C'\fR
.RS 4
.Sp
.Vb 1
\& void  av_unshift(AV *av, SSize_t num)
.Ve
.RE
.RS 4
.RE
.ie n .IP """get_av""" 4
.el .IP \f(CWget_av\fR 4
.IX Xref "get_av"
.IX Item "get_av"
Returns the AV of the specified Perl global or package array with the given
name (so it won't work on lexical variables).  \f(CW\*(C`flags\*(C'\fR are passed
to \f(CW\*(C`gv_fetchpv\*(C'\fR.  If \f(CW\*(C`GV_ADD\*(C'\fR is set and the
Perl variable does not exist then it will be created.  If \f(CW\*(C`flags\*(C'\fR is zero
(ignoring \f(CW\*(C`SVf_UTF8\*(C'\fR) and the variable does not exist then \f(CW\*(C`NULL\*(C'\fR is
returned.
.Sp
Perl equivalent: \f(CW\*(C`@{"$name"}\*(C'\fR.
.Sp
NOTE: the \f(CWperl_get_av()\fR form is \fBdeprecated\fR.
.RS 4
.Sp
.Vb 1
\& AV *  get_av(const char *name, I32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newAV""" 4
.el .IP \f(CWnewAV\fR 4
.IX Item "newAV"
.PD 0
.ie n .IP """newAV_alloc_x""" 4
.el .IP \f(CWnewAV_alloc_x\fR 4
.IX Item "newAV_alloc_x"
.ie n .IP """newAV_alloc_xz""" 4
.el .IP \f(CWnewAV_alloc_xz\fR 4
.IX Xref "newAV newAV_alloc_x newAV_alloc_xz"
.IX Item "newAV_alloc_xz"
.PD
These all create a new AV, setting the reference count to 1.  If you also know
the initial elements of the array with, see "\f(CW\*(C`av_make\*(C'\fR".
.Sp
As background, an array consists of three things:
.RS 4
.IP 1. 4
A data structure containing information about the array as a whole, such as its
size and reference count.
.IP 2. 4
A C language array of pointers to the individual elements.  These are treated
as pointers to SVs, so all must be castable to SV*.
.IP 3. 4
The individual elements themselves.  These could be, for instance, SVs and/or
AVs and/or HVs, etc.
.RE
.RS 4
.Sp
An empty array need only have the first data structure, and all these functions
create that.  They differ in what else they do, as follows:
.ie n .IP """newAV"" form" 4
.el .IP "\f(CWnewAV\fR form" 4
.IX Item "newAV form"
This does nothing beyond creating the whole-array data structure.
The Perl equivalent is approximately \f(CW\*(C`my\ @array;\*(C'\fR
.Sp
This is useful when the minimum size of the array could be zero (perhaps there
are likely code paths that will entirely skip using it).
.Sp
If the array does get used, the pointers data structure will need to be
allocated at that time.  This will end up being done by "av_extend">,
either explicitly:
.Sp
.Vb 1
\&    av_extend(av, len);
.Ve
.Sp
or implicitly when the first element is stored:
.Sp
.Vb 1
\&    (void)av_store(av, 0, sv);
.Ve
.Sp
Unused array elements are typically initialized by \f(CW\*(C`av_extend\*(C'\fR.
.ie n .IP """newAV_alloc_x"" form" 4
.el .IP "\f(CWnewAV_alloc_x\fR form" 4
.IX Item "newAV_alloc_x form"
This effectively does a \f(CW\*(C`newAV\*(C'\fR followed by also allocating (uninitialized)
space for the pointers array.  This is used when you know ahead of time the
likely minimum size of the array.  It is more efficient to do this than doing a
plain \f(CW\*(C`newAV\*(C'\fR followed by an \f(CW\*(C`av_extend\*(C'\fR.
.Sp
Of course the array can be extended later should it become necessary.
.Sp
\&\f(CW\*(C`size\*(C'\fR must be at least 1.
.ie n .IP """newAV_alloc_xz"" form" 4
.el .IP "\f(CWnewAV_alloc_xz\fR form" 4
.IX Item "newAV_alloc_xz form"
This is \f(CW\*(C`newAV_alloc_x\*(C'\fR, but initializes each pointer in it to NULL.  This
gives added safety to guard against them being read before being set.
.Sp
\&\f(CW\*(C`size\*(C'\fR must be at least 1.
.RE
.RS 4
.Sp
The following examples all result in an array that can fit four elements
(indexes 0 .. 3):
.Sp
.Vb 2
\&    AV *av = newAV();
\&    av_extend(av, 3);
\&
\&    AV *av = newAV_alloc_x(4);
\&
\&    AV *av = newAV_alloc_xz(4);
.Ve
.Sp
In contrast, the following examples allocate an array that is only guaranteed
to fit one element without extending:
.Sp
.Vb 2
\&    AV *av = newAV_alloc_x(1);
\&    AV *av = newAV_alloc_xz(1);
.Ve
.Sp
.Vb 3
\& AV *  newAV         ()
\& AV *  newAV_alloc_x (SSize_t size)
\& AV *  newAV_alloc_xz(SSize_t size)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newAVav""" 4
.el .IP \f(CWnewAVav\fR 4
.IX Xref "newAVav"
.IX Item "newAVav"
Creates a new AV and populates it with values copied from an existing AV.  The
new AV will have a reference count of 1, and will contain newly created SVs
copied from the original SV.  The original source will remain unchanged.
.Sp
Perl equivalent: \f(CW\*(C`my @new_array = @existing_array;\*(C'\fR
.RS 4
.Sp
.Vb 1
\& AV *  newAVav(AV *oav)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newAVhv""" 4
.el .IP \f(CWnewAVhv\fR 4
.IX Xref "newAVhv"
.IX Item "newAVhv"
Creates a new AV and populates it with keys and values copied from an existing
HV.  The new AV will have a reference count of 1, and will contain newly
created SVs copied from the original HV.  The original source will remain
unchanged.
.Sp
Perl equivalent: \f(CW\*(C`my @new_array = %existing_hash;\*(C'\fR
.RS 4
.Sp
.Vb 1
\& AV *  newAVhv(HV *ohv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """Nullav""" 4
.el .IP \f(CWNullav\fR 4
.IX Xref "Nullav"
.IX Item "Nullav"
\&\f(CW\*(C`\fR\f(CBDEPRECATED!\fR\f(CW\*(C'\fR  It is planned to remove \f(CW\*(C`Nullav\*(C'\fR
from a future release of Perl.  Do not use it for
new code; remove it from existing code.
.Sp
Null AV pointer.
.Sp
(deprecated \- use \f(CW\*(C`(AV *)NULL\*(C'\fR instead)
.SH "Callback Functions"
.IX Xref "G_METHOD G_METHOD_NAMED G_RETHROW SAVEf_KEEPOLDELEM SAVEf_SETMAGIC"
.IX Header "Callback Functions"
.ie n .IP """call_argv""" 4
.el .IP \f(CWcall_argv\fR 4
.IX Xref "call_argv"
.IX Item "call_argv"
Performs a callback to the specified named and package-scoped Perl subroutine
with \f(CW\*(C`argv\*(C'\fR (a \f(CW\*(C`NULL\*(C'\fR\-terminated array of strings) as arguments.  See
perlcall.
.Sp
Approximate Perl equivalent: \f(CW\*(C`&{"$sub_name"}(@$argv)\*(C'\fR.
.Sp
NOTE: the \f(CWperl_call_argv()\fR form is \fBdeprecated\fR.
.RS 4
.Sp
.Vb 1
\& I32  call_argv(const char *sub_name, I32 flags, char **argv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """call_method""" 4
.el .IP \f(CWcall_method\fR 4
.IX Xref "call_method"
.IX Item "call_method"
Performs a callback to the specified Perl method.  The blessed object must
be on the stack.  See perlcall.
.Sp
NOTE: the \f(CWperl_call_method()\fR form is \fBdeprecated\fR.
.RS 4
.Sp
.Vb 1
\& I32  call_method(const char *methname, I32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """call_pv""" 4
.el .IP \f(CWcall_pv\fR 4
.IX Xref "call_pv"
.IX Item "call_pv"
Performs a callback to the specified Perl sub.  See perlcall.
.Sp
NOTE: the \f(CWperl_call_pv()\fR form is \fBdeprecated\fR.
.RS 4
.Sp
.Vb 1
\& I32  call_pv(const char *sub_name, I32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """call_sv""" 4
.el .IP \f(CWcall_sv\fR 4
.IX Xref "call_sv"
.IX Item "call_sv"
Performs a callback to the Perl sub specified by the SV.
.Sp
If neither the \f(CW\*(C`G_METHOD\*(C'\fR nor \f(CW\*(C`G_METHOD_NAMED\*(C'\fR flag is supplied, the
SV may be any of a CV, a GV, a reference to a CV, a reference to a GV
or \f(CWSvPV(sv)\fR will be used as the name of the sub to call.
.Sp
If the \f(CW\*(C`G_METHOD\*(C'\fR flag is supplied, the SV may be a reference to a CV or
\&\f(CWSvPV(sv)\fR will be used as the name of the method to call.
.Sp
If the \f(CW\*(C`G_METHOD_NAMED\*(C'\fR flag is supplied, \f(CWSvPV(sv)\fR will be used as
the name of the method to call.
.Sp
Some other values are treated specially for internal use and should
not be depended on.
.Sp
See perlcall.
.Sp
NOTE: the \f(CWperl_call_sv()\fR form is \fBdeprecated\fR.
.RS 4
.Sp
.Vb 1
\& I32  call_sv(SV *sv, volatile I32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """DESTRUCTORFUNC_NOCONTEXT_t""" 4
.el .IP \f(CWDESTRUCTORFUNC_NOCONTEXT_t\fR 4
.IX Item "DESTRUCTORFUNC_NOCONTEXT_t"
Described in perlguts.
.ie n .IP """DESTRUCTORFUNC_t""" 4
.el .IP \f(CWDESTRUCTORFUNC_t\fR 4
.IX Item "DESTRUCTORFUNC_t"
Described in perlguts.
.ie n .IP """ENTER""" 4
.el .IP \f(CWENTER\fR 4
.IX Xref "ENTER"
.IX Item "ENTER"
Opening bracket on a callback.  See \f(CW"LEAVE"\fR and perlcall.
.RS 4
.Sp
.Vb 1
\&   ENTER;
.Ve
.RE
.RS 4
.RE
.ie n .IP """ENTER_with_name""" 4
.el .IP \f(CWENTER_with_name\fR 4
.IX Xref "ENTER_with_name"
.IX Item "ENTER_with_name"
Same as \f(CW"ENTER"\fR, but when debugging is enabled it also associates the
given literal string with the new scope.
.RS 4
.Sp
.Vb 1
\&   ENTER_with_name("name");
.Ve
.RE
.RS 4
.RE
.ie n .IP """eval_pv""" 4
.el .IP \f(CWeval_pv\fR 4
.IX Xref "eval_pv"
.IX Item "eval_pv"
Tells Perl to \f(CW\*(C`eval\*(C'\fR the given string in scalar context and return an SV* result.
.Sp
NOTE: the \f(CWperl_eval_pv()\fR form is \fBdeprecated\fR.
.RS 4
.Sp
.Vb 1
\& SV *  eval_pv(const char *p, I32 croak_on_error)
.Ve
.RE
.RS 4
.RE
.ie n .IP """eval_sv""" 4
.el .IP \f(CWeval_sv\fR 4
.IX Xref "eval_sv"
.IX Item "eval_sv"
Tells Perl to \f(CW\*(C`eval\*(C'\fR the string in the SV.  It supports the same flags
as \f(CW\*(C`call_sv\*(C'\fR, with the obvious exception of \f(CW\*(C`G_EVAL\*(C'\fR.  See perlcall.
.Sp
The \f(CW\*(C`G_RETHROW\*(C'\fR flag can be used if you only need \fBeval_sv()\fR to
execute code specified by a string, but not catch any errors.
.Sp
NOTE: the \f(CWperl_eval_sv()\fR form is \fBdeprecated\fR.
.RS 4
.Sp
.Vb 1
\& I32  eval_sv(SV *sv, I32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """FREETMPS""" 4
.el .IP \f(CWFREETMPS\fR 4
.IX Xref "FREETMPS"
.IX Item "FREETMPS"
Closing bracket for temporaries on a callback.  See \f(CW"SAVETMPS"\fR and
perlcall.
.RS 4
.Sp
.Vb 1
\&   FREETMPS;
.Ve
.RE
.RS 4
.RE
.ie n .IP """G_DISCARD""" 4
.el .IP \f(CWG_DISCARD\fR 4
.IX Item "G_DISCARD"
Described in perlcall.
.ie n .IP """G_EVAL""" 4
.el .IP \f(CWG_EVAL\fR 4
.IX Item "G_EVAL"
Described in perlcall.
.ie n .IP """GIMME""" 4
.el .IP \f(CWGIMME\fR 4
.IX Xref "GIMME"
.IX Item "GIMME"
\&\f(CW\*(C`\fR\f(CBDEPRECATED!\fR\f(CW\*(C'\fR  It is planned to remove \f(CW\*(C`GIMME\*(C'\fR
from a future release of Perl.  Do not use it for
new code; remove it from existing code.
.Sp
A backward-compatible version of \f(CW\*(C`GIMME_V\*(C'\fR which can only return
\&\f(CW\*(C`G_SCALAR\*(C'\fR or \f(CW\*(C`G_LIST\*(C'\fR; in a void context, it returns \f(CW\*(C`G_SCALAR\*(C'\fR.
Deprecated.  Use \f(CW\*(C`GIMME_V\*(C'\fR instead.
.RS 4
.Sp
.Vb 1
\& U32  GIMME
.Ve
.RE
.RS 4
.RE
.ie n .IP """GIMME_V""" 4
.el .IP \f(CWGIMME_V\fR 4
.IX Xref "GIMME_V"
.IX Item "GIMME_V"
The XSUB-writer's equivalent to Perl's \f(CW\*(C`wantarray\*(C'\fR.  Returns \f(CW\*(C`G_VOID\*(C'\fR,
\&\f(CW\*(C`G_SCALAR\*(C'\fR or \f(CW\*(C`G_LIST\*(C'\fR for void, scalar or list context,
respectively.  See perlcall for a usage example.
.RS 4
.Sp
.Vb 1
\& U32  GIMME_V
.Ve
.RE
.RS 4
.RE
.ie n .IP """G_KEEPERR""" 4
.el .IP \f(CWG_KEEPERR\fR 4
.IX Item "G_KEEPERR"
Described in perlcall.
.ie n .IP """G_LIST""" 4
.el .IP \f(CWG_LIST\fR 4
.IX Item "G_LIST"
Described in perlcall.
.ie n .IP """G_NOARGS""" 4
.el .IP \f(CWG_NOARGS\fR 4
.IX Item "G_NOARGS"
Described in perlcall.
.ie n .IP """G_SCALAR""" 4
.el .IP \f(CWG_SCALAR\fR 4
.IX Item "G_SCALAR"
Described in perlcall.
.ie n .IP """G_VOID""" 4
.el .IP \f(CWG_VOID\fR 4
.IX Item "G_VOID"
Described in perlcall.
.ie n .IP """is_lvalue_sub""" 4
.el .IP \f(CWis_lvalue_sub\fR 4
.IX Xref "is_lvalue_sub"
.IX Item "is_lvalue_sub"
Returns non-zero if the sub calling this function is being called in an lvalue
context.  Returns 0 otherwise.
.RS 4
.Sp
.Vb 1
\& I32  is_lvalue_sub()
.Ve
.RE
.RS 4
.RE
.ie n .IP """LEAVE""" 4
.el .IP \f(CWLEAVE\fR 4
.IX Xref "LEAVE"
.IX Item "LEAVE"
Closing bracket on a callback.  See \f(CW"ENTER"\fR and perlcall.
.RS 4
.Sp
.Vb 1
\&   LEAVE;
.Ve
.RE
.RS 4
.RE
.ie n .IP """LEAVE_with_name""" 4
.el .IP \f(CWLEAVE_with_name\fR 4
.IX Xref "LEAVE_with_name"
.IX Item "LEAVE_with_name"
Same as \f(CW"LEAVE"\fR, but when debugging is enabled it first checks that the
scope has the given name. \f(CW\*(C`name\*(C'\fR must be a literal string.
.RS 4
.Sp
.Vb 1
\&   LEAVE_with_name("name");
.Ve
.RE
.RS 4
.RE
.ie n .IP """MORTALDESTRUCTOR_SV""" 4
.el .IP \f(CWMORTALDESTRUCTOR_SV\fR 4
.IX Item "MORTALDESTRUCTOR_SV"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\&   MORTALDESTRUCTOR_SV(SV *coderef, SV *args)
.Ve
.RE
.RS 4
.RE
.ie n .IP """mortal_destructor_sv""" 4
.el .IP \f(CWmortal_destructor_sv\fR 4
.IX Xref "mortal_destructor_sv"
.IX Item "mortal_destructor_sv"
This function arranges for either a Perl code reference, or a C function
reference to be called at the \fBend of the current statement\fR.
.Sp
The \f(CW\*(C`coderef\*(C'\fR argument determines the type of function that will be
called. If it is \f(CWSvROK()\fR it is assumed to be a reference to a CV and
will arrange for the coderef to be called. If it is not \fBSvROK()\fR then it
is assumed to be a \f(CWSvIV()\fR which is \f(CWSvIOK()\fR whose value is a pointer
to a C function of type \f(CW\*(C`DESTRUCTORFUNC_t\*(C'\fR created using \f(CWPTR2INT()\fR.
Either way the \f(CW\*(C`args\*(C'\fR parameter will be provided to the callback as a
parameter, although the rules for doing so differ between the Perl and
C mode. Normally this function is only used directly for the Perl case
and the wrapper \f(CWmortal_destructor_x()\fR is used for the C function case.
.Sp
When operating in Perl callback mode the \f(CW\*(C`args\*(C'\fR parameter may be NULL
in which case the code reference is called with no arguments, otherwise
if it is an AV (SvTYPE(args) == SVt_PVAV) then the contents of the AV
will be used as the arguments to the code reference, and if it is any
other type then the \f(CW\*(C`args\*(C'\fR SV will be provided as a single argument to
the code reference.
.Sp
When operating in a C callback mode the \f(CW\*(C`args\*(C'\fR parameter will be passed
directly to the C function as a \f(CW\*(C`void *\*(C'\fR pointer. No additional
processing of the argument will be peformed, and it is the callers
responsibility to free the \f(CW\*(C`args\*(C'\fR parameter if necessary.
.Sp
Be aware that there is a signficant difference in timing between the
\&\fIend of the current statement\fR and the \fIend of the current pseudo
block\fR. If you are looking for a mechanism to trigger a function at the
end of the \fBcurrent pseudo block\fR you should look at
\&\f(CWSAVEDESTRUCTORX()\fR instead of this function.
.RS 4
.Sp
.Vb 1
\& void  mortal_destructor_sv(SV *coderef, SV *args)
.Ve
.RE
.RS 4
.RE
.ie n .IP """MORTALDESTRUCTOR_X""" 4
.el .IP \f(CWMORTALDESTRUCTOR_X\fR 4
.IX Item "MORTALDESTRUCTOR_X"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\&   MORTALDESTRUCTOR_X(DESTRUCTORFUNC_t f, SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PL_errgv""" 4
.el .IP \f(CWPL_errgv\fR 4
.IX Item "PL_errgv"
Described in perlcall.
.ie n .IP """save_aelem""" 4
.el .IP \f(CWsave_aelem\fR 4
.IX Item "save_aelem"
.PD 0
.ie n .IP """save_aelem_flags""" 4
.el .IP \f(CWsave_aelem_flags\fR 4
.IX Xref "save_aelem save_aelem_flags"
.IX Item "save_aelem_flags"
.PD
These each arrange for the value of the array element \f(CW\*(C`av[idx]\*(C'\fR to be restored
at the end of the enclosing \fIpseudo-block\fR.
.Sp
In \f(CW\*(C`save_aelem\*(C'\fR, the SV at C**sptr> will be replaced by a new \f(CW\*(C`undef\*(C'\fR
scalar.  That scalar will inherit any magic from the original \f(CW**sptr\fR,
and any 'set' magic will be processed.
.Sp
In \f(CW\*(C`save_aelem_flags\*(C'\fR, \f(CW\*(C`SAVEf_KEEPOLDELEM\*(C'\fR being set in \f(CW\*(C`flags\*(C'\fR causes
the function to forgo all that:  the scalar at \f(CW**sptr\fR is untouched.
If \f(CW\*(C`SAVEf_KEEPOLDELEM\*(C'\fR is not set, the SV at C**sptr> will be replaced by a
new \f(CW\*(C`undef\*(C'\fR scalar.  That scalar will inherit any magic from the original
\&\f(CW**sptr\fR.  Any 'set' magic will be processed if and only if \f(CW\*(C`SAVEf_SETMAGIC\*(C'\fR
is set in in \f(CW\*(C`flags\*(C'\fR.
.RS 4
.Sp
.Vb 3
\& void  save_aelem      (AV *av, SSize_t idx, SV **sptr)
\& void  save_aelem_flags(AV *av, SSize_t idx, SV **sptr,
\&                        const U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """save_aptr""" 4
.el .IP \f(CWsave_aptr\fR 4
.IX Item "save_aptr"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& void  save_aptr(AV **aptr)
.Ve
.RE
.RS 4
.RE
.ie n .IP """save_ary""" 4
.el .IP \f(CWsave_ary\fR 4
.IX Item "save_ary"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& AV *  save_ary(GV *gv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SAVEBOOL""" 4
.el .IP \f(CWSAVEBOOL\fR 4
.IX Item "SAVEBOOL"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\&   SAVEBOOL(bool i)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SAVEDELETE""" 4
.el .IP \f(CWSAVEDELETE\fR 4
.IX Item "SAVEDELETE"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\&   SAVEDELETE(HV * hv, char * key, I32 length)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SAVEDESTRUCTOR""" 4
.el .IP \f(CWSAVEDESTRUCTOR\fR 4
.IX Item "SAVEDESTRUCTOR"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\&   SAVEDESTRUCTOR(DESTRUCTORFUNC_NOCONTEXT_t f, void *p)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SAVEDESTRUCTOR_X""" 4
.el .IP \f(CWSAVEDESTRUCTOR_X\fR 4
.IX Item "SAVEDESTRUCTOR_X"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\&   SAVEDESTRUCTOR_X(DESTRUCTORFUNC_t f, void *p)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SAVEFREEOP""" 4
.el .IP \f(CWSAVEFREEOP\fR 4
.IX Item "SAVEFREEOP"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\&   SAVEFREEOP(OP *op)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SAVEFREEPV""" 4
.el .IP \f(CWSAVEFREEPV\fR 4
.IX Item "SAVEFREEPV"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\&   SAVEFREEPV(char *pv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SAVEFREERCPV""" 4
.el .IP \f(CWSAVEFREERCPV\fR 4
.IX Item "SAVEFREERCPV"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\&   SAVEFREERCPV(char *pv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SAVEFREESV""" 4
.el .IP \f(CWSAVEFREESV\fR 4
.IX Item "SAVEFREESV"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\&   SAVEFREESV(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SAVEGENERICSV""" 4
.el .IP \f(CWSAVEGENERICSV\fR 4
.IX Item "SAVEGENERICSV"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\&   SAVEGENERICSV(char **psv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """save_hash""" 4
.el .IP \f(CWsave_hash\fR 4
.IX Item "save_hash"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& HV *  save_hash(GV *gv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """save_helem""" 4
.el .IP \f(CWsave_helem\fR 4
.IX Item "save_helem"
.PD 0
.ie n .IP """save_helem_flags""" 4
.el .IP \f(CWsave_helem_flags\fR 4
.IX Xref "save_helem save_helem_flags"
.IX Item "save_helem_flags"
.PD
These each arrange for the value of the hash element (in Perlish terms)
\&\f(CW\*(C`$hv{key}]\*(C'\fR to be restored at the end of the enclosing \fIpseudo-block\fR.
.Sp
In \f(CW\*(C`save_helem\*(C'\fR, the SV at C**sptr> will be replaced by a new \f(CW\*(C`undef\*(C'\fR
scalar.  That scalar will inherit any magic from the original \f(CW**sptr\fR,
and any 'set' magic will be processed.
.Sp
In \f(CW\*(C`save_helem_flags\*(C'\fR, \f(CW\*(C`SAVEf_KEEPOLDELEM\*(C'\fR being set in \f(CW\*(C`flags\*(C'\fR causes
the function to forgo all that:  the scalar at \f(CW**sptr\fR is untouched.
If \f(CW\*(C`SAVEf_KEEPOLDELEM\*(C'\fR is not set, the SV at C**sptr> will be replaced by a
new \f(CW\*(C`undef\*(C'\fR scalar.  That scalar will inherit any magic from the original
\&\f(CW**sptr\fR.  Any 'set' magic will be processed if and only if \f(CW\*(C`SAVEf_SETMAGIC\*(C'\fR
is set in in \f(CW\*(C`flags\*(C'\fR.
.RS 4
.Sp
.Vb 3
\& void  save_helem      (HV *hv, SV *key, SV **sptr)
\& void  save_helem_flags(HV *hv, SV *key, SV **sptr,
\&                        const U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """save_hptr""" 4
.el .IP \f(CWsave_hptr\fR 4
.IX Item "save_hptr"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& void  save_hptr(HV **hptr)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SAVEINT""" 4
.el .IP \f(CWSAVEINT\fR 4
.IX Item "SAVEINT"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\&   SAVEINT(int i)
.Ve
.RE
.RS 4
.RE
.ie n .IP """save_item""" 4
.el .IP \f(CWsave_item\fR 4
.IX Item "save_item"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& void  save_item(SV *item)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SAVEIV""" 4
.el .IP \f(CWSAVEIV\fR 4
.IX Item "SAVEIV"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\&   SAVEIV(IV i)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SAVEI8""" 4
.el .IP \f(CWSAVEI8\fR 4
.IX Item "SAVEI8"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\&   SAVEI8(I8 i)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SAVEI16""" 4
.el .IP \f(CWSAVEI16\fR 4
.IX Item "SAVEI16"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\&   SAVEI16(I16 i)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SAVEI32""" 4
.el .IP \f(CWSAVEI32\fR 4
.IX Item "SAVEI32"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\&   SAVEI32(I32 i)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SAVELONG""" 4
.el .IP \f(CWSAVELONG\fR 4
.IX Item "SAVELONG"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\&   SAVELONG(long i)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SAVEMORTALIZESV""" 4
.el .IP \f(CWSAVEMORTALIZESV\fR 4
.IX Item "SAVEMORTALIZESV"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\&   SAVEMORTALIZESV(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SAVEPPTR""" 4
.el .IP \f(CWSAVEPPTR\fR 4
.IX Item "SAVEPPTR"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\&   SAVEPPTR(char * p)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SAVERCPV""" 4
.el .IP \f(CWSAVERCPV\fR 4
.IX Item "SAVERCPV"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\&   SAVERCPV(char *pv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """save_scalar""" 4
.el .IP \f(CWsave_scalar\fR 4
.IX Item "save_scalar"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& SV *  save_scalar(GV *gv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SAVESPTR""" 4
.el .IP \f(CWSAVESPTR\fR 4
.IX Item "SAVESPTR"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\&   SAVESPTR(SV * s)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SAVESTACK_POS""" 4
.el .IP \f(CWSAVESTACK_POS\fR 4
.IX Item "SAVESTACK_POS"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\&   SAVESTACK_POS()
.Ve
.RE
.RS 4
.RE
.ie n .IP """SAVESTRLEN""" 4
.el .IP \f(CWSAVESTRLEN\fR 4
.IX Item "SAVESTRLEN"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\&   SAVESTRLEN(STRLEN i)
.Ve
.RE
.RS 4
.RE
.ie n .IP """save_svref""" 4
.el .IP \f(CWsave_svref\fR 4
.IX Item "save_svref"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& SV *  save_svref(SV **sptr)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SAVETMPS""" 4
.el .IP \f(CWSAVETMPS\fR 4
.IX Xref "SAVETMPS"
.IX Item "SAVETMPS"
Opening bracket for temporaries on a callback.  See \f(CW"FREETMPS"\fR and
perlcall.
.RS 4
.Sp
.Vb 1
\&   SAVETMPS;
.Ve
.RE
.RS 4
.RE
.SH Casting
.IX Header "Casting"
.ie n .IP """Atof""" 4
.el .IP \f(CWAtof\fR 4
.IX Xref "Atof"
.IX Item "Atof"
This is a synonym for "\f(CW\*(C`my_atof\*(C'\fR".
.RS 4
.Sp
.Vb 1
\& NV  Atof(NN const char * const s)
.Ve
.RE
.RS 4
.RE
.ie n .IP """cBOOL""" 4
.el .IP \f(CWcBOOL\fR 4
.IX Xref "cBOOL"
.IX Item "cBOOL"
Cast-to-bool.  When Perl was able to be compiled on pre\-C99 compilers, a
\&\f(CW\*(C`(bool)\*(C'\fR cast didn't necessarily do the right thing, so this macro was
created (and made somewhat complicated to work around bugs in old
compilers).  Now, many years later, and C99 is used, this is no longer
required, but is kept for backwards compatibility.
.RS 4
.Sp
.Vb 1
\& bool  cBOOL(bool expr)
.Ve
.RE
.RS 4
.RE
.ie n .IP """INT2PTR""" 4
.el .IP \f(CWINT2PTR\fR 4
.IX Item "INT2PTR"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& type  INT2PTR(type, int value)
.Ve
.RE
.RS 4
.RE
.ie n .IP """I_V""" 4
.el .IP \f(CWI_V\fR 4
.IX Xref "I_V"
.IX Item "I_V"
Cast an NV to IV while avoiding undefined C behavior
.RS 4
.Sp
.Vb 1
\& IV  I_V(NV what)
.Ve
.RE
.RS 4
.RE
.ie n .IP """I_32""" 4
.el .IP \f(CWI_32\fR 4
.IX Xref "I_32"
.IX Item "I_32"
Cast an NV to I32 while avoiding undefined C behavior
.RS 4
.Sp
.Vb 1
\& I32  I_32(NV what)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PTR2IV""" 4
.el .IP \f(CWPTR2IV\fR 4
.IX Item "PTR2IV"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& IV  PTR2IV(void * ptr)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PTR2nat""" 4
.el .IP \f(CWPTR2nat\fR 4
.IX Item "PTR2nat"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& IV  PTR2nat(void *)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PTR2NV""" 4
.el .IP \f(CWPTR2NV\fR 4
.IX Item "PTR2NV"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& NV  PTR2NV(void * ptr)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PTR2ul""" 4
.el .IP \f(CWPTR2ul\fR 4
.IX Item "PTR2ul"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& unsigned long  PTR2ul(void *)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PTR2UV""" 4
.el .IP \f(CWPTR2UV\fR 4
.IX Item "PTR2UV"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& UV  PTR2UV(void * ptr)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PTRV""" 4
.el .IP \f(CWPTRV\fR 4
.IX Item "PTRV"
Described in perlguts.
.ie n .IP """U_V""" 4
.el .IP \f(CWU_V\fR 4
.IX Xref "U_V"
.IX Item "U_V"
Cast an NV to UV while avoiding undefined C behavior
.RS 4
.Sp
.Vb 1
\& UV  U_V(NV what)
.Ve
.RE
.RS 4
.RE
.ie n .IP """U_32""" 4
.el .IP \f(CWU_32\fR 4
.IX Xref "U_32"
.IX Item "U_32"
Cast an NV to U32 while avoiding undefined C behavior
.RS 4
.Sp
.Vb 1
\& U32  U_32(NV what)
.Ve
.RE
.RS 4
.RE
.SH "Character case changing"
.IX Header "Character case changing"
Perl uses "full" Unicode case mappings.  This means that converting a single
character to another case may result in a sequence of more than one character.
For example, the uppercase of \f(CW\*(C`ß\*(C'\fR (LATIN SMALL LETTER SHARP S) is the two
character sequence \f(CW\*(C`SS\*(C'\fR.  This presents some complications   The lowercase of
all characters in the range 0..255 is a single character, and thus
\&\f(CW"toLOWER_L1"\fR is furnished.  But, \f(CW\*(C`toUPPER_L1\*(C'\fR can't exist, as it couldn't
return a valid result for all legal inputs.  Instead \f(CW"toUPPER_uvchr"\fR has
an API that does allow every possible legal result to be returned.)  Likewise
no other function that is crippled by not being able to give the correct
results for the full range of possible inputs has been implemented here.
.ie n .IP """toFOLD""" 4
.el .IP \f(CWtoFOLD\fR 4
.IX Item "toFOLD"
.PD 0
.ie n .IP """toFOLD_A""" 4
.el .IP \f(CWtoFOLD_A\fR 4
.IX Item "toFOLD_A"
.ie n .IP """toFOLD_utf8""" 4
.el .IP \f(CWtoFOLD_utf8\fR 4
.IX Item "toFOLD_utf8"
.ie n .IP """toFOLD_utf8_safe""" 4
.el .IP \f(CWtoFOLD_utf8_safe\fR 4
.IX Item "toFOLD_utf8_safe"
.ie n .IP """toFOLD_uvchr""" 4
.el .IP \f(CWtoFOLD_uvchr\fR 4
.IX Xref "toFOLD toFOLD_A toFOLD_utf8 toFOLD_utf8_safe toFOLD_uvchr"
.IX Item "toFOLD_uvchr"
.PD
These all return the foldcase of a character.  "foldcase" is an internal case
for \f(CW\*(C`/i\*(C'\fR pattern matching. If the foldcase of character A and the foldcase of
character B are the same, they match caselessly; otherwise they don't.
.Sp
The differences in the forms are what domain they operate on, and whether the
input is specified as a code point (those forms with a \f(CW\*(C`cp\*(C'\fR parameter) or as a
UTF\-8 string (the others).  In the latter case, the code point to use is the
first one in the buffer of UTF\-8 encoded code points, delineated by the
arguments \f(CW\*(C`p\ ..\ e\ \-\ 1\*(C'\fR.
.Sp
\&\f(CW\*(C`toFOLD\*(C'\fR and \f(CW\*(C`toFOLD_A\*(C'\fR are synonyms of each other.  They return the
foldcase of any ASCII-range code point.  In this range, the foldcase is
identical to the lowercase.  All other inputs are returned unchanged.  Since
these are macros, the input type may be any integral one, and the output will
occupy the same number of bits as the input.
.Sp
There is no \f(CW\*(C`toFOLD_L1\*(C'\fR nor \f(CW\*(C`toFOLD_LATIN1\*(C'\fR as the foldcase of some code
points in the 0..255 range is above that range or consists of multiple
characters.  Instead use \f(CW\*(C`toFOLD_uvchr\*(C'\fR.
.Sp
\&\f(CW\*(C`toFOLD_uvchr\*(C'\fR returns the foldcase of any Unicode code point.  The return
value is identical to that of \f(CW\*(C`toFOLD_A\*(C'\fR for input code points in the ASCII
range.  The foldcase of the vast majority of Unicode code points is the same
as the code point itself.  For these, and for code points above the legal
Unicode maximum, this returns the input code point unchanged.  It additionally
stores the UTF\-8 of the result into the buffer beginning at \f(CW\*(C`s\*(C'\fR, and its
length in bytes into \f(CW*lenp\fR.  The caller must have made \f(CW\*(C`s\*(C'\fR large enough to
contain at least \f(CW\*(C`UTF8_MAXBYTES_CASE+1\*(C'\fR bytes to avoid possible overflow.
.Sp
NOTE: the foldcase of a code point may be more than one code point.  The
return value of this function is only the first of these.  The entire foldcase
is returned in \f(CW\*(C`s\*(C'\fR.  To determine if the result is more than a single code
point, you can do something like this:
.Sp
.Vb 3
\& uc = toFOLD_uvchr(cp, s, &len);
\& if (len > UTF8SKIP(s)) { is multiple code points }
\& else { is a single code point }
.Ve
.Sp
\&\f(CW\*(C`toFOLD_utf8\*(C'\fR and \f(CW\*(C`toFOLD_utf8_safe\*(C'\fR are synonyms of each other.  The only
difference between these and \f(CW\*(C`toFOLD_uvchr\*(C'\fR is that the source for these is
encoded in UTF\-8, instead of being a code point.  It is passed as a buffer
starting at \f(CW\*(C`p\*(C'\fR, with \f(CW\*(C`e\*(C'\fR pointing to one byte beyond its end.  The \f(CW\*(C`p\*(C'\fR
buffer may certainly contain more than one code point; but only the first one
(up through \f(CW\*(C`e\ \-\ 1\*(C'\fR) is examined.  If the UTF\-8 for the input character is
malformed in some way, the program may croak, or the function may return the
REPLACEMENT CHARACTER, at the discretion of the implementation, and subject to
change in future releases.
.RS 4
.Sp
.Vb 5
\& UV  toFOLD          (UV cp)
\& UV  toFOLD_A        (UV cp)
\& UV  toFOLD_utf8     (U8* p, U8* e, U8* s, STRLEN* lenp)
\& UV  toFOLD_utf8_safe(U8* p, U8* e, U8* s, STRLEN* lenp)
\& UV  toFOLD_uvchr    (UV cp, U8* s, STRLEN* lenp)
.Ve
.RE
.RS 4
.RE
.ie n .IP """toLOWER""" 4
.el .IP \f(CWtoLOWER\fR 4
.IX Item "toLOWER"
.PD 0
.ie n .IP """toLOWER_A""" 4
.el .IP \f(CWtoLOWER_A\fR 4
.IX Item "toLOWER_A"
.ie n .IP """toLOWER_LATIN1""" 4
.el .IP \f(CWtoLOWER_LATIN1\fR 4
.IX Item "toLOWER_LATIN1"
.ie n .IP """toLOWER_LC""" 4
.el .IP \f(CWtoLOWER_LC\fR 4
.IX Item "toLOWER_LC"
.ie n .IP """toLOWER_L1""" 4
.el .IP \f(CWtoLOWER_L1\fR 4
.IX Item "toLOWER_L1"
.ie n .IP """toLOWER_utf8""" 4
.el .IP \f(CWtoLOWER_utf8\fR 4
.IX Item "toLOWER_utf8"
.ie n .IP """toLOWER_utf8_safe""" 4
.el .IP \f(CWtoLOWER_utf8_safe\fR 4
.IX Item "toLOWER_utf8_safe"
.ie n .IP """toLOWER_uvchr""" 4
.el .IP \f(CWtoLOWER_uvchr\fR 4
.IX Xref "toLOWER toLOWER_A toLOWER_LATIN1 toLOWER_LC toLOWER_L1 toLOWER_utf8 toLOWER_utf8_safe toLOWER_uvchr"
.IX Item "toLOWER_uvchr"
.PD
These all return the lowercase of a character.  The differences are what domain
they operate on, and whether the input is specified as a code point (those
forms with a \f(CW\*(C`cp\*(C'\fR parameter) or as a UTF\-8 string (the others).  In the latter
case, the code point to use is the first one in the buffer of UTF\-8 encoded
code points, delineated by the arguments \f(CW\*(C`p\ ..\ e\ \-\ 1\*(C'\fR.
.Sp
\&\f(CW\*(C`toLOWER\*(C'\fR and \f(CW\*(C`toLOWER_A\*(C'\fR are synonyms of each other.  They return the
lowercase of any uppercase ASCII-range code point.  All other inputs are
returned unchanged.  Since these are macros, the input type may be any integral
one, and the output will occupy the same number of bits as the input.
.Sp
\&\f(CW\*(C`toLOWER_L1\*(C'\fR and \f(CW\*(C`toLOWER_LATIN1\*(C'\fR are synonyms of each other.  They behave
identically as \f(CW\*(C`toLOWER\*(C'\fR for ASCII-range input.  But additionally will return
the lowercase of any uppercase code point in the entire 0..255 range, assuming
a Latin\-1 encoding (or the EBCDIC equivalent on such platforms).
.Sp
\&\f(CW\*(C`toLOWER_LC\*(C'\fR returns the lowercase of the input code point according to the
rules of the current POSIX locale.  Input code points outside the range 0..255
are returned unchanged.
.Sp
\&\f(CW\*(C`toLOWER_uvchr\*(C'\fR returns the lowercase of any Unicode code point.  The return
value is identical to that of \f(CW\*(C`toLOWER_L1\*(C'\fR for input code points in the 0..255
range.  The lowercase of the vast majority of Unicode code points is the same
as the code point itself.  For these, and for code points above the legal
Unicode maximum, this returns the input code point unchanged.  It additionally
stores the UTF\-8 of the result into the buffer beginning at \f(CW\*(C`s\*(C'\fR, and its
length in bytes into \f(CW*lenp\fR.  The caller must have made \f(CW\*(C`s\*(C'\fR large enough to
contain at least \f(CW\*(C`UTF8_MAXBYTES_CASE+1\*(C'\fR bytes to avoid possible overflow.
.Sp
NOTE: the lowercase of a code point may be more than one code point.  The
return value of this function is only the first of these.  The entire lowercase
is returned in \f(CW\*(C`s\*(C'\fR.  To determine if the result is more than a single code
point, you can do something like this:
.Sp
.Vb 3
\& uc = toLOWER_uvchr(cp, s, &len);
\& if (len > UTF8SKIP(s)) { is multiple code points }
\& else { is a single code point }
.Ve
.Sp
\&\f(CW\*(C`toLOWER_utf8\*(C'\fR and \f(CW\*(C`toLOWER_utf8_safe\*(C'\fR are synonyms of each other.  The only
difference between these and \f(CW\*(C`toLOWER_uvchr\*(C'\fR is that the source for these is
encoded in UTF\-8, instead of being a code point.  It is passed as a buffer
starting at \f(CW\*(C`p\*(C'\fR, with \f(CW\*(C`e\*(C'\fR pointing to one byte beyond its end.  The \f(CW\*(C`p\*(C'\fR
buffer may certainly contain more than one code point; but only the first one
(up through \f(CW\*(C`e\ \-\ 1\*(C'\fR) is examined.  If the UTF\-8 for the input character is
malformed in some way, the program may croak, or the function may return the
REPLACEMENT CHARACTER, at the discretion of the implementation, and subject to
change in future releases.
.RS 4
.Sp
.Vb 8
\& UV  toLOWER          (UV cp)
\& UV  toLOWER_A        (UV cp)
\& UV  toLOWER_LATIN1   (UV cp)
\& UV  toLOWER_LC       (UV cp)
\& UV  toLOWER_L1       (UV cp)
\& UV  toLOWER_utf8     (U8* p, U8* e, U8* s, STRLEN* lenp)
\& UV  toLOWER_utf8_safe(U8* p, U8* e, U8* s, STRLEN* lenp)
\& UV  toLOWER_uvchr    (UV cp, U8* s, STRLEN* lenp)
.Ve
.RE
.RS 4
.RE
.ie n .IP """toTITLE""" 4
.el .IP \f(CWtoTITLE\fR 4
.IX Item "toTITLE"
.PD 0
.ie n .IP """toTITLE_A""" 4
.el .IP \f(CWtoTITLE_A\fR 4
.IX Item "toTITLE_A"
.ie n .IP """toTITLE_utf8""" 4
.el .IP \f(CWtoTITLE_utf8\fR 4
.IX Item "toTITLE_utf8"
.ie n .IP """toTITLE_utf8_safe""" 4
.el .IP \f(CWtoTITLE_utf8_safe\fR 4
.IX Item "toTITLE_utf8_safe"
.ie n .IP """toTITLE_uvchr""" 4
.el .IP \f(CWtoTITLE_uvchr\fR 4
.IX Xref "toTITLE toTITLE_A toTITLE_utf8 toTITLE_utf8_safe toTITLE_uvchr"
.IX Item "toTITLE_uvchr"
.PD
These all return the titlecase of a character.  The differences are what domain
they operate on, and whether the input is specified as a code point (those
forms with a \f(CW\*(C`cp\*(C'\fR parameter) or as a UTF\-8 string (the others).  In the latter
case, the code point to use is the first one in the buffer of UTF\-8 encoded
code points, delineated by the arguments \f(CW\*(C`p\ ..\ e\ \-\ 1\*(C'\fR.
.Sp
\&\f(CW\*(C`toTITLE\*(C'\fR and \f(CW\*(C`toTITLE_A\*(C'\fR are synonyms of each other.  They return the
titlecase of any lowercase ASCII-range code point.  In this range, the
titlecase is identical to the uppercase.  All other inputs are returned
unchanged.  Since these are macros, the input type may be any integral one, and
the output will occupy the same number of bits as the input.
.Sp
There is no \f(CW\*(C`toTITLE_L1\*(C'\fR nor \f(CW\*(C`toTITLE_LATIN1\*(C'\fR as the titlecase of some code
points in the 0..255 range is above that range or consists of multiple
characters.  Instead use \f(CW\*(C`toTITLE_uvchr\*(C'\fR.
.Sp
\&\f(CW\*(C`toTITLE_uvchr\*(C'\fR returns the titlecase of any Unicode code point.  The return
value is identical to that of \f(CW\*(C`toTITLE_A\*(C'\fR for input code points in the ASCII
range.  The titlecase of the vast majority of Unicode code points is the same
as the code point itself.  For these, and for code points above the legal
Unicode maximum, this returns the input code point unchanged.  It additionally
stores the UTF\-8 of the result into the buffer beginning at \f(CW\*(C`s\*(C'\fR, and its
length in bytes into \f(CW*lenp\fR.  The caller must have made \f(CW\*(C`s\*(C'\fR large enough to
contain at least \f(CW\*(C`UTF8_MAXBYTES_CASE+1\*(C'\fR bytes to avoid possible overflow.
.Sp
NOTE: the titlecase of a code point may be more than one code point.  The
return value of this function is only the first of these.  The entire titlecase
is returned in \f(CW\*(C`s\*(C'\fR.  To determine if the result is more than a single code
point, you can do something like this:
.Sp
.Vb 3
\& uc = toTITLE_uvchr(cp, s, &len);
\& if (len > UTF8SKIP(s)) { is multiple code points }
\& else { is a single code point }
.Ve
.Sp
\&\f(CW\*(C`toTITLE_utf8\*(C'\fR and \f(CW\*(C`toTITLE_utf8_safe\*(C'\fR are synonyms of each other.  The only
difference between these and \f(CW\*(C`toTITLE_uvchr\*(C'\fR is that the source for these is
encoded in UTF\-8, instead of being a code point.  It is passed as a buffer
starting at \f(CW\*(C`p\*(C'\fR, with \f(CW\*(C`e\*(C'\fR pointing to one byte beyond its end.  The \f(CW\*(C`p\*(C'\fR
buffer may certainly contain more than one code point; but only the first one
(up through \f(CW\*(C`e\ \-\ 1\*(C'\fR) is examined.  If the UTF\-8 for the input character is
malformed in some way, the program may croak, or the function may return the
REPLACEMENT CHARACTER, at the discretion of the implementation, and subject to
change in future releases.
.RS 4
.Sp
.Vb 5
\& UV  toTITLE          (UV cp)
\& UV  toTITLE_A        (UV cp)
\& UV  toTITLE_utf8     (U8* p, U8* e, U8* s, STRLEN* lenp)
\& UV  toTITLE_utf8_safe(U8* p, U8* e, U8* s, STRLEN* lenp)
\& UV  toTITLE_uvchr    (UV cp, U8* s, STRLEN* lenp)
.Ve
.RE
.RS 4
.RE
.ie n .IP """toUPPER""" 4
.el .IP \f(CWtoUPPER\fR 4
.IX Item "toUPPER"
.PD 0
.ie n .IP """toUPPER_A""" 4
.el .IP \f(CWtoUPPER_A\fR 4
.IX Item "toUPPER_A"
.ie n .IP """toUPPER_utf8""" 4
.el .IP \f(CWtoUPPER_utf8\fR 4
.IX Item "toUPPER_utf8"
.ie n .IP """toUPPER_utf8_safe""" 4
.el .IP \f(CWtoUPPER_utf8_safe\fR 4
.IX Item "toUPPER_utf8_safe"
.ie n .IP """toUPPER_uvchr""" 4
.el .IP \f(CWtoUPPER_uvchr\fR 4
.IX Xref "toUPPER toUPPER_A toUPPER_utf8 toUPPER_utf8_safe toUPPER_uvchr"
.IX Item "toUPPER_uvchr"
.PD
These all return the uppercase of a character.  The differences are what domain
they operate on, and whether the input is specified as a code point (those
forms with a \f(CW\*(C`cp\*(C'\fR parameter) or as a UTF\-8 string (the others).  In the latter
case, the code point to use is the first one in the buffer of UTF\-8 encoded
code points, delineated by the arguments \f(CW\*(C`p\ ..\ e\ \-\ 1\*(C'\fR.
.Sp
\&\f(CW\*(C`toUPPER\*(C'\fR and \f(CW\*(C`toUPPER_A\*(C'\fR are synonyms of each other.  They return the
uppercase of any lowercase ASCII-range code point.  All other inputs are
returned unchanged.  Since these are macros, the input type may be any integral
one, and the output will occupy the same number of bits as the input.
.Sp
There is no \f(CW\*(C`toUPPER_L1\*(C'\fR nor \f(CW\*(C`toUPPER_LATIN1\*(C'\fR as the uppercase of some code
points in the 0..255 range is above that range or consists of multiple
characters.  Instead use \f(CW\*(C`toUPPER_uvchr\*(C'\fR.
.Sp
\&\f(CW\*(C`toUPPER_uvchr\*(C'\fR returns the uppercase of any Unicode code point.  The return
value is identical to that of \f(CW\*(C`toUPPER_A\*(C'\fR for input code points in the ASCII
range.  The uppercase of the vast majority of Unicode code points is the same
as the code point itself.  For these, and for code points above the legal
Unicode maximum, this returns the input code point unchanged.  It additionally
stores the UTF\-8 of the result into the buffer beginning at \f(CW\*(C`s\*(C'\fR, and its
length in bytes into \f(CW*lenp\fR.  The caller must have made \f(CW\*(C`s\*(C'\fR large enough to
contain at least \f(CW\*(C`UTF8_MAXBYTES_CASE+1\*(C'\fR bytes to avoid possible overflow.
.Sp
NOTE: the uppercase of a code point may be more than one code point.  The
return value of this function is only the first of these.  The entire uppercase
is returned in \f(CW\*(C`s\*(C'\fR.  To determine if the result is more than a single code
point, you can do something like this:
.Sp
.Vb 3
\& uc = toUPPER_uvchr(cp, s, &len);
\& if (len > UTF8SKIP(s)) { is multiple code points }
\& else { is a single code point }
.Ve
.Sp
\&\f(CW\*(C`toUPPER_utf8\*(C'\fR and \f(CW\*(C`toUPPER_utf8_safe\*(C'\fR are synonyms of each other.  The only
difference between these and \f(CW\*(C`toUPPER_uvchr\*(C'\fR is that the source for these is
encoded in UTF\-8, instead of being a code point.  It is passed as a buffer
starting at \f(CW\*(C`p\*(C'\fR, with \f(CW\*(C`e\*(C'\fR pointing to one byte beyond its end.  The \f(CW\*(C`p\*(C'\fR
buffer may certainly contain more than one code point; but only the first one
(up through \f(CW\*(C`e\ \-\ 1\*(C'\fR) is examined.  If the UTF\-8 for the input character is
malformed in some way, the program may croak, or the function may return the
REPLACEMENT CHARACTER, at the discretion of the implementation, and subject to
change in future releases.
.RS 4
.Sp
.Vb 5
\& UV  toUPPER          (UV cp)
\& UV  toUPPER_A        (UV cp)
\& UV  toUPPER_utf8     (U8* p, U8* e, U8* s, STRLEN* lenp)
\& UV  toUPPER_utf8_safe(U8* p, U8* e, U8* s, STRLEN* lenp)
\& UV  toUPPER_uvchr    (UV cp, U8* s, STRLEN* lenp)
.Ve
.RE
.RS 4
.RE
.SH "Character classification"
.IX Header "Character classification"
This section is about functions (really macros) that classify characters
into types, such as punctuation versus alphabetic, etc.  Most of these are
analogous to regular expression character classes.  (See
"POSIX Character Classes" in perlrecharclass.)  There are several variants for
each class.  (Not all macros have all variants; each item below lists the
ones valid for it.)  None are affected by \f(CW\*(C`use bytes\*(C'\fR, and only the ones
with \f(CW\*(C`LC\*(C'\fR in the name are affected by the current locale.
.PP
The base function, e.g., \f(CWisALPHA()\fR, takes any signed or unsigned value,
treating it as a code point, and returns a boolean as to whether or not the
character represented by it is (or on non-ASCII platforms, corresponds to) an
ASCII character in the named class based on platform, Unicode, and Perl rules.
If the input is a number that doesn't fit in an octet, FALSE is returned.
.PP
Variant \f(CW\*(C`is\fR\f(CIFOO\fR\f(CW_A\*(C'\fR (e.g., \f(CWisALPHA_A()\fR) is identical to the base function
with no suffix \f(CW"_A"\fR.  This variant is used to emphasize by its name that
only ASCII-range characters can return TRUE.
.PP
Variant \f(CW\*(C`is\fR\f(CIFOO\fR\f(CW_L1\*(C'\fR imposes the Latin\-1 (or EBCDIC equivalent) character set
onto the platform.  That is, the code points that are ASCII are unaffected,
since ASCII is a subset of Latin\-1.  But the non-ASCII code points are treated
as if they are Latin\-1 characters.  For example, \f(CWisWORDCHAR_L1()\fR will return
true when called with the code point 0xDF, which is a word character in both
ASCII and EBCDIC (though it represents different characters in each).
If the input is a number that doesn't fit in an octet, FALSE is returned.
(Perl's documentation uses a colloquial definition of Latin\-1, to include all
code points below 256.)
.PP
Variant \f(CW\*(C`is\fR\f(CIFOO\fR\f(CW_uvchr\*(C'\fR is exactly like the \f(CW\*(C`is\fR\f(CIFOO\fR\f(CW_L1\*(C'\fR variant, for
inputs below 256, but if the code point is larger than 255, Unicode rules are
used to determine if it is in the character class.  For example,
\&\f(CWisWORDCHAR_uvchr(0x100)\fR returns TRUE, since 0x100 is LATIN CAPITAL LETTER A
WITH MACRON in Unicode, and is a word character.
.PP
Variants \f(CW\*(C`is\fR\f(CIFOO\fR\f(CW_utf8\*(C'\fR and \f(CW\*(C`is\fR\f(CIFOO\fR\f(CW_utf8_safe\*(C'\fR are like \f(CW\*(C`is\fR\f(CIFOO\fR\f(CW_uvchr\*(C'\fR,
but are used for UTF\-8 encoded strings.  The two forms are different names for
the same thing.  Each call to one of these classifies the first character of
the string starting at \f(CW\*(C`p\*(C'\fR.  The second parameter, \f(CW\*(C`e\*(C'\fR, points to anywhere in
the string beyond the first character, up to one byte past the end of the
entire string.  Although both variants are identical, the suffix \f(CW\*(C`_safe\*(C'\fR in
one name emphasizes that it will not attempt to read beyond \f(CW\*(C`e\ \-\ 1\*(C'\fR,
provided that the constraint \f(CW\*(C`s\ <\ e\*(C'\fR is true (this is asserted for in
\&\f(CW\*(C`\-DDEBUGGING\*(C'\fR builds).  If the UTF\-8 for the input character is malformed in
some way, the program may croak, or the function may return FALSE, at the
discretion of the implementation, and subject to change in future releases.
.PP
Variant \f(CW\*(C`is\fR\f(CIFOO\fR\f(CW_LC\*(C'\fR is like the \f(CW\*(C`is\fR\f(CIFOO\fR\f(CW_A\*(C'\fR and \f(CW\*(C`is\fR\f(CIFOO\fR\f(CW_L1\*(C'\fR variants,
but the result is based on the current locale, which is what \f(CW\*(C`LC\*(C'\fR in the name
stands for.  If Perl can determine that the current locale is a UTF\-8 locale,
it uses the published Unicode rules; otherwise, it uses the C library function
that gives the named classification.  For example, \f(CWisDIGIT_LC()\fR when not in
a UTF\-8 locale returns the result of calling \f(CWisdigit()\fR.  FALSE is always
returned if the input won't fit into an octet.  On some platforms where the C
library function is known to be defective, Perl changes its result to follow
the POSIX standard's rules.
.PP
Variant \f(CW\*(C`is\fR\f(CIFOO\fR\f(CW_LC_uvchr\*(C'\fR acts exactly like \f(CW\*(C`is\fR\f(CIFOO\fR\f(CW_LC\*(C'\fR for inputs less
than 256, but for larger ones it returns the Unicode classification of the code
point.
.PP
Variants \f(CW\*(C`is\fR\f(CIFOO\fR\f(CW_LC_utf8\*(C'\fR and \f(CW\*(C`is\fR\f(CIFOO\fR\f(CW_LC_utf8_safe\*(C'\fR are like
\&\f(CW\*(C`is\fR\f(CIFOO\fR\f(CW_LC_uvchr\*(C'\fR, but are used for UTF\-8 encoded strings.  The two forms
are different names for the same thing.  Each call to one of these classifies
the first character of the string starting at \f(CW\*(C`p\*(C'\fR.  The second parameter,
\&\f(CW\*(C`e\*(C'\fR, points to anywhere in the string beyond the first character, up to one
byte past the end of the entire string.  Although both variants are identical,
the suffix \f(CW\*(C`_safe\*(C'\fR in one name emphasizes that it will not attempt to read
beyond \f(CW\*(C`e\ \-\ 1\*(C'\fR, provided that the constraint \f(CW\*(C`s\ <\ e\*(C'\fR is true (this
is asserted for in \f(CW\*(C`\-DDEBUGGING\*(C'\fR builds).  If the UTF\-8 for the input
character is malformed in some way, the program may croak, or the function may
return FALSE, at the discretion of the implementation, and subject to change in
future releases.
.ie n .IP """isALNUM""" 4
.el .IP \f(CWisALNUM\fR 4
.IX Item "isALNUM"
.PD 0
.ie n .IP """isALNUM_A""" 4
.el .IP \f(CWisALNUM_A\fR 4
.IX Item "isALNUM_A"
.ie n .IP """isALNUM_LC""" 4
.el .IP \f(CWisALNUM_LC\fR 4
.IX Item "isALNUM_LC"
.ie n .IP """isALNUM_LC_uvchr""" 4
.el .IP \f(CWisALNUM_LC_uvchr\fR 4
.IX Xref "isALNUM isALNUM_A isALNUM_LC isALNUM_LC_uvchr"
.IX Item "isALNUM_LC_uvchr"
.PD
These are each a synonym for their respectively named "\f(CW\*(C`isWORDCHAR\*(C'\fR"
variant.
.Sp
They are provided for backward compatibility, even though a word character
includes more than the standard C language meaning of alphanumeric.
To get the C language definition, use the corresponding "\f(CW\*(C`isALPHANUMERIC\*(C'\fR"
variant.
.RS 4
.Sp
.Vb 1
\& bool  isALNUM(UV ch)
.Ve
.RE
.RS 4
.RE
.ie n .IP """isALNUMC""" 4
.el .IP \f(CWisALNUMC\fR 4
.IX Item "isALNUMC"
.PD 0
.ie n .IP """isALNUMC_A""" 4
.el .IP \f(CWisALNUMC_A\fR 4
.IX Item "isALNUMC_A"
.ie n .IP """isALNUMC_LC""" 4
.el .IP \f(CWisALNUMC_LC\fR 4
.IX Item "isALNUMC_LC"
.ie n .IP """isALNUMC_LC_uvchr""" 4
.el .IP \f(CWisALNUMC_LC_uvchr\fR 4
.IX Item "isALNUMC_LC_uvchr"
.ie n .IP """isALNUMC_L1""" 4
.el .IP \f(CWisALNUMC_L1\fR 4
.IX Xref "isALNUMC isALNUMC_A isALNUMC_LC isALNUMC_LC_uvchr isALNUMC_L1"
.IX Item "isALNUMC_L1"
.PD
These are discouraged, backward compatibility macros for "\f(CW\*(C`isALPHANUMERIC\*(C'\fR".
That is, each returns a boolean indicating whether the specified character is
one of \f(CW\*(C`[A\-Za\-z0\-9]\*(C'\fR, analogous to \f(CW\*(C`m/[[:alnum:]]/\*(C'\fR.
.Sp
The \f(CW\*(C`C\*(C'\fR suffix in the names was meant to indicate that they correspond to the
C language \f(CWisalnum(3)\fR.
.RS 4
.Sp
.Vb 1
\& bool  isALNUMC(UV ch)
.Ve
.RE
.RS 4
.RE
.ie n .IP """isALPHA""" 4
.el .IP \f(CWisALPHA\fR 4
.IX Item "isALPHA"
.PD 0
.ie n .IP """isALPHA_A""" 4
.el .IP \f(CWisALPHA_A\fR 4
.IX Item "isALPHA_A"
.ie n .IP """isALPHA_LC""" 4
.el .IP \f(CWisALPHA_LC\fR 4
.IX Item "isALPHA_LC"
.ie n .IP """isALPHA_LC_utf8_safe""" 4
.el .IP \f(CWisALPHA_LC_utf8_safe\fR 4
.IX Item "isALPHA_LC_utf8_safe"
.ie n .IP """isALPHA_LC_uvchr""" 4
.el .IP \f(CWisALPHA_LC_uvchr\fR 4
.IX Item "isALPHA_LC_uvchr"
.ie n .IP """isALPHA_L1""" 4
.el .IP \f(CWisALPHA_L1\fR 4
.IX Item "isALPHA_L1"
.ie n .IP """isALPHA_utf8""" 4
.el .IP \f(CWisALPHA_utf8\fR 4
.IX Item "isALPHA_utf8"
.ie n .IP """isALPHA_utf8_safe""" 4
.el .IP \f(CWisALPHA_utf8_safe\fR 4
.IX Item "isALPHA_utf8_safe"
.ie n .IP """isALPHA_uvchr""" 4
.el .IP \f(CWisALPHA_uvchr\fR 4
.IX Xref "isALPHA isALPHA_A isALPHA_LC isALPHA_LC_utf8_safe isALPHA_LC_uvchr isALPHA_L1 isALPHA_utf8 isALPHA_utf8_safe isALPHA_uvchr"
.IX Item "isALPHA_uvchr"
.PD
Returns a boolean indicating whether the specified input is one of \f(CW\*(C`[A\-Za\-z]\*(C'\fR,
analogous to \f(CW\*(C`m/[[:alpha:]]/\*(C'\fR.
See the top of this section for an explanation of
the variants.
.RS 4
.Sp
.Vb 9
\& bool  isALPHA             (UV ch)
\& bool  isALPHA_A           (UV ch)
\& bool  isALPHA_LC          (UV ch)
\& bool  isALPHA_LC_utf8_safe(U8 * s, U8 *end)
\& bool  isALPHA_LC_uvchr    (UV ch)
\& bool  isALPHA_L1          (UV ch)
\& bool  isALPHA_utf8        (U8 * s, U8 * end)
\& bool  isALPHA_utf8_safe   (U8 * s, U8 * end)
\& bool  isALPHA_uvchr       (UV ch)
.Ve
.RE
.RS 4
.RE
.ie n .IP """isALPHANUMERIC""" 4
.el .IP \f(CWisALPHANUMERIC\fR 4
.IX Item "isALPHANUMERIC"
.PD 0
.ie n .IP """isALPHANUMERIC_A""" 4
.el .IP \f(CWisALPHANUMERIC_A\fR 4
.IX Item "isALPHANUMERIC_A"
.ie n .IP """isALPHANUMERIC_LC""" 4
.el .IP \f(CWisALPHANUMERIC_LC\fR 4
.IX Item "isALPHANUMERIC_LC"
.ie n .IP """isALPHANUMERIC_LC_utf8_safe""" 4
.el .IP \f(CWisALPHANUMERIC_LC_utf8_safe\fR 4
.IX Item "isALPHANUMERIC_LC_utf8_safe"
.ie n .IP """isALPHANUMERIC_LC_uvchr""" 4
.el .IP \f(CWisALPHANUMERIC_LC_uvchr\fR 4
.IX Item "isALPHANUMERIC_LC_uvchr"
.ie n .IP """isALPHANUMERIC_L1""" 4
.el .IP \f(CWisALPHANUMERIC_L1\fR 4
.IX Item "isALPHANUMERIC_L1"
.ie n .IP """isALPHANUMERIC_utf8""" 4
.el .IP \f(CWisALPHANUMERIC_utf8\fR 4
.IX Item "isALPHANUMERIC_utf8"
.ie n .IP """isALPHANUMERIC_utf8_safe""" 4
.el .IP \f(CWisALPHANUMERIC_utf8_safe\fR 4
.IX Item "isALPHANUMERIC_utf8_safe"
.ie n .IP """isALPHANUMERIC_uvchr""" 4
.el .IP \f(CWisALPHANUMERIC_uvchr\fR 4
.IX Xref "isALPHANUMERIC isALPHANUMERIC_A isALPHANUMERIC_LC isALPHANUMERIC_LC_utf8_safe isALPHANUMERIC_LC_uvchr isALPHANUMERIC_L1 isALPHANUMERIC_utf8 isALPHANUMERIC_utf8_safe isALPHANUMERIC_uvchr"
.IX Item "isALPHANUMERIC_uvchr"
.PD
Returns a boolean indicating whether the specified character is one of
\&\f(CW\*(C`[A\-Za\-z0\-9]\*(C'\fR, analogous to \f(CW\*(C`m/[[:alnum:]]/\*(C'\fR.
See the top of this section for an explanation of
the variants.
.RS 4
.Sp
.Vb 9
\& bool  isALPHANUMERIC             (UV ch)
\& bool  isALPHANUMERIC_A           (UV ch)
\& bool  isALPHANUMERIC_LC          (UV ch)
\& bool  isALPHANUMERIC_LC_utf8_safe(U8 * s, U8 *end)
\& bool  isALPHANUMERIC_LC_uvchr    (UV ch)
\& bool  isALPHANUMERIC_L1          (UV ch)
\& bool  isALPHANUMERIC_utf8        (U8 * s, U8 * end)
\& bool  isALPHANUMERIC_utf8_safe   (U8 * s, U8 * end)
\& bool  isALPHANUMERIC_uvchr       (UV ch)
.Ve
.RE
.RS 4
.RE
.ie n .IP """isASCII""" 4
.el .IP \f(CWisASCII\fR 4
.IX Item "isASCII"
.PD 0
.ie n .IP """isASCII_A""" 4
.el .IP \f(CWisASCII_A\fR 4
.IX Item "isASCII_A"
.ie n .IP """isASCII_LC""" 4
.el .IP \f(CWisASCII_LC\fR 4
.IX Item "isASCII_LC"
.ie n .IP """isASCII_LC_utf8_safe""" 4
.el .IP \f(CWisASCII_LC_utf8_safe\fR 4
.IX Item "isASCII_LC_utf8_safe"
.ie n .IP """isASCII_LC_uvchr""" 4
.el .IP \f(CWisASCII_LC_uvchr\fR 4
.IX Item "isASCII_LC_uvchr"
.ie n .IP """isASCII_L1""" 4
.el .IP \f(CWisASCII_L1\fR 4
.IX Item "isASCII_L1"
.ie n .IP """isASCII_utf8""" 4
.el .IP \f(CWisASCII_utf8\fR 4
.IX Item "isASCII_utf8"
.ie n .IP """isASCII_utf8_safe""" 4
.el .IP \f(CWisASCII_utf8_safe\fR 4
.IX Item "isASCII_utf8_safe"
.ie n .IP """isASCII_uvchr""" 4
.el .IP \f(CWisASCII_uvchr\fR 4
.IX Xref "isASCII isASCII_A isASCII_LC isASCII_LC_utf8_safe isASCII_LC_uvchr isASCII_L1 isASCII_utf8 isASCII_utf8_safe isASCII_uvchr"
.IX Item "isASCII_uvchr"
.PD
Returns a boolean indicating whether the specified character is one of the 128
characters in the ASCII character set, analogous to \f(CW\*(C`m/[[:ascii:]]/\*(C'\fR.
On non-ASCII platforms, it returns TRUE iff this
character corresponds to an ASCII character.  Variants \f(CWisASCII_A()\fR and
\&\f(CWisASCII_L1()\fR are identical to \f(CWisASCII()\fR.
See the top of this section for an explanation of
the variants.
Note, however, that some platforms do not have the C library routine
\&\f(CWisascii()\fR.  In these cases, the variants whose names contain \f(CW\*(C`LC\*(C'\fR are the
same as the corresponding ones without.
.Sp
Also note, that because all ASCII characters are UTF\-8 invariant (meaning they
have the exact same representation (always a single byte) whether encoded in
UTF\-8 or not), \f(CW\*(C`isASCII\*(C'\fR will give the correct results when called with any
byte in any string encoded or not in UTF\-8.  And similarly \f(CW\*(C`isASCII_utf8\*(C'\fR and
\&\f(CW\*(C`isASCII_utf8_safe\*(C'\fR will work properly on any string encoded or not in UTF\-8.
.RS 4
.Sp
.Vb 9
\& bool  isASCII             (UV ch)
\& bool  isASCII_A           (UV ch)
\& bool  isASCII_LC          (UV ch)
\& bool  isASCII_LC_utf8_safe(U8 * s, U8 *end)
\& bool  isASCII_LC_uvchr    (UV ch)
\& bool  isASCII_L1          (UV ch)
\& bool  isASCII_utf8        (U8 * s, U8 * end)
\& bool  isASCII_utf8_safe   (U8 * s, U8 * end)
\& bool  isASCII_uvchr       (UV ch)
.Ve
.RE
.RS 4
.RE
.ie n .IP """isBLANK""" 4
.el .IP \f(CWisBLANK\fR 4
.IX Item "isBLANK"
.PD 0
.ie n .IP """isBLANK_A""" 4
.el .IP \f(CWisBLANK_A\fR 4
.IX Item "isBLANK_A"
.ie n .IP """isBLANK_LC""" 4
.el .IP \f(CWisBLANK_LC\fR 4
.IX Item "isBLANK_LC"
.ie n .IP """isBLANK_LC_utf8_safe""" 4
.el .IP \f(CWisBLANK_LC_utf8_safe\fR 4
.IX Item "isBLANK_LC_utf8_safe"
.ie n .IP """isBLANK_LC_uvchr""" 4
.el .IP \f(CWisBLANK_LC_uvchr\fR 4
.IX Item "isBLANK_LC_uvchr"
.ie n .IP """isBLANK_L1""" 4
.el .IP \f(CWisBLANK_L1\fR 4
.IX Item "isBLANK_L1"
.ie n .IP """isBLANK_utf8""" 4
.el .IP \f(CWisBLANK_utf8\fR 4
.IX Item "isBLANK_utf8"
.ie n .IP """isBLANK_utf8_safe""" 4
.el .IP \f(CWisBLANK_utf8_safe\fR 4
.IX Item "isBLANK_utf8_safe"
.ie n .IP """isBLANK_uvchr""" 4
.el .IP \f(CWisBLANK_uvchr\fR 4
.IX Xref "isBLANK isBLANK_A isBLANK_LC isBLANK_LC_utf8_safe isBLANK_LC_uvchr isBLANK_L1 isBLANK_utf8 isBLANK_utf8_safe isBLANK_uvchr"
.IX Item "isBLANK_uvchr"
.PD
Returns a boolean indicating whether the specified character is a
character considered to be a blank, analogous to \f(CW\*(C`m/[[:blank:]]/\*(C'\fR.
See the top of this section for an explanation of
the variants.
Note,
however, that some platforms do not have the C library routine
\&\f(CWisblank()\fR.  In these cases, the variants whose names contain \f(CW\*(C`LC\*(C'\fR are
the same as the corresponding ones without.
.RS 4
.Sp
.Vb 9
\& bool  isBLANK             (UV ch)
\& bool  isBLANK_A           (UV ch)
\& bool  isBLANK_LC          (UV ch)
\& bool  isBLANK_LC_utf8_safe(U8 * s, U8 *end)
\& bool  isBLANK_LC_uvchr    (UV ch)
\& bool  isBLANK_L1          (UV ch)
\& bool  isBLANK_utf8        (U8 * s, U8 * end)
\& bool  isBLANK_utf8_safe   (U8 * s, U8 * end)
\& bool  isBLANK_uvchr       (UV ch)
.Ve
.RE
.RS 4
.RE
.ie n .IP """isCNTRL""" 4
.el .IP \f(CWisCNTRL\fR 4
.IX Item "isCNTRL"
.PD 0
.ie n .IP """isCNTRL_A""" 4
.el .IP \f(CWisCNTRL_A\fR 4
.IX Item "isCNTRL_A"
.ie n .IP """isCNTRL_LC""" 4
.el .IP \f(CWisCNTRL_LC\fR 4
.IX Item "isCNTRL_LC"
.ie n .IP """isCNTRL_LC_utf8_safe""" 4
.el .IP \f(CWisCNTRL_LC_utf8_safe\fR 4
.IX Item "isCNTRL_LC_utf8_safe"
.ie n .IP """isCNTRL_LC_uvchr""" 4
.el .IP \f(CWisCNTRL_LC_uvchr\fR 4
.IX Item "isCNTRL_LC_uvchr"
.ie n .IP """isCNTRL_L1""" 4
.el .IP \f(CWisCNTRL_L1\fR 4
.IX Item "isCNTRL_L1"
.ie n .IP """isCNTRL_utf8""" 4
.el .IP \f(CWisCNTRL_utf8\fR 4
.IX Item "isCNTRL_utf8"
.ie n .IP """isCNTRL_utf8_safe""" 4
.el .IP \f(CWisCNTRL_utf8_safe\fR 4
.IX Item "isCNTRL_utf8_safe"
.ie n .IP """isCNTRL_uvchr""" 4
.el .IP \f(CWisCNTRL_uvchr\fR 4
.IX Xref "isCNTRL isCNTRL_A isCNTRL_LC isCNTRL_LC_utf8_safe isCNTRL_LC_uvchr isCNTRL_L1 isCNTRL_utf8 isCNTRL_utf8_safe isCNTRL_uvchr"
.IX Item "isCNTRL_uvchr"
.PD
Returns a boolean indicating whether the specified character is a
control character, analogous to \f(CW\*(C`m/[[:cntrl:]]/\*(C'\fR.
See the top of this section for an explanation of
the variants.
On EBCDIC platforms, you almost always want to use the \f(CW\*(C`isCNTRL_L1\*(C'\fR variant.
.RS 4
.Sp
.Vb 9
\& bool  isCNTRL             (UV ch)
\& bool  isCNTRL_A           (UV ch)
\& bool  isCNTRL_LC          (UV ch)
\& bool  isCNTRL_LC_utf8_safe(U8 * s, U8 *end)
\& bool  isCNTRL_LC_uvchr    (UV ch)
\& bool  isCNTRL_L1          (UV ch)
\& bool  isCNTRL_utf8        (U8 * s, U8 * end)
\& bool  isCNTRL_utf8_safe   (U8 * s, U8 * end)
\& bool  isCNTRL_uvchr       (UV ch)
.Ve
.RE
.RS 4
.RE
.ie n .IP """isDIGIT""" 4
.el .IP \f(CWisDIGIT\fR 4
.IX Item "isDIGIT"
.PD 0
.ie n .IP """isDIGIT_A""" 4
.el .IP \f(CWisDIGIT_A\fR 4
.IX Item "isDIGIT_A"
.ie n .IP """isDIGIT_LC""" 4
.el .IP \f(CWisDIGIT_LC\fR 4
.IX Item "isDIGIT_LC"
.ie n .IP """isDIGIT_LC_utf8_safe""" 4
.el .IP \f(CWisDIGIT_LC_utf8_safe\fR 4
.IX Item "isDIGIT_LC_utf8_safe"
.ie n .IP """isDIGIT_LC_uvchr""" 4
.el .IP \f(CWisDIGIT_LC_uvchr\fR 4
.IX Item "isDIGIT_LC_uvchr"
.ie n .IP """isDIGIT_L1""" 4
.el .IP \f(CWisDIGIT_L1\fR 4
.IX Item "isDIGIT_L1"
.ie n .IP """isDIGIT_utf8""" 4
.el .IP \f(CWisDIGIT_utf8\fR 4
.IX Item "isDIGIT_utf8"
.ie n .IP """isDIGIT_utf8_safe""" 4
.el .IP \f(CWisDIGIT_utf8_safe\fR 4
.IX Item "isDIGIT_utf8_safe"
.ie n .IP """isDIGIT_uvchr""" 4
.el .IP \f(CWisDIGIT_uvchr\fR 4
.IX Xref "isDIGIT isDIGIT_A isDIGIT_LC isDIGIT_LC_utf8_safe isDIGIT_LC_uvchr isDIGIT_L1 isDIGIT_utf8 isDIGIT_utf8_safe isDIGIT_uvchr"
.IX Item "isDIGIT_uvchr"
.PD
Returns a boolean indicating whether the specified character is a
digit, analogous to \f(CW\*(C`m/[[:digit:]]/\*(C'\fR.
Variants \f(CW\*(C`isDIGIT_A\*(C'\fR and \f(CW\*(C`isDIGIT_L1\*(C'\fR are identical to \f(CW\*(C`isDIGIT\*(C'\fR.
See the top of this section for an explanation of
the variants.
.RS 4
.Sp
.Vb 9
\& bool  isDIGIT             (UV ch)
\& bool  isDIGIT_A           (UV ch)
\& bool  isDIGIT_LC          (UV ch)
\& bool  isDIGIT_LC_utf8_safe(U8 * s, U8 *end)
\& bool  isDIGIT_LC_uvchr    (UV ch)
\& bool  isDIGIT_L1          (UV ch)
\& bool  isDIGIT_utf8        (U8 * s, U8 * end)
\& bool  isDIGIT_utf8_safe   (U8 * s, U8 * end)
\& bool  isDIGIT_uvchr       (UV ch)
.Ve
.RE
.RS 4
.RE
.ie n .IP """isGRAPH""" 4
.el .IP \f(CWisGRAPH\fR 4
.IX Item "isGRAPH"
.PD 0
.ie n .IP """isGRAPH_A""" 4
.el .IP \f(CWisGRAPH_A\fR 4
.IX Item "isGRAPH_A"
.ie n .IP """isGRAPH_LC""" 4
.el .IP \f(CWisGRAPH_LC\fR 4
.IX Item "isGRAPH_LC"
.ie n .IP """isGRAPH_LC_utf8_safe""" 4
.el .IP \f(CWisGRAPH_LC_utf8_safe\fR 4
.IX Item "isGRAPH_LC_utf8_safe"
.ie n .IP """isGRAPH_LC_uvchr""" 4
.el .IP \f(CWisGRAPH_LC_uvchr\fR 4
.IX Item "isGRAPH_LC_uvchr"
.ie n .IP """isGRAPH_L1""" 4
.el .IP \f(CWisGRAPH_L1\fR 4
.IX Item "isGRAPH_L1"
.ie n .IP """isGRAPH_utf8""" 4
.el .IP \f(CWisGRAPH_utf8\fR 4
.IX Item "isGRAPH_utf8"
.ie n .IP """isGRAPH_utf8_safe""" 4
.el .IP \f(CWisGRAPH_utf8_safe\fR 4
.IX Item "isGRAPH_utf8_safe"
.ie n .IP """isGRAPH_uvchr""" 4
.el .IP \f(CWisGRAPH_uvchr\fR 4
.IX Xref "isGRAPH isGRAPH_A isGRAPH_LC isGRAPH_LC_utf8_safe isGRAPH_LC_uvchr isGRAPH_L1 isGRAPH_utf8 isGRAPH_utf8_safe isGRAPH_uvchr"
.IX Item "isGRAPH_uvchr"
.PD
Returns a boolean indicating whether the specified character is a
graphic character, analogous to \f(CW\*(C`m/[[:graph:]]/\*(C'\fR.
See the top of this section for an explanation of
the variants.
.RS 4
.Sp
.Vb 9
\& bool  isGRAPH             (UV ch)
\& bool  isGRAPH_A           (UV ch)
\& bool  isGRAPH_LC          (UV ch)
\& bool  isGRAPH_LC_utf8_safe(U8 * s, U8 *end)
\& bool  isGRAPH_LC_uvchr    (UV ch)
\& bool  isGRAPH_L1          (UV ch)
\& bool  isGRAPH_utf8        (U8 * s, U8 * end)
\& bool  isGRAPH_utf8_safe   (U8 * s, U8 * end)
\& bool  isGRAPH_uvchr       (UV ch)
.Ve
.RE
.RS 4
.RE
.ie n .IP """isIDCONT""" 4
.el .IP \f(CWisIDCONT\fR 4
.IX Item "isIDCONT"
.PD 0
.ie n .IP """isIDCONT_A""" 4
.el .IP \f(CWisIDCONT_A\fR 4
.IX Item "isIDCONT_A"
.ie n .IP """isIDCONT_LC""" 4
.el .IP \f(CWisIDCONT_LC\fR 4
.IX Item "isIDCONT_LC"
.ie n .IP """isIDCONT_LC_utf8_safe""" 4
.el .IP \f(CWisIDCONT_LC_utf8_safe\fR 4
.IX Item "isIDCONT_LC_utf8_safe"
.ie n .IP """isIDCONT_LC_uvchr""" 4
.el .IP \f(CWisIDCONT_LC_uvchr\fR 4
.IX Item "isIDCONT_LC_uvchr"
.ie n .IP """isIDCONT_L1""" 4
.el .IP \f(CWisIDCONT_L1\fR 4
.IX Item "isIDCONT_L1"
.ie n .IP """isIDCONT_utf8""" 4
.el .IP \f(CWisIDCONT_utf8\fR 4
.IX Item "isIDCONT_utf8"
.ie n .IP """isIDCONT_utf8_safe""" 4
.el .IP \f(CWisIDCONT_utf8_safe\fR 4
.IX Item "isIDCONT_utf8_safe"
.ie n .IP """isIDCONT_uvchr""" 4
.el .IP \f(CWisIDCONT_uvchr\fR 4
.IX Xref "isIDCONT isIDCONT_A isIDCONT_LC isIDCONT_LC_utf8_safe isIDCONT_LC_uvchr isIDCONT_L1 isIDCONT_utf8 isIDCONT_utf8_safe isIDCONT_uvchr"
.IX Item "isIDCONT_uvchr"
.PD
Returns a boolean indicating whether the specified character can be the
second or succeeding character of an identifier.  This is very close to, but
not quite the same as the official Unicode property \f(CW\*(C`XID_Continue\*(C'\fR.  The
difference is that this returns true only if the input character also matches
"isWORDCHAR".  See the top of this section for
an explanation of the variants.
.RS 4
.Sp
.Vb 9
\& bool  isIDCONT             (UV ch)
\& bool  isIDCONT_A           (UV ch)
\& bool  isIDCONT_LC          (UV ch)
\& bool  isIDCONT_LC_utf8_safe(U8 * s, U8 *end)
\& bool  isIDCONT_LC_uvchr    (UV ch)
\& bool  isIDCONT_L1          (UV ch)
\& bool  isIDCONT_utf8        (U8 * s, U8 * end)
\& bool  isIDCONT_utf8_safe   (U8 * s, U8 * end)
\& bool  isIDCONT_uvchr       (UV ch)
.Ve
.RE
.RS 4
.RE
.ie n .IP """isIDFIRST""" 4
.el .IP \f(CWisIDFIRST\fR 4
.IX Item "isIDFIRST"
.PD 0
.ie n .IP """isIDFIRST_A""" 4
.el .IP \f(CWisIDFIRST_A\fR 4
.IX Item "isIDFIRST_A"
.ie n .IP """isIDFIRST_LC""" 4
.el .IP \f(CWisIDFIRST_LC\fR 4
.IX Item "isIDFIRST_LC"
.ie n .IP """isIDFIRST_LC_utf8_safe""" 4
.el .IP \f(CWisIDFIRST_LC_utf8_safe\fR 4
.IX Item "isIDFIRST_LC_utf8_safe"
.ie n .IP """isIDFIRST_LC_uvchr""" 4
.el .IP \f(CWisIDFIRST_LC_uvchr\fR 4
.IX Item "isIDFIRST_LC_uvchr"
.ie n .IP """isIDFIRST_L1""" 4
.el .IP \f(CWisIDFIRST_L1\fR 4
.IX Item "isIDFIRST_L1"
.ie n .IP """isIDFIRST_utf8""" 4
.el .IP \f(CWisIDFIRST_utf8\fR 4
.IX Item "isIDFIRST_utf8"
.ie n .IP """isIDFIRST_utf8_safe""" 4
.el .IP \f(CWisIDFIRST_utf8_safe\fR 4
.IX Item "isIDFIRST_utf8_safe"
.ie n .IP """isIDFIRST_uvchr""" 4
.el .IP \f(CWisIDFIRST_uvchr\fR 4
.IX Xref "isIDFIRST isIDFIRST_A isIDFIRST_LC isIDFIRST_LC_utf8_safe isIDFIRST_LC_uvchr isIDFIRST_L1 isIDFIRST_utf8 isIDFIRST_utf8_safe isIDFIRST_uvchr"
.IX Item "isIDFIRST_uvchr"
.PD
Returns a boolean indicating whether the specified character can be the first
character of an identifier.  This is very close to, but not quite the same as
the official Unicode property \f(CW\*(C`XID_Start\*(C'\fR.  The difference is that this
returns true only if the input character also matches "isWORDCHAR".
See the top of this section for an explanation of
the variants.
.RS 4
.Sp
.Vb 9
\& bool  isIDFIRST             (UV ch)
\& bool  isIDFIRST_A           (UV ch)
\& bool  isIDFIRST_LC          (UV ch)
\& bool  isIDFIRST_LC_utf8_safe(U8 * s, U8 *end)
\& bool  isIDFIRST_LC_uvchr    (UV ch)
\& bool  isIDFIRST_L1          (UV ch)
\& bool  isIDFIRST_utf8        (U8 * s, U8 * end)
\& bool  isIDFIRST_utf8_safe   (U8 * s, U8 * end)
\& bool  isIDFIRST_uvchr       (UV ch)
.Ve
.RE
.RS 4
.RE
.ie n .IP """isLOWER""" 4
.el .IP \f(CWisLOWER\fR 4
.IX Item "isLOWER"
.PD 0
.ie n .IP """isLOWER_A""" 4
.el .IP \f(CWisLOWER_A\fR 4
.IX Item "isLOWER_A"
.ie n .IP """isLOWER_LC""" 4
.el .IP \f(CWisLOWER_LC\fR 4
.IX Item "isLOWER_LC"
.ie n .IP """isLOWER_LC_utf8_safe""" 4
.el .IP \f(CWisLOWER_LC_utf8_safe\fR 4
.IX Item "isLOWER_LC_utf8_safe"
.ie n .IP """isLOWER_LC_uvchr""" 4
.el .IP \f(CWisLOWER_LC_uvchr\fR 4
.IX Item "isLOWER_LC_uvchr"
.ie n .IP """isLOWER_L1""" 4
.el .IP \f(CWisLOWER_L1\fR 4
.IX Item "isLOWER_L1"
.ie n .IP """isLOWER_utf8""" 4
.el .IP \f(CWisLOWER_utf8\fR 4
.IX Item "isLOWER_utf8"
.ie n .IP """isLOWER_utf8_safe""" 4
.el .IP \f(CWisLOWER_utf8_safe\fR 4
.IX Item "isLOWER_utf8_safe"
.ie n .IP """isLOWER_uvchr""" 4
.el .IP \f(CWisLOWER_uvchr\fR 4
.IX Xref "isLOWER isLOWER_A isLOWER_LC isLOWER_LC_utf8_safe isLOWER_LC_uvchr isLOWER_L1 isLOWER_utf8 isLOWER_utf8_safe isLOWER_uvchr"
.IX Item "isLOWER_uvchr"
.PD
Returns a boolean indicating whether the specified character is a
lowercase character, analogous to \f(CW\*(C`m/[[:lower:]]/\*(C'\fR.
See the top of this section for an explanation of
the variants
.RS 4
.Sp
.Vb 9
\& bool  isLOWER             (UV ch)
\& bool  isLOWER_A           (UV ch)
\& bool  isLOWER_LC          (UV ch)
\& bool  isLOWER_LC_utf8_safe(U8 * s, U8 *end)
\& bool  isLOWER_LC_uvchr    (UV ch)
\& bool  isLOWER_L1          (UV ch)
\& bool  isLOWER_utf8        (U8 * s, U8 * end)
\& bool  isLOWER_utf8_safe   (U8 * s, U8 * end)
\& bool  isLOWER_uvchr       (UV ch)
.Ve
.RE
.RS 4
.RE
.ie n .IP """isOCTAL""" 4
.el .IP \f(CWisOCTAL\fR 4
.IX Item "isOCTAL"
.PD 0
.ie n .IP """isOCTAL_A""" 4
.el .IP \f(CWisOCTAL_A\fR 4
.IX Item "isOCTAL_A"
.ie n .IP """isOCTAL_L1""" 4
.el .IP \f(CWisOCTAL_L1\fR 4
.IX Xref "isOCTAL isOCTAL_A isOCTAL_L1"
.IX Item "isOCTAL_L1"
.PD
Returns a boolean indicating whether the specified character is an
octal digit, [0\-7].
The only two variants are \f(CW\*(C`isOCTAL_A\*(C'\fR and \f(CW\*(C`isOCTAL_L1\*(C'\fR; each is identical to
\&\f(CW\*(C`isOCTAL\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& bool  isOCTAL(UV ch)
.Ve
.RE
.RS 4
.RE
.ie n .IP """isPRINT""" 4
.el .IP \f(CWisPRINT\fR 4
.IX Item "isPRINT"
.PD 0
.ie n .IP """isPRINT_A""" 4
.el .IP \f(CWisPRINT_A\fR 4
.IX Item "isPRINT_A"
.ie n .IP """isPRINT_LC""" 4
.el .IP \f(CWisPRINT_LC\fR 4
.IX Item "isPRINT_LC"
.ie n .IP """isPRINT_LC_utf8_safe""" 4
.el .IP \f(CWisPRINT_LC_utf8_safe\fR 4
.IX Item "isPRINT_LC_utf8_safe"
.ie n .IP """isPRINT_LC_uvchr""" 4
.el .IP \f(CWisPRINT_LC_uvchr\fR 4
.IX Item "isPRINT_LC_uvchr"
.ie n .IP """isPRINT_L1""" 4
.el .IP \f(CWisPRINT_L1\fR 4
.IX Item "isPRINT_L1"
.ie n .IP """isPRINT_utf8""" 4
.el .IP \f(CWisPRINT_utf8\fR 4
.IX Item "isPRINT_utf8"
.ie n .IP """isPRINT_utf8_safe""" 4
.el .IP \f(CWisPRINT_utf8_safe\fR 4
.IX Item "isPRINT_utf8_safe"
.ie n .IP """isPRINT_uvchr""" 4
.el .IP \f(CWisPRINT_uvchr\fR 4
.IX Xref "isPRINT isPRINT_A isPRINT_LC isPRINT_LC_utf8_safe isPRINT_LC_uvchr isPRINT_L1 isPRINT_utf8 isPRINT_utf8_safe isPRINT_uvchr"
.IX Item "isPRINT_uvchr"
.PD
Returns a boolean indicating whether the specified character is a
printable character, analogous to \f(CW\*(C`m/[[:print:]]/\*(C'\fR.
See the top of this section for an explanation of
the variants.
.RS 4
.Sp
.Vb 9
\& bool  isPRINT             (UV ch)
\& bool  isPRINT_A           (UV ch)
\& bool  isPRINT_LC          (UV ch)
\& bool  isPRINT_LC_utf8_safe(U8 * s, U8 *end)
\& bool  isPRINT_LC_uvchr    (UV ch)
\& bool  isPRINT_L1          (UV ch)
\& bool  isPRINT_utf8        (U8 * s, U8 * end)
\& bool  isPRINT_utf8_safe   (U8 * s, U8 * end)
\& bool  isPRINT_uvchr       (UV ch)
.Ve
.RE
.RS 4
.RE
.ie n .IP """isPSXSPC""" 4
.el .IP \f(CWisPSXSPC\fR 4
.IX Item "isPSXSPC"
.PD 0
.ie n .IP """isPSXSPC_A""" 4
.el .IP \f(CWisPSXSPC_A\fR 4
.IX Item "isPSXSPC_A"
.ie n .IP """isPSXSPC_LC""" 4
.el .IP \f(CWisPSXSPC_LC\fR 4
.IX Item "isPSXSPC_LC"
.ie n .IP """isPSXSPC_LC_utf8_safe""" 4
.el .IP \f(CWisPSXSPC_LC_utf8_safe\fR 4
.IX Item "isPSXSPC_LC_utf8_safe"
.ie n .IP """isPSXSPC_LC_uvchr""" 4
.el .IP \f(CWisPSXSPC_LC_uvchr\fR 4
.IX Item "isPSXSPC_LC_uvchr"
.ie n .IP """isPSXSPC_L1""" 4
.el .IP \f(CWisPSXSPC_L1\fR 4
.IX Item "isPSXSPC_L1"
.ie n .IP """isPSXSPC_utf8""" 4
.el .IP \f(CWisPSXSPC_utf8\fR 4
.IX Item "isPSXSPC_utf8"
.ie n .IP """isPSXSPC_utf8_safe""" 4
.el .IP \f(CWisPSXSPC_utf8_safe\fR 4
.IX Item "isPSXSPC_utf8_safe"
.ie n .IP """isPSXSPC_uvchr""" 4
.el .IP \f(CWisPSXSPC_uvchr\fR 4
.IX Xref "isPSXSPC isPSXSPC_A isPSXSPC_LC isPSXSPC_LC_utf8_safe isPSXSPC_LC_uvchr isPSXSPC_L1 isPSXSPC_utf8 isPSXSPC_utf8_safe isPSXSPC_uvchr"
.IX Item "isPSXSPC_uvchr"
.PD
(short for Posix Space)
Starting in 5.18, this is identical in all its forms to the
corresponding \f(CWisSPACE()\fR macros.
The locale forms of this macro are identical to their corresponding
\&\f(CWisSPACE()\fR forms in all Perl releases.  In releases prior to 5.18, the
non-locale forms differ from their \f(CWisSPACE()\fR forms only in that the
\&\f(CWisSPACE()\fR forms don't match a Vertical Tab, and the \f(CWisPSXSPC()\fR forms do.
Otherwise they are identical.  Thus this macro is analogous to what
\&\f(CW\*(C`m/[[:space:]]/\*(C'\fR matches in a regular expression.
See the top of this section for an explanation of
the variants.
.RS 4
.Sp
.Vb 9
\& bool  isPSXSPC             (UV ch)
\& bool  isPSXSPC_A           (UV ch)
\& bool  isPSXSPC_LC          (UV ch)
\& bool  isPSXSPC_LC_utf8_safe(U8 * s, U8 *end)
\& bool  isPSXSPC_LC_uvchr    (UV ch)
\& bool  isPSXSPC_L1          (UV ch)
\& bool  isPSXSPC_utf8        (U8 * s, U8 * end)
\& bool  isPSXSPC_utf8_safe   (U8 * s, U8 * end)
\& bool  isPSXSPC_uvchr       (UV ch)
.Ve
.RE
.RS 4
.RE
.ie n .IP """isPUNCT""" 4
.el .IP \f(CWisPUNCT\fR 4
.IX Item "isPUNCT"
.PD 0
.ie n .IP """isPUNCT_A""" 4
.el .IP \f(CWisPUNCT_A\fR 4
.IX Item "isPUNCT_A"
.ie n .IP """isPUNCT_LC""" 4
.el .IP \f(CWisPUNCT_LC\fR 4
.IX Item "isPUNCT_LC"
.ie n .IP """isPUNCT_LC_utf8_safe""" 4
.el .IP \f(CWisPUNCT_LC_utf8_safe\fR 4
.IX Item "isPUNCT_LC_utf8_safe"
.ie n .IP """isPUNCT_LC_uvchr""" 4
.el .IP \f(CWisPUNCT_LC_uvchr\fR 4
.IX Item "isPUNCT_LC_uvchr"
.ie n .IP """isPUNCT_L1""" 4
.el .IP \f(CWisPUNCT_L1\fR 4
.IX Item "isPUNCT_L1"
.ie n .IP """isPUNCT_utf8""" 4
.el .IP \f(CWisPUNCT_utf8\fR 4
.IX Item "isPUNCT_utf8"
.ie n .IP """isPUNCT_utf8_safe""" 4
.el .IP \f(CWisPUNCT_utf8_safe\fR 4
.IX Item "isPUNCT_utf8_safe"
.ie n .IP """isPUNCT_uvchr""" 4
.el .IP \f(CWisPUNCT_uvchr\fR 4
.IX Xref "isPUNCT isPUNCT_A isPUNCT_LC isPUNCT_LC_utf8_safe isPUNCT_LC_uvchr isPUNCT_L1 isPUNCT_utf8 isPUNCT_utf8_safe isPUNCT_uvchr"
.IX Item "isPUNCT_uvchr"
.PD
Returns a boolean indicating whether the specified character is a
punctuation character, analogous to \f(CW\*(C`m/[[:punct:]]/\*(C'\fR.
Note that the definition of what is punctuation isn't as
straightforward as one might desire.  See "POSIX Character
Classes" in perlrecharclass for details.
See the top of this section for an explanation of
the variants.
.RS 4
.Sp
.Vb 9
\& bool  isPUNCT             (UV ch)
\& bool  isPUNCT_A           (UV ch)
\& bool  isPUNCT_LC          (UV ch)
\& bool  isPUNCT_LC_utf8_safe(U8 * s, U8 *end)
\& bool  isPUNCT_LC_uvchr    (UV ch)
\& bool  isPUNCT_L1          (UV ch)
\& bool  isPUNCT_utf8        (U8 * s, U8 * end)
\& bool  isPUNCT_utf8_safe   (U8 * s, U8 * end)
\& bool  isPUNCT_uvchr       (UV ch)
.Ve
.RE
.RS 4
.RE
.ie n .IP """isSPACE""" 4
.el .IP \f(CWisSPACE\fR 4
.IX Item "isSPACE"
.PD 0
.ie n .IP """isSPACE_A""" 4
.el .IP \f(CWisSPACE_A\fR 4
.IX Item "isSPACE_A"
.ie n .IP """isSPACE_LC""" 4
.el .IP \f(CWisSPACE_LC\fR 4
.IX Item "isSPACE_LC"
.ie n .IP """isSPACE_LC_utf8_safe""" 4
.el .IP \f(CWisSPACE_LC_utf8_safe\fR 4
.IX Item "isSPACE_LC_utf8_safe"
.ie n .IP """isSPACE_LC_uvchr""" 4
.el .IP \f(CWisSPACE_LC_uvchr\fR 4
.IX Item "isSPACE_LC_uvchr"
.ie n .IP """isSPACE_L1""" 4
.el .IP \f(CWisSPACE_L1\fR 4
.IX Item "isSPACE_L1"
.ie n .IP """isSPACE_utf8""" 4
.el .IP \f(CWisSPACE_utf8\fR 4
.IX Item "isSPACE_utf8"
.ie n .IP """isSPACE_utf8_safe""" 4
.el .IP \f(CWisSPACE_utf8_safe\fR 4
.IX Item "isSPACE_utf8_safe"
.ie n .IP """isSPACE_uvchr""" 4
.el .IP \f(CWisSPACE_uvchr\fR 4
.IX Xref "isSPACE isSPACE_A isSPACE_LC isSPACE_LC_utf8_safe isSPACE_LC_uvchr isSPACE_L1 isSPACE_utf8 isSPACE_utf8_safe isSPACE_uvchr"
.IX Item "isSPACE_uvchr"
.PD
Returns a boolean indicating whether the specified character is a
whitespace character.  This is analogous
to what \f(CW\*(C`m/\es/\*(C'\fR matches in a regular expression.  Starting in Perl 5.18
this also matches what \f(CW\*(C`m/[[:space:]]/\*(C'\fR does.  Prior to 5.18, only the
locale forms of this macro (the ones with \f(CW\*(C`LC\*(C'\fR in their names) matched
precisely what \f(CW\*(C`m/[[:space:]]/\*(C'\fR does.  In those releases, the only difference,
in the non-locale variants, was that \f(CWisSPACE()\fR did not match a vertical tab.
(See "isPSXSPC" for a macro that matches a vertical tab in all releases.)
See the top of this section for an explanation of
the variants.
.RS 4
.Sp
.Vb 9
\& bool  isSPACE             (UV ch)
\& bool  isSPACE_A           (UV ch)
\& bool  isSPACE_LC          (UV ch)
\& bool  isSPACE_LC_utf8_safe(U8 * s, U8 *end)
\& bool  isSPACE_LC_uvchr    (UV ch)
\& bool  isSPACE_L1          (UV ch)
\& bool  isSPACE_utf8        (U8 * s, U8 * end)
\& bool  isSPACE_utf8_safe   (U8 * s, U8 * end)
\& bool  isSPACE_uvchr       (UV ch)
.Ve
.RE
.RS 4
.RE
.ie n .IP """isUPPER""" 4
.el .IP \f(CWisUPPER\fR 4
.IX Item "isUPPER"
.PD 0
.ie n .IP """isUPPER_A""" 4
.el .IP \f(CWisUPPER_A\fR 4
.IX Item "isUPPER_A"
.ie n .IP """isUPPER_LC""" 4
.el .IP \f(CWisUPPER_LC\fR 4
.IX Item "isUPPER_LC"
.ie n .IP """isUPPER_LC_utf8_safe""" 4
.el .IP \f(CWisUPPER_LC_utf8_safe\fR 4
.IX Item "isUPPER_LC_utf8_safe"
.ie n .IP """isUPPER_LC_uvchr""" 4
.el .IP \f(CWisUPPER_LC_uvchr\fR 4
.IX Item "isUPPER_LC_uvchr"
.ie n .IP """isUPPER_L1""" 4
.el .IP \f(CWisUPPER_L1\fR 4
.IX Item "isUPPER_L1"
.ie n .IP """isUPPER_utf8""" 4
.el .IP \f(CWisUPPER_utf8\fR 4
.IX Item "isUPPER_utf8"
.ie n .IP """isUPPER_utf8_safe""" 4
.el .IP \f(CWisUPPER_utf8_safe\fR 4
.IX Item "isUPPER_utf8_safe"
.ie n .IP """isUPPER_uvchr""" 4
.el .IP \f(CWisUPPER_uvchr\fR 4
.IX Xref "isUPPER isUPPER_A isUPPER_LC isUPPER_LC_utf8_safe isUPPER_LC_uvchr isUPPER_L1 isUPPER_utf8 isUPPER_utf8_safe isUPPER_uvchr"
.IX Item "isUPPER_uvchr"
.PD
Returns a boolean indicating whether the specified character is an
uppercase character, analogous to \f(CW\*(C`m/[[:upper:]]/\*(C'\fR.
See the top of this section for an explanation of
the variants.
.RS 4
.Sp
.Vb 9
\& bool  isUPPER             (UV ch)
\& bool  isUPPER_A           (UV ch)
\& bool  isUPPER_LC          (UV ch)
\& bool  isUPPER_LC_utf8_safe(U8 * s, U8 *end)
\& bool  isUPPER_LC_uvchr    (UV ch)
\& bool  isUPPER_L1          (UV ch)
\& bool  isUPPER_utf8        (U8 * s, U8 * end)
\& bool  isUPPER_utf8_safe   (U8 * s, U8 * end)
\& bool  isUPPER_uvchr       (UV ch)
.Ve
.RE
.RS 4
.RE
.ie n .IP """isWORDCHAR""" 4
.el .IP \f(CWisWORDCHAR\fR 4
.IX Item "isWORDCHAR"
.PD 0
.ie n .IP """isWORDCHAR_A""" 4
.el .IP \f(CWisWORDCHAR_A\fR 4
.IX Item "isWORDCHAR_A"
.ie n .IP """isWORDCHAR_LC""" 4
.el .IP \f(CWisWORDCHAR_LC\fR 4
.IX Item "isWORDCHAR_LC"
.ie n .IP """isWORDCHAR_LC_utf8_safe""" 4
.el .IP \f(CWisWORDCHAR_LC_utf8_safe\fR 4
.IX Item "isWORDCHAR_LC_utf8_safe"
.ie n .IP """isWORDCHAR_LC_uvchr""" 4
.el .IP \f(CWisWORDCHAR_LC_uvchr\fR 4
.IX Item "isWORDCHAR_LC_uvchr"
.ie n .IP """isWORDCHAR_L1""" 4
.el .IP \f(CWisWORDCHAR_L1\fR 4
.IX Item "isWORDCHAR_L1"
.ie n .IP """isWORDCHAR_utf8""" 4
.el .IP \f(CWisWORDCHAR_utf8\fR 4
.IX Item "isWORDCHAR_utf8"
.ie n .IP """isWORDCHAR_utf8_safe""" 4
.el .IP \f(CWisWORDCHAR_utf8_safe\fR 4
.IX Item "isWORDCHAR_utf8_safe"
.ie n .IP """isWORDCHAR_uvchr""" 4
.el .IP \f(CWisWORDCHAR_uvchr\fR 4
.IX Xref "isWORDCHAR isWORDCHAR_A isWORDCHAR_LC isWORDCHAR_LC_utf8_safe isWORDCHAR_LC_uvchr isWORDCHAR_L1 isWORDCHAR_utf8 isWORDCHAR_utf8_safe isWORDCHAR_uvchr"
.IX Item "isWORDCHAR_uvchr"
.PD
Returns a boolean indicating whether the specified character is a character
that is a word character, analogous to what \f(CW\*(C`m/\ew/\*(C'\fR and \f(CW\*(C`m/[[:word:]]/\*(C'\fR match
in a regular expression.  A word character is an alphabetic character, a
decimal digit, a connecting punctuation character (such as an underscore), or
a "mark" character that attaches to one of those (like some sort of accent).
.Sp
See the top of this section for an explanation of
the variants.
.Sp
\&\f(CW\*(C`isWORDCHAR_A\*(C'\fR, \f(CW\*(C`isWORDCHAR_L1\*(C'\fR, \f(CW\*(C`isWORDCHAR_uvchr\*(C'\fR,
\&\f(CW\*(C`isWORDCHAR_LC\*(C'\fR, \f(CW\*(C`isWORDCHAR_LC_uvchr\*(C'\fR, \f(CW\*(C`isWORDCHAR_LC_utf8\*(C'\fR, and
\&\f(CW\*(C`isWORDCHAR_LC_utf8_safe\*(C'\fR are also as described there, but additionally
include the platform's native underscore.
.RS 4
.Sp
.Vb 9
\& bool  isWORDCHAR             (UV ch)
\& bool  isWORDCHAR_A           (UV ch)
\& bool  isWORDCHAR_LC          (UV ch)
\& bool  isWORDCHAR_LC_utf8_safe(U8 * s, U8 *end)
\& bool  isWORDCHAR_LC_uvchr    (UV ch)
\& bool  isWORDCHAR_L1          (UV ch)
\& bool  isWORDCHAR_utf8        (U8 * s, U8 * end)
\& bool  isWORDCHAR_utf8_safe   (U8 * s, U8 * end)
\& bool  isWORDCHAR_uvchr       (UV ch)
.Ve
.RE
.RS 4
.RE
.ie n .IP """isXDIGIT""" 4
.el .IP \f(CWisXDIGIT\fR 4
.IX Item "isXDIGIT"
.PD 0
.ie n .IP """isXDIGIT_A""" 4
.el .IP \f(CWisXDIGIT_A\fR 4
.IX Item "isXDIGIT_A"
.ie n .IP """isXDIGIT_LC""" 4
.el .IP \f(CWisXDIGIT_LC\fR 4
.IX Item "isXDIGIT_LC"
.ie n .IP """isXDIGIT_LC_utf8_safe""" 4
.el .IP \f(CWisXDIGIT_LC_utf8_safe\fR 4
.IX Item "isXDIGIT_LC_utf8_safe"
.ie n .IP """isXDIGIT_LC_uvchr""" 4
.el .IP \f(CWisXDIGIT_LC_uvchr\fR 4
.IX Item "isXDIGIT_LC_uvchr"
.ie n .IP """isXDIGIT_L1""" 4
.el .IP \f(CWisXDIGIT_L1\fR 4
.IX Item "isXDIGIT_L1"
.ie n .IP """isXDIGIT_utf8""" 4
.el .IP \f(CWisXDIGIT_utf8\fR 4
.IX Item "isXDIGIT_utf8"
.ie n .IP """isXDIGIT_utf8_safe""" 4
.el .IP \f(CWisXDIGIT_utf8_safe\fR 4
.IX Item "isXDIGIT_utf8_safe"
.ie n .IP """isXDIGIT_uvchr""" 4
.el .IP \f(CWisXDIGIT_uvchr\fR 4
.IX Xref "isXDIGIT isXDIGIT_A isXDIGIT_LC isXDIGIT_LC_utf8_safe isXDIGIT_LC_uvchr isXDIGIT_L1 isXDIGIT_utf8 isXDIGIT_utf8_safe isXDIGIT_uvchr"
.IX Item "isXDIGIT_uvchr"
.PD
Returns a boolean indicating whether the specified character is a hexadecimal
digit.  In the ASCII range these are \f(CW\*(C`[0\-9A\-Fa\-f]\*(C'\fR.  Variants \f(CWisXDIGIT_A()\fR
and \f(CWisXDIGIT_L1()\fR are identical to \f(CWisXDIGIT()\fR.
See the top of this section for an explanation of
the variants.
.RS 4
.Sp
.Vb 9
\& bool  isXDIGIT             (UV ch)
\& bool  isXDIGIT_A           (UV ch)
\& bool  isXDIGIT_LC          (UV ch)
\& bool  isXDIGIT_LC_utf8_safe(U8 * s, U8 *end)
\& bool  isXDIGIT_LC_uvchr    (UV ch)
\& bool  isXDIGIT_L1          (UV ch)
\& bool  isXDIGIT_utf8        (U8 * s, U8 * end)
\& bool  isXDIGIT_utf8_safe   (U8 * s, U8 * end)
\& bool  isXDIGIT_uvchr       (UV ch)
.Ve
.RE
.RS 4
.RE
.SH "Compiler and Preprocessor information"
.IX Header "Compiler and Preprocessor information"
.ie n .IP """CPPLAST""" 4
.el .IP \f(CWCPPLAST\fR 4
.IX Xref "CPPLAST"
.IX Item "CPPLAST"
This symbol is intended to be used along with \f(CW\*(C`CPPRUN\*(C'\fR in the same manner
symbol \f(CW\*(C`CPPMINUS\*(C'\fR is used with \f(CW\*(C`CPPSTDIN\*(C'\fR. It contains either "\-" or "".
.ie n .IP """CPPMINUS""" 4
.el .IP \f(CWCPPMINUS\fR 4
.IX Xref "CPPMINUS"
.IX Item "CPPMINUS"
This symbol contains the second part of the string which will invoke
the C preprocessor on the standard input and produce to standard
output.  This symbol will have the value "\-" if \f(CW\*(C`CPPSTDIN\*(C'\fR needs a minus
to specify standard input, otherwise the value is "".
.ie n .IP """CPPRUN""" 4
.el .IP \f(CWCPPRUN\fR 4
.IX Xref "CPPRUN"
.IX Item "CPPRUN"
This symbol contains the string which will invoke a C preprocessor on
the standard input and produce to standard output. It needs to end
with \f(CW\*(C`CPPLAST\*(C'\fR, after all other preprocessor flags have been specified.
The main difference with \f(CW\*(C`CPPSTDIN\*(C'\fR is that this program will never be a
pointer to a shell wrapper, i.e. it will be empty if no preprocessor is
available directly to the user. Note that it may well be different from
the preprocessor used to compile the C program.
.ie n .IP """CPPSTDIN""" 4
.el .IP \f(CWCPPSTDIN\fR 4
.IX Xref "CPPSTDIN"
.IX Item "CPPSTDIN"
This symbol contains the first part of the string which will invoke
the C preprocessor on the standard input and produce to standard
output.  Typical value of "cc \-E" or "\fI/lib/cpp\fR", but it can also
call a wrapper. See \f(CW"CPPRUN"\fR.
.ie n .IP """HASATTRIBUTE_ALWAYS_INLINE""" 4
.el .IP \f(CWHASATTRIBUTE_ALWAYS_INLINE\fR 4
.IX Xref "HASATTRIBUTE_ALWAYS_INLINE"
.IX Item "HASATTRIBUTE_ALWAYS_INLINE"
Can we handle \f(CW\*(C`GCC\*(C'\fR attribute for functions that should always be
inlined.
.ie n .IP """HASATTRIBUTE_DEPRECATED""" 4
.el .IP \f(CWHASATTRIBUTE_DEPRECATED\fR 4
.IX Xref "HASATTRIBUTE_DEPRECATED"
.IX Item "HASATTRIBUTE_DEPRECATED"
Can we handle \f(CW\*(C`GCC\*(C'\fR attribute for marking deprecated \f(CW\*(C`APIs\*(C'\fR
.ie n .IP """HASATTRIBUTE_FORMAT""" 4
.el .IP \f(CWHASATTRIBUTE_FORMAT\fR 4
.IX Xref "HASATTRIBUTE_FORMAT"
.IX Item "HASATTRIBUTE_FORMAT"
Can we handle \f(CW\*(C`GCC\*(C'\fR attribute for checking printf-style formats
.ie n .IP """HASATTRIBUTE_NONNULL""" 4
.el .IP \f(CWHASATTRIBUTE_NONNULL\fR 4
.IX Xref "HASATTRIBUTE_NONNULL"
.IX Item "HASATTRIBUTE_NONNULL"
Can we handle \f(CW\*(C`GCC\*(C'\fR attribute for nonnull function parms.
.ie n .IP """HASATTRIBUTE_NORETURN""" 4
.el .IP \f(CWHASATTRIBUTE_NORETURN\fR 4
.IX Xref "HASATTRIBUTE_NORETURN"
.IX Item "HASATTRIBUTE_NORETURN"
Can we handle \f(CW\*(C`GCC\*(C'\fR attribute for functions that do not return
.ie n .IP """HASATTRIBUTE_PURE""" 4
.el .IP \f(CWHASATTRIBUTE_PURE\fR 4
.IX Xref "HASATTRIBUTE_PURE"
.IX Item "HASATTRIBUTE_PURE"
Can we handle \f(CW\*(C`GCC\*(C'\fR attribute for pure functions
.ie n .IP """HASATTRIBUTE_UNUSED""" 4
.el .IP \f(CWHASATTRIBUTE_UNUSED\fR 4
.IX Xref "HASATTRIBUTE_UNUSED"
.IX Item "HASATTRIBUTE_UNUSED"
Can we handle \f(CW\*(C`GCC\*(C'\fR attribute for unused variables and arguments
.ie n .IP """HASATTRIBUTE_VISIBILITY""" 4
.el .IP \f(CWHASATTRIBUTE_VISIBILITY\fR 4
.IX Xref "HASATTRIBUTE_VISIBILITY"
.IX Item "HASATTRIBUTE_VISIBILITY"
Can we handle \f(CW\*(C`GCC\*(C'\fR attribute for functions that should have a
different visibility.
.ie n .IP """HASATTRIBUTE_WARN_UNUSED_RESULT""" 4
.el .IP \f(CWHASATTRIBUTE_WARN_UNUSED_RESULT\fR 4
.IX Xref "HASATTRIBUTE_WARN_UNUSED_RESULT"
.IX Item "HASATTRIBUTE_WARN_UNUSED_RESULT"
Can we handle \f(CW\*(C`GCC\*(C'\fR attribute for warning on unused results
.ie n .IP """HAS_BUILTIN_ADD_OVERFLOW""" 4
.el .IP \f(CWHAS_BUILTIN_ADD_OVERFLOW\fR 4
.IX Xref "HAS_BUILTIN_ADD_OVERFLOW"
.IX Item "HAS_BUILTIN_ADD_OVERFLOW"
This symbol, if defined, indicates that the compiler supports
\&\f(CW\*(C`_\|_builtin_add_overflow\*(C'\fR for adding integers with overflow checks.
.ie n .IP """HAS_BUILTIN_CHOOSE_EXPR""" 4
.el .IP \f(CWHAS_BUILTIN_CHOOSE_EXPR\fR 4
.IX Xref "HAS_BUILTIN_CHOOSE_EXPR"
.IX Item "HAS_BUILTIN_CHOOSE_EXPR"
Can we handle \f(CW\*(C`GCC\*(C'\fR builtin for compile-time ternary-like expressions
.ie n .IP """HAS_BUILTIN_EXPECT""" 4
.el .IP \f(CWHAS_BUILTIN_EXPECT\fR 4
.IX Xref "HAS_BUILTIN_EXPECT"
.IX Item "HAS_BUILTIN_EXPECT"
Can we handle \f(CW\*(C`GCC\*(C'\fR builtin for telling that certain values are more
likely
.ie n .IP """HAS_BUILTIN_MUL_OVERFLOW""" 4
.el .IP \f(CWHAS_BUILTIN_MUL_OVERFLOW\fR 4
.IX Xref "HAS_BUILTIN_MUL_OVERFLOW"
.IX Item "HAS_BUILTIN_MUL_OVERFLOW"
This symbol, if defined, indicates that the compiler supports
\&\f(CW\*(C`_\|_builtin_mul_overflow\*(C'\fR for multiplying integers with overflow checks.
.ie n .IP """HAS_BUILTIN_SUB_OVERFLOW""" 4
.el .IP \f(CWHAS_BUILTIN_SUB_OVERFLOW\fR 4
.IX Xref "HAS_BUILTIN_SUB_OVERFLOW"
.IX Item "HAS_BUILTIN_SUB_OVERFLOW"
This symbol, if defined, indicates that the compiler supports
\&\f(CW\*(C`_\|_builtin_sub_overflow\*(C'\fR for subtracting integers with overflow checks.
.ie n .IP """HAS_C99_VARIADIC_MACROS""" 4
.el .IP \f(CWHAS_C99_VARIADIC_MACROS\fR 4
.IX Xref "HAS_C99_VARIADIC_MACROS"
.IX Item "HAS_C99_VARIADIC_MACROS"
If defined, the compiler supports C99 variadic macros.
.ie n .IP """HAS_STATIC_INLINE""" 4
.el .IP \f(CWHAS_STATIC_INLINE\fR 4
.IX Xref "HAS_STATIC_INLINE"
.IX Item "HAS_STATIC_INLINE"
This symbol, if defined, indicates that the C compiler supports
C99\-style static inline.  That is, the function can't be called
from another translation unit.
.ie n .IP """MEM_ALIGNBYTES""" 4
.el .IP \f(CWMEM_ALIGNBYTES\fR 4
.IX Xref "MEM_ALIGNBYTES"
.IX Item "MEM_ALIGNBYTES"
This symbol contains the number of bytes required to align a
double, or a long double when applicable. Usual values are 2,
4 and 8. The default is eight, for safety.  For cross-compiling
or multiarch support, Configure will set a minimum of 8.
.ie n .IP """PERL_STATIC_INLINE""" 4
.el .IP \f(CWPERL_STATIC_INLINE\fR 4
.IX Xref "PERL_STATIC_INLINE"
.IX Item "PERL_STATIC_INLINE"
This symbol gives the best-guess incantation to use for static
inline functions.  If \f(CW\*(C`HAS_STATIC_INLINE\*(C'\fR is defined, this will
give C99\-style inline.  If \f(CW\*(C`HAS_STATIC_INLINE\*(C'\fR is not defined,
this will give a plain 'static'.  It will always be defined
to something that gives static linkage.
Possibilities include
.Sp
.Vb 5
\& static inline       (c99)
\& static _\|_inline_\|_   (gcc \-ansi)
\& static _\|_inline     (MSVC)
\& static _inline      (older MSVC)
\& static              (c89 compilers)
.Ve
.ie n .IP """PERL_THREAD_LOCAL""" 4
.el .IP \f(CWPERL_THREAD_LOCAL\fR 4
.IX Xref "PERL_THREAD_LOCAL"
.IX Item "PERL_THREAD_LOCAL"
This symbol, if defined, gives a linkage specification for thread-local
storage. For example, for a C11 compiler this will be \f(CW\*(C`_Thread_local\*(C'\fR.
Beware, some compilers are sensitive to the C language standard they are
told to parse. For example, suncc defaults to C11, so our probe will
report that \f(CW\*(C`_Thread_local\*(C'\fR can be used. However, if the \-std=c99 is later
added to the compiler flags, then \f(CW\*(C`_Thread_local\*(C'\fR will become a syntax
error. Hence it is important for these flags to be consistent between
probing and use.
.ie n .IP """U32_ALIGNMENT_REQUIRED""" 4
.el .IP \f(CWU32_ALIGNMENT_REQUIRED\fR 4
.IX Xref "U32_ALIGNMENT_REQUIRED"
.IX Item "U32_ALIGNMENT_REQUIRED"
This symbol, if defined, indicates that you must access
character data through U32\-aligned pointers.
.SH "Compiler directives"
.IX Header "Compiler directives"
.ie n .IP """_\|_ASSERT_""" 4
.el .IP \f(CW_\|_ASSERT_\fR 4
.IX Xref "__ASSERT_"
.IX Item "__ASSERT_"
This is a helper macro to avoid preprocessor issues, replaced by nothing
unless under DEBUGGING, where it expands to an assert of its argument,
followed by a comma (hence the comma operator).  If we just used a straight
\&\fBassert()\fR, we would get a comma with nothing before it when not DEBUGGING.
.RS 4
.Sp
.Vb 1
\&   _\|_ASSERT_(bool expr)
.Ve
.RE
.RS 4
.RE
.ie n .IP """ASSUME""" 4
.el .IP \f(CWASSUME\fR 4
.IX Xref "ASSUME"
.IX Item "ASSUME"
\&\f(CW\*(C`ASSUME\*(C'\fR is like \f(CWassert()\fR, but it has a benefit in a release build. It is a
hint to a compiler about a statement of fact in a function call free
expression, which allows the compiler to generate better machine code.  In a
debug build, \f(CWASSUME(x)\fR is a synonym for \f(CWassert(x)\fR. \f(CWASSUME(0)\fR means the
control path is unreachable. In a for loop, \f(CW\*(C`ASSUME\*(C'\fR can be used to hint that
a loop will run at least X times. \f(CW\*(C`ASSUME\*(C'\fR is based off MSVC's \f(CW\*(C`_\|_assume\*(C'\fR
intrinsic function, see its documents for more details.
.RS 4
.Sp
.Vb 1
\&   ASSUME(bool expr)
.Ve
.RE
.RS 4
.RE
.ie n .IP """dNOOP""" 4
.el .IP \f(CWdNOOP\fR 4
.IX Xref "dNOOP"
.IX Item "dNOOP"
Declare nothing; typically used as a placeholder to replace something that used
to declare something.  Works on compilers that require declarations before any
code.
.RS 4
.Sp
.Vb 1
\&   dNOOP;
.Ve
.RE
.RS 4
.RE
.ie n .IP """END_EXTERN_C""" 4
.el .IP \f(CWEND_EXTERN_C\fR 4
.IX Xref "END_EXTERN_C"
.IX Item "END_EXTERN_C"
When not compiling using C++, expands to nothing.
Otherwise ends a section of code already begun by a \f(CW"START_EXTERN_C"\fR.
.RS 4
.Sp
.Vb 1
\&   END_EXTERN_C
.Ve
.RE
.RS 4
.RE
.ie n .IP """EXTERN_C""" 4
.el .IP \f(CWEXTERN_C\fR 4
.IX Xref "EXTERN_C"
.IX Item "EXTERN_C"
When not compiling using C++, expands to nothing.
Otherwise is used in a declaration of a function to indicate the function
should have external C linkage.  This is required for things to work for just
about all functions with external linkage compiled into perl.
Often, you can use \f(CW"START_EXTERN_C"\fR ... \f(CW"END_EXTERN_C"\fR blocks
surrounding all your code that you need to have this linkage.
.Sp
Example usage:
.Sp
.Vb 1
\& EXTERN_C int flock(int fd, int op);
.Ve
.ie n .IP """LIKELY""" 4
.el .IP \f(CWLIKELY\fR 4
.IX Xref "LIKELY"
.IX Item "LIKELY"
Returns the input unchanged, but at the same time it gives a branch prediction
hint to the compiler that this condition is likely to be true.
.RS 4
.Sp
.Vb 1
\&   LIKELY(bool expr)
.Ve
.RE
.RS 4
.RE
.ie n .IP """NOOP""" 4
.el .IP \f(CWNOOP\fR 4
.IX Xref "NOOP"
.IX Item "NOOP"
Do nothing; typically used as a placeholder to replace something that used to
do something.
.RS 4
.Sp
.Vb 1
\&   NOOP;
.Ve
.RE
.RS 4
.RE
.ie n .IP """PERL_UNUSED_ARG""" 4
.el .IP \f(CWPERL_UNUSED_ARG\fR 4
.IX Xref "PERL_UNUSED_ARG"
.IX Item "PERL_UNUSED_ARG"
This is used to suppress compiler warnings that a parameter to a function is
not used.  This situation can arise, for example, when a parameter is needed
under some configuration conditions, but not others, so that C preprocessor
conditional compilation causes it be used just sometimes.
.RS 4
.Sp
.Vb 1
\&   PERL_UNUSED_ARG(void x);
.Ve
.RE
.RS 4
.RE
.ie n .IP """PERL_UNUSED_CONTEXT""" 4
.el .IP \f(CWPERL_UNUSED_CONTEXT\fR 4
.IX Xref "PERL_UNUSED_CONTEXT"
.IX Item "PERL_UNUSED_CONTEXT"
This is used to suppress compiler warnings that the thread context parameter to
a function is not used.  This situation can arise, for example, when a
C preprocessor conditional compilation causes it be used just some times.
.RS 4
.Sp
.Vb 1
\&   PERL_UNUSED_CONTEXT;
.Ve
.RE
.RS 4
.RE
.ie n .IP """PERL_UNUSED_DECL""" 4
.el .IP \f(CWPERL_UNUSED_DECL\fR 4
.IX Xref "PERL_UNUSED_DECL"
.IX Item "PERL_UNUSED_DECL"
Tells the compiler that the parameter in the function prototype just before it
is not necessarily expected to be used in the function.  Not that many
compilers understand this, so this should only be used in cases where
\&\f(CW"PERL_UNUSED_ARG"\fR can't conveniently be used.
.Sp
Example usage:
.RS 4
.Sp
.Vb 3
\& Signal_t
\& Perl_perly_sighandler(int sig, Siginfo_t *sip PERL_UNUSED_DECL,
\&                       void *uap PERL_UNUSED_DECL, bool safe)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PERL_UNUSED_RESULT""" 4
.el .IP \f(CWPERL_UNUSED_RESULT\fR 4
.IX Xref "PERL_UNUSED_RESULT"
.IX Item "PERL_UNUSED_RESULT"
This macro indicates to discard the return value of the function call inside
it, \fIe.g.\fR,
.Sp
.Vb 1
\& PERL_UNUSED_RESULT(foo(a, b))
.Ve
.Sp
The main reason for this is that the combination of \f(CW\*(C`gcc \-Wunused\-result\*(C'\fR
(part of \f(CW\*(C`\-Wall\*(C'\fR) and the \f(CW\*(C`_\|_attribute_\|_((warn_unused_result))\*(C'\fR cannot
be silenced with casting to \f(CW\*(C`void\*(C'\fR.  This causes trouble when the system
header files use the attribute.
.Sp
Use \f(CW\*(C`PERL_UNUSED_RESULT\*(C'\fR sparingly, though, since usually the warning
is there for a good reason: you might lose success/failure information,
or leak resources, or changes in resources.
.Sp
But sometimes you just want to ignore the return value, \fIe.g.\fR, on
codepaths soon ending up in abort, or in "best effort" attempts,
or in situations where there is no good way to handle failures.
.Sp
Sometimes \f(CW\*(C`PERL_UNUSED_RESULT\*(C'\fR might not be the most natural way:
another possibility is that you can capture the return value
and use \f(CW"PERL_UNUSED_VAR"\fR on that.
.RS 4
.Sp
.Vb 1
\&   PERL_UNUSED_RESULT(void x)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PERL_UNUSED_VAR""" 4
.el .IP \f(CWPERL_UNUSED_VAR\fR 4
.IX Xref "PERL_UNUSED_VAR"
.IX Item "PERL_UNUSED_VAR"
This is used to suppress compiler warnings that the variable \fIx\fR is not used.
This situation can arise, for example, when a C preprocessor conditional
compilation causes it be used just some times.
.RS 4
.Sp
.Vb 1
\&   PERL_UNUSED_VAR(void x);
.Ve
.RE
.RS 4
.RE
.ie n .IP """START_EXTERN_C""" 4
.el .IP \f(CWSTART_EXTERN_C\fR 4
.IX Xref "START_EXTERN_C"
.IX Item "START_EXTERN_C"
When not compiling using C++, expands to nothing.
Otherwise begins a section of code in which every function will effectively
have \f(CW"EXTERN_C"\fR applied to it, that is to have external C linkage.  The
section is ended by a \f(CW"END_EXTERN_C"\fR.
.RS 4
.Sp
.Vb 1
\&   START_EXTERN_C
.Ve
.RE
.RS 4
.RE
.ie n .IP """STATIC""" 4
.el .IP \f(CWSTATIC\fR 4
.IX Item "STATIC"
Described in perlguts.
.ie n .IP """STMT_END""" 4
.el .IP \f(CWSTMT_END\fR 4
.IX Item "STMT_END"
.PD 0
.ie n .IP """STMT_START""" 4
.el .IP \f(CWSTMT_START\fR 4
.IX Xref "STMT_END STMT_START"
.IX Item "STMT_START"
.PD
These allow a series of statements in a macro to be used as a single statement,
as in
.Sp
.Vb 1
\& if (x) STMT_START { ... } STMT_END else ...
.Ve
.Sp
Note that you can't return a value out of this construct and cannot use it as
an operand to the comma operator.  These limit its utility.
.Sp
But, a value could be returned by constructing the API so that a pointer is
passed and the macro dereferences this to set the return.  If the value can be
any of various types, depending on context, you can handle that situation in
some situations by adding the type of the return as an extra accompanying
parameter:
.Sp
.Vb 3
\& #define foo(param, type)  STMT_START {
\&                              type * param; *param = do_calc; ...
\&                           } STMT_END
.Ve
.Sp
This could be awkward, so consider instead using a C language \f(CW\*(C`static inline\*(C'\fR
function.
.Sp
If you do use this construct, it is easy to forget that it is a macro and not a
function, and hence fall into traps that might not show up until someone
someday writes code which contains names that clash with the ones you chose
here, or calls it with a parameter which is an expression with side effects,
the consequences of which you didn't think about.  See "Writing
safer macros" in perlhacktips for how to avoid these.
.ie n .IP """UNLIKELY""" 4
.el .IP \f(CWUNLIKELY\fR 4
.IX Xref "UNLIKELY"
.IX Item "UNLIKELY"
Returns the input unchanged, but at the same time it gives a branch prediction
hint to the compiler that this condition is likely to be false.
.RS 4
.Sp
.Vb 1
\&   UNLIKELY(bool expr)
.Ve
.RE
.RS 4
.RE
.SH "Compile-time scope hooks"
.IX Header "Compile-time scope hooks"
.ie n .IP """BhkDISABLE""" 4
.el .IP \f(CWBhkDISABLE\fR 4
.IX Xref "BhkDISABLE"
.IX Item "BhkDISABLE"
NOTE: \f(CW\*(C`BhkDISABLE\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Temporarily disable an entry in this BHK structure, by clearing the
appropriate flag.  \f(CW\*(C`which\*(C'\fR is a preprocessor token indicating which
entry to disable.
.RS 4
.Sp
.Vb 1
\& void  BhkDISABLE(BHK *hk, token which)
.Ve
.RE
.RS 4
.RE
.ie n .IP """BhkENABLE""" 4
.el .IP \f(CWBhkENABLE\fR 4
.IX Xref "BhkENABLE"
.IX Item "BhkENABLE"
NOTE: \f(CW\*(C`BhkENABLE\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Re-enable an entry in this BHK structure, by setting the appropriate
flag.  \f(CW\*(C`which\*(C'\fR is a preprocessor token indicating which entry to enable.
This will assert (under \-DDEBUGGING) if the entry doesn't contain a valid
pointer.
.RS 4
.Sp
.Vb 1
\& void  BhkENABLE(BHK *hk, token which)
.Ve
.RE
.RS 4
.RE
.ie n .IP """BhkENTRY_set""" 4
.el .IP \f(CWBhkENTRY_set\fR 4
.IX Xref "BhkENTRY_set"
.IX Item "BhkENTRY_set"
NOTE: \f(CW\*(C`BhkENTRY_set\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Set an entry in the BHK structure, and set the flags to indicate it is
valid.  \f(CW\*(C`which\*(C'\fR is a preprocessing token indicating which entry to set.
The type of \f(CW\*(C`ptr\*(C'\fR depends on the entry.
.RS 4
.Sp
.Vb 1
\& void  BhkENTRY_set(BHK *hk, token which, void *ptr)
.Ve
.RE
.RS 4
.RE
.ie n .IP """blockhook_register""" 4
.el .IP \f(CWblockhook_register\fR 4
.IX Xref "blockhook_register"
.IX Item "blockhook_register"
NOTE: \f(CW\*(C`blockhook_register\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Register a set of hooks to be called when the Perl lexical scope changes
at compile time.  See "Compile-time scope hooks" in perlguts.
.Sp
NOTE: \f(CW\*(C`blockhook_register\*(C'\fR must be explicitly called as
\&\f(CW\*(C`Perl_blockhook_register\*(C'\fR
with an \f(CW\*(C`aTHX_\*(C'\fR parameter.
.RS 4
.Sp
.Vb 1
\& void  Perl_blockhook_register(pTHX_ BHK *hk)
.Ve
.RE
.RS 4
.RE
.SH Concurrency
.IX Header "Concurrency"
.ie n .IP """aTHX""" 4
.el .IP \f(CWaTHX\fR 4
.IX Item "aTHX"
Described in perlguts.
.ie n .IP """aTHX_""" 4
.el .IP \f(CWaTHX_\fR 4
.IX Item "aTHX_"
Described in perlguts.
.ie n .IP """CPERLscope""" 4
.el .IP \f(CWCPERLscope\fR 4
.IX Xref "CPERLscope"
.IX Item "CPERLscope"
\&\f(CW\*(C`\fR\f(CBDEPRECATED!\fR\f(CW\*(C'\fR  It is planned to remove \f(CW\*(C`CPERLscope\*(C'\fR
from a future release of Perl.  Do not use it for
new code; remove it from existing code.
.Sp
Now a no-op.
.RS 4
.Sp
.Vb 1
\& void  CPERLscope(void x)
.Ve
.RE
.RS 4
.RE
.ie n .IP """dTHR""" 4
.el .IP \f(CWdTHR\fR 4
.IX Item "dTHR"
Described in perlguts.
.ie n .IP """dTHX""" 4
.el .IP \f(CWdTHX\fR 4
.IX Item "dTHX"
Described in perlguts.
.ie n .IP """dTHXa""" 4
.el .IP \f(CWdTHXa\fR 4
.IX Xref "dTHXa"
.IX Item "dTHXa"
On threaded perls, set \f(CW\*(C`pTHX\*(C'\fR to \f(CW\*(C`a\*(C'\fR; on unthreaded perls, do nothing
.ie n .IP """dTHXoa""" 4
.el .IP \f(CWdTHXoa\fR 4
.IX Xref "dTHXoa"
.IX Item "dTHXoa"
Now a synonym for \f(CW"dTHXa"\fR.
.ie n .IP """dVAR""" 4
.el .IP \f(CWdVAR\fR 4
.IX Xref "dVAR"
.IX Item "dVAR"
This is now a synonym for dNOOP: declare nothing
.ie n .IP """GETENV_PRESERVES_OTHER_THREAD""" 4
.el .IP \f(CWGETENV_PRESERVES_OTHER_THREAD\fR 4
.IX Xref "GETENV_PRESERVES_OTHER_THREAD"
.IX Item "GETENV_PRESERVES_OTHER_THREAD"
This symbol, if defined, indicates that the getenv system call doesn't
zap the static buffer of \f(CWgetenv()\fR in a different thread.
The typical \f(CWgetenv()\fR implementation will return a pointer to the proper
position in **environ.  But some may instead copy them to a static
buffer in \f(CWgetenv()\fR.  If there is a per-thread instance of that buffer,
or the return points to **environ, then a many\-reader/1\-writer mutex
will work; otherwise an exclusive locking mutex is required to prevent
races.
.ie n .IP """HAS_PTHREAD_ATFORK""" 4
.el .IP \f(CWHAS_PTHREAD_ATFORK\fR 4
.IX Xref "HAS_PTHREAD_ATFORK"
.IX Item "HAS_PTHREAD_ATFORK"
This symbol, if defined, indicates that the \f(CW\*(C`pthread_atfork\*(C'\fR routine
is available to setup fork handlers.
.ie n .IP """HAS_PTHREAD_ATTR_SETSCOPE""" 4
.el .IP \f(CWHAS_PTHREAD_ATTR_SETSCOPE\fR 4
.IX Xref "HAS_PTHREAD_ATTR_SETSCOPE"
.IX Item "HAS_PTHREAD_ATTR_SETSCOPE"
This symbol, if defined, indicates that the \f(CW\*(C`pthread_attr_setscope\*(C'\fR
system call is available to set the contention scope attribute of
a thread attribute object.
.ie n .IP """HAS_PTHREAD_YIELD""" 4
.el .IP \f(CWHAS_PTHREAD_YIELD\fR 4
.IX Xref "HAS_PTHREAD_YIELD"
.IX Item "HAS_PTHREAD_YIELD"
This symbol, if defined, indicates that the \f(CW\*(C`pthread_yield\*(C'\fR
routine is available to yield the execution of the current
thread.  \f(CW\*(C`sched_yield\*(C'\fR is preferable to \f(CW\*(C`pthread_yield\*(C'\fR.
.ie n .IP """HAS_SCHED_YIELD""" 4
.el .IP \f(CWHAS_SCHED_YIELD\fR 4
.IX Xref "HAS_SCHED_YIELD"
.IX Item "HAS_SCHED_YIELD"
This symbol, if defined, indicates that the \f(CW\*(C`sched_yield\*(C'\fR
routine is available to yield the execution of the current
thread.  \f(CW\*(C`sched_yield\*(C'\fR is preferable to \f(CW\*(C`pthread_yield\*(C'\fR.
.ie n .IP """I_MACH_CTHREADS""" 4
.el .IP \f(CWI_MACH_CTHREADS\fR 4
.IX Xref "I_MACH_CTHREADS"
.IX Item "I_MACH_CTHREADS"
This symbol, if defined, indicates to the C program that it should
include \fImach/cthreads.h\fR.
.RS 4
.Sp
.Vb 3
\& #ifdef I_MACH_CTHREADS
\&     #include <mach_cthreads.h>
\& #endif
.Ve
.RE
.RS 4
.RE
.ie n .IP """I_PTHREAD""" 4
.el .IP \f(CWI_PTHREAD\fR 4
.IX Xref "I_PTHREAD"
.IX Item "I_PTHREAD"
This symbol, if defined, indicates to the C program that it should
include \fIpthread.h\fR.
.RS 4
.Sp
.Vb 3
\& #ifdef I_PTHREAD
\&     #include <pthread.h>
\& #endif
.Ve
.RE
.RS 4
.RE
.ie n .IP """MULTIPLICITY""" 4
.el .IP \f(CWMULTIPLICITY\fR 4
.IX Item "MULTIPLICITY"
This symbol, if defined, indicates that Perl should
be built to use multiplicity.
.ie n .IP """OLD_PTHREAD_CREATE_JOINABLE""" 4
.el .IP \f(CWOLD_PTHREAD_CREATE_JOINABLE\fR 4
.IX Xref "OLD_PTHREAD_CREATE_JOINABLE"
.IX Item "OLD_PTHREAD_CREATE_JOINABLE"
This symbol, if defined, indicates how to create pthread
in joinable (aka undetached) state.  \f(CW\*(C`NOTE\*(C'\fR: not defined
if \fIpthread.h\fR already has defined \f(CW\*(C`PTHREAD_CREATE_JOINABLE\*(C'\fR
(the new version of the constant).
If defined, known values are \f(CW\*(C`PTHREAD_CREATE_UNDETACHED\*(C'\fR
and \f(CW\*(C`_\|_UNDETACHED\*(C'\fR.
.ie n .IP """OLD_PTHREADS_API""" 4
.el .IP \f(CWOLD_PTHREADS_API\fR 4
.IX Xref "OLD_PTHREADS_API"
.IX Item "OLD_PTHREADS_API"
This symbol, if defined, indicates that Perl should
be built to use the old draft \f(CW\*(C`POSIX\*(C'\fR threads \f(CW\*(C`API\*(C'\fR.
.ie n .IP """PERL_IMPLICIT_CONTEXT""" 4
.el .IP \f(CWPERL_IMPLICIT_CONTEXT\fR 4
.IX Item "PERL_IMPLICIT_CONTEXT"
Described in perlguts.
.ie n .IP """PERL_NO_GET_CONTEXT""" 4
.el .IP \f(CWPERL_NO_GET_CONTEXT\fR 4
.IX Item "PERL_NO_GET_CONTEXT"
Described in perlguts.
.ie n .IP """pTHX""" 4
.el .IP \f(CWpTHX\fR 4
.IX Item "pTHX"
Described in perlguts.
.ie n .IP """pTHX_""" 4
.el .IP \f(CWpTHX_\fR 4
.IX Item "pTHX_"
Described in perlguts.
.ie n .IP """SCHED_YIELD""" 4
.el .IP \f(CWSCHED_YIELD\fR 4
.IX Xref "SCHED_YIELD"
.IX Item "SCHED_YIELD"
This symbol defines the way to yield the execution of
the current thread.  Known ways are \f(CW\*(C`sched_yield\*(C'\fR,
\&\f(CW\*(C`pthread_yield\*(C'\fR, and \f(CW\*(C`pthread_yield\*(C'\fR with \f(CW\*(C`NULL\*(C'\fR.
.SH "COPs and Hint Hashes"
.IX Xref "COPHH_KEY_UTF8"
.IX Header "COPs and Hint Hashes"
.ie n .IP """cop_fetch_label""" 4
.el .IP \f(CWcop_fetch_label\fR 4
.IX Xref "cop_fetch_label"
.IX Item "cop_fetch_label"
NOTE: \f(CW\*(C`cop_fetch_label\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Returns the label attached to a cop, and stores its length in bytes into
\&\f(CW*len\fR.
Upon return, \f(CW*flags\fR will be set to either \f(CW\*(C`SVf_UTF8\*(C'\fR or 0.
.Sp
Alternatively, use the macro \f(CW"CopLABEL_len_flags"\fR;
or if you don't need to know if the label is UTF\-8 or not, the macro
\&\f(CW"CopLABEL_len"\fR;
or if you additionally don't need to know the length, \f(CW"CopLABEL"\fR.
.RS 4
.Sp
.Vb 2
\& const char *  cop_fetch_label(COP * const cop, STRLEN *len,
\&                               U32 *flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """CopFILE""" 4
.el .IP \f(CWCopFILE\fR 4
.IX Xref "CopFILE"
.IX Item "CopFILE"
Returns the name of the file associated with the \f(CW\*(C`COP\*(C'\fR \f(CW\*(C`c\*(C'\fR
.RS 4
.Sp
.Vb 1
\& const char *  CopFILE(const COP * c)
.Ve
.RE
.RS 4
.RE
.ie n .IP """CopFILEAV""" 4
.el .IP \f(CWCopFILEAV\fR 4
.IX Xref "CopFILEAV"
.IX Item "CopFILEAV"
Returns the AV associated with the \f(CW\*(C`COP\*(C'\fR \f(CW\*(C`c\*(C'\fR, creating it if necessary.
.RS 4
.Sp
.Vb 1
\& AV *  CopFILEAV(const COP * c)
.Ve
.RE
.RS 4
.RE
.ie n .IP """CopFILEAVn""" 4
.el .IP \f(CWCopFILEAVn\fR 4
.IX Xref "CopFILEAVn"
.IX Item "CopFILEAVn"
Returns the AV associated with the \f(CW\*(C`COP\*(C'\fR \f(CW\*(C`c\*(C'\fR, returning NULL if it
doesn't already exist.
.RS 4
.Sp
.Vb 1
\& AV *  CopFILEAVn(const COP * c)
.Ve
.RE
.RS 4
.RE
.ie n .IP """CopFILE_copy""" 4
.el .IP \f(CWCopFILE_copy\fR 4
.IX Xref "CopFILE_copy"
.IX Item "CopFILE_copy"
Efficiently copies the cop file name from one COP to another. Wraps
the required logic to do a refcounted copy under threads or not.
.RS 4
.Sp
.Vb 1
\& void  CopFILE_copy(COP * dst, COP * src)
.Ve
.RE
.RS 4
.RE
.ie n .IP """CopFILE_free""" 4
.el .IP \f(CWCopFILE_free\fR 4
.IX Xref "CopFILE_free"
.IX Item "CopFILE_free"
Frees the file data in a cop. Under the hood this is a refcounting
operation.
.RS 4
.Sp
.Vb 1
\& void  CopFILE_free(COP * c)
.Ve
.RE
.RS 4
.RE
.ie n .IP """CopFILEGV""" 4
.el .IP \f(CWCopFILEGV\fR 4
.IX Xref "CopFILEGV"
.IX Item "CopFILEGV"
Returns the GV associated with the \f(CW\*(C`COP\*(C'\fR \f(CW\*(C`c\*(C'\fR
.RS 4
.Sp
.Vb 1
\& GV *  CopFILEGV(const COP * c)
.Ve
.RE
.RS 4
.RE
.ie n .IP """CopFILEGV_set""" 4
.el .IP \f(CWCopFILEGV_set\fR 4
.IX Xref "CopFILEGV_set"
.IX Item "CopFILEGV_set"
Available only on unthreaded perls.  Makes \f(CW\*(C`pv\*(C'\fR the name of the file
associated with the \f(CW\*(C`COP\*(C'\fR \f(CW\*(C`c\*(C'\fR
.RS 4
.Sp
.Vb 1
\& void  CopFILEGV_set(COP *c, GV *gv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """CopFILE_LEN""" 4
.el .IP \f(CWCopFILE_LEN\fR 4
.IX Xref "CopFILE_LEN"
.IX Item "CopFILE_LEN"
Returns the length of the file associated with the \f(CW\*(C`COP\*(C'\fR \f(CW\*(C`c\*(C'\fR
.RS 4
.Sp
.Vb 1
\& const char *  CopFILE_LEN(const COP * c)
.Ve
.RE
.RS 4
.RE
.ie n .IP """CopFILE_set""" 4
.el .IP \f(CWCopFILE_set\fR 4
.IX Xref "CopFILE_set"
.IX Item "CopFILE_set"
Makes \f(CW\*(C`pv\*(C'\fR the name of the file associated with the \f(CW\*(C`COP\*(C'\fR \f(CW\*(C`c\*(C'\fR
.RS 4
.Sp
.Vb 1
\& void  CopFILE_set(COP * c, const char * pv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """CopFILE_setn""" 4
.el .IP \f(CWCopFILE_setn\fR 4
.IX Xref "CopFILE_setn"
.IX Item "CopFILE_setn"
Makes \f(CW\*(C`pv\*(C'\fR the name of the file associated with the \f(CW\*(C`COP\*(C'\fR \f(CW\*(C`c\*(C'\fR
.RS 4
.Sp
.Vb 1
\& void  CopFILE_setn(COP * c, const char * pv, STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """CopFILESV""" 4
.el .IP \f(CWCopFILESV\fR 4
.IX Xref "CopFILESV"
.IX Item "CopFILESV"
Returns the SV associated with the \f(CW\*(C`COP\*(C'\fR \f(CW\*(C`c\*(C'\fR
.RS 4
.Sp
.Vb 1
\& SV *  CopFILESV(const COP * c)
.Ve
.RE
.RS 4
.RE
.ie n .IP """cophh_copy""" 4
.el .IP \f(CWcophh_copy\fR 4
.IX Xref "cophh_copy"
.IX Item "cophh_copy"
NOTE: \f(CW\*(C`cophh_copy\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Make and return a complete copy of the cop hints hash \f(CW\*(C`cophh\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& COPHH *  cophh_copy(COPHH *cophh)
.Ve
.RE
.RS 4
.RE
.ie n .IP """cophh_delete_pv""" 4
.el .IP \f(CWcophh_delete_pv\fR 4
.IX Item "cophh_delete_pv"
.PD 0
.ie n .IP """cophh_delete_pvn""" 4
.el .IP \f(CWcophh_delete_pvn\fR 4
.IX Item "cophh_delete_pvn"
.ie n .IP """cophh_delete_pvs""" 4
.el .IP \f(CWcophh_delete_pvs\fR 4
.IX Item "cophh_delete_pvs"
.ie n .IP """cophh_delete_sv""" 4
.el .IP \f(CWcophh_delete_sv\fR 4
.IX Xref "cophh_delete_pv cophh_delete_pvn cophh_delete_pvs cophh_delete_sv"
.IX Item "cophh_delete_sv"
.PD
NOTE: all these forms are \fBexperimental\fR and may change or be
removed without notice.
.Sp
These delete a key and its associated value from the cop hints hash \f(CW\*(C`cophh\*(C'\fR,
and return the modified hash.  The returned hash pointer is in general
not the same as the hash pointer that was passed in.  The input hash is
consumed by the function, and the pointer to it must not be subsequently
used.  Use "cophh_copy" if you need both hashes.
.Sp
The forms differ in how the key is specified.  In all forms, the key is pointed
to by \f(CW\*(C`key\*(C'\fR.
In the plain \f(CW\*(C`pv\*(C'\fR form, the key is a C language NUL-terminated string.
In the \f(CW\*(C`pvs\*(C'\fR form, the key is a C language string literal.
In the \f(CW\*(C`pvn\*(C'\fR form, an additional parameter, \f(CW\*(C`keylen\*(C'\fR, specifies the length of
the string, which hence, may contain embedded-NUL characters.
In the \f(CW\*(C`sv\*(C'\fR form, \f(CW*key\fR is an SV, and the key is the PV extracted from that.
using \f(CW"SvPV_const"\fR.
.Sp
\&\f(CW\*(C`hash\*(C'\fR is a precomputed hash of the key string, or zero if it has not been
precomputed.  This parameter is omitted from the \f(CW\*(C`pvs\*(C'\fR form, as it is computed
automatically at compile time.
.Sp
The only flag currently used from the \f(CW\*(C`flags\*(C'\fR parameter is \f(CW\*(C`COPHH_KEY_UTF8\*(C'\fR.
It is illegal to set this in the \f(CW\*(C`sv\*(C'\fR form.  In the \f(CW\*(C`pv*\*(C'\fR forms, it specifies
whether the key octets are interpreted as UTF\-8 (if set) or as Latin\-1 (if
cleared).  The \f(CW\*(C`sv\*(C'\fR form uses the underlying SV to determine the UTF\-8ness of
the octets.
.RS 4
.Sp
.Vb 7
\& COPHH *  cophh_delete_pv (COPHH *cophh, const char *key, U32 hash,
\&                           U32 flags)
\& COPHH *  cophh_delete_pvn(COPHH *cophh, const char *key,
\&                           STRLEN keylen, U32 hash, U32 flags)
\& COPHH *  cophh_delete_pvs(COPHH *cophh, "key", U32 flags)
\& COPHH *  cophh_delete_sv (COPHH *cophh, SV *key, U32 hash,
\&                           U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """cophh_exists_pvn""" 4
.el .IP \f(CWcophh_exists_pvn\fR 4
.IX Xref "cophh_exists_pvn"
.IX Item "cophh_exists_pvn"
NOTE: \f(CW\*(C`cophh_exists_pvn\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
These look up the hint entry in the cop \f(CW\*(C`cop\*(C'\fR with the key specified by
\&\f(CW\*(C`key\*(C'\fR (and \f(CW\*(C`keylen\*(C'\fR in the \f(CW\*(C`pvn\*(C'\fR form), returning true if a value exists,
and false otherwise.
.Sp
The forms differ in how the key is specified.
In the plain \f(CW\*(C`pv\*(C'\fR form, the key is a C language NUL-terminated string.
In the \f(CW\*(C`pvs\*(C'\fR form, the key is a C language string literal.
In the \f(CW\*(C`pvn\*(C'\fR form, an additional parameter, \f(CW\*(C`keylen\*(C'\fR, specifies the length of
the string, which hence, may contain embedded-NUL characters.
In the \f(CW\*(C`sv\*(C'\fR form, \f(CW*key\fR is an SV, and the key is the PV extracted from that.
using \f(CW"SvPV_const"\fR.
.Sp
\&\f(CW\*(C`hash\*(C'\fR is a precomputed hash of the key string, or zero if it has not been
precomputed.  This parameter is omitted from the \f(CW\*(C`pvs\*(C'\fR form, as it is computed
automatically at compile time.
.Sp
The only flag currently used from the \f(CW\*(C`flags\*(C'\fR parameter is \f(CW\*(C`COPHH_KEY_UTF8\*(C'\fR.
It is illegal to set this in the \f(CW\*(C`sv\*(C'\fR form.  In the \f(CW\*(C`pv*\*(C'\fR forms, it specifies
whether the key octets are interpreted as UTF\-8 (if set) or as Latin\-1 (if
cleared).  The \f(CW\*(C`sv\*(C'\fR form uses the underlying SV to determine the UTF\-8ness of
the octets.
.RS 4
.Sp
.Vb 2
\& bool  cophh_exists_pvn(const COPHH *cophh, const char *key,
\&                        STRLEN keylen, U32 hash, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """cophh_fetch_pv""" 4
.el .IP \f(CWcophh_fetch_pv\fR 4
.IX Item "cophh_fetch_pv"
.PD 0
.ie n .IP """cophh_fetch_pvn""" 4
.el .IP \f(CWcophh_fetch_pvn\fR 4
.IX Item "cophh_fetch_pvn"
.ie n .IP """cophh_fetch_pvs""" 4
.el .IP \f(CWcophh_fetch_pvs\fR 4
.IX Item "cophh_fetch_pvs"
.ie n .IP """cophh_fetch_sv""" 4
.el .IP \f(CWcophh_fetch_sv\fR 4
.IX Xref "cophh_fetch_pv cophh_fetch_pvn cophh_fetch_pvs cophh_fetch_sv"
.IX Item "cophh_fetch_sv"
.PD
NOTE: all these forms are \fBexperimental\fR and may change or be
removed without notice.
.Sp
These look up the entry in the cop hints hash \f(CW\*(C`cophh\*(C'\fR with the key specified by
\&\f(CW\*(C`key\*(C'\fR (and \f(CW\*(C`keylen\*(C'\fR in the \f(CW\*(C`pvn\*(C'\fR form), returning that value as a mortal
scalar copy, or \f(CW&PL_sv_placeholder\fR if there is no value associated with the
key.
.Sp
The forms differ in how the key is specified.
In the plain \f(CW\*(C`pv\*(C'\fR form, the key is a C language NUL-terminated string.
In the \f(CW\*(C`pvs\*(C'\fR form, the key is a C language string literal.
In the \f(CW\*(C`pvn\*(C'\fR form, an additional parameter, \f(CW\*(C`keylen\*(C'\fR, specifies the length of
the string, which hence, may contain embedded-NUL characters.
In the \f(CW\*(C`sv\*(C'\fR form, \f(CW*key\fR is an SV, and the key is the PV extracted from that.
using \f(CW"SvPV_const"\fR.
.Sp
\&\f(CW\*(C`hash\*(C'\fR is a precomputed hash of the key string, or zero if it has not been
precomputed.  This parameter is omitted from the \f(CW\*(C`pvs\*(C'\fR form, as it is computed
automatically at compile time.
.Sp
The only flag currently used from the \f(CW\*(C`flags\*(C'\fR parameter is \f(CW\*(C`COPHH_KEY_UTF8\*(C'\fR.
It is illegal to set this in the \f(CW\*(C`sv\*(C'\fR form.  In the \f(CW\*(C`pv*\*(C'\fR forms, it specifies
whether the key octets are interpreted as UTF\-8 (if set) or as Latin\-1 (if
cleared).  The \f(CW\*(C`sv\*(C'\fR form uses the underlying SV to determine the UTF\-8ness of
the octets.
.RS 4
.Sp
.Vb 7
\& SV *  cophh_fetch_pv (const COPHH *cophh, const char *key,
\&                       U32 hash, U32 flags)
\& SV *  cophh_fetch_pvn(const COPHH *cophh, const char *key,
\&                       STRLEN keylen, U32 hash, U32 flags)
\& SV *  cophh_fetch_pvs(const COPHH *cophh, "key", U32 flags)
\& SV *  cophh_fetch_sv (const COPHH *cophh, SV *key, U32 hash,
\&                       U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """cophh_free""" 4
.el .IP \f(CWcophh_free\fR 4
.IX Xref "cophh_free"
.IX Item "cophh_free"
NOTE: \f(CW\*(C`cophh_free\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Discard the cop hints hash \f(CW\*(C`cophh\*(C'\fR, freeing all resources associated
with it.
.RS 4
.Sp
.Vb 1
\& void  cophh_free(COPHH *cophh)
.Ve
.RE
.RS 4
.RE
.ie n .IP """cophh_2hv""" 4
.el .IP \f(CWcophh_2hv\fR 4
.IX Xref "cophh_2hv"
.IX Item "cophh_2hv"
NOTE: \f(CW\*(C`cophh_2hv\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Generates and returns a standard Perl hash representing the full set of
key/value pairs in the cop hints hash \f(CW\*(C`cophh\*(C'\fR.  \f(CW\*(C`flags\*(C'\fR is currently
unused and must be zero.
.RS 4
.Sp
.Vb 1
\& HV *  cophh_2hv(const COPHH *cophh, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """cophh_new_empty""" 4
.el .IP \f(CWcophh_new_empty\fR 4
.IX Xref "cophh_new_empty"
.IX Item "cophh_new_empty"
NOTE: \f(CW\*(C`cophh_new_empty\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Generate and return a fresh cop hints hash containing no entries.
.RS 4
.Sp
.Vb 1
\& COPHH *  cophh_new_empty()
.Ve
.RE
.RS 4
.RE
.ie n .IP """cophh_store_pv""" 4
.el .IP \f(CWcophh_store_pv\fR 4
.IX Item "cophh_store_pv"
.PD 0
.ie n .IP """cophh_store_pvn""" 4
.el .IP \f(CWcophh_store_pvn\fR 4
.IX Item "cophh_store_pvn"
.ie n .IP """cophh_store_pvs""" 4
.el .IP \f(CWcophh_store_pvs\fR 4
.IX Item "cophh_store_pvs"
.ie n .IP """cophh_store_sv""" 4
.el .IP \f(CWcophh_store_sv\fR 4
.IX Xref "cophh_store_pv cophh_store_pvn cophh_store_pvs cophh_store_sv"
.IX Item "cophh_store_sv"
.PD
NOTE: all these forms are \fBexperimental\fR and may change or be
removed without notice.
.Sp
These store a value, associated with a key, in the cop hints hash \f(CW\*(C`cophh\*(C'\fR,
and return the modified hash.  The returned hash pointer is in general
not the same as the hash pointer that was passed in.  The input hash is
consumed by the function, and the pointer to it must not be subsequently
used.  Use "cophh_copy" if you need both hashes.
.Sp
\&\f(CW\*(C`value\*(C'\fR is the scalar value to store for this key.  \f(CW\*(C`value\*(C'\fR is copied
by these functions, which thus do not take ownership of any reference
to it, and hence later changes to the scalar will not be reflected in the value
visible in the cop hints hash.  Complex types of scalar will not be stored with
referential integrity, but will be coerced to strings.
.Sp
The forms differ in how the key is specified.  In all forms, the key is pointed
to by \f(CW\*(C`key\*(C'\fR.
In the plain \f(CW\*(C`pv\*(C'\fR form, the key is a C language NUL-terminated string.
In the \f(CW\*(C`pvs\*(C'\fR form, the key is a C language string literal.
In the \f(CW\*(C`pvn\*(C'\fR form, an additional parameter, \f(CW\*(C`keylen\*(C'\fR, specifies the length of
the string, which hence, may contain embedded-NUL characters.
In the \f(CW\*(C`sv\*(C'\fR form, \f(CW*key\fR is an SV, and the key is the PV extracted from that.
using \f(CW"SvPV_const"\fR.
.Sp
\&\f(CW\*(C`hash\*(C'\fR is a precomputed hash of the key string, or zero if it has not been
precomputed.  This parameter is omitted from the \f(CW\*(C`pvs\*(C'\fR form, as it is computed
automatically at compile time.
.Sp
The only flag currently used from the \f(CW\*(C`flags\*(C'\fR parameter is \f(CW\*(C`COPHH_KEY_UTF8\*(C'\fR.
It is illegal to set this in the \f(CW\*(C`sv\*(C'\fR form.  In the \f(CW\*(C`pv*\*(C'\fR forms, it specifies
whether the key octets are interpreted as UTF\-8 (if set) or as Latin\-1 (if
cleared).  The \f(CW\*(C`sv\*(C'\fR form uses the underlying SV to determine the UTF\-8ness of
the octets.
.RS 4
.Sp
.Vb 9
\& COPHH *  cophh_store_pv (COPHH *cophh, const char *key, U32 hash,
\&                          SV *value, U32 flags)
\& COPHH *  cophh_store_pvn(COPHH *cophh, const char *key,
\&                          STRLEN keylen, U32 hash, SV *value,
\&                          U32 flags)
\& COPHH *  cophh_store_pvs(COPHH *cophh, "key", SV *value,
\&                          U32 flags)
\& COPHH *  cophh_store_sv (COPHH *cophh, SV *key, U32 hash,
\&                          SV *value, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """cop_hints_exists_pv""" 4
.el .IP \f(CWcop_hints_exists_pv\fR 4
.IX Item "cop_hints_exists_pv"
.PD 0
.ie n .IP """cop_hints_exists_pvn""" 4
.el .IP \f(CWcop_hints_exists_pvn\fR 4
.IX Item "cop_hints_exists_pvn"
.ie n .IP """cop_hints_exists_pvs""" 4
.el .IP \f(CWcop_hints_exists_pvs\fR 4
.IX Item "cop_hints_exists_pvs"
.ie n .IP """cop_hints_exists_sv""" 4
.el .IP \f(CWcop_hints_exists_sv\fR 4
.IX Xref "cop_hints_exists_pv cop_hints_exists_pvn cop_hints_exists_pvs cop_hints_exists_sv"
.IX Item "cop_hints_exists_sv"
.PD
These look up the hint entry in the cop \f(CW\*(C`cop\*(C'\fR with the key specified by
\&\f(CW\*(C`key\*(C'\fR (and \f(CW\*(C`keylen\*(C'\fR in the \f(CW\*(C`pvn\*(C'\fR form), returning true if a value exists,
and false otherwise.
.Sp
The forms differ in how the key is specified.  In all forms, the key is pointed
to by \f(CW\*(C`key\*(C'\fR.
In the plain \f(CW\*(C`pv\*(C'\fR form, the key is a C language NUL-terminated string.
In the \f(CW\*(C`pvs\*(C'\fR form, the key is a C language string literal.
In the \f(CW\*(C`pvn\*(C'\fR form, an additional parameter, \f(CW\*(C`keylen\*(C'\fR, specifies the length of
the string, which hence, may contain embedded-NUL characters.
In the \f(CW\*(C`sv\*(C'\fR form, \f(CW*key\fR is an SV, and the key is the PV extracted from that.
using \f(CW"SvPV_const"\fR.
.Sp
\&\f(CW\*(C`hash\*(C'\fR is a precomputed hash of the key string, or zero if it has not been
precomputed.  This parameter is omitted from the \f(CW\*(C`pvs\*(C'\fR form, as it is computed
automatically at compile time.
.Sp
The only flag currently used from the \f(CW\*(C`flags\*(C'\fR parameter is \f(CW\*(C`COPHH_KEY_UTF8\*(C'\fR.
It is illegal to set this in the \f(CW\*(C`sv\*(C'\fR form.  In the \f(CW\*(C`pv*\*(C'\fR forms, it specifies
whether the key octets are interpreted as UTF\-8 (if set) or as Latin\-1 (if
cleared).  The \f(CW\*(C`sv\*(C'\fR form uses the underlying SV to determine the UTF\-8ness of
the octets.
.RS 4
.Sp
.Vb 7
\& bool  cop_hints_exists_pv (const COP *cop, const char *key,
\&                            U32 hash, U32 flags)
\& bool  cop_hints_exists_pvn(const COP *cop, const char *key,
\&                            STRLEN keylen, U32 hash, U32 flags)
\& bool  cop_hints_exists_pvs(const COP *cop, "key", U32 flags)
\& bool  cop_hints_exists_sv (const COP *cop, SV *key, U32 hash,
\&                            U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """cop_hints_fetch_pv""" 4
.el .IP \f(CWcop_hints_fetch_pv\fR 4
.IX Item "cop_hints_fetch_pv"
.PD 0
.ie n .IP """cop_hints_fetch_pvn""" 4
.el .IP \f(CWcop_hints_fetch_pvn\fR 4
.IX Item "cop_hints_fetch_pvn"
.ie n .IP """cop_hints_fetch_pvs""" 4
.el .IP \f(CWcop_hints_fetch_pvs\fR 4
.IX Item "cop_hints_fetch_pvs"
.ie n .IP """cop_hints_fetch_sv""" 4
.el .IP \f(CWcop_hints_fetch_sv\fR 4
.IX Xref "cop_hints_fetch_pv cop_hints_fetch_pvn cop_hints_fetch_pvs cop_hints_fetch_sv"
.IX Item "cop_hints_fetch_sv"
.PD
These look up the hint entry in the cop \f(CW\*(C`cop\*(C'\fR with the key specified by
\&\f(CW\*(C`key\*(C'\fR (and \f(CW\*(C`keylen\*(C'\fR in the \f(CW\*(C`pvn\*(C'\fR form), returning that value as a mortal
scalar copy, or \f(CW&PL_sv_placeholder\fR if there is no value associated with the
key.
.Sp
The forms differ in how the key is specified.
In the plain \f(CW\*(C`pv\*(C'\fR form, the key is a C language NUL-terminated string.
In the \f(CW\*(C`pvs\*(C'\fR form, the key is a C language string literal.
In the \f(CW\*(C`pvn\*(C'\fR form, an additional parameter, \f(CW\*(C`keylen\*(C'\fR, specifies the length of
the string, which hence, may contain embedded-NUL characters.
In the \f(CW\*(C`sv\*(C'\fR form, \f(CW*key\fR is an SV, and the key is the PV extracted from that.
using \f(CW"SvPV_const"\fR.
.Sp
\&\f(CW\*(C`hash\*(C'\fR is a precomputed hash of the key string, or zero if it has not been
precomputed.  This parameter is omitted from the \f(CW\*(C`pvs\*(C'\fR form, as it is computed
automatically at compile time.
.Sp
The only flag currently used from the \f(CW\*(C`flags\*(C'\fR parameter is \f(CW\*(C`COPHH_KEY_UTF8\*(C'\fR.
It is illegal to set this in the \f(CW\*(C`sv\*(C'\fR form.  In the \f(CW\*(C`pv*\*(C'\fR forms, it specifies
whether the key octets are interpreted as UTF\-8 (if set) or as Latin\-1 (if
cleared).  The \f(CW\*(C`sv\*(C'\fR form uses the underlying SV to determine the UTF\-8ness of
the octets.
.RS 4
.Sp
.Vb 7
\& SV *  cop_hints_fetch_pv (const COP *cop, const char *key,
\&                           U32 hash, U32 flags)
\& SV *  cop_hints_fetch_pvn(const COP *cop, const char *key,
\&                           STRLEN keylen, U32 hash, U32 flags)
\& SV *  cop_hints_fetch_pvs(const COP *cop, "key", U32 flags)
\& SV *  cop_hints_fetch_sv (const COP *cop, SV *key, U32 hash,
\&                           U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """cop_hints_2hv""" 4
.el .IP \f(CWcop_hints_2hv\fR 4
.IX Xref "cop_hints_2hv"
.IX Item "cop_hints_2hv"
Generates and returns a standard Perl hash representing the full set of
hint entries in the cop \f(CW\*(C`cop\*(C'\fR.  \f(CW\*(C`flags\*(C'\fR is currently unused and must
be zero.
.RS 4
.Sp
.Vb 1
\& HV *  cop_hints_2hv(const COP *cop, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """CopLABEL""" 4
.el .IP \f(CWCopLABEL\fR 4
.IX Item "CopLABEL"
.PD 0
.ie n .IP """CopLABEL_len""" 4
.el .IP \f(CWCopLABEL_len\fR 4
.IX Item "CopLABEL_len"
.ie n .IP """CopLABEL_len_flags""" 4
.el .IP \f(CWCopLABEL_len_flags\fR 4
.IX Xref "CopLABEL CopLABEL_len CopLABEL_len_flags"
.IX Item "CopLABEL_len_flags"
.PD
These return the label attached to a cop.
.Sp
\&\f(CW\*(C`CopLABEL_len\*(C'\fR and \f(CW\*(C`CopLABEL_len_flags\*(C'\fR additionally store the number of
bytes comprising the returned label into \f(CW*len\fR.
.Sp
\&\f(CW\*(C`CopLABEL_len_flags\*(C'\fR additionally returns the UTF\-8ness of the returned label,
by setting \f(CW*flags\fR to 0 or \f(CW\*(C`SVf_UTF8\*(C'\fR.
.RS 4
.Sp
.Vb 4
\& const char *  CopLABEL          (COP *const cop)
\& const char *  CopLABEL_len      (COP *const cop, STRLEN *len)
\& const char *  CopLABEL_len_flags(COP *const cop, STRLEN *len,
\&                                  U32 *flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """CopLINE""" 4
.el .IP \f(CWCopLINE\fR 4
.IX Xref "CopLINE"
.IX Item "CopLINE"
Returns the line number in the source code associated with the \f(CW\*(C`COP\*(C'\fR \f(CW\*(C`c\*(C'\fR
.RS 4
.Sp
.Vb 1
\& line_t  CopLINE(const COP * c)
.Ve
.RE
.RS 4
.RE
.ie n .IP """CopSTASH""" 4
.el .IP \f(CWCopSTASH\fR 4
.IX Xref "CopSTASH"
.IX Item "CopSTASH"
Returns the stash associated with \f(CW\*(C`c\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& HV *  CopSTASH(const COP * c)
.Ve
.RE
.RS 4
.RE
.ie n .IP """CopSTASH_eq""" 4
.el .IP \f(CWCopSTASH_eq\fR 4
.IX Xref "CopSTASH_eq"
.IX Item "CopSTASH_eq"
Returns a boolean as to whether or not \f(CW\*(C`hv\*(C'\fR is the stash associated with \f(CW\*(C`c\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& bool  CopSTASH_eq(const COP * c, const HV * hv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """CopSTASHPV""" 4
.el .IP \f(CWCopSTASHPV\fR 4
.IX Xref "CopSTASHPV"
.IX Item "CopSTASHPV"
Returns the package name of the stash associated with \f(CW\*(C`c\*(C'\fR, or \f(CW\*(C`NULL\*(C'\fR if no
associated stash
.RS 4
.Sp
.Vb 1
\& char *  CopSTASHPV(const COP * c)
.Ve
.RE
.RS 4
.RE
.ie n .IP """CopSTASHPV_set""" 4
.el .IP \f(CWCopSTASHPV_set\fR 4
.IX Xref "CopSTASHPV_set"
.IX Item "CopSTASHPV_set"
Set the package name of the stash associated with \f(CW\*(C`c\*(C'\fR, to the NUL-terminated C
string \f(CW\*(C`p\*(C'\fR, creating the package if necessary.
.RS 4
.Sp
.Vb 1
\& void  CopSTASHPV_set(COP * c, const char * pv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """CopSTASH_set""" 4
.el .IP \f(CWCopSTASH_set\fR 4
.IX Xref "CopSTASH_set"
.IX Item "CopSTASH_set"
Set the stash associated with \f(CW\*(C`c\*(C'\fR to \f(CW\*(C`hv\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& bool  CopSTASH_set(COP * c, HV * hv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """cop_store_label""" 4
.el .IP \f(CWcop_store_label\fR 4
.IX Xref "cop_store_label"
.IX Item "cop_store_label"
NOTE: \f(CW\*(C`cop_store_label\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Save a label into a \f(CW\*(C`cop_hints_hash\*(C'\fR.
You need to set flags to \f(CW\*(C`SVf_UTF8\*(C'\fR
for a UTF\-8 label.  Any other flag is ignored.
.RS 4
.Sp
.Vb 2
\& void  cop_store_label(COP * const cop, const char *label,
\&                       STRLEN len, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PERL_SI""" 4
.el .IP \f(CWPERL_SI\fR 4
.IX Xref "PERL_SI"
.IX Item "PERL_SI"
Use this typedef to declare variables that are to hold \f(CW\*(C`struct stackinfo\*(C'\fR.
.ie n .IP """PL_curcop""" 4
.el .IP \f(CWPL_curcop\fR 4
.IX Xref "PL_curcop"
.IX Item "PL_curcop"
The currently active COP (control op) roughly representing the current
statement in the source.
.Sp
On threaded perls, each thread has an independent copy of this variable;
each initialized at creation time with the current value of the creating
thread's copy.
.RS 4
.Sp
.Vb 1
\& COP*  PL_curcop
.Ve
.RE
.RS 4
.RE
.ie n .IP """RCPV_LEN""" 4
.el .IP \f(CWRCPV_LEN\fR 4
.IX Xref "RCPV_LEN"
.IX Item "RCPV_LEN"
Returns the length of a pv created with \f(CWrcpv_new()\fR.
Note that this reflects the length of the string from the callers
point of view, it does not include the mandatory null which is
always injected at the end of the string by \fBrcpv_new()\fR.
No checks are performed to ensure that \f(CW\*(C`pv\*(C'\fR was actually allocated
with \f(CWrcpv_new()\fR, it is the callers responsibility to ensure that
this is the case.
.RS 4
.Sp
.Vb 1
\& RCPV *  RCPV_LEN(char *pv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """RCPV_REFCNT_dec""" 4
.el .IP \f(CWRCPV_REFCNT_dec\fR 4
.IX Xref "RCPV_REFCNT_dec"
.IX Item "RCPV_REFCNT_dec"
Decrements the refcount for a \f(CW\*(C`char *\*(C'\fR pointer which was created
with a call to \f(CWrcpv_new()\fR. Same as calling \fBrcpv_free()\fR.
No checks are performed to ensure that \f(CW\*(C`pv\*(C'\fR was actually allocated
with \f(CWrcpv_new()\fR, it is the callers responsibility to ensure that
this is the case.
.RS 4
.Sp
.Vb 1
\& RCPV *  RCPV_REFCNT_dec(char *pv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """RCPV_REFCNT_inc""" 4
.el .IP \f(CWRCPV_REFCNT_inc\fR 4
.IX Xref "RCPV_REFCNT_inc"
.IX Item "RCPV_REFCNT_inc"
Increments the refcount for a \f(CW\*(C`char *\*(C'\fR pointer which was created
with a call to \f(CWrcpv_new()\fR. Same as calling \fBrcpv_copy()\fR.
No checks are performed to ensure that \f(CW\*(C`pv\*(C'\fR was actually allocated
with \f(CWrcpv_new()\fR, it is the callers responsibility to ensure that
this is the case.
.RS 4
.Sp
.Vb 1
\& RCPV *  RCPV_REFCNT_inc(char *pv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """RCPV_REFCOUNT""" 4
.el .IP \f(CWRCPV_REFCOUNT\fR 4
.IX Xref "RCPV_REFCOUNT"
.IX Item "RCPV_REFCOUNT"
Returns the refcount for a pv created with \f(CWrcpv_new()\fR. 
No checks are performed to ensure that \f(CW\*(C`pv\*(C'\fR was actually allocated
with \f(CWrcpv_new()\fR, it is the callers responsibility to ensure that
this is the case.
.RS 4
.Sp
.Vb 1
\& RCPV *  RCPV_REFCOUNT(char *pv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """RCPVx""" 4
.el .IP \f(CWRCPVx\fR 4
.IX Xref "RCPVx"
.IX Item "RCPVx"
Returns the RCPV structure (struct rcpv) for a refcounted
string pv created with \f(CWrcpv_new()\fR.
No checks are performed to ensure that \f(CW\*(C`pv\*(C'\fR was actually allocated
with \f(CWrcpv_new()\fR, it is the callers responsibility to ensure that
this is the case.
.RS 4
.Sp
.Vb 1
\& RCPV *  RCPVx(char *pv)
.Ve
.RE
.RS 4
.RE
.SH "Custom Operators"
.IX Header "Custom Operators"
.ie n .IP """custom_op_register""" 4
.el .IP \f(CWcustom_op_register\fR 4
.IX Xref "custom_op_register"
.IX Item "custom_op_register"
Register a custom op.  See "Custom Operators" in perlguts.
.Sp
NOTE: \f(CW\*(C`custom_op_register\*(C'\fR must be explicitly called as
\&\f(CW\*(C`Perl_custom_op_register\*(C'\fR
with an \f(CW\*(C`aTHX_\*(C'\fR parameter.
.RS 4
.Sp
.Vb 2
\& void  Perl_custom_op_register(pTHX_ Perl_ppaddr_t ppaddr,
\&                               const XOP *xop)
.Ve
.RE
.RS 4
.RE
.ie n .IP """Perl_custom_op_xop""" 4
.el .IP \f(CWPerl_custom_op_xop\fR 4
.IX Xref "Perl_custom_op_xop"
.IX Item "Perl_custom_op_xop"
Return the XOP structure for a given custom op.  This macro should be
considered internal to \f(CW\*(C`OP_NAME\*(C'\fR and the other access macros: use them instead.
This macro does call a function.  Prior
to 5.19.6, this was implemented as a
function.
.RS 4
.Sp
.Vb 1
\& const XOP *  Perl_custom_op_xop(pTHX_ const OP *o)
.Ve
.RE
.RS 4
.RE
.ie n .IP """XopDISABLE""" 4
.el .IP \f(CWXopDISABLE\fR 4
.IX Xref "XopDISABLE"
.IX Item "XopDISABLE"
Temporarily disable a member of the XOP, by clearing the appropriate flag.
.RS 4
.Sp
.Vb 1
\& void  XopDISABLE(XOP *xop, token which)
.Ve
.RE
.RS 4
.RE
.ie n .IP """XopENABLE""" 4
.el .IP \f(CWXopENABLE\fR 4
.IX Xref "XopENABLE"
.IX Item "XopENABLE"
Reenable a member of the XOP which has been disabled.
.RS 4
.Sp
.Vb 1
\& void  XopENABLE(XOP *xop, token which)
.Ve
.RE
.RS 4
.RE
.ie n .IP """XopENTRY""" 4
.el .IP \f(CWXopENTRY\fR 4
.IX Xref "XopENTRY"
.IX Item "XopENTRY"
Return a member of the XOP structure.  \f(CW\*(C`which\*(C'\fR is a cpp token
indicating which entry to return.  If the member is not set
this will return a default value.  The return type depends
on \f(CW\*(C`which\*(C'\fR.  This macro evaluates its arguments more than
once.  If you are using \f(CW\*(C`Perl_custom_op_xop\*(C'\fR to retrieve a
\&\f(CW\*(C`XOP *\*(C'\fR from a \f(CW\*(C`OP *\*(C'\fR, use the more efficient "XopENTRYCUSTOM" instead.
.RS 4
.Sp
.Vb 1
\&   XopENTRY(XOP *xop, token which)
.Ve
.RE
.RS 4
.RE
.ie n .IP """XopENTRYCUSTOM""" 4
.el .IP \f(CWXopENTRYCUSTOM\fR 4
.IX Xref "XopENTRYCUSTOM"
.IX Item "XopENTRYCUSTOM"
Exactly like \f(CW\*(C`XopENTRY(XopENTRY(Perl_custom_op_xop(aTHX_ o), which)\*(C'\fR but more
efficient.  The \f(CW\*(C`which\*(C'\fR parameter is identical to "XopENTRY".
.RS 4
.Sp
.Vb 1
\&   XopENTRYCUSTOM(const OP *o, token which)
.Ve
.RE
.RS 4
.RE
.ie n .IP """XopENTRY_set""" 4
.el .IP \f(CWXopENTRY_set\fR 4
.IX Xref "XopENTRY_set"
.IX Item "XopENTRY_set"
Set a member of the XOP structure.  \f(CW\*(C`which\*(C'\fR is a cpp token
indicating which entry to set.  See "Custom Operators" in perlguts
for details about the available members and how
they are used.  This macro evaluates its argument
more than once.
.RS 4
.Sp
.Vb 1
\& void  XopENTRY_set(XOP *xop, token which, value)
.Ve
.RE
.RS 4
.RE
.ie n .IP """XopFLAGS""" 4
.el .IP \f(CWXopFLAGS\fR 4
.IX Xref "XopFLAGS"
.IX Item "XopFLAGS"
Return the XOP's flags.
.RS 4
.Sp
.Vb 1
\& U32  XopFLAGS(XOP *xop)
.Ve
.RE
.RS 4
.RE
.SH "CV Handling"
.IX Xref "CV GV_ADD"
.IX Header "CV Handling"
This section documents functions to manipulate CVs which are
code-values, meaning subroutines.  For more information, see
perlguts.
.ie n .IP """caller_cx""" 4
.el .IP \f(CWcaller_cx\fR 4
.IX Xref "caller_cx"
.IX Item "caller_cx"
The XSUB-writer's equivalent of \fBcaller()\fR.  The
returned \f(CW\*(C`PERL_CONTEXT\*(C'\fR structure can be interrogated to find all the
information returned to Perl by \f(CW\*(C`caller\*(C'\fR.  Note that XSUBs don't get a
stack frame, so \f(CW\*(C`caller_cx(0, NULL)\*(C'\fR will return information for the
immediately-surrounding Perl code.
.Sp
This function skips over the automatic calls to \f(CW&DB::sub\fR made on the
behalf of the debugger.  If the stack frame requested was a sub called by
\&\f(CW\*(C`DB::sub\*(C'\fR, the return value will be the frame for the call to
\&\f(CW\*(C`DB::sub\*(C'\fR, since that has the correct line number/etc. for the call
site.  If \fIdbcxp\fR is non\-\f(CW\*(C`NULL\*(C'\fR, it will be set to a pointer to the
frame for the sub call itself.
.RS 4
.Sp
.Vb 2
\& const PERL_CONTEXT *  caller_cx(I32 level,
\&                                 const PERL_CONTEXT **dbcxp)
.Ve
.RE
.RS 4
.RE
.ie n .IP """CvDEPTH""" 4
.el .IP \f(CWCvDEPTH\fR 4
.IX Xref "CvDEPTH"
.IX Item "CvDEPTH"
Returns the recursion level of the CV \f(CW\*(C`sv\*(C'\fR.  Hence >= 2 indicates we are in a
recursive call.
.RS 4
.Sp
.Vb 1
\& I32 *  CvDEPTH(const CV * const sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """CvGV""" 4
.el .IP \f(CWCvGV\fR 4
.IX Xref "CvGV"
.IX Item "CvGV"
Returns the GV associated with the CV \f(CW\*(C`sv\*(C'\fR, reifying it if necessary.
.RS 4
.Sp
.Vb 1
\& GV *  CvGV(CV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """CvSTASH""" 4
.el .IP \f(CWCvSTASH\fR 4
.IX Xref "CvSTASH"
.IX Item "CvSTASH"
Returns the stash of the CV.  A stash is the symbol table hash, containing
the package-scoped variables in the package where the subroutine was defined.
For more information, see perlguts.
.Sp
This also has a special use with XS AUTOLOAD subs.
See "Autoloading with XSUBs" in perlguts.
.RS 4
.Sp
.Vb 1
\& HV*  CvSTASH(CV* cv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """find_runcv""" 4
.el .IP \f(CWfind_runcv\fR 4
.IX Xref "find_runcv"
.IX Item "find_runcv"
Locate the CV corresponding to the currently executing sub or eval.
If \f(CW\*(C`db_seqp\*(C'\fR is non_null, skip CVs that are in the DB package and populate
\&\f(CW*db_seqp\fR with the cop sequence number at the point that the DB:: code was
entered.  (This allows debuggers to eval in the scope of the breakpoint
rather than in the scope of the debugger itself.)
.RS 4
.Sp
.Vb 1
\& CV *  find_runcv(U32 *db_seqp)
.Ve
.RE
.RS 4
.RE
.ie n .IP """get_cv""" 4
.el .IP \f(CWget_cv\fR 4
.IX Item "get_cv"
.PD 0
.ie n .IP """get_cvn_flags""" 4
.el .IP \f(CWget_cvn_flags\fR 4
.IX Item "get_cvn_flags"
.ie n .IP """get_cvs""" 4
.el .IP \f(CWget_cvs\fR 4
.IX Xref "get_cv get_cvn_flags get_cvs"
.IX Item "get_cvs"
.PD
These return the CV of the specified Perl subroutine.  \f(CW\*(C`flags\*(C'\fR are passed to
\&\f(CW\*(C`gv_fetchpvn_flags\*(C'\fR.  If \f(CW\*(C`GV_ADD\*(C'\fR is set and the Perl subroutine does not
exist then it will be declared (which has the same effect as saying
\&\f(CW\*(C`sub name;\*(C'\fR).  If \f(CW\*(C`GV_ADD\*(C'\fR is not set and the subroutine does not exist,
then NULL is returned.
.Sp
The forms differ only in how the subroutine is specified..  With \f(CW\*(C`get_cvs\*(C'\fR,
the name is a literal C string, enclosed in double quotes.  With \f(CW\*(C`get_cv\*(C'\fR, the
name is given by the \f(CW\*(C`name\*(C'\fR parameter, which must be a NUL-terminated C
string.  With \f(CW\*(C`get_cvn_flags\*(C'\fR, the name is also given by the \f(CW\*(C`name\*(C'\fR
parameter, but it is a Perl string (possibly containing embedded NUL bytes),
and its length in bytes is contained in the \f(CW\*(C`len\*(C'\fR parameter.
.Sp
NOTE: the \f(CWperl_get_cv()\fR form is \fBdeprecated\fR.
.Sp
NOTE: the \f(CWperl_get_cvn_flags()\fR form is \fBdeprecated\fR.
.Sp
NOTE: the \f(CWperl_get_cvs()\fR form is \fBdeprecated\fR.
.RS 4
.Sp
.Vb 3
\& CV *  get_cv       (const char *name, I32 flags)
\& CV *  get_cvn_flags(const char *name, STRLEN len, I32 flags)
\& CV *  get_cvs      ("string", I32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """Nullcv""" 4
.el .IP \f(CWNullcv\fR 4
.IX Xref "Nullcv"
.IX Item "Nullcv"
\&\f(CW\*(C`\fR\f(CBDEPRECATED!\fR\f(CW\*(C'\fR  It is planned to remove \f(CW\*(C`Nullcv\*(C'\fR
from a future release of Perl.  Do not use it for
new code; remove it from existing code.
.Sp
Null CV pointer.
.Sp
(deprecated \- use \f(CW\*(C`(CV *)NULL\*(C'\fR instead)
.SH Debugging
.IX Header "Debugging"
.ie n .IP """av_dump""" 4
.el .IP \f(CWav_dump\fR 4
.IX Xref "av_dump"
.IX Item "av_dump"
Dumps the contents of an AV to the \f(CW\*(C`STDERR\*(C'\fR filehandle,
Similar to using Devel::Peek on an arrayref but does not
expect an RV wrapper. Dumps contents to a depth of 3 levels
deep.
.RS 4
.Sp
.Vb 1
\& void  av_dump(AV *av)
.Ve
.RE
.RS 4
.RE
.ie n .IP """deb""" 4
.el .IP \f(CWdeb\fR 4
.IX Item "deb"
.PD 0
.ie n .IP """deb_nocontext""" 4
.el .IP \f(CWdeb_nocontext\fR 4
.IX Xref "deb deb_nocontext"
.IX Item "deb_nocontext"
.PD
When perl is compiled with \f(CW\*(C`\-DDEBUGGING\*(C'\fR, this prints to STDERR the
information given by the arguments, prefaced by the name of the file containing
the script causing the call, and the line number within that file.
.Sp
If the \f(CW\*(C`v\*(C'\fR (verbose) debugging option is in effect, the process id is also
printed.
.Sp
The two forms differ only in that \f(CW\*(C`deb_nocontext\*(C'\fR does not take a thread
context (\f(CW\*(C`aTHX\*(C'\fR) parameter, so is used in situations where the caller doesn't
already have the thread context.
.Sp
NOTE: \f(CW\*(C`deb\*(C'\fR must be explicitly called as
\&\f(CW\*(C`Perl_deb\*(C'\fR
with an \f(CW\*(C`aTHX_\*(C'\fR parameter.
.RS 4
.Sp
.Vb 2
\& void  Perl_deb     (pTHX_ const char *pat, ...)
\& void  deb_nocontext(const char *pat, ...)
.Ve
.RE
.RS 4
.RE
.ie n .IP """debstack""" 4
.el .IP \f(CWdebstack\fR 4
.IX Xref "debstack"
.IX Item "debstack"
Dump the current stack
.RS 4
.Sp
.Vb 1
\& I32  debstack()
.Ve
.RE
.RS 4
.RE
.ie n .IP """dump_all""" 4
.el .IP \f(CWdump_all\fR 4
.IX Xref "dump_all"
.IX Item "dump_all"
Dumps the entire optree of the current program starting at \f(CW\*(C`PL_main_root\*(C'\fR to 
\&\f(CW\*(C`STDERR\*(C'\fR.  Also dumps the optrees for all visible subroutines in
\&\f(CW\*(C`PL_defstash\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& void  dump_all()
.Ve
.RE
.RS 4
.RE
.ie n .IP """dump_c_backtrace""" 4
.el .IP \f(CWdump_c_backtrace\fR 4
.IX Xref "dump_c_backtrace"
.IX Item "dump_c_backtrace"
Dumps the C backtrace to the given \f(CW\*(C`fp\*(C'\fR.
.Sp
Returns true if a backtrace could be retrieved, false if not.
.RS 4
.Sp
.Vb 1
\& bool  dump_c_backtrace(PerlIO *fp, int max_depth, int skip)
.Ve
.RE
.RS 4
.RE
.ie n .IP """dump_eval""" 4
.el .IP \f(CWdump_eval\fR 4
.IX Item "dump_eval"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& void  dump_eval()
.Ve
.RE
.RS 4
.RE
.ie n .IP """dump_form""" 4
.el .IP \f(CWdump_form\fR 4
.IX Xref "dump_form"
.IX Item "dump_form"
Dumps the contents of the format contained in the GV \f(CW\*(C`gv\*(C'\fR to \f(CW\*(C`STDERR\*(C'\fR, or a
message that one doesn't exist.
.RS 4
.Sp
.Vb 1
\& void  dump_form(const GV *gv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """dump_packsubs""" 4
.el .IP \f(CWdump_packsubs\fR 4
.IX Xref "dump_packsubs"
.IX Item "dump_packsubs"
Dumps the optrees for all visible subroutines in \f(CW\*(C`stash\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& void  dump_packsubs(const HV *stash)
.Ve
.RE
.RS 4
.RE
.ie n .IP """dump_sub""" 4
.el .IP \f(CWdump_sub\fR 4
.IX Item "dump_sub"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& void  dump_sub(const GV *gv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """get_c_backtrace_dump""" 4
.el .IP \f(CWget_c_backtrace_dump\fR 4
.IX Xref "get_c_backtrace_dump"
.IX Item "get_c_backtrace_dump"
Returns a SV containing a dump of \f(CW\*(C`depth\*(C'\fR frames of the call stack, skipping
the \f(CW\*(C`skip\*(C'\fR innermost ones.  \f(CW\*(C`depth\*(C'\fR of 20 is usually enough.
.Sp
The appended output looks like:
.Sp
.Vb 4
\& ...
\& 1   10e004812:0082   Perl_croak   util.c:1716    /usr/bin/perl
\& 2   10df8d6d2:1d72   perl_parse   perl.c:3975    /usr/bin/perl
\& ...
.Ve
.Sp
The fields are tab-separated.  The first column is the depth (zero
being the innermost non-skipped frame).  In the hex:offset, the hex is
where the program counter was in \f(CW\*(C`S_parse_body\*(C'\fR, and the :offset (might
be missing) tells how much inside the \f(CW\*(C`S_parse_body\*(C'\fR the program counter was.
.Sp
The \f(CW\*(C`util.c:1716\*(C'\fR is the source code file and line number.
.Sp
The \fI/usr/bin/perl\fR is obvious (hopefully).
.Sp
Unknowns are \f(CW"\-"\fR.  Unknowns can happen unfortunately quite easily:
if the platform doesn't support retrieving the information;
if the binary is missing the debug information;
if the optimizer has transformed the code by for example inlining.
.RS 4
.Sp
.Vb 1
\& SV *  get_c_backtrace_dump(int max_depth, int skip)
.Ve
.RE
.RS 4
.RE
.ie n .IP """gv_dump""" 4
.el .IP \f(CWgv_dump\fR 4
.IX Xref "gv_dump"
.IX Item "gv_dump"
Dump the name and, if they differ, the effective name of the GV \f(CW\*(C`gv\*(C'\fR to
\&\f(CW\*(C`STDERR\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& void  gv_dump(GV *gv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """HAS_BACKTRACE""" 4
.el .IP \f(CWHAS_BACKTRACE\fR 4
.IX Xref "HAS_BACKTRACE"
.IX Item "HAS_BACKTRACE"
This symbol, if defined, indicates that the \f(CWbacktrace()\fR routine is
available to get a stack trace.  The \fIexecinfo.h\fR header must be
included to use this routine.
.ie n .IP """hv_dump""" 4
.el .IP \f(CWhv_dump\fR 4
.IX Xref "hv_dump"
.IX Item "hv_dump"
Dumps the contents of an HV to the \f(CW\*(C`STDERR\*(C'\fR filehandle.
Similar to using Devel::Peek on an hashref but does not
expect an RV wrapper. Dumps contents to a depth of 3 levels
deep.
.RS 4
.Sp
.Vb 1
\& void  hv_dump(HV *hv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """magic_dump""" 4
.el .IP \f(CWmagic_dump\fR 4
.IX Xref "magic_dump"
.IX Item "magic_dump"
Dumps the contents of the MAGIC \f(CW\*(C`mg\*(C'\fR to \f(CW\*(C`STDERR\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& void  magic_dump(const MAGIC *mg)
.Ve
.RE
.RS 4
.RE
.ie n .IP """op_class""" 4
.el .IP \f(CWop_class\fR 4
.IX Xref "op_class"
.IX Item "op_class"
Given an op, determine what type of struct it has been allocated as.
Returns one of the OPclass enums, such as OPclass_LISTOP.
.RS 4
.Sp
.Vb 1
\& OPclass  op_class(const OP *o)
.Ve
.RE
.RS 4
.RE
.ie n .IP """op_dump""" 4
.el .IP \f(CWop_dump\fR 4
.IX Xref "op_dump"
.IX Item "op_dump"
Dumps the optree starting at OP \f(CW\*(C`o\*(C'\fR to \f(CW\*(C`STDERR\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& void  op_dump(const OP *o)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PL_op""" 4
.el .IP \f(CWPL_op\fR 4
.IX Item "PL_op"
Described in perlhacktips.
.ie n .IP """PL_runops""" 4
.el .IP \f(CWPL_runops\fR 4
.IX Item "PL_runops"
Described in perlguts.
.ie n .IP """PL_sv_serial""" 4
.el .IP \f(CWPL_sv_serial\fR 4
.IX Item "PL_sv_serial"
Described in perlhacktips.
.ie n .IP """pmop_dump""" 4
.el .IP \f(CWpmop_dump\fR 4
.IX Xref "pmop_dump"
.IX Item "pmop_dump"
Dump an OP that is related to Pattern Matching, such as \f(CW\*(C`s/foo/bar/\*(C'\fR; these require
special handling.
.RS 4
.Sp
.Vb 1
\& void  pmop_dump(PMOP *pm)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_dump""" 4
.el .IP \f(CWsv_dump\fR 4
.IX Xref "sv_dump"
.IX Item "sv_dump"
Dumps the contents of an SV to the \f(CW\*(C`STDERR\*(C'\fR filehandle.
.Sp
For an example of its output, see Devel::Peek. If
the item is an SvROK it will dump items to a depth of 4,
otherwise it will dump only the top level item, which
means that it will not dump the contents of an AV * or
HV *. For that use \f(CWav_dump()\fR or \f(CWhv_dump()\fR.
.RS 4
.Sp
.Vb 1
\& void  sv_dump(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_dump_depth""" 4
.el .IP \f(CWsv_dump_depth\fR 4
.IX Xref "sv_dump_depth"
.IX Item "sv_dump_depth"
Dumps the contents of an SV to the \f(CW\*(C`STDERR\*(C'\fR filehandle
to the depth requested. This function can be used on any
SV derived type (GV, HV, AV) with an appropriate cast.
This is a more flexible variant of \fBsv_dump()\fR. For example
.Sp
.Vb 2
\&    HV *hv = ...;
\&    sv_dump_depth((SV*)hv, 2);
.Ve
.Sp
would dump the hv, its keys and values, but would not recurse
into any RV values.
.RS 4
.Sp
.Vb 1
\& void  sv_dump_depth(SV *sv, I32 depth)
.Ve
.RE
.RS 4
.RE
.ie n .IP """vdeb""" 4
.el .IP \f(CWvdeb\fR 4
.IX Xref "vdeb"
.IX Item "vdeb"
This is like \f(CW"deb"\fR, but \f(CW\*(C`args\*(C'\fR are an encapsulated argument list.
.RS 4
.Sp
.Vb 1
\& void  vdeb(const char *pat, va_list *args)
.Ve
.RE
.RS 4
.RE
.SH "Display functions"
.IX Xref "PERL_PV_ESCAPE_ALL PERL_PV_ESCAPE_FIRSTCHAR PERL_PV_ESCAPE_NOBACKSLASH PERL_PV_ESCAPE_NOCLEAR PERL_PV_ESCAPE_NONASCII PERL_PV_ESCAPE_NON_WC PERL_PV_ESCAPE_QUOTE PERL_PV_ESCAPE_RE PERL_PV_ESCAPE_UNI PERL_PV_ESCAPE_UNI_DETECT PERL_PV_PRETTY_ELLIPSES PERL_PV_PRETTY_LTGT PERL_PV_PRETTY_QUOTE"
.IX Header "Display functions"
.ie n .IP """form""" 4
.el .IP \f(CWform\fR 4
.IX Item "form"
.PD 0
.ie n .IP """form_nocontext""" 4
.el .IP \f(CWform_nocontext\fR 4
.IX Xref "form form_nocontext"
.IX Item "form_nocontext"
.PD
These take a sprintf-style format pattern and conventional
(non-SV) arguments and return the formatted string.
.Sp
.Vb 1
\&    (char *) Perl_form(pTHX_ const char* pat, ...)
.Ve
.Sp
can be used any place a string (char *) is required:
.Sp
.Vb 1
\&    char * s = Perl_form("%d.%d",major,minor);
.Ve
.Sp
They use a single (per-thread) private buffer so if you want to format several
strings you must explicitly copy the earlier strings away (and free the copies
when you are done).
.Sp
The two forms differ only in that \f(CW\*(C`form_nocontext\*(C'\fR does not take a thread
context (\f(CW\*(C`aTHX\*(C'\fR) parameter, so is used in situations where the caller doesn't
already have the thread context.
.Sp
NOTE: \f(CW\*(C`form\*(C'\fR must be explicitly called as
\&\f(CW\*(C`Perl_form\*(C'\fR
with an \f(CW\*(C`aTHX_\*(C'\fR parameter.
.RS 4
.Sp
.Vb 2
\& char *  Perl_form     (pTHX_ const char *pat, ...)
\& char *  form_nocontext(const char *pat, ...)
.Ve
.RE
.RS 4
.RE
.ie n .IP """mess""" 4
.el .IP \f(CWmess\fR 4
.IX Item "mess"
.PD 0
.ie n .IP """mess_nocontext""" 4
.el .IP \f(CWmess_nocontext\fR 4
.IX Xref "mess mess_nocontext"
.IX Item "mess_nocontext"
.PD
These take a sprintf-style format pattern and argument list, which are used to
generate a string message.  If the message does not end with a newline, then it
will be extended with some indication of the current location in the code, as
described for \f(CW"mess_sv"\fR.
.Sp
Normally, the resulting message is returned in a new mortal SV.
But during global destruction a single SV may be shared between uses of
this function.
.Sp
The two forms differ only in that \f(CW\*(C`mess_nocontext\*(C'\fR does not take a thread
context (\f(CW\*(C`aTHX\*(C'\fR) parameter, so is used in situations where the caller doesn't
already have the thread context.
.Sp
NOTE: \f(CW\*(C`mess\*(C'\fR must be explicitly called as
\&\f(CW\*(C`Perl_mess\*(C'\fR
with an \f(CW\*(C`aTHX_\*(C'\fR parameter.
.RS 4
.Sp
.Vb 2
\& SV *  Perl_mess     (pTHX_ const char *pat, ...)
\& SV *  mess_nocontext(const char *pat, ...)
.Ve
.RE
.RS 4
.RE
.ie n .IP """mess_sv""" 4
.el .IP \f(CWmess_sv\fR 4
.IX Xref "mess_sv"
.IX Item "mess_sv"
Expands a message, intended for the user, to include an indication of
the current location in the code, if the message does not already appear
to be complete.
.Sp
\&\f(CW\*(C`basemsg\*(C'\fR is the initial message or object.  If it is a reference, it
will be used as-is and will be the result of this function.  Otherwise it
is used as a string, and if it already ends with a newline, it is taken
to be complete, and the result of this function will be the same string.
If the message does not end with a newline, then a segment such as \f(CW\*(C`at
foo.pl line 37\*(C'\fR will be appended, and possibly other clauses indicating
the current state of execution.  The resulting message will end with a
dot and a newline.
.Sp
Normally, the resulting message is returned in a new mortal SV.
During global destruction a single SV may be shared between uses of this
function.  If \f(CW\*(C`consume\*(C'\fR is true, then the function is permitted (but not
required) to modify and return \f(CW\*(C`basemsg\*(C'\fR instead of allocating a new SV.
.RS 4
.Sp
.Vb 1
\& SV *  mess_sv(SV *basemsg, bool consume)
.Ve
.RE
.RS 4
.RE
.ie n .IP """pv_display""" 4
.el .IP \f(CWpv_display\fR 4
.IX Xref "pv_display"
.IX Item "pv_display"
Similar to
.Sp
.Vb 1
\&  pv_escape(dsv,pv,cur,pvlim,PERL_PV_ESCAPE_QUOTE);
.Ve
.Sp
except that an additional "\e0" will be appended to the string when
len > cur and pv[cur] is "\e0".
.Sp
Note that the final string may be up to 7 chars longer than pvlim.
.RS 4
.Sp
.Vb 2
\& char *  pv_display(SV *dsv, const char *pv, STRLEN cur,
\&                    STRLEN len, STRLEN pvlim)
.Ve
.RE
.RS 4
.RE
.ie n .IP """pv_escape""" 4
.el .IP \f(CWpv_escape\fR 4
.IX Xref "pv_escape"
.IX Item "pv_escape"
Escapes at most the first \f(CW\*(C`count\*(C'\fR chars of \f(CW\*(C`pv\*(C'\fR and puts the results into
\&\f(CW\*(C`dsv\*(C'\fR such that the size of the escaped string will not exceed \f(CW\*(C`max\*(C'\fR chars
and will not contain any incomplete escape sequences.  The number of bytes
escaped will be returned in the \f(CW\*(C`STRLEN *escaped\*(C'\fR parameter if it is not null.
When the \f(CW\*(C`dsv\*(C'\fR parameter is null no escaping actually occurs, but the number
of bytes that would be escaped were it not null will be calculated.
.Sp
If flags contains \f(CW\*(C`PERL_PV_ESCAPE_QUOTE\*(C'\fR then any double quotes in the string
will also be escaped.
.Sp
Normally the SV will be cleared before the escaped string is prepared,
but when \f(CW\*(C`PERL_PV_ESCAPE_NOCLEAR\*(C'\fR is set this will not occur.
.Sp
If \f(CW\*(C`PERL_PV_ESCAPE_UNI\*(C'\fR is set then the input string is treated as UTF\-8.
If \f(CW\*(C`PERL_PV_ESCAPE_UNI_DETECT\*(C'\fR is set then the input string is scanned
using \f(CWis_utf8_string()\fR to determine if it is UTF\-8.
.Sp
If \f(CW\*(C`PERL_PV_ESCAPE_ALL\*(C'\fR is set then all input chars will be output
using \f(CW\*(C`\ex01F1\*(C'\fR style escapes, otherwise if \f(CW\*(C`PERL_PV_ESCAPE_NONASCII\*(C'\fR
is set, only non-ASCII chars will be escaped using this style;
otherwise, only chars above 255 will be so escaped; other non printable
chars will use octal or common escaped patterns like \f(CW\*(C`\en\*(C'\fR. Otherwise,
if \f(CW\*(C`PERL_PV_ESCAPE_NOBACKSLASH\*(C'\fR then all chars below 255 will be
treated as printable and will be output as literals. The
\&\f(CW\*(C`PERL_PV_ESCAPE_NON_WC\*(C'\fR modifies the previous rules to cause word
chars, unicode or otherwise, to be output as literals, note this uses
the *unicode* rules for deciding on word characters.
.Sp
If \f(CW\*(C`PERL_PV_ESCAPE_FIRSTCHAR\*(C'\fR is set then only the first char of the
string will be escaped, regardless of max. If the output is to be in
hex, then it will be returned as a plain hex sequence. Thus the output
will either be a single char, an octal escape sequence, a special escape
like \f(CW\*(C`\en\*(C'\fR or a hex value.
.Sp
If \f(CW\*(C`PERL_PV_ESCAPE_RE\*(C'\fR is set then the escape char used will be a
\&\f(CW"%"\fR and not a \f(CW"\e\e"\fR. This is because regexes very often contain
backslashed sequences, whereas \f(CW"%"\fR is not a particularly common
character in patterns.
.Sp
Returns a pointer to the escaped text as held by \f(CW\*(C`dsv\*(C'\fR.
.RS 4
.Sp
.Vb 3
\& char *  pv_escape(SV *dsv, char const * const str,
\&                   const STRLEN count, STRLEN max,
\&                   STRLEN * const escaped, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """pv_pretty""" 4
.el .IP \f(CWpv_pretty\fR 4
.IX Xref "pv_pretty"
.IX Item "pv_pretty"
Converts a string into something presentable, handling escaping via
\&\f(CWpv_escape()\fR and supporting quoting and ellipses.
.Sp
If the \f(CW\*(C`PERL_PV_PRETTY_QUOTE\*(C'\fR flag is set then the result will be
double quoted with any double quotes in the string escaped.  Otherwise
if the \f(CW\*(C`PERL_PV_PRETTY_LTGT\*(C'\fR flag is set then the result be wrapped in
angle brackets.
.Sp
If the \f(CW\*(C`PERL_PV_PRETTY_ELLIPSES\*(C'\fR flag is set and not all characters in
string were output then an ellipsis \f(CW\*(C`...\*(C'\fR will be appended to the
string.  Note that this happens AFTER it has been quoted.
.Sp
If \f(CW\*(C`start_color\*(C'\fR is non-null then it will be inserted after the opening
quote (if there is one) but before the escaped text.  If \f(CW\*(C`end_color\*(C'\fR
is non-null then it will be inserted after the escaped text but before
any quotes or ellipses.
.Sp
Returns a pointer to the prettified text as held by \f(CW\*(C`dsv\*(C'\fR.
.RS 4
.Sp
.Vb 4
\& char *  pv_pretty(SV *dsv, char const * const str,
\&                   const STRLEN count, const STRLEN max,
\&                   char const * const start_color,
\&                   char const * const end_color, const U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """vform""" 4
.el .IP \f(CWvform\fR 4
.IX Xref "vform"
.IX Item "vform"
Like \f(CW"form"\fR but but the arguments are an encapsulated argument list.
.RS 4
.Sp
.Vb 1
\& char *  vform(const char *pat, va_list *args)
.Ve
.RE
.RS 4
.RE
.ie n .IP """vmess""" 4
.el .IP \f(CWvmess\fR 4
.IX Xref "vmess"
.IX Item "vmess"
\&\f(CW\*(C`pat\*(C'\fR and \f(CW\*(C`args\*(C'\fR are a sprintf-style format pattern and encapsulated
argument list, respectively.  These are used to generate a string message.  If
the
message does not end with a newline, then it will be extended with
some indication of the current location in the code, as described for
"mess_sv".
.Sp
Normally, the resulting message is returned in a new mortal SV.
During global destruction a single SV may be shared between uses of
this function.
.RS 4
.Sp
.Vb 1
\& SV *  vmess(const char *pat, va_list *args)
.Ve
.RE
.RS 4
.RE
.SH "Embedding, Threads, and Interpreter Cloning"
.IX Xref "CV_NAME_NOTQUAL PADNAMEf_OUTER PERL_EXIT_ABORT PERL_EXIT_DESTRUCT_END PERL_EXIT_EXPECTED PERL_EXIT_WARN PERL_LOADMOD_DENY PERL_LOADMOD_IMPORT_OPS PERL_LOADMOD_NOIMPORT"
.IX Header "Embedding, Threads, and Interpreter Cloning"
.ie n .IP """call_atexit""" 4
.el .IP \f(CWcall_atexit\fR 4
.IX Xref "call_atexit"
.IX Item "call_atexit"
Add a function \f(CW\*(C`fn\*(C'\fR to the list of functions to be called at global
destruction.  \f(CW\*(C`ptr\*(C'\fR will be passed as an argument to \f(CW\*(C`fn\*(C'\fR; it can point to a
\&\f(CW\*(C`struct\*(C'\fR so that you can pass anything you want.
.Sp
Note that under threads, \f(CW\*(C`fn\*(C'\fR may run multiple times.  This is because the
list is executed each time the current or any descendent thread terminates.
.RS 4
.Sp
.Vb 1
\& void  call_atexit(ATEXIT_t fn, void *ptr)
.Ve
.RE
.RS 4
.RE
.ie n .IP """cv_clone""" 4
.el .IP \f(CWcv_clone\fR 4
.IX Xref "cv_clone"
.IX Item "cv_clone"
Clone a CV, making a lexical closure.  \f(CW\*(C`proto\*(C'\fR supplies the prototype
of the function: its code, pad structure, and other attributes.
The prototype is combined with a capture of outer lexicals to which the
code refers, which are taken from the currently-executing instance of
the immediately surrounding code.
.RS 4
.Sp
.Vb 1
\& CV *  cv_clone(CV *proto)
.Ve
.RE
.RS 4
.RE
.ie n .IP """cv_name""" 4
.el .IP \f(CWcv_name\fR 4
.IX Xref "cv_name"
.IX Item "cv_name"
Returns an SV containing the name of the CV, mainly for use in error
reporting.  The CV may actually be a GV instead, in which case the returned
SV holds the GV's name.  Anything other than a GV or CV is treated as a
string already holding the sub name, but this could change in the future.
.Sp
An SV may be passed as a second argument.  If so, the name will be assigned
to it and it will be returned.  Otherwise the returned SV will be a new
mortal.
.Sp
If \f(CW\*(C`flags\*(C'\fR has the \f(CW\*(C`CV_NAME_NOTQUAL\*(C'\fR bit set, then the package name will not be
included.  If the first argument is neither a CV nor a GV, this flag is
ignored (subject to change).
.RS 4
.Sp
.Vb 1
\& SV *  cv_name(CV *cv, SV *sv, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """cv_undef""" 4
.el .IP \f(CWcv_undef\fR 4
.IX Xref "cv_undef"
.IX Item "cv_undef"
Clear out all the active components of a CV.  This can happen either
by an explicit \f(CW\*(C`undef &foo\*(C'\fR, or by the reference count going to zero.
In the former case, we keep the \f(CW\*(C`CvOUTSIDE\*(C'\fR pointer, so that any anonymous
children can still follow the full lexical scope chain.
.RS 4
.Sp
.Vb 1
\& void  cv_undef(CV *cv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """find_rundefsv""" 4
.el .IP \f(CWfind_rundefsv\fR 4
.IX Xref "find_rundefsv"
.IX Item "find_rundefsv"
Returns the global variable \f(CW$_\fR.
.RS 4
.Sp
.Vb 1
\& SV *  find_rundefsv()
.Ve
.RE
.RS 4
.RE
.ie n .IP """get_op_descs""" 4
.el .IP \f(CWget_op_descs\fR 4
.IX Xref "get_op_descs"
.IX Item "get_op_descs"
\&\f(CW\*(C`\fR\f(CBDEPRECATED!\fR\f(CW\*(C'\fR  It is planned to remove \f(CW\*(C`get_op_descs\*(C'\fR
from a future release of Perl.  Do not use it for
new code; remove it from existing code.
.Sp
Return a pointer to the array of all the descriptions of the various OPs
Given an opcode from the enum in \fIopcodes.h\fR, \f(CW\*(C`PL_op_desc[opcode]\*(C'\fR returns a
pointer to a C language string giving its description.
.RS 4
.Sp
.Vb 1
\& char **  get_op_descs()
.Ve
.RE
.RS 4
.RE
.ie n .IP """get_op_names""" 4
.el .IP \f(CWget_op_names\fR 4
.IX Xref "get_op_names"
.IX Item "get_op_names"
\&\f(CW\*(C`\fR\f(CBDEPRECATED!\fR\f(CW\*(C'\fR  It is planned to remove \f(CW\*(C`get_op_names\*(C'\fR
from a future release of Perl.  Do not use it for
new code; remove it from existing code.
.Sp
Return a pointer to the array of all the names of the various OPs
Given an opcode from the enum in \fIopcodes.h\fR, \f(CW\*(C`PL_op_name[opcode]\*(C'\fR returns a
pointer to a C language string giving its name.
.RS 4
.Sp
.Vb 1
\& char **  get_op_names()
.Ve
.RE
.RS 4
.RE
.ie n .IP """HAS_SKIP_LOCALE_INIT""" 4
.el .IP \f(CWHAS_SKIP_LOCALE_INIT\fR 4
.IX Item "HAS_SKIP_LOCALE_INIT"
Described in perlembed.
.ie n .IP """intro_my""" 4
.el .IP \f(CWintro_my\fR 4
.IX Xref "intro_my"
.IX Item "intro_my"
"Introduce" \f(CW\*(C`my\*(C'\fR variables to visible status.  This is called during parsing
at the end of each statement to make lexical variables visible to subsequent
statements.
.RS 4
.Sp
.Vb 1
\& U32  intro_my()
.Ve
.RE
.RS 4
.RE
.ie n .IP """load_module""" 4
.el .IP \f(CWload_module\fR 4
.IX Item "load_module"
.PD 0
.ie n .IP """load_module_nocontext""" 4
.el .IP \f(CWload_module_nocontext\fR 4
.IX Xref "load_module load_module_nocontext"
.IX Item "load_module_nocontext"
.PD
These load the module whose name is pointed to by the string part of \f(CW\*(C`name\*(C'\fR.
Note that the actual module name, not its filename, should be given.
Eg, "Foo::Bar" instead of "Foo/Bar.pm". ver, if specified and not NULL,
provides version semantics similar to \f(CW\*(C`use Foo::Bar VERSION\*(C'\fR. The optional
trailing arguments can be used to specify arguments to the module's \f(CWimport()\fR
method, similar to \f(CW\*(C`use Foo::Bar VERSION LIST\*(C'\fR; their precise handling depends
on the flags. The flags argument is a bitwise-ORed collection of any of
\&\f(CW\*(C`PERL_LOADMOD_DENY\*(C'\fR, \f(CW\*(C`PERL_LOADMOD_NOIMPORT\*(C'\fR, or \f(CW\*(C`PERL_LOADMOD_IMPORT_OPS\*(C'\fR
(or 0 for no flags).
.Sp
If \f(CW\*(C`PERL_LOADMOD_NOIMPORT\*(C'\fR is set, the module is loaded as if with an empty
import list, as in \f(CW\*(C`use Foo::Bar ()\*(C'\fR; this is the only circumstance in which
the trailing optional arguments may be omitted entirely. Otherwise, if
\&\f(CW\*(C`PERL_LOADMOD_IMPORT_OPS\*(C'\fR is set, the trailing arguments must consist of
exactly one \f(CW\*(C`OP*\*(C'\fR, containing the op tree that produces the relevant import
arguments. Otherwise, the trailing arguments must all be \f(CW\*(C`SV*\*(C'\fR values that
will be used as import arguments; and the list must be terminated with \f(CW\*(C`(SV*)
NULL\*(C'\fR. If neither \f(CW\*(C`PERL_LOADMOD_NOIMPORT\*(C'\fR nor \f(CW\*(C`PERL_LOADMOD_IMPORT_OPS\*(C'\fR is
set, the trailing \f(CW\*(C`NULL\*(C'\fR pointer is needed even if no import arguments are
desired. The reference count for each specified \f(CW\*(C`SV*\*(C'\fR argument is
decremented. In addition, the \f(CW\*(C`name\*(C'\fR argument is modified.
.Sp
If \f(CW\*(C`PERL_LOADMOD_DENY\*(C'\fR is set, the module is loaded as if with \f(CW\*(C`no\*(C'\fR rather
than \f(CW\*(C`use\*(C'\fR.
.Sp
\&\f(CW\*(C`load_module\*(C'\fR and \f(CW\*(C`load_module_nocontext\*(C'\fR have the same apparent signature,
but the former hides the fact that it is accessing a thread context parameter.
So use the latter when you get a compilation error about \f(CW\*(C`pTHX\*(C'\fR.
.RS 4
.Sp
.Vb 2
\& void  load_module          (U32 flags, SV *name, SV *ver, ...)
\& void  load_module_nocontext(U32 flags, SV *name, SV *ver, ...)
.Ve
.RE
.RS 4
.RE
.ie n .IP """my_exit""" 4
.el .IP \f(CWmy_exit\fR 4
.IX Xref "my_exit"
.IX Item "my_exit"
A wrapper for the C library \fBexit\fR\|(3), honoring what "PL_exit_flags" in perlapi
say to do.
.RS 4
.Sp
.Vb 1
\& void  my_exit(U32 status)
.Ve
.RE
.RS 4
.RE
.ie n .IP """my_failure_exit""" 4
.el .IP \f(CWmy_failure_exit\fR 4
.IX Xref "my_failure_exit"
.IX Item "my_failure_exit"
Exit the running Perl process with an error.
.Sp
On non-VMS platforms, this is essentially equivalent to "\f(CW\*(C`my_exit\*(C'\fR", using
\&\f(CW\*(C`errno\*(C'\fR, but forces an en error code of 255 if \f(CW\*(C`errno\*(C'\fR is 0.
.Sp
On VMS, it takes care to set the appropriate severity bits in the exit status.
.RS 4
.Sp
.Vb 1
\& void  my_failure_exit()
.Ve
.RE
.RS 4
.RE
.ie n .IP """my_strlcat""" 4
.el .IP \f(CWmy_strlcat\fR 4
.IX Xref "my_strlcat"
.IX Item "my_strlcat"
The C library \f(CW\*(C`strlcat\*(C'\fR if available, or a Perl implementation of it.
This operates on C \f(CW\*(C`NUL\*(C'\fR\-terminated strings.
.Sp
\&\f(CWmy_strlcat()\fR appends string \f(CW\*(C`src\*(C'\fR to the end of \f(CW\*(C`dst\*(C'\fR.  It will append at
most \f(CW\*(C`size\ \-\ strlen(dst)\ \-\ 1\*(C'\fR characters.  It will then \f(CW\*(C`NUL\*(C'\fR\-terminate,
unless \f(CW\*(C`size\*(C'\fR is 0 or the original \f(CW\*(C`dst\*(C'\fR string was longer than \f(CW\*(C`size\*(C'\fR (in
practice this should not happen as it means that either \f(CW\*(C`size\*(C'\fR is incorrect or
that \f(CW\*(C`dst\*(C'\fR is not a proper \f(CW\*(C`NUL\*(C'\fR\-terminated string).
.Sp
Note that \f(CW\*(C`size\*(C'\fR is the full size of the destination buffer and
the result is guaranteed to be \f(CW\*(C`NUL\*(C'\fR\-terminated if there is room.  Note that
room for the \f(CW\*(C`NUL\*(C'\fR should be included in \f(CW\*(C`size\*(C'\fR.
.Sp
The return value is the total length that \f(CW\*(C`dst\*(C'\fR would have if \f(CW\*(C`size\*(C'\fR is
sufficiently large.  Thus it is the initial length of \f(CW\*(C`dst\*(C'\fR plus the length of
\&\f(CW\*(C`src\*(C'\fR.  If \f(CW\*(C`size\*(C'\fR is smaller than the return, the excess was not appended.
.RS 4
.Sp
.Vb 1
\& Size_t  my_strlcat(char *dst, const char *src, Size_t size)
.Ve
.RE
.RS 4
.RE
.ie n .IP """my_strlcpy""" 4
.el .IP \f(CWmy_strlcpy\fR 4
.IX Xref "my_strlcpy"
.IX Item "my_strlcpy"
The C library \f(CW\*(C`strlcpy\*(C'\fR if available, or a Perl implementation of it.
This operates on C \f(CW\*(C`NUL\*(C'\fR\-terminated strings.
.Sp
\&\f(CWmy_strlcpy()\fR copies up to \f(CW\*(C`size\ \-\ 1\*(C'\fR characters from the string \f(CW\*(C`src\*(C'\fR
to \f(CW\*(C`dst\*(C'\fR, \f(CW\*(C`NUL\*(C'\fR\-terminating the result if \f(CW\*(C`size\*(C'\fR is not 0.
.Sp
The return value is the total length \f(CW\*(C`src\*(C'\fR would be if the copy completely
succeeded.  If it is larger than \f(CW\*(C`size\*(C'\fR, the excess was not copied.
.RS 4
.Sp
.Vb 1
\& Size_t  my_strlcpy(char *dst, const char *src, Size_t size)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newPADNAMELIST""" 4
.el .IP \f(CWnewPADNAMELIST\fR 4
.IX Xref "newPADNAMELIST"
.IX Item "newPADNAMELIST"
NOTE: \f(CW\*(C`newPADNAMELIST\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Creates a new pad name list.  \f(CW\*(C`max\*(C'\fR is the highest index for which space
is allocated.
.RS 4
.Sp
.Vb 1
\& PADNAMELIST *  newPADNAMELIST(size_t max)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newPADNAMEouter""" 4
.el .IP \f(CWnewPADNAMEouter\fR 4
.IX Xref "newPADNAMEouter"
.IX Item "newPADNAMEouter"
NOTE: \f(CW\*(C`newPADNAMEouter\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Constructs and returns a new pad name.  Only use this function for names
that refer to outer lexicals.  (See also "newPADNAMEpvn".)  \f(CW\*(C`outer\*(C'\fR is
the outer pad name that this one mirrors.  The returned pad name has the
\&\f(CW\*(C`PADNAMEf_OUTER\*(C'\fR flag already set.
.RS 4
.Sp
.Vb 1
\& PADNAME *  newPADNAMEouter(PADNAME *outer)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newPADNAMEpvn""" 4
.el .IP \f(CWnewPADNAMEpvn\fR 4
.IX Xref "newPADNAMEpvn"
.IX Item "newPADNAMEpvn"
NOTE: \f(CW\*(C`newPADNAMEpvn\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Constructs and returns a new pad name.  \f(CW\*(C`s\*(C'\fR must be a UTF\-8 string.  Do not
use this for pad names that point to outer lexicals.  See
\&\f(CW"newPADNAMEouter"\fR.
.RS 4
.Sp
.Vb 1
\& PADNAME *  newPADNAMEpvn(const char *s, STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """nothreadhook""" 4
.el .IP \f(CWnothreadhook\fR 4
.IX Xref "nothreadhook"
.IX Item "nothreadhook"
Stub that provides thread hook for perl_destruct when there are
no threads.
.RS 4
.Sp
.Vb 1
\& int  nothreadhook()
.Ve
.RE
.RS 4
.RE
.ie n .IP """pad_add_anon""" 4
.el .IP \f(CWpad_add_anon\fR 4
.IX Xref "pad_add_anon"
.IX Item "pad_add_anon"
Allocates a place in the currently-compiling pad (via "pad_alloc")
for an anonymous function that is lexically scoped inside the
currently-compiling function.
The function \f(CW\*(C`func\*(C'\fR is linked into the pad, and its \f(CW\*(C`CvOUTSIDE\*(C'\fR link
to the outer scope is weakened to avoid a reference loop.
.Sp
One reference count is stolen, so you may need to do \f(CWSvREFCNT_inc(func)\fR.
.Sp
\&\f(CW\*(C`optype\*(C'\fR should be an opcode indicating the type of operation that the
pad entry is to support.  This doesn't affect operational semantics,
but is used for debugging.
.RS 4
.Sp
.Vb 1
\& PADOFFSET  pad_add_anon(CV *func, I32 optype)
.Ve
.RE
.RS 4
.RE
.ie n .IP """pad_add_name_pv""" 4
.el .IP \f(CWpad_add_name_pv\fR 4
.IX Xref "pad_add_name_pv"
.IX Item "pad_add_name_pv"
Exactly like "pad_add_name_pvn", but takes a nul-terminated string
instead of a string/length pair.
.RS 4
.Sp
.Vb 2
\& PADOFFSET  pad_add_name_pv(const char *name, const U32 flags,
\&                            HV *typestash, HV *ourstash)
.Ve
.RE
.RS 4
.RE
.ie n .IP """pad_add_name_pvn""" 4
.el .IP \f(CWpad_add_name_pvn\fR 4
.IX Xref "pad_add_name_pvn"
.IX Item "pad_add_name_pvn"
Allocates a place in the currently-compiling pad for a named lexical
variable.  Stores the name and other metadata in the name part of the
pad, and makes preparations to manage the variable's lexical scoping.
Returns the offset of the allocated pad slot.
.Sp
\&\f(CW\*(C`namepv\*(C'\fR/\f(CW\*(C`namelen\*(C'\fR specify the variable's name, including leading sigil.
If \f(CW\*(C`typestash\*(C'\fR is non-null, the name is for a typed lexical, and this
identifies the type.  If \f(CW\*(C`ourstash\*(C'\fR is non-null, it's a lexical reference
to a package variable, and this identifies the package.  The following
flags can be OR'ed together:
.Sp
.Vb 4
\& padadd_OUR          redundantly specifies if it\*(Aqs a package var
\& padadd_STATE        variable will retain value persistently
\& padadd_NO_DUP_CHECK skip check for lexical shadowing
\& padadd_FIELD        specifies that the lexical is a field for a class
.Ve
.RS 4
.Sp
.Vb 3
\& PADOFFSET  pad_add_name_pvn(const char *namepv, STRLEN namelen,
\&                             U32 flags, HV *typestash,
\&                             HV *ourstash)
.Ve
.RE
.RS 4
.RE
.ie n .IP """pad_add_name_sv""" 4
.el .IP \f(CWpad_add_name_sv\fR 4
.IX Xref "pad_add_name_sv"
.IX Item "pad_add_name_sv"
Exactly like "pad_add_name_pvn", but takes the name string in the form
of an SV instead of a string/length pair.
.RS 4
.Sp
.Vb 2
\& PADOFFSET  pad_add_name_sv(SV *name, U32 flags, HV *typestash,
\&                            HV *ourstash)
.Ve
.RE
.RS 4
.RE
.ie n .IP """pad_alloc""" 4
.el .IP \f(CWpad_alloc\fR 4
.IX Xref "pad_alloc"
.IX Item "pad_alloc"
NOTE: \f(CW\*(C`pad_alloc\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Allocates a place in the currently-compiling pad,
returning the offset of the allocated pad slot.
No name is initially attached to the pad slot.
\&\f(CW\*(C`tmptype\*(C'\fR is a set of flags indicating the kind of pad entry required,
which will be set in the value SV for the allocated pad entry:
.Sp
.Vb 3
\&    SVs_PADMY    named lexical variable ("my", "our", "state")
\&    SVs_PADTMP   unnamed temporary store
\&    SVf_READONLY constant shared between recursion levels
.Ve
.Sp
\&\f(CW\*(C`SVf_READONLY\*(C'\fR has been supported here only since perl 5.20.  To work with
earlier versions as well, use \f(CW\*(C`SVf_READONLY|SVs_PADTMP\*(C'\fR.  \f(CW\*(C`SVf_READONLY\*(C'\fR
does not cause the SV in the pad slot to be marked read-only, but simply
tells \f(CW\*(C`pad_alloc\*(C'\fR that it \fIwill\fR be made read-only (by the caller), or at
least should be treated as such.
.Sp
\&\f(CW\*(C`optype\*(C'\fR should be an opcode indicating the type of operation that the
pad entry is to support.  This doesn't affect operational semantics,
but is used for debugging.
.RS 4
.Sp
.Vb 1
\& PADOFFSET  pad_alloc(I32 optype, U32 tmptype)
.Ve
.RE
.RS 4
.RE
.ie n .IP """pad_findmy_pv""" 4
.el .IP \f(CWpad_findmy_pv\fR 4
.IX Xref "pad_findmy_pv"
.IX Item "pad_findmy_pv"
Exactly like "pad_findmy_pvn", but takes a nul-terminated string
instead of a string/length pair.
.RS 4
.Sp
.Vb 1
\& PADOFFSET  pad_findmy_pv(const char *name, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """pad_findmy_pvn""" 4
.el .IP \f(CWpad_findmy_pvn\fR 4
.IX Xref "pad_findmy_pvn"
.IX Item "pad_findmy_pvn"
Given the name of a lexical variable, find its position in the
currently-compiling pad.
\&\f(CW\*(C`namepv\*(C'\fR/\f(CW\*(C`namelen\*(C'\fR specify the variable's name, including leading sigil.
\&\f(CW\*(C`flags\*(C'\fR is reserved and must be zero.
If it is not in the current pad but appears in the pad of any lexically
enclosing scope, then a pseudo-entry for it is added in the current pad.
Returns the offset in the current pad,
or \f(CW\*(C`NOT_IN_PAD\*(C'\fR if no such lexical is in scope.
.RS 4
.Sp
.Vb 2
\& PADOFFSET  pad_findmy_pvn(const char *namepv, STRLEN namelen,
\&                           U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """pad_findmy_sv""" 4
.el .IP \f(CWpad_findmy_sv\fR 4
.IX Xref "pad_findmy_sv"
.IX Item "pad_findmy_sv"
Exactly like "pad_findmy_pvn", but takes the name string in the form
of an SV instead of a string/length pair.
.RS 4
.Sp
.Vb 1
\& PADOFFSET  pad_findmy_sv(SV *name, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """padnamelist_fetch""" 4
.el .IP \f(CWpadnamelist_fetch\fR 4
.IX Xref "padnamelist_fetch"
.IX Item "padnamelist_fetch"
NOTE: \f(CW\*(C`padnamelist_fetch\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Fetches the pad name from the given index.
.RS 4
.Sp
.Vb 1
\& PADNAME *  padnamelist_fetch(PADNAMELIST *pnl, SSize_t key)
.Ve
.RE
.RS 4
.RE
.ie n .IP """padnamelist_store""" 4
.el .IP \f(CWpadnamelist_store\fR 4
.IX Xref "padnamelist_store"
.IX Item "padnamelist_store"
NOTE: \f(CW\*(C`padnamelist_store\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Stores the pad name (which may be null) at the given index, freeing any
existing pad name in that slot.
.RS 4
.Sp
.Vb 2
\& PADNAME **  padnamelist_store(PADNAMELIST *pnl, SSize_t key,
\&                               PADNAME *val)
.Ve
.RE
.RS 4
.RE
.ie n .IP """pad_tidy""" 4
.el .IP \f(CWpad_tidy\fR 4
.IX Xref "pad_tidy"
.IX Item "pad_tidy"
NOTE: \f(CW\*(C`pad_tidy\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Tidy up a pad at the end of compilation of the code to which it belongs.
Jobs performed here are: remove most stuff from the pads of anonsub
prototypes; give it a \f(CW@_\fR; mark temporaries as such.  \f(CW\*(C`type\*(C'\fR indicates
the kind of subroutine:
.Sp
.Vb 3
\&    padtidy_SUB        ordinary subroutine
\&    padtidy_SUBCLONE   prototype for lexical closure
\&    padtidy_FORMAT     format
.Ve
.RS 4
.Sp
.Vb 1
\& void  pad_tidy(padtidy_type type)
.Ve
.RE
.RS 4
.RE
.ie n .IP """perl_alloc""" 4
.el .IP \f(CWperl_alloc\fR 4
.IX Xref "perl_alloc"
.IX Item "perl_alloc"
Allocates a new Perl interpreter.  See perlembed.
.RS 4
.Sp
.Vb 1
\& PerlInterpreter *  perl_alloc()
.Ve
.RE
.RS 4
.RE
.ie n .IP """PERL_ASYNC_CHECK""" 4
.el .IP \f(CWPERL_ASYNC_CHECK\fR 4
.IX Item "PERL_ASYNC_CHECK"
Described in perlinterp.
.RS 4
.Sp
.Vb 1
\& void  PERL_ASYNC_CHECK()
.Ve
.RE
.RS 4
.RE
.ie n .IP """perl_clone""" 4
.el .IP \f(CWperl_clone\fR 4
.IX Xref "perl_clone"
.IX Item "perl_clone"
Create and return a new interpreter by cloning the current one.
.Sp
\&\f(CW\*(C`perl_clone\*(C'\fR takes these flags as parameters:
.Sp
\&\f(CW\*(C`CLONEf_COPY_STACKS\*(C'\fR \- is used to, well, copy the stacks also,
without it we only clone the data and zero the stacks,
with it we copy the stacks and the new perl interpreter is
ready to run at the exact same point as the previous one.
The pseudo-fork code uses \f(CW\*(C`COPY_STACKS\*(C'\fR while the
threads\->create doesn't.
.Sp
\&\f(CW\*(C`CLONEf_KEEP_PTR_TABLE\*(C'\fR \-
\&\f(CW\*(C`perl_clone\*(C'\fR keeps a ptr_table with the pointer of the old
variable as a key and the new variable as a value,
this allows it to check if something has been cloned and not
clone it again, but rather just use the value and increase the
refcount.
If \f(CW\*(C`KEEP_PTR_TABLE\*(C'\fR is not set then \f(CW\*(C`perl_clone\*(C'\fR will kill the ptr_table
using the function \f(CW\*(C`ptr_table_free(PL_ptr_table);\ PL_ptr_table\ =\ NULL;\*(C'\fR.
A reason to keep it around is if you want to dup some of your own
variables which are outside the graph that perl scans.
.Sp
\&\f(CW\*(C`CLONEf_CLONE_HOST\*(C'\fR \-
This is a win32 thing, it is ignored on unix, it tells perl's
win32host code (which is c++) to clone itself, this is needed on
win32 if you want to run two threads at the same time,
if you just want to do some stuff in a separate perl interpreter
and then throw it away and return to the original one,
you don't need to do anything.
.RS 4
.Sp
.Vb 2
\& PerlInterpreter *  perl_clone(PerlInterpreter *proto_perl,
\&                               UV flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """perl_construct""" 4
.el .IP \f(CWperl_construct\fR 4
.IX Xref "perl_construct"
.IX Item "perl_construct"
Initializes a new Perl interpreter.  See perlembed.
.RS 4
.Sp
.Vb 1
\& void  perl_construct(PerlInterpreter *my_perl)
.Ve
.RE
.RS 4
.RE
.ie n .IP """perl_destruct""" 4
.el .IP \f(CWperl_destruct\fR 4
.IX Xref "perl_destruct"
.IX Item "perl_destruct"
Shuts down a Perl interpreter.  See perlembed for a tutorial.
.Sp
\&\f(CW\*(C`my_perl\*(C'\fR points to the Perl interpreter.  It must have been previously
created through the use of "perl_alloc" and "perl_construct".  It may
have been initialised through "perl_parse", and may have been used
through "perl_run" and other means.  This function should be called for
any Perl interpreter that has been constructed with "perl_construct",
even if subsequent operations on it failed, for example if "perl_parse"
returned a non-zero value.
.Sp
If the interpreter's \f(CW\*(C`PL_exit_flags\*(C'\fR word has the
\&\f(CW\*(C`PERL_EXIT_DESTRUCT_END\*(C'\fR flag set, then this function will execute code
in \f(CW\*(C`END\*(C'\fR blocks before performing the rest of destruction.  If it is
desired to make any use of the interpreter between "perl_parse" and
"perl_destruct" other than just calling "perl_run", then this flag
should be set early on.  This matters if "perl_run" will not be called,
or if anything else will be done in addition to calling "perl_run".
.Sp
Returns a value be a suitable value to pass to the C library function
\&\f(CW\*(C`exit\*(C'\fR (or to return from \f(CW\*(C`main\*(C'\fR), to serve as an exit code indicating
the nature of the way the interpreter terminated.  This takes into account
any failure of "perl_parse" and any early exit from "perl_run".
The exit code is of the type required by the host operating system,
so because of differing exit code conventions it is not portable to
interpret specific numeric values as having specific meanings.
.RS 4
.Sp
.Vb 1
\& int  perl_destruct(PerlInterpreter *my_perl)
.Ve
.RE
.RS 4
.RE
.ie n .IP """perl_free""" 4
.el .IP \f(CWperl_free\fR 4
.IX Xref "perl_free"
.IX Item "perl_free"
Releases a Perl interpreter.  See perlembed.
.RS 4
.Sp
.Vb 1
\& void  perl_free(PerlInterpreter *my_perl)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PERL_GET_CONTEXT""" 4
.el .IP \f(CWPERL_GET_CONTEXT\fR 4
.IX Item "PERL_GET_CONTEXT"
Described in perlguts.
.ie n .IP """PerlInterpreter""" 4
.el .IP \f(CWPerlInterpreter\fR 4
.IX Item "PerlInterpreter"
Described in perlembed.
.ie n .IP """perl_parse""" 4
.el .IP \f(CWperl_parse\fR 4
.IX Xref "perl_parse"
.IX Item "perl_parse"
Tells a Perl interpreter to parse a Perl script.  This performs most
of the initialisation of a Perl interpreter.  See perlembed for
a tutorial.
.Sp
\&\f(CW\*(C`my_perl\*(C'\fR points to the Perl interpreter that is to parse the script.
It must have been previously created through the use of "perl_alloc"
and "perl_construct".  \f(CW\*(C`xsinit\*(C'\fR points to a callback function that
will be called to set up the ability for this Perl interpreter to load
XS extensions, or may be null to perform no such setup.
.Sp
\&\f(CW\*(C`argc\*(C'\fR and \f(CW\*(C`argv\*(C'\fR supply a set of command-line arguments to the Perl
interpreter, as would normally be passed to the \f(CW\*(C`main\*(C'\fR function of
a C program.  \f(CW\*(C`argv[argc]\*(C'\fR must be null.  These arguments are where
the script to parse is specified, either by naming a script file or by
providing a script in a \f(CW\*(C`\-e\*(C'\fR option.
If \f(CW$0\fR will be written to in the Perl interpreter, then
the argument strings must be in writable memory, and so mustn't just be
string constants.
.Sp
\&\f(CW\*(C`env\*(C'\fR specifies a set of environment variables that will be used by
this Perl interpreter.  If non-null, it must point to a null-terminated
array of environment strings.  If null, the Perl interpreter will use
the environment supplied by the \f(CW\*(C`environ\*(C'\fR global variable.
.Sp
This function initialises the interpreter, and parses and compiles the
script specified by the command-line arguments.  This includes executing
code in \f(CW\*(C`BEGIN\*(C'\fR, \f(CW\*(C`UNITCHECK\*(C'\fR, and \f(CW\*(C`CHECK\*(C'\fR blocks.  It does not execute
\&\f(CW\*(C`INIT\*(C'\fR blocks or the main program.
.Sp
Returns an integer of slightly tricky interpretation.  The correct
use of the return value is as a truth value indicating whether there
was a failure in initialisation.  If zero is returned, this indicates
that initialisation was successful, and it is safe to proceed to call
"perl_run" and make other use of it.  If a non-zero value is returned,
this indicates some problem that means the interpreter wants to terminate.
The interpreter should not be just abandoned upon such failure; the caller
should proceed to shut the interpreter down cleanly with "perl_destruct"
and free it with "perl_free".
.Sp
For historical reasons, the non-zero return value also attempts to
be a suitable value to pass to the C library function \f(CW\*(C`exit\*(C'\fR (or to
return from \f(CW\*(C`main\*(C'\fR), to serve as an exit code indicating the nature
of the way initialisation terminated.  However, this isn't portable,
due to differing exit code conventions.  An attempt is made to return
an exit code of the type required by the host operating system, but
because it is constrained to be non-zero, it is not necessarily possible
to indicate every type of exit.  It is only reliable on Unix, where a
zero exit code can be augmented with a set bit that will be ignored.
In any case, this function is not the correct place to acquire an exit
code: one should get that from "perl_destruct".
.RS 4
.Sp
.Vb 2
\& int  perl_parse(PerlInterpreter *my_perl, XSINIT_t xsinit,
\&                 int argc, char **argv, char **env)
.Ve
.RE
.RS 4
.RE
.ie n .IP """perl_run""" 4
.el .IP \f(CWperl_run\fR 4
.IX Xref "perl_run"
.IX Item "perl_run"
Tells a Perl interpreter to run its main program.  See perlembed
for a tutorial.
.Sp
\&\f(CW\*(C`my_perl\*(C'\fR points to the Perl interpreter.  It must have been previously
created through the use of "perl_alloc" and "perl_construct", and
initialised through "perl_parse".  This function should not be called
if "perl_parse" returned a non-zero value, indicating a failure in
initialisation or compilation.
.Sp
This function executes code in \f(CW\*(C`INIT\*(C'\fR blocks, and then executes the
main program.  The code to be executed is that established by the prior
call to "perl_parse".  If the interpreter's \f(CW\*(C`PL_exit_flags\*(C'\fR word
does not have the \f(CW\*(C`PERL_EXIT_DESTRUCT_END\*(C'\fR flag set, then this function
will also execute code in \f(CW\*(C`END\*(C'\fR blocks.  If it is desired to make any
further use of the interpreter after calling this function, then \f(CW\*(C`END\*(C'\fR
blocks should be postponed to "perl_destruct" time by setting that flag.
.Sp
Returns an integer of slightly tricky interpretation.  The correct use
of the return value is as a truth value indicating whether the program
terminated non-locally.  If zero is returned, this indicates that
the program ran to completion, and it is safe to make other use of the
interpreter (provided that the \f(CW\*(C`PERL_EXIT_DESTRUCT_END\*(C'\fR flag was set as
described above).  If a non-zero value is returned, this indicates that
the interpreter wants to terminate early.  The interpreter should not be
just abandoned because of this desire to terminate; the caller should
proceed to shut the interpreter down cleanly with "perl_destruct"
and free it with "perl_free".
.Sp
For historical reasons, the non-zero return value also attempts to
be a suitable value to pass to the C library function \f(CW\*(C`exit\*(C'\fR (or to
return from \f(CW\*(C`main\*(C'\fR), to serve as an exit code indicating the nature of
the way the program terminated.  However, this isn't portable, due to
differing exit code conventions.  An attempt is made to return an exit
code of the type required by the host operating system, but because
it is constrained to be non-zero, it is not necessarily possible to
indicate every type of exit.  It is only reliable on Unix, where a zero
exit code can be augmented with a set bit that will be ignored.  In any
case, this function is not the correct place to acquire an exit code:
one should get that from "perl_destruct".
.RS 4
.Sp
.Vb 1
\& int  perl_run(PerlInterpreter *my_perl)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PERL_SET_CONTEXT""" 4
.el .IP \f(CWPERL_SET_CONTEXT\fR 4
.IX Item "PERL_SET_CONTEXT"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& void  PERL_SET_CONTEXT(PerlInterpreter* i)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PERL_SYS_INIT""" 4
.el .IP \f(CWPERL_SYS_INIT\fR 4
.IX Item "PERL_SYS_INIT"
.PD 0
.ie n .IP """PERL_SYS_INIT3""" 4
.el .IP \f(CWPERL_SYS_INIT3\fR 4
.IX Xref "PERL_SYS_INIT PERL_SYS_INIT3"
.IX Item "PERL_SYS_INIT3"
.PD
These provide system-specific tune up of the C runtime environment necessary to
run Perl interpreters.  Only one should be used, and it should be called only
once, before creating any Perl interpreters.
.Sp
They differ in that \f(CW\*(C`PERL_SYS_INIT3\*(C'\fR also initializes \f(CW\*(C`env\*(C'\fR.
.RS 4
.Sp
.Vb 2
\& void  PERL_SYS_INIT (int *argc, char*** argv)
\& void  PERL_SYS_INIT3(int *argc, char*** argv, char*** env)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PERL_SYS_TERM""" 4
.el .IP \f(CWPERL_SYS_TERM\fR 4
.IX Xref "PERL_SYS_TERM"
.IX Item "PERL_SYS_TERM"
Provides system-specific clean up of the C runtime environment after
running Perl interpreters.  This should be called only once, after
freeing any remaining Perl interpreters.
.RS 4
.Sp
.Vb 1
\& void  PERL_SYS_TERM()
.Ve
.RE
.RS 4
.RE
.ie n .IP """PL_exit_flags""" 4
.el .IP \f(CWPL_exit_flags\fR 4
.IX Xref "PL_exit_flags"
.IX Item "PL_exit_flags"
Contains flags controlling perl's behaviour on \fBexit()\fR:
.RS 4
.IP \(bu 4
\&\f(CW\*(C`PERL_EXIT_DESTRUCT_END\*(C'\fR
.Sp
If set, END blocks are executed when the interpreter is destroyed.
This is normally set by perl itself after the interpreter is
constructed.
.IP \(bu 4
\&\f(CW\*(C`PERL_EXIT_ABORT\*(C'\fR
.Sp
Call \f(CWabort()\fR on exit.  This is used internally by perl itself to
abort if exit is called while processing exit.
.IP \(bu 4
\&\f(CW\*(C`PERL_EXIT_WARN\*(C'\fR
.Sp
Warn on exit.
.IP \(bu 4
\&\f(CW\*(C`PERL_EXIT_EXPECTED\*(C'\fR
.Sp
Set by the "exit" in perlfunc operator.
.RE
.RS 4
.Sp
.Vb 1
\& U8  PL_exit_flags
.Ve
.RE
.RS 4
.RE
.ie n .IP """PL_origalen""" 4
.el .IP \f(CWPL_origalen\fR 4
.IX Item "PL_origalen"
Described in perlembed.
.ie n .IP """PL_perl_destruct_level""" 4
.el .IP \f(CWPL_perl_destruct_level\fR 4
.IX Xref "PL_perl_destruct_level"
.IX Item "PL_perl_destruct_level"
This value may be set when embedding for full cleanup.
.Sp
Possible values:
.RS 4
.IP \(bu 4
0 \- none
.IP \(bu 4
1 \- full
.IP \(bu 4
2 or greater \- full with checks.
.RE
.RS 4
.Sp
If \f(CW$ENV{PERL_DESTRUCT_LEVEL}\fR is set to an integer greater than the
value of \f(CW\*(C`PL_perl_destruct_level\*(C'\fR its value is used instead.
.Sp
On threaded perls, each thread has an independent copy of this variable;
each initialized at creation time with the current value of the creating
thread's copy.
.Sp
.Vb 1
\& signed char  PL_perl_destruct_level
.Ve
.RE
.RS 4
.RE
.ie n .IP """ptr_table_fetch""" 4
.el .IP \f(CWptr_table_fetch\fR 4
.IX Xref "ptr_table_fetch"
.IX Item "ptr_table_fetch"
Look for \f(CW\*(C`sv\*(C'\fR in the pointer-mapping table \f(CW\*(C`tbl\*(C'\fR, returning its value, or
NULL if not found.
.RS 4
.Sp
.Vb 2
\& void *  ptr_table_fetch(PTR_TBL_t * const tbl,
\&                         const void * const sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """ptr_table_free""" 4
.el .IP \f(CWptr_table_free\fR 4
.IX Xref "ptr_table_free"
.IX Item "ptr_table_free"
Clear and free a ptr table
.RS 4
.Sp
.Vb 1
\& void  ptr_table_free(PTR_TBL_t * const tbl)
.Ve
.RE
.RS 4
.RE
.ie n .IP """ptr_table_new""" 4
.el .IP \f(CWptr_table_new\fR 4
.IX Xref "ptr_table_new"
.IX Item "ptr_table_new"
Create a new pointer-mapping table
.RS 4
.Sp
.Vb 1
\& PTR_TBL_t *  ptr_table_new()
.Ve
.RE
.RS 4
.RE
.ie n .IP """ptr_table_split""" 4
.el .IP \f(CWptr_table_split\fR 4
.IX Xref "ptr_table_split"
.IX Item "ptr_table_split"
Double the hash bucket size of an existing ptr table
.RS 4
.Sp
.Vb 1
\& void  ptr_table_split(PTR_TBL_t * const tbl)
.Ve
.RE
.RS 4
.RE
.ie n .IP """ptr_table_store""" 4
.el .IP \f(CWptr_table_store\fR 4
.IX Xref "ptr_table_store"
.IX Item "ptr_table_store"
Add a new entry to a pointer-mapping table \f(CW\*(C`tbl\*(C'\fR.
In hash terms, \f(CW\*(C`oldsv\*(C'\fR is the key; Cnewsv> is the value.
.Sp
The names "old" and "new" are specific to the core's typical use of ptr_tables
in thread cloning.
.RS 4
.Sp
.Vb 3
\& void  ptr_table_store(PTR_TBL_t * const tbl,
\&                       const void * const oldsv,
\&                       void * const newsv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """require_pv""" 4
.el .IP \f(CWrequire_pv\fR 4
.IX Xref "require_pv"
.IX Item "require_pv"
Tells Perl to \f(CW\*(C`require\*(C'\fR the file named by the string argument.  It is
analogous to the Perl code \f(CW\*(C`eval "require \*(Aq$file\*(Aq"\*(C'\fR.  It's even
implemented that way; consider using load_module instead.
.Sp
NOTE: the \f(CWperl_require_pv()\fR form is \fBdeprecated\fR.
.RS 4
.Sp
.Vb 1
\& void  require_pv(const char *pv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """vload_module""" 4
.el .IP \f(CWvload_module\fR 4
.IX Xref "vload_module"
.IX Item "vload_module"
Like \f(CW"load_module"\fR but the arguments are an encapsulated argument list.
.RS 4
.Sp
.Vb 1
\& void  vload_module(U32 flags, SV *name, SV *ver, va_list *args)
.Ve
.RE
.RS 4
.RE
.SH Errno
.IX Header "Errno"
.ie n .IP """sv_string_from_errnum""" 4
.el .IP \f(CWsv_string_from_errnum\fR 4
.IX Xref "sv_string_from_errnum"
.IX Item "sv_string_from_errnum"
Generates the message string describing an OS error and returns it as
an SV.  \f(CW\*(C`errnum\*(C'\fR must be a value that \f(CW\*(C`errno\*(C'\fR could take, identifying
the type of error.
.Sp
If \f(CW\*(C`tgtsv\*(C'\fR is non-null then the string will be written into that SV
(overwriting existing content) and it will be returned.  If \f(CW\*(C`tgtsv\*(C'\fR
is a null pointer then the string will be written into a new mortal SV
which will be returned.
.Sp
The message will be taken from whatever locale would be used by \f(CW$!\fR,
and will be encoded in the SV in whatever manner would be used by \f(CW$!\fR.
The details of this process are subject to future change.  Currently,
the message is taken from the C locale by default (usually producing an
English message), and from the currently selected locale when in the scope
of the \f(CW\*(C`use locale\*(C'\fR pragma.  A heuristic attempt is made to decode the
message from the locale's character encoding, but it will only be decoded
as either UTF\-8 or ISO\-8859\-1.  It is always correctly decoded in a UTF\-8
locale, usually in an ISO\-8859\-1 locale, and never in any other locale.
.Sp
The SV is always returned containing an actual string, and with no other
OK bits set.  Unlike \f(CW$!\fR, a message is even yielded for \f(CW\*(C`errnum\*(C'\fR zero
(meaning success), and if no useful message is available then a useless
string (currently empty) is returned.
.RS 4
.Sp
.Vb 1
\& SV *  sv_string_from_errnum(int errnum, SV *tgtsv)
.Ve
.RE
.RS 4
.RE
.SH "Exception Handling (simple) Macros"
.IX Header "Exception Handling (simple) Macros"
.ie n .IP """dXCPT""" 4
.el .IP \f(CWdXCPT\fR 4
.IX Xref "dXCPT"
.IX Item "dXCPT"
Set up necessary local variables for exception handling.
See "Exception Handling" in perlguts.
.RS 4
.Sp
.Vb 1
\&   dXCPT;
.Ve
.RE
.RS 4
.RE
.ie n .IP """JMPENV_JUMP""" 4
.el .IP \f(CWJMPENV_JUMP\fR 4
.IX Item "JMPENV_JUMP"
Described in perlinterp.
.RS 4
.Sp
.Vb 1
\& void  JMPENV_JUMP(int v)
.Ve
.RE
.RS 4
.RE
.ie n .IP """JMPENV_PUSH""" 4
.el .IP \f(CWJMPENV_PUSH\fR 4
.IX Item "JMPENV_PUSH"
Described in perlinterp.
.RS 4
.Sp
.Vb 1
\& void  JMPENV_PUSH(int v)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PL_restartop""" 4
.el .IP \f(CWPL_restartop\fR 4
.IX Item "PL_restartop"
Described in perlinterp.
.ie n .IP """XCPT_CATCH""" 4
.el .IP \f(CWXCPT_CATCH\fR 4
.IX Xref "XCPT_CATCH"
.IX Item "XCPT_CATCH"
Introduces a catch block.  See "Exception Handling" in perlguts.
.ie n .IP """XCPT_RETHROW""" 4
.el .IP \f(CWXCPT_RETHROW\fR 4
.IX Xref "XCPT_RETHROW"
.IX Item "XCPT_RETHROW"
Rethrows a previously caught exception.  See "Exception Handling" in perlguts.
.RS 4
.Sp
.Vb 1
\&   XCPT_RETHROW;
.Ve
.RE
.RS 4
.RE
.ie n .IP """XCPT_TRY_END""" 4
.el .IP \f(CWXCPT_TRY_END\fR 4
.IX Xref "XCPT_TRY_END"
.IX Item "XCPT_TRY_END"
Ends a try block.  See "Exception Handling" in perlguts.
.ie n .IP """XCPT_TRY_START""" 4
.el .IP \f(CWXCPT_TRY_START\fR 4
.IX Xref "XCPT_TRY_START"
.IX Item "XCPT_TRY_START"
Starts a try block.  See "Exception Handling" in perlguts.
.SH "Filesystem configuration values"
.IX Header "Filesystem configuration values"
Also see "List of capability HAS_foo symbols".
.ie n .IP """DIRNAMLEN""" 4
.el .IP \f(CWDIRNAMLEN\fR 4
.IX Xref "DIRNAMLEN"
.IX Item "DIRNAMLEN"
This symbol, if defined, indicates to the C program that the length
of directory entry names is provided by a \f(CW\*(C`d_namlen\*(C'\fR field.  Otherwise
you need to do \f(CWstrlen()\fR on the \f(CW\*(C`d_name\*(C'\fR field.
.ie n .IP """DOSUID""" 4
.el .IP \f(CWDOSUID\fR 4
.IX Xref "DOSUID"
.IX Item "DOSUID"
This symbol, if defined, indicates that the C program should
check the script that it is executing for setuid/setgid bits, and
attempt to emulate setuid/setgid on systems that have disabled
setuid #! scripts because the kernel can't do it securely.
It is up to the package designer to make sure that this emulation
is done securely.  Among other things, it should do an fstat on
the script it just opened to make sure it really is a setuid/setgid
script, it should make sure the arguments passed correspond exactly
to the argument on the #! line, and it should not trust any
subprocesses to which it must pass the filename rather than the
file descriptor of the script to be executed.
.ie n .IP """EOF_NONBLOCK""" 4
.el .IP \f(CWEOF_NONBLOCK\fR 4
.IX Xref "EOF_NONBLOCK"
.IX Item "EOF_NONBLOCK"
This symbol, if defined, indicates to the C program that a \f(CWread()\fR on
a non-blocking file descriptor will return 0 on \f(CW\*(C`EOF\*(C'\fR, and not the value
held in \f(CW\*(C`RD_NODATA\*(C'\fR (\-1 usually, in that case!).
.ie n .IP """FCNTL_CAN_LOCK""" 4
.el .IP \f(CWFCNTL_CAN_LOCK\fR 4
.IX Xref "FCNTL_CAN_LOCK"
.IX Item "FCNTL_CAN_LOCK"
This symbol, if defined, indicates that \f(CWfcntl()\fR can be used
for file locking.  Normally on Unix systems this is defined.
It may be undefined on \f(CW\*(C`VMS\*(C'\fR.
.ie n .IP """FFLUSH_ALL""" 4
.el .IP \f(CWFFLUSH_ALL\fR 4
.IX Xref "FFLUSH_ALL"
.IX Item "FFLUSH_ALL"
This symbol, if defined, tells that to flush
all pending stdio output one must loop through all
the stdio file handles stored in an array and fflush them.
Note that if \f(CW\*(C`fflushNULL\*(C'\fR is defined, fflushall will not
even be probed for and will be left undefined.
.ie n .IP """FFLUSH_NULL""" 4
.el .IP \f(CWFFLUSH_NULL\fR 4
.IX Xref "FFLUSH_NULL"
.IX Item "FFLUSH_NULL"
This symbol, if defined, tells that \f(CWfflush(NULL)\fR correctly
flushes all pending stdio output without side effects. In
particular, on some platforms calling \f(CWfflush(NULL)\fR *still*
corrupts \f(CW\*(C`STDIN\*(C'\fR if it is a pipe.
.ie n .IP """FILE_base""" 4
.el .IP \f(CWFILE_base\fR 4
.IX Xref "FILE_base"
.IX Item "FILE_base"
This macro is used to access the \f(CW\*(C`_base\*(C'\fR field (or equivalent) of the
\&\f(CW\*(C`FILE\*(C'\fR structure pointed to by its argument. This macro will always be
defined if \f(CW\*(C`USE_STDIO_BASE\*(C'\fR is defined.
.RS 4
.Sp
.Vb 1
\& void *  FILE_base(FILE * f)
.Ve
.RE
.RS 4
.RE
.ie n .IP """FILE_bufsiz""" 4
.el .IP \f(CWFILE_bufsiz\fR 4
.IX Xref "FILE_bufsiz"
.IX Item "FILE_bufsiz"
This macro is used to determine the number of bytes in the I/O
buffer pointed to by \f(CW\*(C`_base\*(C'\fR field (or equivalent) of the \f(CW\*(C`FILE\*(C'\fR
structure pointed to its argument. This macro will always be defined
if \f(CW\*(C`USE_STDIO_BASE\*(C'\fR is defined.
.RS 4
.Sp
.Vb 1
\& Size_t  FILE_bufsiz(FILE *f)
.Ve
.RE
.RS 4
.RE
.ie n .IP """FILE_cnt""" 4
.el .IP \f(CWFILE_cnt\fR 4
.IX Xref "FILE_cnt"
.IX Item "FILE_cnt"
This macro is used to access the \f(CW\*(C`_cnt\*(C'\fR field (or equivalent) of the
\&\f(CW\*(C`FILE\*(C'\fR structure pointed to by its argument. This macro will always be
defined if \f(CW\*(C`USE_STDIO_PTR\*(C'\fR is defined.
.RS 4
.Sp
.Vb 1
\& Size_t  FILE_cnt(FILE * f)
.Ve
.RE
.RS 4
.RE
.ie n .IP """FILE_ptr""" 4
.el .IP \f(CWFILE_ptr\fR 4
.IX Xref "FILE_ptr"
.IX Item "FILE_ptr"
This macro is used to access the \f(CW\*(C`_ptr\*(C'\fR field (or equivalent) of the
\&\f(CW\*(C`FILE\*(C'\fR structure pointed to by its argument. This macro will always be
defined if \f(CW\*(C`USE_STDIO_PTR\*(C'\fR is defined.
.RS 4
.Sp
.Vb 1
\& void *  FILE_ptr(FILE * f)
.Ve
.RE
.RS 4
.RE
.ie n .IP """FLEXFILENAMES""" 4
.el .IP \f(CWFLEXFILENAMES\fR 4
.IX Xref "FLEXFILENAMES"
.IX Item "FLEXFILENAMES"
This symbol, if defined, indicates that the system supports filenames
longer than 14 characters.
.ie n .IP """HAS_DIR_DD_FD""" 4
.el .IP \f(CWHAS_DIR_DD_FD\fR 4
.IX Xref "HAS_DIR_DD_FD"
.IX Item "HAS_DIR_DD_FD"
This symbol, if defined, indicates that the \f(CW\*(C`DIR\*(C'\fR* dirstream
structure contains a member variable named \f(CW\*(C`dd_fd\*(C'\fR.
.ie n .IP """HAS_DUP2""" 4
.el .IP \f(CWHAS_DUP2\fR 4
.IX Xref "HAS_DUP2"
.IX Item "HAS_DUP2"
This symbol, if defined, indicates that the \f(CW\*(C`dup2\*(C'\fR routine is
available to duplicate file descriptors.
.ie n .IP """HAS_DUP3""" 4
.el .IP \f(CWHAS_DUP3\fR 4
.IX Xref "HAS_DUP3"
.IX Item "HAS_DUP3"
This symbol, if defined, indicates that the \f(CW\*(C`dup3\*(C'\fR routine is
available to duplicate file descriptors.
.ie n .IP """HAS_FAST_STDIO""" 4
.el .IP \f(CWHAS_FAST_STDIO\fR 4
.IX Xref "HAS_FAST_STDIO"
.IX Item "HAS_FAST_STDIO"
This symbol, if defined, indicates that the "fast stdio"
is available to manipulate the stdio buffers directly.
.ie n .IP """HAS_FCHDIR""" 4
.el .IP \f(CWHAS_FCHDIR\fR 4
.IX Xref "HAS_FCHDIR"
.IX Item "HAS_FCHDIR"
This symbol, if defined, indicates that the \f(CW\*(C`fchdir\*(C'\fR routine is
available to change directory using a file descriptor.
.ie n .IP """HAS_FCNTL""" 4
.el .IP \f(CWHAS_FCNTL\fR 4
.IX Xref "HAS_FCNTL"
.IX Item "HAS_FCNTL"
This symbol, if defined, indicates to the C program that
the \f(CWfcntl()\fR function exists.
.ie n .IP """HAS_FDCLOSE""" 4
.el .IP \f(CWHAS_FDCLOSE\fR 4
.IX Xref "HAS_FDCLOSE"
.IX Item "HAS_FDCLOSE"
This symbol, if defined, indicates that the \f(CW\*(C`fdclose\*(C'\fR routine is
available to free a \f(CW\*(C`FILE\*(C'\fR structure without closing the underlying
file descriptor.  This function appeared in \f(CW\*(C`FreeBSD\*(C'\fR 10.2.
.ie n .IP """HAS_FPATHCONF""" 4
.el .IP \f(CWHAS_FPATHCONF\fR 4
.IX Xref "HAS_FPATHCONF"
.IX Item "HAS_FPATHCONF"
This symbol, if defined, indicates that \f(CWpathconf()\fR is available
to determine file-system related limits and options associated
with a given open file descriptor.
.ie n .IP """HAS_FPOS64_T""" 4
.el .IP \f(CWHAS_FPOS64_T\fR 4
.IX Xref "HAS_FPOS64_T"
.IX Item "HAS_FPOS64_T"
This symbol will be defined if the C compiler supports \f(CW\*(C`fpos64_t\*(C'\fR.
.ie n .IP """HAS_FSTATFS""" 4
.el .IP \f(CWHAS_FSTATFS\fR 4
.IX Xref "HAS_FSTATFS"
.IX Item "HAS_FSTATFS"
This symbol, if defined, indicates that the \f(CW\*(C`fstatfs\*(C'\fR routine is
available to stat filesystems by file descriptors.
.ie n .IP """HAS_FSTATVFS""" 4
.el .IP \f(CWHAS_FSTATVFS\fR 4
.IX Xref "HAS_FSTATVFS"
.IX Item "HAS_FSTATVFS"
This symbol, if defined, indicates that the \f(CW\*(C`fstatvfs\*(C'\fR routine is
available to stat filesystems by file descriptors.
.ie n .IP """HAS_GETFSSTAT""" 4
.el .IP \f(CWHAS_GETFSSTAT\fR 4
.IX Xref "HAS_GETFSSTAT"
.IX Item "HAS_GETFSSTAT"
This symbol, if defined, indicates that the \f(CW\*(C`getfsstat\*(C'\fR routine is
available to stat filesystems in bulk.
.ie n .IP """HAS_GETMNT""" 4
.el .IP \f(CWHAS_GETMNT\fR 4
.IX Xref "HAS_GETMNT"
.IX Item "HAS_GETMNT"
This symbol, if defined, indicates that the \f(CW\*(C`getmnt\*(C'\fR routine is
available to get filesystem mount info by filename.
.ie n .IP """HAS_GETMNTENT""" 4
.el .IP \f(CWHAS_GETMNTENT\fR 4
.IX Xref "HAS_GETMNTENT"
.IX Item "HAS_GETMNTENT"
This symbol, if defined, indicates that the \f(CW\*(C`getmntent\*(C'\fR routine is
available to iterate through mounted file systems to get their info.
.ie n .IP """HAS_HASMNTOPT""" 4
.el .IP \f(CWHAS_HASMNTOPT\fR 4
.IX Xref "HAS_HASMNTOPT"
.IX Item "HAS_HASMNTOPT"
This symbol, if defined, indicates that the \f(CW\*(C`hasmntopt\*(C'\fR routine is
available to query the mount options of file systems.
.ie n .IP """HAS_LSEEK_PROTO""" 4
.el .IP \f(CWHAS_LSEEK_PROTO\fR 4
.IX Xref "HAS_LSEEK_PROTO"
.IX Item "HAS_LSEEK_PROTO"
This symbol, if defined, indicates that the system provides
a prototype for the \f(CWlseek()\fR function.  Otherwise, it is up
to the program to supply one.  A good guess is
.Sp
.Vb 1
\& extern off_t lseek(int, off_t, int);
.Ve
.ie n .IP """HAS_MKDIR""" 4
.el .IP \f(CWHAS_MKDIR\fR 4
.IX Xref "HAS_MKDIR"
.IX Item "HAS_MKDIR"
This symbol, if defined, indicates that the \f(CW\*(C`mkdir\*(C'\fR routine is available
to create directories.  Otherwise you should fork off a new process to
exec \fI/bin/mkdir\fR.
.ie n .IP """HAS_OFF64_T""" 4
.el .IP \f(CWHAS_OFF64_T\fR 4
.IX Xref "HAS_OFF64_T"
.IX Item "HAS_OFF64_T"
This symbol will be defined if the C compiler supports \f(CW\*(C`off64_t\*(C'\fR.
.ie n .IP """HAS_OPENAT""" 4
.el .IP \f(CWHAS_OPENAT\fR 4
.IX Xref "HAS_OPENAT"
.IX Item "HAS_OPENAT"
This symbol is defined if the \f(CWopenat()\fR routine is available.
.ie n .IP """HAS_OPEN3""" 4
.el .IP \f(CWHAS_OPEN3\fR 4
.IX Xref "HAS_OPEN3"
.IX Item "HAS_OPEN3"
This manifest constant lets the C program know that the three
argument form of \f(CWopen(2)\fR is available.
.ie n .IP """HAS_POLL""" 4
.el .IP \f(CWHAS_POLL\fR 4
.IX Xref "HAS_POLL"
.IX Item "HAS_POLL"
This symbol, if defined, indicates that the \f(CW\*(C`poll\*(C'\fR routine is
available to \f(CW\*(C`poll\*(C'\fR active file descriptors.  Please check \f(CW\*(C`I_POLL\*(C'\fR and
\&\f(CW\*(C`I_SYS_POLL\*(C'\fR to know which header should be included as well.
.ie n .IP """HAS_READDIR""" 4
.el .IP \f(CWHAS_READDIR\fR 4
.IX Xref "HAS_READDIR"
.IX Item "HAS_READDIR"
This symbol, if defined, indicates that the \f(CW\*(C`readdir\*(C'\fR routine is
available to read directory entries. You may have to include
\&\fIdirent.h\fR. See \f(CW"I_DIRENT"\fR.
.ie n .IP """HAS_READDIR64_R""" 4
.el .IP \f(CWHAS_READDIR64_R\fR 4
.IX Xref "HAS_READDIR64_R"
.IX Item "HAS_READDIR64_R"
This symbol, if defined, indicates that the \f(CW\*(C`readdir64_r\*(C'\fR routine
is available to readdir64 re-entrantly.
.ie n .IP """HAS_REWINDDIR""" 4
.el .IP \f(CWHAS_REWINDDIR\fR 4
.IX Xref "HAS_REWINDDIR"
.IX Item "HAS_REWINDDIR"
This symbol, if defined, indicates that the \f(CW\*(C`rewinddir\*(C'\fR routine is
available. You may have to include \fIdirent.h\fR. See \f(CW"I_DIRENT"\fR.
.ie n .IP """HAS_RMDIR""" 4
.el .IP \f(CWHAS_RMDIR\fR 4
.IX Xref "HAS_RMDIR"
.IX Item "HAS_RMDIR"
This symbol, if defined, indicates that the \f(CW\*(C`rmdir\*(C'\fR routine is
available to remove directories. Otherwise you should fork off a
new process to exec \fI/bin/rmdir\fR.
.ie n .IP """HAS_SEEKDIR""" 4
.el .IP \f(CWHAS_SEEKDIR\fR 4
.IX Xref "HAS_SEEKDIR"
.IX Item "HAS_SEEKDIR"
This symbol, if defined, indicates that the \f(CW\*(C`seekdir\*(C'\fR routine is
available. You may have to include \fIdirent.h\fR. See \f(CW"I_DIRENT"\fR.
.ie n .IP """HAS_SELECT""" 4
.el .IP \f(CWHAS_SELECT\fR 4
.IX Xref "HAS_SELECT"
.IX Item "HAS_SELECT"
This symbol, if defined, indicates that the \f(CW\*(C`select\*(C'\fR routine is
available to \f(CW\*(C`select\*(C'\fR active file descriptors. If the timeout field
is used, \fIsys/time.h\fR may need to be included.
.ie n .IP """HAS_SETVBUF""" 4
.el .IP \f(CWHAS_SETVBUF\fR 4
.IX Xref "HAS_SETVBUF"
.IX Item "HAS_SETVBUF"
This symbol, if defined, indicates that the \f(CW\*(C`setvbuf\*(C'\fR routine is
available to change buffering on an open stdio stream.
to a line-buffered mode.
.ie n .IP """HAS_STDIO_STREAM_ARRAY""" 4
.el .IP \f(CWHAS_STDIO_STREAM_ARRAY\fR 4
.IX Xref "HAS_STDIO_STREAM_ARRAY"
.IX Item "HAS_STDIO_STREAM_ARRAY"
This symbol, if defined, tells that there is an array
holding the stdio streams.
.ie n .IP """HAS_STRUCT_FS_DATA""" 4
.el .IP \f(CWHAS_STRUCT_FS_DATA\fR 4
.IX Xref "HAS_STRUCT_FS_DATA"
.IX Item "HAS_STRUCT_FS_DATA"
This symbol, if defined, indicates that the \f(CW\*(C`struct fs_data\*(C'\fR
to do \f(CWstatfs()\fR is supported.
.ie n .IP """HAS_STRUCT_STATFS""" 4
.el .IP \f(CWHAS_STRUCT_STATFS\fR 4
.IX Xref "HAS_STRUCT_STATFS"
.IX Item "HAS_STRUCT_STATFS"
This symbol, if defined, indicates that the \f(CW\*(C`struct statfs\*(C'\fR
to do \f(CWstatfs()\fR is supported.
.ie n .IP """HAS_STRUCT_STATFS_F_FLAGS""" 4
.el .IP \f(CWHAS_STRUCT_STATFS_F_FLAGS\fR 4
.IX Xref "HAS_STRUCT_STATFS_F_FLAGS"
.IX Item "HAS_STRUCT_STATFS_F_FLAGS"
This symbol, if defined, indicates that the \f(CW\*(C`struct statfs\*(C'\fR
does have the \f(CW\*(C`f_flags\*(C'\fR member containing the mount flags of
the filesystem containing the file.
This kind of \f(CW\*(C`struct statfs\*(C'\fR is coming from \fIsys/mount.h\fR (\f(CW\*(C`BSD\*(C'\fR 4.3),
not from \fIsys/statfs.h\fR (\f(CW\*(C`SYSV\*(C'\fR).  Older \f(CW\*(C`BSDs\*(C'\fR (like Ultrix) do not
have \f(CWstatfs()\fR and \f(CW\*(C`struct statfs\*(C'\fR, they have \f(CWustat()\fR and \f(CWgetmnt()\fR
with \f(CW\*(C`struct ustat\*(C'\fR and \f(CW\*(C`struct fs_data\*(C'\fR.
.ie n .IP """HAS_TELLDIR""" 4
.el .IP \f(CWHAS_TELLDIR\fR 4
.IX Xref "HAS_TELLDIR"
.IX Item "HAS_TELLDIR"
This symbol, if defined, indicates that the \f(CW\*(C`telldir\*(C'\fR routine is
available. You may have to include \fIdirent.h\fR. See \f(CW"I_DIRENT"\fR.
.ie n .IP """HAS_USTAT""" 4
.el .IP \f(CWHAS_USTAT\fR 4
.IX Xref "HAS_USTAT"
.IX Item "HAS_USTAT"
This symbol, if defined, indicates that the \f(CW\*(C`ustat\*(C'\fR system call is
available to query file system statistics by \f(CW\*(C`dev_t\*(C'\fR.
.ie n .IP """I_FCNTL""" 4
.el .IP \f(CWI_FCNTL\fR 4
.IX Xref "I_FCNTL"
.IX Item "I_FCNTL"
This manifest constant tells the C program to include \fIfcntl.h\fR.
.RS 4
.Sp
.Vb 3
\& #ifdef I_FCNTL
\&     #include <fcntl.h>
\& #endif
.Ve
.RE
.RS 4
.RE
.ie n .IP """I_SYS_DIR""" 4
.el .IP \f(CWI_SYS_DIR\fR 4
.IX Xref "I_SYS_DIR"
.IX Item "I_SYS_DIR"
This symbol, if defined, indicates to the C program that it should
include \fIsys/dir.h\fR.
.RS 4
.Sp
.Vb 3
\& #ifdef I_SYS_DIR
\&     #include <sys_dir.h>
\& #endif
.Ve
.RE
.RS 4
.RE
.ie n .IP """I_SYS_FILE""" 4
.el .IP \f(CWI_SYS_FILE\fR 4
.IX Xref "I_SYS_FILE"
.IX Item "I_SYS_FILE"
This symbol, if defined, indicates to the C program that it should
include \fIsys/file.h\fR to get definition of \f(CW\*(C`R_OK\*(C'\fR and friends.
.RS 4
.Sp
.Vb 3
\& #ifdef I_SYS_FILE
\&     #include <sys_file.h>
\& #endif
.Ve
.RE
.RS 4
.RE
.ie n .IP """I_SYS_NDIR""" 4
.el .IP \f(CWI_SYS_NDIR\fR 4
.IX Xref "I_SYS_NDIR"
.IX Item "I_SYS_NDIR"
This symbol, if defined, indicates to the C program that it should
include \fIsys/ndir.h\fR.
.RS 4
.Sp
.Vb 3
\& #ifdef I_SYS_NDIR
\&     #include <sys_ndir.h>
\& #endif
.Ve
.RE
.RS 4
.RE
.ie n .IP """I_SYS_STATFS""" 4
.el .IP \f(CWI_SYS_STATFS\fR 4
.IX Xref "I_SYS_STATFS"
.IX Item "I_SYS_STATFS"
This symbol, if defined, indicates that \fIsys/statfs.h\fR exists.
.RS 4
.Sp
.Vb 3
\& #ifdef I_SYS_STATFS
\&     #include <sys_statfs.h>
\& #endif
.Ve
.RE
.RS 4
.RE
.ie n .IP """LSEEKSIZE""" 4
.el .IP \f(CWLSEEKSIZE\fR 4
.IX Xref "LSEEKSIZE"
.IX Item "LSEEKSIZE"
This symbol holds the number of bytes used by the \f(CW\*(C`Off_t\*(C'\fR.
.ie n .IP """RD_NODATA""" 4
.el .IP \f(CWRD_NODATA\fR 4
.IX Xref "RD_NODATA"
.IX Item "RD_NODATA"
This symbol holds the return code from \f(CWread()\fR when no data is present
on the non-blocking file descriptor. Be careful! If \f(CW\*(C`EOF_NONBLOCK\*(C'\fR is
not defined, then you can't distinguish between no data and \f(CW\*(C`EOF\*(C'\fR by
issuing a \f(CWread()\fR. You'll have to find another way to tell for sure!
.ie n .IP """READDIR64_R_PROTO""" 4
.el .IP \f(CWREADDIR64_R_PROTO\fR 4
.IX Xref "READDIR64_R_PROTO"
.IX Item "READDIR64_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`readdir64_r\*(C'\fR.
It is zero if \f(CW\*(C`d_readdir64_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_readdir64_r\*(C'\fR
is defined.
.ie n .IP """STDCHAR""" 4
.el .IP \f(CWSTDCHAR\fR 4
.IX Xref "STDCHAR"
.IX Item "STDCHAR"
This symbol is defined to be the type of char used in \fIstdio.h\fR.
It has the values "unsigned char" or "char".
.ie n .IP """STDIO_CNT_LVALUE""" 4
.el .IP \f(CWSTDIO_CNT_LVALUE\fR 4
.IX Xref "STDIO_CNT_LVALUE"
.IX Item "STDIO_CNT_LVALUE"
This symbol is defined if the \f(CW\*(C`FILE_cnt\*(C'\fR macro can be used as an
lvalue.
.ie n .IP """STDIO_PTR_LVAL_NOCHANGE_CNT""" 4
.el .IP \f(CWSTDIO_PTR_LVAL_NOCHANGE_CNT\fR 4
.IX Xref "STDIO_PTR_LVAL_NOCHANGE_CNT"
.IX Item "STDIO_PTR_LVAL_NOCHANGE_CNT"
This symbol is defined if using the \f(CW\*(C`FILE_ptr\*(C'\fR macro as an lvalue
to increase the pointer by n leaves \f(CWFile_cnt(fp)\fR unchanged.
.ie n .IP """STDIO_PTR_LVAL_SETS_CNT""" 4
.el .IP \f(CWSTDIO_PTR_LVAL_SETS_CNT\fR 4
.IX Xref "STDIO_PTR_LVAL_SETS_CNT"
.IX Item "STDIO_PTR_LVAL_SETS_CNT"
This symbol is defined if using the \f(CW\*(C`FILE_ptr\*(C'\fR macro as an lvalue
to increase the pointer by n has the side effect of decreasing the
value of \f(CWFile_cnt(fp)\fR by n.
.ie n .IP """STDIO_PTR_LVALUE""" 4
.el .IP \f(CWSTDIO_PTR_LVALUE\fR 4
.IX Xref "STDIO_PTR_LVALUE"
.IX Item "STDIO_PTR_LVALUE"
This symbol is defined if the \f(CW\*(C`FILE_ptr\*(C'\fR macro can be used as an
lvalue.
.ie n .IP """STDIO_STREAM_ARRAY""" 4
.el .IP \f(CWSTDIO_STREAM_ARRAY\fR 4
.IX Xref "STDIO_STREAM_ARRAY"
.IX Item "STDIO_STREAM_ARRAY"
This symbol tells the name of the array holding the stdio streams.
Usual values include \f(CW\*(C`_iob\*(C'\fR, \f(CW\*(C`_\|_iob\*(C'\fR, and \f(CW\*(C`_\|_sF\*(C'\fR.
.ie n .IP """ST_INO_SIGN""" 4
.el .IP \f(CWST_INO_SIGN\fR 4
.IX Xref "ST_INO_SIGN"
.IX Item "ST_INO_SIGN"
This symbol holds the signedness of \f(CW\*(C`struct stat\*(C'\fR's \f(CW\*(C`st_ino\*(C'\fR.
1 for unsigned, \-1 for signed.
.ie n .IP """ST_INO_SIZE""" 4
.el .IP \f(CWST_INO_SIZE\fR 4
.IX Xref "ST_INO_SIZE"
.IX Item "ST_INO_SIZE"
This variable contains the size of \f(CW\*(C`struct stat\*(C'\fR's \f(CW\*(C`st_ino\*(C'\fR in bytes.
.ie n .IP """VAL_EAGAIN""" 4
.el .IP \f(CWVAL_EAGAIN\fR 4
.IX Xref "VAL_EAGAIN"
.IX Item "VAL_EAGAIN"
This symbol holds the errno error code set by \f(CWread()\fR when no data was
present on the non-blocking file descriptor.
.ie n .IP """VAL_O_NONBLOCK""" 4
.el .IP \f(CWVAL_O_NONBLOCK\fR 4
.IX Xref "VAL_O_NONBLOCK"
.IX Item "VAL_O_NONBLOCK"
This symbol is to be used during \f(CWopen()\fR or \f(CWfcntl(F_SETFL)\fR to turn on
non-blocking I/O for the file descriptor. Note that there is no way
back, i.e. you cannot turn it blocking again this way. If you wish to
alternatively switch between blocking and non-blocking, use the
\&\f(CWioctl(FIOSNBIO)\fR call instead, but that is not supported by all devices.
.ie n .IP """VOID_CLOSEDIR""" 4
.el .IP \f(CWVOID_CLOSEDIR\fR 4
.IX Xref "VOID_CLOSEDIR"
.IX Item "VOID_CLOSEDIR"
This symbol, if defined, indicates that the \f(CWclosedir()\fR routine
does not return a value.
.SH "Floating point"
.IX Header "Floating point"
Also "List of capability HAS_foo symbols" lists capabilities
that arent in this section.  For example \f(CW\*(C`HAS_ASINH\*(C'\fR, for the
hyperbolic sine function.
.ie n .IP """CASTFLAGS""" 4
.el .IP \f(CWCASTFLAGS\fR 4
.IX Xref "CASTFLAGS"
.IX Item "CASTFLAGS"
This symbol contains flags that say what difficulties the compiler
has casting odd floating values to unsigned long:
.Sp
.Vb 4
\& 0 = ok
\& 1 = couldn\*(Aqt cast < 0
\& 2 = couldn\*(Aqt cast >= 0x80000000
\& 4 = couldn\*(Aqt cast in argument expression list
.Ve
.ie n .IP """CASTNEGFLOAT""" 4
.el .IP \f(CWCASTNEGFLOAT\fR 4
.IX Xref "CASTNEGFLOAT"
.IX Item "CASTNEGFLOAT"
This symbol is defined if the C compiler can cast negative
numbers to unsigned longs, ints and shorts.
.ie n .IP """DOUBLE_HAS_INF""" 4
.el .IP \f(CWDOUBLE_HAS_INF\fR 4
.IX Xref "DOUBLE_HAS_INF"
.IX Item "DOUBLE_HAS_INF"
This symbol, if defined, indicates that the double has
the infinity.
.ie n .IP """DOUBLE_HAS_NAN""" 4
.el .IP \f(CWDOUBLE_HAS_NAN\fR 4
.IX Xref "DOUBLE_HAS_NAN"
.IX Item "DOUBLE_HAS_NAN"
This symbol, if defined, indicates that the double has
the not-a-number.
.ie n .IP """DOUBLE_HAS_NEGATIVE_ZERO""" 4
.el .IP \f(CWDOUBLE_HAS_NEGATIVE_ZERO\fR 4
.IX Xref "DOUBLE_HAS_NEGATIVE_ZERO"
.IX Item "DOUBLE_HAS_NEGATIVE_ZERO"
This symbol, if defined, indicates that the double has
the \f(CW\*(C`negative_zero\*(C'\fR.
.ie n .IP """DOUBLE_HAS_SUBNORMALS""" 4
.el .IP \f(CWDOUBLE_HAS_SUBNORMALS\fR 4
.IX Xref "DOUBLE_HAS_SUBNORMALS"
.IX Item "DOUBLE_HAS_SUBNORMALS"
This symbol, if defined, indicates that the double has
the subnormals (denormals).
.ie n .IP """DOUBLEINFBYTES""" 4
.el .IP \f(CWDOUBLEINFBYTES\fR 4
.IX Xref "DOUBLEINFBYTES"
.IX Item "DOUBLEINFBYTES"
This symbol, if defined, is a comma-separated list of
hexadecimal bytes for the double precision infinity.
.ie n .IP """DOUBLEKIND""" 4
.el .IP \f(CWDOUBLEKIND\fR 4
.IX Xref "DOUBLEKIND"
.IX Item "DOUBLEKIND"
\&\f(CW\*(C`DOUBLEKIND\*(C'\fR will be one of
\&\f(CW\*(C`DOUBLE_IS_IEEE_754_32_BIT_LITTLE_ENDIAN\*(C'\fR
\&\f(CW\*(C`DOUBLE_IS_IEEE_754_32_BIT_BIG_ENDIAN\*(C'\fR
\&\f(CW\*(C`DOUBLE_IS_IEEE_754_64_BIT_LITTLE_ENDIAN\*(C'\fR
\&\f(CW\*(C`DOUBLE_IS_IEEE_754_64_BIT_BIG_ENDIAN\*(C'\fR
\&\f(CW\*(C`DOUBLE_IS_IEEE_754_128_BIT_LITTLE_ENDIAN\*(C'\fR
\&\f(CW\*(C`DOUBLE_IS_IEEE_754_128_BIT_BIG_ENDIAN\*(C'\fR
\&\f(CW\*(C`DOUBLE_IS_IEEE_754_64_BIT_MIXED_ENDIAN_LE_BE\*(C'\fR
\&\f(CW\*(C`DOUBLE_IS_IEEE_754_64_BIT_MIXED_ENDIAN_BE_LE\*(C'\fR
\&\f(CW\*(C`DOUBLE_IS_VAX_F_FLOAT\*(C'\fR
\&\f(CW\*(C`DOUBLE_IS_VAX_D_FLOAT\*(C'\fR
\&\f(CW\*(C`DOUBLE_IS_VAX_G_FLOAT\*(C'\fR
\&\f(CW\*(C`DOUBLE_IS_IBM_SINGLE_32_BIT\*(C'\fR
\&\f(CW\*(C`DOUBLE_IS_IBM_DOUBLE_64_BIT\*(C'\fR
\&\f(CW\*(C`DOUBLE_IS_CRAY_SINGLE_64_BIT\*(C'\fR
\&\f(CW\*(C`DOUBLE_IS_UNKNOWN_FORMAT\*(C'\fR
.ie n .IP """DOUBLEMANTBITS""" 4
.el .IP \f(CWDOUBLEMANTBITS\fR 4
.IX Xref "DOUBLEMANTBITS"
.IX Item "DOUBLEMANTBITS"
This symbol, if defined, tells how many mantissa bits
there are in double precision floating point format.
Note that this is usually \f(CW\*(C`DBL_MANT_DIG\*(C'\fR minus one, since
with the standard \f(CW\*(C`IEEE\*(C'\fR 754 formats \f(CW\*(C`DBL_MANT_DIG\*(C'\fR includes
the implicit bit, which doesn't really exist.
.ie n .IP """DOUBLENANBYTES""" 4
.el .IP \f(CWDOUBLENANBYTES\fR 4
.IX Xref "DOUBLENANBYTES"
.IX Item "DOUBLENANBYTES"
This symbol, if defined, is a comma-separated list of
hexadecimal bytes (0xHH) for the double precision not-a-number.
.ie n .IP """DOUBLESIZE""" 4
.el .IP \f(CWDOUBLESIZE\fR 4
.IX Xref "DOUBLESIZE"
.IX Item "DOUBLESIZE"
This symbol contains the size of a double, so that the C preprocessor
can make decisions based on it.
.ie n .IP """DOUBLE_STYLE_CRAY""" 4
.el .IP \f(CWDOUBLE_STYLE_CRAY\fR 4
.IX Xref "DOUBLE_STYLE_CRAY"
.IX Item "DOUBLE_STYLE_CRAY"
This symbol, if defined, indicates that the double is
the 64\-bit \f(CW\*(C`CRAY\*(C'\fR mainframe format.
.ie n .IP """DOUBLE_STYLE_IBM""" 4
.el .IP \f(CWDOUBLE_STYLE_IBM\fR 4
.IX Xref "DOUBLE_STYLE_IBM"
.IX Item "DOUBLE_STYLE_IBM"
This symbol, if defined, indicates that the double is
the 64\-bit \f(CW\*(C`IBM\*(C'\fR mainframe format.
.ie n .IP """DOUBLE_STYLE_IEEE""" 4
.el .IP \f(CWDOUBLE_STYLE_IEEE\fR 4
.IX Xref "DOUBLE_STYLE_IEEE"
.IX Item "DOUBLE_STYLE_IEEE"
This symbol, if defined, indicates that the double is
the 64\-bit \f(CW\*(C`IEEE\*(C'\fR 754.
.ie n .IP """DOUBLE_STYLE_VAX""" 4
.el .IP \f(CWDOUBLE_STYLE_VAX\fR 4
.IX Xref "DOUBLE_STYLE_VAX"
.IX Item "DOUBLE_STYLE_VAX"
This symbol, if defined, indicates that the double is
the 64\-bit \f(CW\*(C`VAX\*(C'\fR format D or G.
.ie n .IP """HAS_ATOLF""" 4
.el .IP \f(CWHAS_ATOLF\fR 4
.IX Xref "HAS_ATOLF"
.IX Item "HAS_ATOLF"
This symbol, if defined, indicates that the \f(CW\*(C`atolf\*(C'\fR routine is
available to convert strings into long doubles.
.ie n .IP """HAS_CLASS""" 4
.el .IP \f(CWHAS_CLASS\fR 4
.IX Xref "HAS_CLASS"
.IX Item "HAS_CLASS"
This symbol, if defined, indicates that the \f(CW\*(C`class\*(C'\fR routine is
available to classify doubles.  Available for example in \f(CW\*(C`AIX\*(C'\fR.
The returned values are defined in \fIfloat.h\fR and are:
.Sp
.Vb 10
\& FP_PLUS_NORM    Positive normalized, nonzero
\& FP_MINUS_NORM   Negative normalized, nonzero
\& FP_PLUS_DENORM  Positive denormalized, nonzero
\& FP_MINUS_DENORM Negative denormalized, nonzero
\& FP_PLUS_ZERO    +0.0
\& FP_MINUS_ZERO   \-0.0
\& FP_PLUS_INF     +INF
\& FP_MINUS_INF    \-INF
\& FP_NANS         Signaling Not a Number (NaNS)
\& FP_NANQ         Quiet Not a Number (NaNQ)
.Ve
.ie n .IP """HAS_FINITE""" 4
.el .IP \f(CWHAS_FINITE\fR 4
.IX Xref "HAS_FINITE"
.IX Item "HAS_FINITE"
This symbol, if defined, indicates that the \f(CW\*(C`finite\*(C'\fR routine is
available to check whether a double is \f(CW\*(C`finite\*(C'\fR (non-infinity non-NaN).
.ie n .IP """HAS_FINITEL""" 4
.el .IP \f(CWHAS_FINITEL\fR 4
.IX Xref "HAS_FINITEL"
.IX Item "HAS_FINITEL"
This symbol, if defined, indicates that the \f(CW\*(C`finitel\*(C'\fR routine is
available to check whether a long double is finite
(non-infinity non-NaN).
.ie n .IP """HAS_FPCLASS""" 4
.el .IP \f(CWHAS_FPCLASS\fR 4
.IX Xref "HAS_FPCLASS"
.IX Item "HAS_FPCLASS"
This symbol, if defined, indicates that the \f(CW\*(C`fpclass\*(C'\fR routine is
available to classify doubles.  Available for example in Solaris/\f(CW\*(C`SVR4\*(C'\fR.
The returned values are defined in \fIieeefp.h\fR and are:
.Sp
.Vb 10
\& FP_SNAN         signaling NaN
\& FP_QNAN         quiet NaN
\& FP_NINF         negative infinity
\& FP_PINF         positive infinity
\& FP_NDENORM      negative denormalized non\-zero
\& FP_PDENORM      positive denormalized non\-zero
\& FP_NZERO        negative zero
\& FP_PZERO        positive zero
\& FP_NNORM        negative normalized non\-zero
\& FP_PNORM        positive normalized non\-zero
.Ve
.ie n .IP """HAS_FP_CLASS""" 4
.el .IP \f(CWHAS_FP_CLASS\fR 4
.IX Xref "HAS_FP_CLASS"
.IX Item "HAS_FP_CLASS"
This symbol, if defined, indicates that the \f(CW\*(C`fp_class\*(C'\fR routine is
available to classify doubles.  Available for example in Digital \f(CW\*(C`UNIX\*(C'\fR.
The returned values are defined in \fImath.h\fR and are:
.Sp
.Vb 10
\& FP_SNAN           Signaling NaN (Not\-a\-Number)
\& FP_QNAN           Quiet NaN (Not\-a\-Number)
\& FP_POS_INF        +infinity
\& FP_NEG_INF        \-infinity
\& FP_POS_NORM       Positive normalized
\& FP_NEG_NORM       Negative normalized
\& FP_POS_DENORM     Positive denormalized
\& FP_NEG_DENORM     Negative denormalized
\& FP_POS_ZERO       +0.0 (positive zero)
\& FP_NEG_ZERO       \-0.0 (negative zero)
.Ve
.ie n .IP """HAS_FPCLASSIFY""" 4
.el .IP \f(CWHAS_FPCLASSIFY\fR 4
.IX Xref "HAS_FPCLASSIFY"
.IX Item "HAS_FPCLASSIFY"
This symbol, if defined, indicates that the \f(CW\*(C`fpclassify\*(C'\fR routine is
available to classify doubles.  Available for example in HP-UX.
The returned values are defined in \fImath.h\fR and are
.Sp
.Vb 5
\& FP_NORMAL     Normalized
\& FP_ZERO       Zero
\& FP_INFINITE   Infinity
\& FP_SUBNORMAL  Denormalized
\& FP_NAN        NaN
.Ve
.ie n .IP """HAS_FP_CLASSIFY""" 4
.el .IP \f(CWHAS_FP_CLASSIFY\fR 4
.IX Xref "HAS_FP_CLASSIFY"
.IX Item "HAS_FP_CLASSIFY"
This symbol, if defined, indicates that the \f(CW\*(C`fp_classify\*(C'\fR routine is
available to classify doubles. The values are defined in \fImath.h\fR
.Sp
.Vb 5
\& FP_NORMAL     Normalized
\& FP_ZERO       Zero
\& FP_INFINITE   Infinity
\& FP_SUBNORMAL  Denormalized
\& FP_NAN        NaN
.Ve
.ie n .IP """HAS_FPCLASSL""" 4
.el .IP \f(CWHAS_FPCLASSL\fR 4
.IX Xref "HAS_FPCLASSL"
.IX Item "HAS_FPCLASSL"
This symbol, if defined, indicates that the \f(CW\*(C`fpclassl\*(C'\fR routine is
available to classify long doubles.  Available for example in \f(CW\*(C`IRIX\*(C'\fR.
The returned values are defined in \fIieeefp.h\fR and are:
.Sp
.Vb 10
\& FP_SNAN         signaling NaN
\& FP_QNAN         quiet NaN
\& FP_NINF         negative infinity
\& FP_PINF         positive infinity
\& FP_NDENORM      negative denormalized non\-zero
\& FP_PDENORM      positive denormalized non\-zero
\& FP_NZERO        negative zero
\& FP_PZERO        positive zero
\& FP_NNORM        negative normalized non\-zero
\& FP_PNORM        positive normalized non\-zero
.Ve
.ie n .IP """HAS_FP_CLASSL""" 4
.el .IP \f(CWHAS_FP_CLASSL\fR 4
.IX Xref "HAS_FP_CLASSL"
.IX Item "HAS_FP_CLASSL"
This symbol, if defined, indicates that the \f(CW\*(C`fp_classl\*(C'\fR routine is
available to classify long doubles.  Available for example in
Digital \f(CW\*(C`UNIX\*(C'\fR.  See for possible values \f(CW\*(C`HAS_FP_CLASS\*(C'\fR.
.ie n .IP """HAS_FPGETROUND""" 4
.el .IP \f(CWHAS_FPGETROUND\fR 4
.IX Xref "HAS_FPGETROUND"
.IX Item "HAS_FPGETROUND"
This symbol, if defined, indicates that the \f(CW\*(C`fpgetround\*(C'\fR routine is
available to get the floating point rounding mode.
.ie n .IP """HAS_FREXPL""" 4
.el .IP \f(CWHAS_FREXPL\fR 4
.IX Xref "HAS_FREXPL"
.IX Item "HAS_FREXPL"
This symbol, if defined, indicates that the \f(CW\*(C`frexpl\*(C'\fR routine is
available to break a long double floating-point number into
a normalized fraction and an integral power of 2.
.ie n .IP """HAS_ILOGB""" 4
.el .IP \f(CWHAS_ILOGB\fR 4
.IX Xref "HAS_ILOGB"
.IX Item "HAS_ILOGB"
This symbol, if defined, indicates that the \f(CW\*(C`ilogb\*(C'\fR routine is
available to get integer exponent of a floating-point value.
.ie n .IP """HAS_ISFINITE""" 4
.el .IP \f(CWHAS_ISFINITE\fR 4
.IX Xref "HAS_ISFINITE"
.IX Item "HAS_ISFINITE"
This symbol, if defined, indicates that the \f(CW\*(C`isfinite\*(C'\fR routine is
available to check whether a double is finite (non-infinity non-NaN).
.ie n .IP """HAS_ISFINITEL""" 4
.el .IP \f(CWHAS_ISFINITEL\fR 4
.IX Xref "HAS_ISFINITEL"
.IX Item "HAS_ISFINITEL"
This symbol, if defined, indicates that the \f(CW\*(C`isfinitel\*(C'\fR routine is
available to check whether a long double is finite.
(non-infinity non-NaN).
.ie n .IP """HAS_ISINF""" 4
.el .IP \f(CWHAS_ISINF\fR 4
.IX Xref "HAS_ISINF"
.IX Item "HAS_ISINF"
This symbol, if defined, indicates that the \f(CW\*(C`isinf\*(C'\fR routine is
available to check whether a double is an infinity.
.ie n .IP """HAS_ISINFL""" 4
.el .IP \f(CWHAS_ISINFL\fR 4
.IX Xref "HAS_ISINFL"
.IX Item "HAS_ISINFL"
This symbol, if defined, indicates that the \f(CW\*(C`isinfl\*(C'\fR routine is
available to check whether a long double is an infinity.
.ie n .IP """HAS_ISNAN""" 4
.el .IP \f(CWHAS_ISNAN\fR 4
.IX Xref "HAS_ISNAN"
.IX Item "HAS_ISNAN"
This symbol, if defined, indicates that the \f(CW\*(C`isnan\*(C'\fR routine is
available to check whether a double is a NaN.
.ie n .IP """HAS_ISNANL""" 4
.el .IP \f(CWHAS_ISNANL\fR 4
.IX Xref "HAS_ISNANL"
.IX Item "HAS_ISNANL"
This symbol, if defined, indicates that the \f(CW\*(C`isnanl\*(C'\fR routine is
available to check whether a long double is a NaN.
.ie n .IP """HAS_ISNORMAL""" 4
.el .IP \f(CWHAS_ISNORMAL\fR 4
.IX Xref "HAS_ISNORMAL"
.IX Item "HAS_ISNORMAL"
This symbol, if defined, indicates that the \f(CW\*(C`isnormal\*(C'\fR routine is
available to check whether a double is normal (non-zero normalized).
.ie n .IP """HAS_J0L""" 4
.el .IP \f(CWHAS_J0L\fR 4
.IX Xref "HAS_J0L"
.IX Item "HAS_J0L"
This symbol, if defined, indicates to the C program that the
\&\f(CWj0l()\fR function is available for Bessel functions of the first
kind of the order zero, for long doubles.
.ie n .IP """HAS_J0""" 4
.el .IP \f(CWHAS_J0\fR 4
.IX Xref "HAS_J0"
.IX Item "HAS_J0"
This symbol, if defined, indicates to the C program that the
\&\f(CWj0()\fR function is available for Bessel functions of the first
kind of the order zero, for doubles.
.ie n .IP """HAS_LDBL_DIG""" 4
.el .IP \f(CWHAS_LDBL_DIG\fR 4
.IX Xref "HAS_LDBL_DIG"
.IX Item "HAS_LDBL_DIG"
This symbol, if defined, indicates that this system's \fIfloat.h\fR
or \fIlimits.h\fR defines the symbol \f(CW\*(C`LDBL_DIG\*(C'\fR, which is the number
of significant digits in a long double precision number. Unlike
for \f(CW\*(C`DBL_DIG\*(C'\fR, there's no good guess for \f(CW\*(C`LDBL_DIG\*(C'\fR if it is undefined.
.ie n .IP """HAS_LDEXPL""" 4
.el .IP \f(CWHAS_LDEXPL\fR 4
.IX Xref "HAS_LDEXPL"
.IX Item "HAS_LDEXPL"
This symbol, if defined, indicates that the \f(CW\*(C`ldexpl\*(C'\fR routine is
available to shift a long double floating-point number
by an integral power of 2.
.ie n .IP """HAS_LLRINT""" 4
.el .IP \f(CWHAS_LLRINT\fR 4
.IX Xref "HAS_LLRINT"
.IX Item "HAS_LLRINT"
This symbol, if defined, indicates that the \f(CW\*(C`llrint\*(C'\fR routine is
available to return the long long value closest to a double
(according to the current rounding mode).
.ie n .IP """HAS_LLRINTL""" 4
.el .IP \f(CWHAS_LLRINTL\fR 4
.IX Xref "HAS_LLRINTL"
.IX Item "HAS_LLRINTL"
This symbol, if defined, indicates that the \f(CW\*(C`llrintl\*(C'\fR routine is
available to return the long long value closest to a long double
(according to the current rounding mode).
.ie n .IP """HAS_LLROUNDL""" 4
.el .IP \f(CWHAS_LLROUNDL\fR 4
.IX Xref "HAS_LLROUNDL"
.IX Item "HAS_LLROUNDL"
This symbol, if defined, indicates that the \f(CW\*(C`llroundl\*(C'\fR routine is
available to return the nearest long long value away from zero of
the long double argument value.
.ie n .IP """HAS_LONG_DOUBLE""" 4
.el .IP \f(CWHAS_LONG_DOUBLE\fR 4
.IX Xref "HAS_LONG_DOUBLE"
.IX Item "HAS_LONG_DOUBLE"
This symbol will be defined if the C compiler supports long
doubles.
.ie n .IP """HAS_LRINT""" 4
.el .IP \f(CWHAS_LRINT\fR 4
.IX Xref "HAS_LRINT"
.IX Item "HAS_LRINT"
This symbol, if defined, indicates that the \f(CW\*(C`lrint\*(C'\fR routine is
available to return the integral value closest to a double
(according to the current rounding mode).
.ie n .IP """HAS_LRINTL""" 4
.el .IP \f(CWHAS_LRINTL\fR 4
.IX Xref "HAS_LRINTL"
.IX Item "HAS_LRINTL"
This symbol, if defined, indicates that the \f(CW\*(C`lrintl\*(C'\fR routine is
available to return the integral value closest to a long double
(according to the current rounding mode).
.ie n .IP """HAS_LROUNDL""" 4
.el .IP \f(CWHAS_LROUNDL\fR 4
.IX Xref "HAS_LROUNDL"
.IX Item "HAS_LROUNDL"
This symbol, if defined, indicates that the \f(CW\*(C`lroundl\*(C'\fR routine is
available to return the nearest integral value away from zero of
the long double argument value.
.ie n .IP """HAS_MODFL""" 4
.el .IP \f(CWHAS_MODFL\fR 4
.IX Xref "HAS_MODFL"
.IX Item "HAS_MODFL"
This symbol, if defined, indicates that the \f(CW\*(C`modfl\*(C'\fR routine is
available to split a long double x into a fractional part f and
an integer part i such that |f| < 1.0 and (f + i) = x.
.ie n .IP """HAS_NAN""" 4
.el .IP \f(CWHAS_NAN\fR 4
.IX Xref "HAS_NAN"
.IX Item "HAS_NAN"
This symbol, if defined, indicates that the \f(CW\*(C`nan\*(C'\fR routine is
available to generate NaN.
.ie n .IP """HAS_NEXTTOWARD""" 4
.el .IP \f(CWHAS_NEXTTOWARD\fR 4
.IX Xref "HAS_NEXTTOWARD"
.IX Item "HAS_NEXTTOWARD"
This symbol, if defined, indicates that the \f(CW\*(C`nexttoward\*(C'\fR routine is
available to return the next machine representable long double from
x in direction y.
.ie n .IP """HAS_REMAINDER""" 4
.el .IP \f(CWHAS_REMAINDER\fR 4
.IX Xref "HAS_REMAINDER"
.IX Item "HAS_REMAINDER"
This symbol, if defined, indicates that the \f(CW\*(C`remainder\*(C'\fR routine is
available to return the floating-point \f(CW\*(C`remainder\*(C'\fR.
.ie n .IP """HAS_SCALBN""" 4
.el .IP \f(CWHAS_SCALBN\fR 4
.IX Xref "HAS_SCALBN"
.IX Item "HAS_SCALBN"
This symbol, if defined, indicates that the \f(CW\*(C`scalbn\*(C'\fR routine is
available to multiply floating-point number by integral power
of radix.
.ie n .IP """HAS_SIGNBIT""" 4
.el .IP \f(CWHAS_SIGNBIT\fR 4
.IX Xref "HAS_SIGNBIT"
.IX Item "HAS_SIGNBIT"
This symbol, if defined, indicates that the \f(CW\*(C`signbit\*(C'\fR routine is
available to check if the given number has the sign bit set.
This should include correct testing of \-0.0.  This will only be set
if the \f(CWsignbit()\fR routine is safe to use with the NV type used internally
in perl.  Users should call \f(CWPerl_signbit()\fR, which will be #defined to
the system's \f(CWsignbit()\fR function or macro if this symbol is defined.
.ie n .IP """HAS_SQRTL""" 4
.el .IP \f(CWHAS_SQRTL\fR 4
.IX Xref "HAS_SQRTL"
.IX Item "HAS_SQRTL"
This symbol, if defined, indicates that the \f(CW\*(C`sqrtl\*(C'\fR routine is
available to do long double square roots.
.ie n .IP """HAS_STRTOD_L""" 4
.el .IP \f(CWHAS_STRTOD_L\fR 4
.IX Xref "HAS_STRTOD_L"
.IX Item "HAS_STRTOD_L"
This symbol, if defined, indicates that the \f(CW\*(C`strtod_l\*(C'\fR routine is
available to convert strings to long doubles.
.ie n .IP """HAS_STRTOLD""" 4
.el .IP \f(CWHAS_STRTOLD\fR 4
.IX Xref "HAS_STRTOLD"
.IX Item "HAS_STRTOLD"
This symbol, if defined, indicates that the \f(CW\*(C`strtold\*(C'\fR routine is
available to convert strings to long doubles.
.ie n .IP """HAS_STRTOLD_L""" 4
.el .IP \f(CWHAS_STRTOLD_L\fR 4
.IX Xref "HAS_STRTOLD_L"
.IX Item "HAS_STRTOLD_L"
This symbol, if defined, indicates that the \f(CW\*(C`strtold_l\*(C'\fR routine is
available to convert strings to long doubles.
.ie n .IP """HAS_TRUNC""" 4
.el .IP \f(CWHAS_TRUNC\fR 4
.IX Xref "HAS_TRUNC"
.IX Item "HAS_TRUNC"
This symbol, if defined, indicates that the \f(CW\*(C`trunc\*(C'\fR routine is
available to round doubles towards zero.
.ie n .IP """HAS_UNORDERED""" 4
.el .IP \f(CWHAS_UNORDERED\fR 4
.IX Xref "HAS_UNORDERED"
.IX Item "HAS_UNORDERED"
This symbol, if defined, indicates that the \f(CW\*(C`unordered\*(C'\fR routine is
available to check whether two doubles are \f(CW\*(C`unordered\*(C'\fR
(effectively: whether either of them is NaN)
.ie n .IP """I_FENV""" 4
.el .IP \f(CWI_FENV\fR 4
.IX Xref "I_FENV"
.IX Item "I_FENV"
This symbol, if defined, indicates to the C program that it should
include \fIfenv.h\fR to get the floating point environment definitions.
.RS 4
.Sp
.Vb 3
\& #ifdef I_FENV
\&     #include <fenv.h>
\& #endif
.Ve
.RE
.RS 4
.RE
.ie n .IP """I_QUADMATH""" 4
.el .IP \f(CWI_QUADMATH\fR 4
.IX Xref "I_QUADMATH"
.IX Item "I_QUADMATH"
This symbol, if defined, indicates that \fIquadmath.h\fR exists and
should be included.
.RS 4
.Sp
.Vb 3
\& #ifdef I_QUADMATH
\&     #include <quadmath.h>
\& #endif
.Ve
.RE
.RS 4
.RE
.ie n .IP """LONGDBLINFBYTES""" 4
.el .IP \f(CWLONGDBLINFBYTES\fR 4
.IX Xref "LONGDBLINFBYTES"
.IX Item "LONGDBLINFBYTES"
This symbol, if defined, is a comma-separated list of
hexadecimal bytes for the long double precision infinity.
.ie n .IP """LONGDBLMANTBITS""" 4
.el .IP \f(CWLONGDBLMANTBITS\fR 4
.IX Xref "LONGDBLMANTBITS"
.IX Item "LONGDBLMANTBITS"
This symbol, if defined, tells how many mantissa bits
there are in long double precision floating point format.
Note that this can be \f(CW\*(C`LDBL_MANT_DIG\*(C'\fR minus one,
since \f(CW\*(C`LDBL_MANT_DIG\*(C'\fR can include the \f(CW\*(C`IEEE\*(C'\fR 754 implicit bit.
The common x86\-style 80\-bit long double does not have
an implicit bit.
.ie n .IP """LONGDBLNANBYTES""" 4
.el .IP \f(CWLONGDBLNANBYTES\fR 4
.IX Xref "LONGDBLNANBYTES"
.IX Item "LONGDBLNANBYTES"
This symbol, if defined, is a comma-separated list of
hexadecimal bytes (0xHH) for the long double precision not-a-number.
.ie n .IP """LONG_DOUBLEKIND""" 4
.el .IP \f(CWLONG_DOUBLEKIND\fR 4
.IX Xref "LONG_DOUBLEKIND"
.IX Item "LONG_DOUBLEKIND"
\&\f(CW\*(C`LONG_DOUBLEKIND\*(C'\fR will be one of
\&\f(CW\*(C`LONG_DOUBLE_IS_DOUBLE\*(C'\fR
\&\f(CW\*(C`LONG_DOUBLE_IS_IEEE_754_128_BIT_LITTLE_ENDIAN\*(C'\fR
\&\f(CW\*(C`LONG_DOUBLE_IS_IEEE_754_128_BIT_BIG_ENDIAN\*(C'\fR
\&\f(CW\*(C`LONG_DOUBLE_IS_X86_80_BIT_LITTLE_ENDIAN\*(C'\fR
\&\f(CW\*(C`LONG_DOUBLE_IS_X86_80_BIT_BIG_ENDIAN\*(C'\fR
\&\f(CW\*(C`LONG_DOUBLE_IS_DOUBLEDOUBLE_128_BIT_LE_LE\*(C'\fR
\&\f(CW\*(C`LONG_DOUBLE_IS_DOUBLEDOUBLE_128_BIT_BE_BE\*(C'\fR
\&\f(CW\*(C`LONG_DOUBLE_IS_DOUBLEDOUBLE_128_BIT_LE_BE\*(C'\fR
\&\f(CW\*(C`LONG_DOUBLE_IS_DOUBLEDOUBLE_128_BIT_BE_LE\*(C'\fR
\&\f(CW\*(C`LONG_DOUBLE_IS_DOUBLEDOUBLE_128_BIT_LITTLE_ENDIAN\*(C'\fR
\&\f(CW\*(C`LONG_DOUBLE_IS_DOUBLEDOUBLE_128_BIT_BIG_ENDIAN\*(C'\fR
\&\f(CW\*(C`LONG_DOUBLE_IS_VAX_H_FLOAT\*(C'\fR
\&\f(CW\*(C`LONG_DOUBLE_IS_UNKNOWN_FORMAT\*(C'\fR
It is only defined if the system supports long doubles.
.ie n .IP """LONG_DOUBLESIZE""" 4
.el .IP \f(CWLONG_DOUBLESIZE\fR 4
.IX Xref "LONG_DOUBLESIZE"
.IX Item "LONG_DOUBLESIZE"
This symbol contains the size of a long double, so that the
C preprocessor can make decisions based on it.  It is only
defined if the system supports long doubles.  Note that this
is \f(CW\*(C`sizeof(long double)\*(C'\fR, which may include unused bytes.
.ie n .IP """LONG_DOUBLE_STYLE_IEEE""" 4
.el .IP \f(CWLONG_DOUBLE_STYLE_IEEE\fR 4
.IX Xref "LONG_DOUBLE_STYLE_IEEE"
.IX Item "LONG_DOUBLE_STYLE_IEEE"
This symbol, if defined, indicates that the long double
is any of the \f(CW\*(C`IEEE\*(C'\fR 754 style long doubles:
\&\f(CW\*(C`LONG_DOUBLE_STYLE_IEEE_STD\*(C'\fR, \f(CW\*(C`LONG_DOUBLE_STYLE_IEEE_EXTENDED\*(C'\fR,
\&\f(CW\*(C`LONG_DOUBLE_STYLE_IEEE_DOUBLEDOUBLE\*(C'\fR.
.ie n .IP """LONG_DOUBLE_STYLE_IEEE_DOUBLEDOUBLE""" 4
.el .IP \f(CWLONG_DOUBLE_STYLE_IEEE_DOUBLEDOUBLE\fR 4
.IX Xref "LONG_DOUBLE_STYLE_IEEE_DOUBLEDOUBLE"
.IX Item "LONG_DOUBLE_STYLE_IEEE_DOUBLEDOUBLE"
This symbol, if defined, indicates that the long double is
the 128\-bit double-double.
.ie n .IP """LONG_DOUBLE_STYLE_IEEE_EXTENDED""" 4
.el .IP \f(CWLONG_DOUBLE_STYLE_IEEE_EXTENDED\fR 4
.IX Xref "LONG_DOUBLE_STYLE_IEEE_EXTENDED"
.IX Item "LONG_DOUBLE_STYLE_IEEE_EXTENDED"
This symbol, if defined, indicates that the long double is
the 80\-bit \f(CW\*(C`IEEE\*(C'\fR 754. Note that despite the 'extended' this
is less than the 'std', since this is an extension of
the double precision.
.ie n .IP """LONG_DOUBLE_STYLE_IEEE_STD""" 4
.el .IP \f(CWLONG_DOUBLE_STYLE_IEEE_STD\fR 4
.IX Xref "LONG_DOUBLE_STYLE_IEEE_STD"
.IX Item "LONG_DOUBLE_STYLE_IEEE_STD"
This symbol, if defined, indicates that the long double is
the 128\-bit \f(CW\*(C`IEEE\*(C'\fR 754.
.ie n .IP """LONG_DOUBLE_STYLE_VAX""" 4
.el .IP \f(CWLONG_DOUBLE_STYLE_VAX\fR 4
.IX Xref "LONG_DOUBLE_STYLE_VAX"
.IX Item "LONG_DOUBLE_STYLE_VAX"
This symbol, if defined, indicates that the long double is
the 128\-bit \f(CW\*(C`VAX\*(C'\fR format H.
.ie n .IP """NV""" 4
.el .IP \f(CWNV\fR 4
.IX Item "NV"
Described in perlguts.
.ie n .IP """NVMANTBITS""" 4
.el .IP \f(CWNVMANTBITS\fR 4
.IX Xref "NVMANTBITS"
.IX Item "NVMANTBITS"
This symbol, if defined, tells how many mantissa bits
(not including implicit bit) there are in a Perl NV.
This depends on which floating point type was chosen.
.ie n .IP """NV_OVERFLOWS_INTEGERS_AT""" 4
.el .IP \f(CWNV_OVERFLOWS_INTEGERS_AT\fR 4
.IX Xref "NV_OVERFLOWS_INTEGERS_AT"
.IX Item "NV_OVERFLOWS_INTEGERS_AT"
This symbol gives the largest integer value that NVs can hold. This
value + 1.0 cannot be stored accurately. It is expressed as constant
floating point expression to reduce the chance of decimal/binary
conversion issues. If it can not be determined, the value 0 is given.
.ie n .IP """NV_PRESERVES_UV""" 4
.el .IP \f(CWNV_PRESERVES_UV\fR 4
.IX Xref "NV_PRESERVES_UV"
.IX Item "NV_PRESERVES_UV"
This symbol, if defined, indicates that a variable of type \f(CW\*(C`NVTYPE\*(C'\fR
can preserve all the bits of a variable of type \f(CW\*(C`UVTYPE\*(C'\fR.
.ie n .IP """NV_PRESERVES_UV_BITS""" 4
.el .IP \f(CWNV_PRESERVES_UV_BITS\fR 4
.IX Xref "NV_PRESERVES_UV_BITS"
.IX Item "NV_PRESERVES_UV_BITS"
This symbol contains the number of bits a variable of type \f(CW\*(C`NVTYPE\*(C'\fR
can preserve of a variable of type \f(CW\*(C`UVTYPE\*(C'\fR.
.ie n .IP """NVSIZE""" 4
.el .IP \f(CWNVSIZE\fR 4
.IX Xref "NVSIZE"
.IX Item "NVSIZE"
This symbol contains the \f(CWsizeof(NV)\fR.
Note that some floating point formats have unused bytes.
The most notable example is the x86* 80\-bit extended precision
which comes in byte sizes of 12 and 16 (for 32 and 64 bit
platforms, respectively), but which only uses 10 bytes.
Perl compiled with \f(CW\*(C`\-Duselongdouble\*(C'\fR on x86* is like this.
.ie n .IP """NVTYPE""" 4
.el .IP \f(CWNVTYPE\fR 4
.IX Xref "NVTYPE"
.IX Item "NVTYPE"
This symbol defines the C type used for Perl's NV.
.ie n .IP """NV_ZERO_IS_ALLBITS_ZERO""" 4
.el .IP \f(CWNV_ZERO_IS_ALLBITS_ZERO\fR 4
.IX Xref "NV_ZERO_IS_ALLBITS_ZERO"
.IX Item "NV_ZERO_IS_ALLBITS_ZERO"
This symbol, if defined, indicates that a variable of type \f(CW\*(C`NVTYPE\*(C'\fR
stores 0.0 in memory as all bits zero.
.SH "General Configuration"
.IX Xref "PERL_GCC_BRACE_GROUPS_FORBIDDEN"
.IX Header "General Configuration"
This section contains configuration information not otherwise
found in the more specialized sections of this document.  At the
end is a list of \f(CW\*(C`#defines\*(C'\fR whose name should be enough to tell
you what they do, and a list of #defines which tell you if you
need to \f(CW\*(C`#include\*(C'\fR files to get the corresponding functionality.
.ie n .IP """ASCIIish""" 4
.el .IP \f(CWASCIIish\fR 4
.IX Xref "ASCIIish"
.IX Item "ASCIIish"
A preprocessor symbol that is defined iff the system is an ASCII platform; this
symbol would not be defined on \f(CW"EBCDIC"\fR platforms.
.RS 4
.Sp
.Vb 1
\& #ifdef  ASCIIish
.Ve
.RE
.RS 4
.RE
.ie n .IP """BYTEORDER""" 4
.el .IP \f(CWBYTEORDER\fR 4
.IX Xref "BYTEORDER"
.IX Item "BYTEORDER"
This symbol holds the hexadecimal constant defined in byteorder,
in a UV, i.e. 0x1234 or 0x4321 or 0x12345678, etc...
If the compiler supports cross-compiling or multiple-architecture
binaries, use compiler-defined macros to
determine the byte order.
.ie n .IP """CHARBITS""" 4
.el .IP \f(CWCHARBITS\fR 4
.IX Xref "CHARBITS"
.IX Item "CHARBITS"
This symbol contains the size of a char, so that the C preprocessor
can make decisions based on it.
.ie n .IP """DB_VERSION_MAJOR_CFG""" 4
.el .IP \f(CWDB_VERSION_MAJOR_CFG\fR 4
.IX Xref "DB_VERSION_MAJOR_CFG"
.IX Item "DB_VERSION_MAJOR_CFG"
This symbol, if defined, defines the major version number of
Berkeley DB found in the \fIdb.h\fR header when Perl was configured.
.ie n .IP """DB_VERSION_MINOR_CFG""" 4
.el .IP \f(CWDB_VERSION_MINOR_CFG\fR 4
.IX Xref "DB_VERSION_MINOR_CFG"
.IX Item "DB_VERSION_MINOR_CFG"
This symbol, if defined, defines the minor version number of
Berkeley DB found in the \fIdb.h\fR header when Perl was configured.
For DB version 1 this is always 0.
.ie n .IP """DB_VERSION_PATCH_CFG""" 4
.el .IP \f(CWDB_VERSION_PATCH_CFG\fR 4
.IX Xref "DB_VERSION_PATCH_CFG"
.IX Item "DB_VERSION_PATCH_CFG"
This symbol, if defined, defines the patch version number of
Berkeley DB found in the \fIdb.h\fR header when Perl was configured.
For DB version 1 this is always 0.
.ie n .IP """DEFAULT_INC_EXCLUDES_DOT""" 4
.el .IP \f(CWDEFAULT_INC_EXCLUDES_DOT\fR 4
.IX Xref "DEFAULT_INC_EXCLUDES_DOT"
.IX Item "DEFAULT_INC_EXCLUDES_DOT"
This symbol, if defined, removes the legacy default behavior of
including '.' at the end of @\f(CW\*(C`INC\*(C'\fR.
.ie n .IP """DLSYM_NEEDS_UNDERSCORE""" 4
.el .IP \f(CWDLSYM_NEEDS_UNDERSCORE\fR 4
.IX Xref "DLSYM_NEEDS_UNDERSCORE"
.IX Item "DLSYM_NEEDS_UNDERSCORE"
This symbol, if defined, indicates that we need to prepend an
underscore to the symbol name before calling \f(CWdlsym()\fR.  This only
makes sense if you *have* dlsym, which we will presume is the
case if you're using \fIdl_dlopen.xs\fR.
.ie n .IP """EBCDIC""" 4
.el .IP \f(CWEBCDIC\fR 4
.IX Xref "EBCDIC"
.IX Item "EBCDIC"
This symbol, if defined, indicates that this system uses
\&\f(CW\*(C`EBCDIC\*(C'\fR encoding.
.ie n .IP """HAS_CSH""" 4
.el .IP \f(CWHAS_CSH\fR 4
.IX Xref "HAS_CSH"
.IX Item "HAS_CSH"
This symbol, if defined, indicates that the C\-shell exists.
.ie n .IP """HAS_GETHOSTNAME""" 4
.el .IP \f(CWHAS_GETHOSTNAME\fR 4
.IX Xref "HAS_GETHOSTNAME"
.IX Item "HAS_GETHOSTNAME"
This symbol, if defined, indicates that the C program may use the
\&\f(CWgethostname()\fR routine to derive the host name.  See also \f(CW"HAS_UNAME"\fR
and \f(CW"PHOSTNAME"\fR.
.ie n .IP """HAS_GNULIBC""" 4
.el .IP \f(CWHAS_GNULIBC\fR 4
.IX Xref "HAS_GNULIBC"
.IX Item "HAS_GNULIBC"
This symbol, if defined, indicates to the C program that
the \f(CW\*(C`GNU\*(C'\fR C library is being used.  A better check is to use
the \f(CW\*(C`_\|_GLIBC_\|_\*(C'\fR and \f(CW\*(C`_\|_GLIBC_MINOR_\|_\*(C'\fR symbols supplied with glibc.
.ie n .IP """HAS_LGAMMA""" 4
.el .IP \f(CWHAS_LGAMMA\fR 4
.IX Xref "HAS_LGAMMA"
.IX Item "HAS_LGAMMA"
This symbol, if defined, indicates that the \f(CW\*(C`lgamma\*(C'\fR routine is
available to do the log gamma function.  See also \f(CW"HAS_TGAMMA"\fR and
\&\f(CW"HAS_LGAMMA_R"\fR.
.ie n .IP """HAS_LGAMMA_R""" 4
.el .IP \f(CWHAS_LGAMMA_R\fR 4
.IX Xref "HAS_LGAMMA_R"
.IX Item "HAS_LGAMMA_R"
This symbol, if defined, indicates that the \f(CW\*(C`lgamma_r\*(C'\fR routine is
available to do the log gamma function without using the global
signgam variable.
.ie n .IP """HAS_NON_INT_BITFIELDS""" 4
.el .IP \f(CWHAS_NON_INT_BITFIELDS\fR 4
.IX Xref "HAS_NON_INT_BITFIELDS"
.IX Item "HAS_NON_INT_BITFIELDS"
This symbol, if defined, indicates that the C compiler accepts, without
error or warning, \f(CW\*(C`struct bitfields\*(C'\fR that are declared with sizes other
than plain 'int'; for example 'unsigned char' is accepted.
.ie n .IP """HAS_PRCTL_SET_NAME""" 4
.el .IP \f(CWHAS_PRCTL_SET_NAME\fR 4
.IX Xref "HAS_PRCTL_SET_NAME"
.IX Item "HAS_PRCTL_SET_NAME"
This symbol, if defined, indicates that the prctl routine is
available to set process title and supports \f(CW\*(C`PR_SET_NAME\*(C'\fR.
.ie n .IP """HAS_PROCSELFEXE""" 4
.el .IP \f(CWHAS_PROCSELFEXE\fR 4
.IX Xref "HAS_PROCSELFEXE"
.IX Item "HAS_PROCSELFEXE"
This symbol is defined if \f(CW\*(C`PROCSELFEXE_PATH\*(C'\fR is a symlink
to the absolute pathname of the executing program.
.ie n .IP """HAS_PSEUDOFORK""" 4
.el .IP \f(CWHAS_PSEUDOFORK\fR 4
.IX Xref "HAS_PSEUDOFORK"
.IX Item "HAS_PSEUDOFORK"
This symbol, if defined, indicates that an emulation of the
fork routine is available.
.ie n .IP """HAS_REGCOMP""" 4
.el .IP \f(CWHAS_REGCOMP\fR 4
.IX Xref "HAS_REGCOMP"
.IX Item "HAS_REGCOMP"
This symbol, if defined, indicates that the \f(CWregcomp()\fR routine is
available to do some regular pattern matching (usually on \f(CW\*(C`POSIX\*(C'\fR.2
conforming systems).
.ie n .IP """HAS_SETPGID""" 4
.el .IP \f(CWHAS_SETPGID\fR 4
.IX Xref "HAS_SETPGID"
.IX Item "HAS_SETPGID"
This symbol, if defined, indicates that the \f(CW\*(C`setpgid(pid, gpid)\*(C'\fR
routine is available to set process group ID.
.ie n .IP """HAS_SIGSETJMP""" 4
.el .IP \f(CWHAS_SIGSETJMP\fR 4
.IX Xref "HAS_SIGSETJMP"
.IX Item "HAS_SIGSETJMP"
This variable indicates to the C program that the \f(CWsigsetjmp()\fR
routine is available to save the calling process's registers
and stack environment for later use by \f(CWsiglongjmp()\fR, and
to optionally save the process's signal mask.  See
\&\f(CW"Sigjmp_buf"\fR, \f(CW"Sigsetjmp"\fR, and \f(CW"Siglongjmp"\fR.
.ie n .IP """HAS_STRUCT_CMSGHDR""" 4
.el .IP \f(CWHAS_STRUCT_CMSGHDR\fR 4
.IX Xref "HAS_STRUCT_CMSGHDR"
.IX Item "HAS_STRUCT_CMSGHDR"
This symbol, if defined, indicates that the \f(CW\*(C`struct cmsghdr\*(C'\fR
is supported.
.ie n .IP """HAS_STRUCT_MSGHDR""" 4
.el .IP \f(CWHAS_STRUCT_MSGHDR\fR 4
.IX Xref "HAS_STRUCT_MSGHDR"
.IX Item "HAS_STRUCT_MSGHDR"
This symbol, if defined, indicates that the \f(CW\*(C`struct msghdr\*(C'\fR
is supported.
.ie n .IP """HAS_TGAMMA""" 4
.el .IP \f(CWHAS_TGAMMA\fR 4
.IX Xref "HAS_TGAMMA"
.IX Item "HAS_TGAMMA"
This symbol, if defined, indicates that the \f(CW\*(C`tgamma\*(C'\fR routine is
available to do the gamma function. See also \f(CW"HAS_LGAMMA"\fR.
.ie n .IP """HAS_UNAME""" 4
.el .IP \f(CWHAS_UNAME\fR 4
.IX Xref "HAS_UNAME"
.IX Item "HAS_UNAME"
This symbol, if defined, indicates that the C program may use the
\&\f(CWuname()\fR routine to derive the host name.  See also \f(CW"HAS_GETHOSTNAME"\fR
and \f(CW"PHOSTNAME"\fR.
.ie n .IP """HAS_UNION_SEMUN""" 4
.el .IP \f(CWHAS_UNION_SEMUN\fR 4
.IX Xref "HAS_UNION_SEMUN"
.IX Item "HAS_UNION_SEMUN"
This symbol, if defined, indicates that the \f(CW\*(C`union semun\*(C'\fR is
defined by including \fIsys/sem.h\fR.  If not, the user code
probably needs to define it as:
.Sp
.Vb 5
\& union semun {
\& int val;
\& struct semid_ds *buf;
\& unsigned short *array;
\& }
.Ve
.ie n .IP """I_DIRENT""" 4
.el .IP \f(CWI_DIRENT\fR 4
.IX Xref "I_DIRENT"
.IX Item "I_DIRENT"
This symbol, if defined, indicates to the C program that it should
include \fIdirent.h\fR. Using this symbol also triggers the definition
of the \f(CW\*(C`Direntry_t\*(C'\fR define which ends up being '\f(CW\*(C`struct dirent\*(C'\fR' or
\&'\f(CW\*(C`struct direct\*(C'\fR' depending on the availability of \fIdirent.h\fR.
.RS 4
.Sp
.Vb 3
\& #ifdef I_DIRENT
\&     #include <dirent.h>
\& #endif
.Ve
.RE
.RS 4
.RE
.ie n .IP """I_POLL""" 4
.el .IP \f(CWI_POLL\fR 4
.IX Xref "I_POLL"
.IX Item "I_POLL"
This symbol, if defined, indicates that \fIpoll.h\fR exists and
should be included. (see also \f(CW"HAS_POLL"\fR)
.RS 4
.Sp
.Vb 3
\& #ifdef I_POLL
\&     #include <poll.h>
\& #endif
.Ve
.RE
.RS 4
.RE
.ie n .IP """I_SYS_RESOURCE""" 4
.el .IP \f(CWI_SYS_RESOURCE\fR 4
.IX Xref "I_SYS_RESOURCE"
.IX Item "I_SYS_RESOURCE"
This symbol, if defined, indicates to the C program that it should
include \fIsys/resource.h\fR.
.RS 4
.Sp
.Vb 3
\& #ifdef I_SYS_RESOURCE
\&     #include <sys_resource.h>
\& #endif
.Ve
.RE
.RS 4
.RE
.ie n .IP """LIBM_LIB_VERSION""" 4
.el .IP \f(CWLIBM_LIB_VERSION\fR 4
.IX Xref "LIBM_LIB_VERSION"
.IX Item "LIBM_LIB_VERSION"
This symbol, if defined, indicates that libm exports \f(CW\*(C`_LIB_VERSION\*(C'\fR
and that \fImath.h\fR defines the enum to manipulate it.
.ie n .IP """NEED_VA_COPY""" 4
.el .IP \f(CWNEED_VA_COPY\fR 4
.IX Item "NEED_VA_COPY"
This symbol, if defined, indicates that the system stores
the variable argument list datatype, \f(CW\*(C`va_list\*(C'\fR, in a format
that cannot be copied by simple assignment, so that some
other means must be used when copying is required.
As such systems vary in their provision (or non-provision)
of copying mechanisms, \fIhandy.h\fR defines a platform\-
independent macro, \f(CW\*(C`Perl_va_copy(src, dst)\*(C'\fR, to do the job.
.ie n .IP """OSNAME""" 4
.el .IP \f(CWOSNAME\fR 4
.IX Xref "OSNAME"
.IX Item "OSNAME"
This symbol contains the name of the operating system, as determined
by Configure.  You shouldn't rely on it too much; the specific
feature tests from Configure are generally more reliable.
.ie n .IP """OSVERS""" 4
.el .IP \f(CWOSVERS\fR 4
.IX Xref "OSVERS"
.IX Item "OSVERS"
This symbol contains the version of the operating system, as determined
by Configure.  You shouldn't rely on it too much; the specific
feature tests from Configure are generally more reliable.
.ie n .IP """PERL_USE_GCC_BRACE_GROUPS""" 4
.el .IP \f(CWPERL_USE_GCC_BRACE_GROUPS\fR 4
.IX Xref "PERL_USE_GCC_BRACE_GROUPS"
.IX Item "PERL_USE_GCC_BRACE_GROUPS"
This C pre-processor value, if defined, indicates that it is permissible to use
the GCC brace groups extension.  However, use of this extension is DISCOURAGED.
Use a \f(CW\*(C`static inline\*(C'\fR function instead.
.Sp
The extension, of the form
.Sp
.Vb 1
\& ({ statement ... })
.Ve
.Sp
turns the block consisting of \fIstatement ...\fR into an expression with a
value, unlike plain C language blocks.  This can present optimization
possibilities, \fBBUT\fR, unless you know for sure that this will never be
compiled without this extension being available and not forbidden, you need to
specify an alternative.  Thus two code paths have to be maintained, which can
get out-of-sync.  All these issues are solved by using a \f(CW\*(C`static inline\*(C'\fR
function instead.
.Sp
Perl can be configured to not use this feature by passing the parameter
\&\f(CW\*(C`\-Accflags=\-DPERL_GCC_BRACE_GROUPS_FORBIDDEN\*(C'\fR to \fIConfigure\fR.
.RS 4
.Sp
.Vb 1
\& #ifdef  PERL_USE_GCC_BRACE_GROUPS
.Ve
.RE
.RS 4
.RE
.ie n .IP """PHOSTNAME""" 4
.el .IP \f(CWPHOSTNAME\fR 4
.IX Xref "PHOSTNAME"
.IX Item "PHOSTNAME"
This symbol, if defined, indicates the command to feed to the
\&\f(CWpopen()\fR routine to derive the host name.  See also \f(CW"HAS_GETHOSTNAME"\fR
and \f(CW"HAS_UNAME"\fR.  Note that the command uses a fully qualified path,
so that it is safe even if used by a process with super-user
privileges.
.ie n .IP """PROCSELFEXE_PATH""" 4
.el .IP \f(CWPROCSELFEXE_PATH\fR 4
.IX Xref "PROCSELFEXE_PATH"
.IX Item "PROCSELFEXE_PATH"
If \f(CW\*(C`HAS_PROCSELFEXE\*(C'\fR is defined this symbol is the filename
of the symbolic link pointing to the absolute pathname of
the executing program.
.ie n .IP """PTRSIZE""" 4
.el .IP \f(CWPTRSIZE\fR 4
.IX Xref "PTRSIZE"
.IX Item "PTRSIZE"
This symbol contains the size of a pointer, so that the C preprocessor
can make decisions based on it.  It will be \f(CW\*(C`sizeof(void *)\*(C'\fR if
the compiler supports (void *); otherwise it will be
\&\f(CW\*(C`sizeof(char *)\*(C'\fR.
.ie n .IP """RANDBITS""" 4
.el .IP \f(CWRANDBITS\fR 4
.IX Xref "RANDBITS"
.IX Item "RANDBITS"
This symbol indicates how many bits are produced by the
function used to generate normalized random numbers.
Values include 15, 16, 31, and 48.
.ie n .IP """SELECT_MIN_BITS""" 4
.el .IP \f(CWSELECT_MIN_BITS\fR 4
.IX Xref "SELECT_MIN_BITS"
.IX Item "SELECT_MIN_BITS"
This symbol holds the minimum number of bits operated by select.
That is, if you do \f(CW\*(C`select(n, ...)\*(C'\fR, how many bits at least will be
cleared in the masks if some activity is detected.  Usually this
is either n or 32*\f(CWceil(n/32)\fR, especially many little-endians do
the latter.  This is only useful if you have \f(CWselect()\fR, naturally.
.ie n .IP """SETUID_SCRIPTS_ARE_SECURE_NOW""" 4
.el .IP \f(CWSETUID_SCRIPTS_ARE_SECURE_NOW\fR 4
.IX Xref "SETUID_SCRIPTS_ARE_SECURE_NOW"
.IX Item "SETUID_SCRIPTS_ARE_SECURE_NOW"
This symbol, if defined, indicates that the bug that prevents
setuid scripts from being secure is not present in this kernel.
.ie n .IP """ST_DEV_SIGN""" 4
.el .IP \f(CWST_DEV_SIGN\fR 4
.IX Xref "ST_DEV_SIGN"
.IX Item "ST_DEV_SIGN"
This symbol holds the signedness of \f(CW\*(C`struct stat\*(C'\fR's \f(CW\*(C`st_dev\*(C'\fR.
1 for unsigned, \-1 for signed.
.ie n .IP """ST_DEV_SIZE""" 4
.el .IP \f(CWST_DEV_SIZE\fR 4
.IX Xref "ST_DEV_SIZE"
.IX Item "ST_DEV_SIZE"
This variable contains the size of \f(CW\*(C`struct stat\*(C'\fR's \f(CW\*(C`st_dev\*(C'\fR in bytes.
.ie n .SS "List of capability ""HAS_\fIfoo\fP"" symbols"
.el .SS "List of capability \f(CWHAS_\fP\f(CIfoo\fP\f(CW\fP symbols"
.IX Subsection "List of capability HAS_foo symbols"
This is a list of those symbols that dont appear elsewhere in ths
document that indicate if the current platform has a certain
capability.  Their names all begin with \f(CW\*(C`HAS_\*(C'\fR.  Only those
symbols whose capability is directly derived from the name are
listed here.  All others have their meaning expanded out elsewhere
in this document.  This (relatively) compact list is because we
think that the expansion would add little or no value and take up
a lot of space (because there are so many).  If you think certain
ones should be expanded, send email to
perl5\-porters@perl.org <mailto:perl5-porters@perl.org>.
.PP
Each symbol here will be \f(CW\*(C`#define\*(C'\fRd if and only if the platform
has the capability.  If you need more detail, see the
corresponding entry in \fIconfig.h\fR.  For convenience, the list is
split so that the ones that indicate there is a reentrant version
of a capability are listed separately
.PP
\&\f(CW\*(C`HAS_ACCEPT4\*(C'\fR,\  \f(CW\*(C`HAS_ACCESS\*(C'\fR,\  \f(CW\*(C`HAS_ACCESSX\*(C'\fR,\  \f(CW\*(C`HAS_ACOSH\*(C'\fR,\  \f(CW\*(C`HAS_AINTL\*(C'\fR,\  \f(CW\*(C`HAS_ALARM\*(C'\fR,\  \f(CW\*(C`HAS_ASINH\*(C'\fR,\  \f(CW\*(C`HAS_ATANH\*(C'\fR,\  \f(CW\*(C`HAS_ATOLL\*(C'\fR,\  \f(CW\*(C`HAS_CBRT\*(C'\fR,\  \f(CW\*(C`HAS_CHOWN\*(C'\fR,\  \f(CW\*(C`HAS_CHROOT\*(C'\fR,\  \f(CW\*(C`HAS_CHSIZE\*(C'\fR,\  \f(CW\*(C`HAS_CLEARENV\*(C'\fR,\  \f(CW\*(C`HAS_COPYSIGN\*(C'\fR,\  \f(CW\*(C`HAS_COPYSIGNL\*(C'\fR,\  \f(CW\*(C`HAS_CRYPT\*(C'\fR,\  \f(CW\*(C`HAS_CTERMID\*(C'\fR,\  \f(CW\*(C`HAS_CUSERID\*(C'\fR,\  \f(CW\*(C`HAS_DIRFD\*(C'\fR,\  \f(CW\*(C`HAS_DLADDR\*(C'\fR,\  \f(CW\*(C`HAS_DLERROR\*(C'\fR,\  \f(CW\*(C`HAS_EACCESS\*(C'\fR,\  \f(CW\*(C`HAS_ENDHOSTENT\*(C'\fR,\  \f(CW\*(C`HAS_ENDNETENT\*(C'\fR,\  \f(CW\*(C`HAS_ENDPROTOENT\*(C'\fR,\  \f(CW\*(C`HAS_ENDSERVENT\*(C'\fR,\  \f(CW\*(C`HAS_ERF\*(C'\fR,\  \f(CW\*(C`HAS_ERFC\*(C'\fR,\  \f(CW\*(C`HAS_EXPM1\*(C'\fR,\  \f(CW\*(C`HAS_EXP2\*(C'\fR,\  \f(CW\*(C`HAS_FCHMOD\*(C'\fR,\  \f(CW\*(C`HAS_FCHMODAT\*(C'\fR,\  \f(CW\*(C`HAS_FCHOWN\*(C'\fR,\  \f(CW\*(C`HAS_FDIM\*(C'\fR,\  \f(CW\*(C`HAS_FD_SET\*(C'\fR,\  \f(CW\*(C`HAS_FEGETROUND\*(C'\fR,\  \f(CW\*(C`HAS_FFS\*(C'\fR,\  \f(CW\*(C`HAS_FFSL\*(C'\fR,\  \f(CW\*(C`HAS_FGETPOS\*(C'\fR,\  \f(CW\*(C`HAS_FLOCK\*(C'\fR,\  \f(CW\*(C`HAS_FMA\*(C'\fR,\  \f(CW\*(C`HAS_FMAX\*(C'\fR,\  \f(CW\*(C`HAS_FMIN\*(C'\fR,\  \f(CW\*(C`HAS_FORK\*(C'\fR,\  \f(CW\*(C`HAS_FSEEKO\*(C'\fR,\  \f(CW\*(C`HAS_FSETPOS\*(C'\fR,\  \f(CW\*(C`HAS_FSYNC\*(C'\fR,\  \f(CW\*(C`HAS_FTELLO\*(C'\fR,\  \f(CW\*(C`HAS_\|_FWALK\*(C'\fR,\  \f(CW\*(C`HAS_GAI_STRERROR\*(C'\fR,\  \f(CW\*(C`HAS_GETADDRINFO\*(C'\fR,\  \f(CW\*(C`HAS_GETCWD\*(C'\fR,\  \f(CW\*(C`HAS_GETESPWNAM\*(C'\fR,\  \f(CW\*(C`HAS_GETGROUPS\*(C'\fR,\  \f(CW\*(C`HAS_GETHOSTBYADDR\*(C'\fR,\  \f(CW\*(C`HAS_GETHOSTBYNAME\*(C'\fR,\  \f(CW\*(C`HAS_GETHOSTENT\*(C'\fR,\  \f(CW\*(C`HAS_GETLOGIN\*(C'\fR,\  \f(CW\*(C`HAS_GETNAMEINFO\*(C'\fR,\  \f(CW\*(C`HAS_GETNETBYADDR\*(C'\fR,\  \f(CW\*(C`HAS_GETNETBYNAME\*(C'\fR,\  \f(CW\*(C`HAS_GETNETENT\*(C'\fR,\  \f(CW\*(C`HAS_GETPAGESIZE\*(C'\fR,\  \f(CW\*(C`HAS_GETPGID\*(C'\fR,\  \f(CW\*(C`HAS_GETPGRP\*(C'\fR,\  \f(CW\*(C`HAS_GETPGRP2\*(C'\fR,\  \f(CW\*(C`HAS_GETPPID\*(C'\fR,\  \f(CW\*(C`HAS_GETPRIORITY\*(C'\fR,\  \f(CW\*(C`HAS_GETPROTOBYNAME\*(C'\fR,\  \f(CW\*(C`HAS_GETPROTOBYNUMBER\*(C'\fR,\  \f(CW\*(C`HAS_GETPROTOENT\*(C'\fR,\  \f(CW\*(C`HAS_GETPRPWNAM\*(C'\fR,\  \f(CW\*(C`HAS_GETSERVBYNAME\*(C'\fR,\  \f(CW\*(C`HAS_GETSERVBYPORT\*(C'\fR,\  \f(CW\*(C`HAS_GETSERVENT\*(C'\fR,\  \f(CW\*(C`HAS_GETSPNAM\*(C'\fR,\  \f(CW\*(C`HAS_HTONL\*(C'\fR,\  \f(CW\*(C`HAS_HTONS\*(C'\fR,\  \f(CW\*(C`HAS_HYPOT\*(C'\fR,\  \f(CW\*(C`HAS_ILOGBL\*(C'\fR,\  \f(CW\*(C`HAS_INET_ATON\*(C'\fR,\  \f(CW\*(C`HAS_INETNTOP\*(C'\fR,\  \f(CW\*(C`HAS_INETPTON\*(C'\fR,\  \f(CW\*(C`HAS_IP_MREQ\*(C'\fR,\  \f(CW\*(C`HAS_IP_MREQ_SOURCE\*(C'\fR,\  \f(CW\*(C`HAS_IPV6_MREQ\*(C'\fR,\  \f(CW\*(C`HAS_IPV6_MREQ_SOURCE\*(C'\fR,\  \f(CW\*(C`HAS_ISASCII\*(C'\fR,\  \f(CW\*(C`HAS_ISBLANK\*(C'\fR,\  \f(CW\*(C`HAS_ISLESS\*(C'\fR,\  \f(CW\*(C`HAS_KILLPG\*(C'\fR,\  \f(CW\*(C`HAS_LCHOWN\*(C'\fR,\  \f(CW\*(C`HAS_LINK\*(C'\fR,\  \f(CW\*(C`HAS_LINKAT\*(C'\fR,\  \f(CW\*(C`HAS_LLROUND\*(C'\fR,\  \f(CW\*(C`HAS_LOCKF\*(C'\fR,\  \f(CW\*(C`HAS_LOGB\*(C'\fR,\  \f(CW\*(C`HAS_LOG1P\*(C'\fR,\  \f(CW\*(C`HAS_LOG2\*(C'\fR,\  \f(CW\*(C`HAS_LROUND\*(C'\fR,\  \f(CW\*(C`HAS_LSTAT\*(C'\fR,\  \f(CW\*(C`HAS_MADVISE\*(C'\fR,\  \f(CW\*(C`HAS_MBLEN\*(C'\fR,\  \f(CW\*(C`HAS_MBRLEN\*(C'\fR,\  \f(CW\*(C`HAS_MBRTOWC\*(C'\fR,\  \f(CW\*(C`HAS_MBSTOWCS\*(C'\fR,\  \f(CW\*(C`HAS_MBTOWC\*(C'\fR,\  \f(CW\*(C`HAS_MEMMEM\*(C'\fR,\  \f(CW\*(C`HAS_MEMRCHR\*(C'\fR,\  \f(CW\*(C`HAS_MKDTEMP\*(C'\fR,\  \f(CW\*(C`HAS_MKFIFO\*(C'\fR,\  \f(CW\*(C`HAS_MKOSTEMP\*(C'\fR,\  \f(CW\*(C`HAS_MKSTEMP\*(C'\fR,\  \f(CW\*(C`HAS_MKSTEMPS\*(C'\fR,\  \f(CW\*(C`HAS_MMAP\*(C'\fR,\  \f(CW\*(C`HAS_MPROTECT\*(C'\fR,\  \f(CW\*(C`HAS_MSG\*(C'\fR,\  \f(CW\*(C`HAS_MSYNC\*(C'\fR,\  \f(CW\*(C`HAS_MUNMAP\*(C'\fR,\  \f(CW\*(C`HAS_NEARBYINT\*(C'\fR,\  \f(CW\*(C`HAS_NEXTAFTER\*(C'\fR,\  \f(CW\*(C`HAS_NICE\*(C'\fR,\  \f(CW\*(C`HAS_NTOHL\*(C'\fR,\  \f(CW\*(C`HAS_NTOHS\*(C'\fR,\  \f(CW\*(C`HAS_PATHCONF\*(C'\fR,\  \f(CW\*(C`HAS_PAUSE\*(C'\fR,\  \f(CW\*(C`HAS_PHOSTNAME\*(C'\fR,\  \f(CW\*(C`HAS_PIPE\*(C'\fR,\  \f(CW\*(C`HAS_PIPE2\*(C'\fR,\  \f(CW\*(C`HAS_PRCTL\*(C'\fR,\  \f(CW\*(C`HAS_PTRDIFF_T\*(C'\fR,\  \f(CW\*(C`HAS_READLINK\*(C'\fR,\  \f(CW\*(C`HAS_READV\*(C'\fR,\  \f(CW\*(C`HAS_RECVMSG\*(C'\fR,\  \f(CW\*(C`HAS_REMQUO\*(C'\fR,\  \f(CW\*(C`HAS_RENAME\*(C'\fR,\  \f(CW\*(C`HAS_RENAMEAT\*(C'\fR,\  \f(CW\*(C`HAS_RINT\*(C'\fR,\  \f(CW\*(C`HAS_ROUND\*(C'\fR,\  \f(CW\*(C`HAS_SCALBNL\*(C'\fR,\  \f(CW\*(C`HAS_SEM\*(C'\fR,\  \f(CW\*(C`HAS_SENDMSG\*(C'\fR,\  \f(CW\*(C`HAS_SETEGID\*(C'\fR,\  \f(CW\*(C`HAS_SETENV\*(C'\fR,\  \f(CW\*(C`HAS_SETEUID\*(C'\fR,\  \f(CW\*(C`HAS_SETGROUPS\*(C'\fR,\  \f(CW\*(C`HAS_SETHOSTENT\*(C'\fR,\  \f(CW\*(C`HAS_SETLINEBUF\*(C'\fR,\  \f(CW\*(C`HAS_SETNETENT\*(C'\fR,\  \f(CW\*(C`HAS_SETPGRP\*(C'\fR,\  \f(CW\*(C`HAS_SETPGRP2\*(C'\fR,\  \f(CW\*(C`HAS_SETPRIORITY\*(C'\fR,\  \f(CW\*(C`HAS_SETPROCTITLE\*(C'\fR,\  \f(CW\*(C`HAS_SETPROTOENT\*(C'\fR,\  \f(CW\*(C`HAS_SETREGID\*(C'\fR,\  \f(CW\*(C`HAS_SETRESGID\*(C'\fR,\  \f(CW\*(C`HAS_SETRESUID\*(C'\fR,\  \f(CW\*(C`HAS_SETREUID\*(C'\fR,\  \f(CW\*(C`HAS_SETRGID\*(C'\fR,\  \f(CW\*(C`HAS_SETRUID\*(C'\fR,\  \f(CW\*(C`HAS_SETSERVENT\*(C'\fR,\  \f(CW\*(C`HAS_SETSID\*(C'\fR,\  \f(CW\*(C`HAS_SHM\*(C'\fR,\  \f(CW\*(C`HAS_SIGACTION\*(C'\fR,\  \f(CW\*(C`HAS_SIGPROCMASK\*(C'\fR,\  \f(CW\*(C`HAS_SIN6_SCOPE_ID\*(C'\fR,\  \f(CW\*(C`HAS_SNPRINTF\*(C'\fR,\  \f(CW\*(C`HAS_STAT\*(C'\fR,\  \f(CW\*(C`HAS_STRCOLL\*(C'\fR,\  \f(CW\*(C`HAS_STRERROR_L\*(C'\fR,\  \f(CW\*(C`HAS_STRLCAT\*(C'\fR,\  \f(CW\*(C`HAS_STRLCPY\*(C'\fR,\  \f(CW\*(C`HAS_STRNLEN\*(C'\fR,\  \f(CW\*(C`HAS_STRTOD\*(C'\fR,\  \f(CW\*(C`HAS_STRTOL\*(C'\fR,\  \f(CW\*(C`HAS_STRTOLL\*(C'\fR,\  \f(CW\*(C`HAS_STRTOQ\*(C'\fR,\  \f(CW\*(C`HAS_STRTOUL\*(C'\fR,\  \f(CW\*(C`HAS_STRTOULL\*(C'\fR,\  \f(CW\*(C`HAS_STRTOUQ\*(C'\fR,\  \f(CW\*(C`HAS_STRXFRM\*(C'\fR,\  \f(CW\*(C`HAS_STRXFRM_L\*(C'\fR,\  \f(CW\*(C`HAS_SYMLINK\*(C'\fR,\  \f(CW\*(C`HAS_SYSCALL\*(C'\fR,\  \f(CW\*(C`HAS_SYSCONF\*(C'\fR,\  \f(CW\*(C`HAS_SYS_ERRLIST\*(C'\fR,\  \f(CW\*(C`HAS_SYSTEM\*(C'\fR,\  \f(CW\*(C`HAS_TCGETPGRP\*(C'\fR,\  \f(CW\*(C`HAS_TCSETPGRP\*(C'\fR,\  \f(CW\*(C`HAS_TOWLOWER\*(C'\fR,\  \f(CW\*(C`HAS_TOWUPPER\*(C'\fR,\  \f(CW\*(C`HAS_TRUNCATE\*(C'\fR,\  \f(CW\*(C`HAS_TRUNCL\*(C'\fR,\  \f(CW\*(C`HAS_UALARM\*(C'\fR,\  \f(CW\*(C`HAS_UMASK\*(C'\fR,\  \f(CW\*(C`HAS_UNLINKAT\*(C'\fR,\  \f(CW\*(C`HAS_UNSETENV\*(C'\fR,\  \f(CW\*(C`HAS_VFORK\*(C'\fR,\  \f(CW\*(C`HAS_VSNPRINTF\*(C'\fR,\  \f(CW\*(C`HAS_WAITPID\*(C'\fR,\  \f(CW\*(C`HAS_WAIT4\*(C'\fR,\  \f(CW\*(C`HAS_WCRTOMB\*(C'\fR,\  \f(CW\*(C`HAS_WCSCMP\*(C'\fR,\  \f(CW\*(C`HAS_WCSTOMBS\*(C'\fR,\  \f(CW\*(C`HAS_WCSXFRM\*(C'\fR,\  \f(CW\*(C`HAS_WCTOMB\*(C'\fR,\  \f(CW\*(C`HAS_WRITEV\*(C'\fR
.PP
And, the reentrant capabilities:
.PP
\&\f(CW\*(C`HAS_CRYPT_R\*(C'\fR,\  \f(CW\*(C`HAS_CTERMID_R\*(C'\fR,\  \f(CW\*(C`HAS_DRAND48_R\*(C'\fR,\  \f(CW\*(C`HAS_ENDHOSTENT_R\*(C'\fR,\  \f(CW\*(C`HAS_ENDNETENT_R\*(C'\fR,\  \f(CW\*(C`HAS_ENDPROTOENT_R\*(C'\fR,\  \f(CW\*(C`HAS_ENDSERVENT_R\*(C'\fR,\  \f(CW\*(C`HAS_GETGRGID_R\*(C'\fR,\  \f(CW\*(C`HAS_GETGRNAM_R\*(C'\fR,\  \f(CW\*(C`HAS_GETHOSTBYADDR_R\*(C'\fR,\  \f(CW\*(C`HAS_GETHOSTBYNAME_R\*(C'\fR,\  \f(CW\*(C`HAS_GETHOSTENT_R\*(C'\fR,\  \f(CW\*(C`HAS_GETLOGIN_R\*(C'\fR,\  \f(CW\*(C`HAS_GETNETBYADDR_R\*(C'\fR,\  \f(CW\*(C`HAS_GETNETBYNAME_R\*(C'\fR,\  \f(CW\*(C`HAS_GETNETENT_R\*(C'\fR,\  \f(CW\*(C`HAS_GETPROTOBYNAME_R\*(C'\fR,\  \f(CW\*(C`HAS_GETPROTOBYNUMBER_R\*(C'\fR,\  \f(CW\*(C`HAS_GETPROTOENT_R\*(C'\fR,\  \f(CW\*(C`HAS_GETPWNAM_R\*(C'\fR,\  \f(CW\*(C`HAS_GETPWUID_R\*(C'\fR,\  \f(CW\*(C`HAS_GETSERVBYNAME_R\*(C'\fR,\  \f(CW\*(C`HAS_GETSERVBYPORT_R\*(C'\fR,\  \f(CW\*(C`HAS_GETSERVENT_R\*(C'\fR,\  \f(CW\*(C`HAS_GETSPNAM_R\*(C'\fR,\  \f(CW\*(C`HAS_RANDOM_R\*(C'\fR,\  \f(CW\*(C`HAS_READDIR_R\*(C'\fR,\  \f(CW\*(C`HAS_SETHOSTENT_R\*(C'\fR,\  \f(CW\*(C`HAS_SETNETENT_R\*(C'\fR,\  \f(CW\*(C`HAS_SETPROTOENT_R\*(C'\fR,\  \f(CW\*(C`HAS_SETSERVENT_R\*(C'\fR,\  \f(CW\*(C`HAS_SRANDOM_R\*(C'\fR,\  \f(CW\*(C`HAS_SRAND48_R\*(C'\fR,\  \f(CW\*(C`HAS_STRERROR_R\*(C'\fR,\  \f(CW\*(C`HAS_TMPNAM_R\*(C'\fR,\  \f(CW\*(C`HAS_TTYNAME_R\*(C'\fR
.PP
Example usage:
.Sp
.Vb 5
\& #ifdef HAS_STRNLEN
\&   use strnlen()
\& #else
\&   use an alternative implementation
\& #endif
.Ve
.ie n .SS "List of ""#include"" needed symbols"
.el .SS "List of \f(CW#include\fP needed symbols"
.IX Subsection "List of #include needed symbols"
This list contains symbols that indicate if certain \f(CW\*(C`#include\*(C'\fR
files are present on the platform.  If your code accesses the
functionality that one of these is for, you will need to
\&\f(CW\*(C`#include\*(C'\fR it if the symbol on this list is \f(CW\*(C`#define\*(C'\fRd.  For
more detail, see the corresponding entry in \fIconfig.h\fR.
.PP
\&\f(CW\*(C`I_ARPA_INET\*(C'\fR,\  \f(CW\*(C`I_BFD\*(C'\fR,\  \f(CW\*(C`I_CRYPT\*(C'\fR,\  \f(CW\*(C`I_DBM\*(C'\fR,\  \f(CW\*(C`I_DLFCN\*(C'\fR,\  \f(CW\*(C`I_EXECINFO\*(C'\fR,\  \f(CW\*(C`I_FP\*(C'\fR,\  \f(CW\*(C`I_FP_CLASS\*(C'\fR,\  \f(CW\*(C`I_GDBM\*(C'\fR,\  \f(CW\*(C`I_GDBMNDBM\*(C'\fR,\  \f(CW\*(C`I_GDBM_NDBM\*(C'\fR,\  \f(CW\*(C`I_GRP\*(C'\fR,\  \f(CW\*(C`I_IEEEFP\*(C'\fR,\  \f(CW\*(C`I_INTTYPES\*(C'\fR,\  \f(CW\*(C`I_LIBUTIL\*(C'\fR,\  \f(CW\*(C`I_MNTENT\*(C'\fR,\  \f(CW\*(C`I_NDBM\*(C'\fR,\  \f(CW\*(C`I_NETDB\*(C'\fR,\  \f(CW\*(C`I_NET_ERRNO\*(C'\fR,\  \f(CW\*(C`I_NETINET_IN\*(C'\fR,\  \f(CW\*(C`I_NETINET_TCP\*(C'\fR,\  \f(CW\*(C`I_PROT\*(C'\fR,\  \f(CW\*(C`I_PWD\*(C'\fR,\  \f(CW\*(C`I_RPCSVC_DBM\*(C'\fR,\  \f(CW\*(C`I_SGTTY\*(C'\fR,\  \f(CW\*(C`I_SHADOW\*(C'\fR,\  \f(CW\*(C`I_STDBOOL\*(C'\fR,\  \f(CW\*(C`I_STDINT\*(C'\fR,\  \f(CW\*(C`I_SUNMATH\*(C'\fR,\  \f(CW\*(C`I_SYS_ACCESS\*(C'\fR,\  \f(CW\*(C`I_SYS_IOCTL\*(C'\fR,\  \f(CW\*(C`I_SYSLOG\*(C'\fR,\  \f(CW\*(C`I_SYSMODE\*(C'\fR,\  \f(CW\*(C`I_SYS_MOUNT\*(C'\fR,\  \f(CW\*(C`I_SYS_PARAM\*(C'\fR,\  \f(CW\*(C`I_SYS_POLL\*(C'\fR,\  \f(CW\*(C`I_SYS_SECURITY\*(C'\fR,\  \f(CW\*(C`I_SYS_SELECT\*(C'\fR,\  \f(CW\*(C`I_SYS_STAT\*(C'\fR,\  \f(CW\*(C`I_SYS_STATVFS\*(C'\fR,\  \f(CW\*(C`I_SYS_SYSCALL\*(C'\fR,\  \f(CW\*(C`I_SYS_TIME\*(C'\fR,\  \f(CW\*(C`I_SYS_TIME_KERNEL\*(C'\fR,\  \f(CW\*(C`I_SYS_TIMES\*(C'\fR,\  \f(CW\*(C`I_SYS_TYPES\*(C'\fR,\  \f(CW\*(C`I_SYSUIO\*(C'\fR,\  \f(CW\*(C`I_SYS_UN\*(C'\fR,\  \f(CW\*(C`I_SYSUTSNAME\*(C'\fR,\  \f(CW\*(C`I_SYS_VFS\*(C'\fR,\  \f(CW\*(C`I_SYS_WAIT\*(C'\fR,\  \f(CW\*(C`I_TERMIO\*(C'\fR,\  \f(CW\*(C`I_TERMIOS\*(C'\fR,\  \f(CW\*(C`I_UNISTD\*(C'\fR,\  \f(CW\*(C`I_USTAT\*(C'\fR,\  \f(CW\*(C`I_VFORK\*(C'\fR,\  \f(CW\*(C`I_WCHAR\*(C'\fR,\  \f(CW\*(C`I_WCTYPE\*(C'\fR
.PP
Example usage:
.Sp
.Vb 3
\& #ifdef I_WCHAR
\&   #include <wchar.h>
\& #endif
.Ve
.SH "Global Variables"
.IX Header "Global Variables"
These variables are global to an entire process.  They are shared between
all interpreters and all threads in a process.  Any variables not documented
here may be changed or removed without notice, so don't use them!
If you feel you really do need to use an unlisted variable, first send email to
perl5\-porters@perl.org <mailto:perl5-porters@perl.org>.  It may be that
someone there will point out a way to accomplish what you need without using an
internal variable.  But if not, you should get a go-ahead to document and then
use the variable.
.ie n .IP """PL_check""" 4
.el .IP \f(CWPL_check\fR 4
.IX Xref "PL_check"
.IX Item "PL_check"
Array, indexed by opcode, of functions that will be called for the "check"
phase of optree building during compilation of Perl code.  For most (but
not all) types of op, once the op has been initially built and populated
with child ops it will be filtered through the check function referenced
by the appropriate element of this array.  The new op is passed in as the
sole argument to the check function, and the check function returns the
completed op.  The check function may (as the name suggests) check the op
for validity and signal errors.  It may also initialise or modify parts of
the ops, or perform more radical surgery such as adding or removing child
ops, or even throw the op away and return a different op in its place.
.Sp
This array of function pointers is a convenient place to hook into the
compilation process.  An XS module can put its own custom check function
in place of any of the standard ones, to influence the compilation of a
particular type of op.  However, a custom check function must never fully
replace a standard check function (or even a custom check function from
another module).  A module modifying checking must instead \fBwrap\fR the
preexisting check function.  A custom check function must be selective
about when to apply its custom behaviour.  In the usual case where
it decides not to do anything special with an op, it must chain the
preexisting op function.  Check functions are thus linked in a chain,
with the core's base checker at the end.
.Sp
For thread safety, modules should not write directly to this array.
Instead, use the function "wrap_op_checker".
.ie n .IP """PL_infix_plugin""" 4
.el .IP \f(CWPL_infix_plugin\fR 4
.IX Xref "PL_infix_plugin"
.IX Item "PL_infix_plugin"
NOTE: \f(CW\*(C`PL_infix_plugin\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
\&\fBNOTE:\fR This API exists entirely for the purpose of making the CPAN module
\&\f(CW\*(C`XS::Parse::Infix\*(C'\fR work. It is not expected that additional modules will make
use of it; rather, that they should use \f(CW\*(C`XS::Parse::Infix\*(C'\fR to provide parsing
of new infix operators.
.Sp
Function pointer, pointing at a function used to handle extended infix
operators. The function should be declared as
.Sp
.Vb 3
\&        int infix_plugin_function(pTHX_
\&                char *opname, STRLEN oplen,
\&                struct Perl_custom_infix **infix_ptr)
.Ve
.Sp
The function is called from the tokenizer whenever a possible infix operator
is seen. \f(CW\*(C`opname\*(C'\fR points to the operator name in the parser's input buffer,
and \f(CW\*(C`oplen\*(C'\fR gives the \fImaximum\fR number of bytes of it that should be
consumed; it is not null-terminated. The function is expected to examine the
operator name and possibly other state such as %^H, to
determine whether it wants to handle the operator name.
.Sp
As compared to the single stage of \f(CW\*(C`PL_keyword_plugin\*(C'\fR, parsing of additional
infix operators occurs in three separate stages. This is because of the more
complex interactions it has with the parser, to ensure that operator
precedence rules work correctly. These stages are co-ordinated by the use of
an additional information structure.
.Sp
If the function wants to handle the infix operator, it must set the variable
pointed to by \f(CW\*(C`infix_ptr\*(C'\fR to the address of a structure that provides this
additional information about the subsequent parsing stages. If it does not,
it should make a call to the next function in the chain.
.Sp
This structure has the following definition:
.Sp
.Vb 7
\&        struct Perl_custom_infix {
\&            enum Perl_custom_infix_precedence prec;
\&            void (*parse)(pTHX_ SV **opdata,
\&                struct Perl_custom_infix *);
\&            OP *(*build_op)(pTHX_ SV **opdata, OP *lhs, OP *rhs,
\&                struct Perl_custom_infix *);
\&        };
.Ve
.Sp
The function must then return an integer giving the number of bytes consumed
by the name of this operator. In the case of an operator whose name is
composed of identifier characters, this must be equal to \f(CW\*(C`oplen\*(C'\fR. In the case
of an operator named by non-identifier characters, this is permitted to be
shorter than \f(CW\*(C`oplen\*(C'\fR, and any additional characters after it will not be
claimed by the infix operator but instead will be consumed by the tokenizer
and parser as normal.
.Sp
If the optional \f(CW\*(C`parse\*(C'\fR function is provided, it is called immediately by the
parser to let the operator's definition consume any additional syntax from the
source code. This should \fInot\fR be used for normal operand parsing, but it may
be useful when implementing things like parametric operators or meta-operators
that consume more syntax themselves. This function may use the variable
pointed to by \f(CW\*(C`opdata\*(C'\fR to provide an SV containing additional data to be
passed into the \f(CW\*(C`build_op\*(C'\fR function later on.
.Sp
The information structure gives the operator precedence level in the \f(CW\*(C`prec\*(C'\fR
field. This is used to tell the parser how much of the surrounding syntax
before and after should be considered as operands to the operator.
.Sp
The tokenizer and parser will then continue to operate as normal until enough
additional input has been parsed to form both the left\- and right-hand side
operands to the operator, according to the precedence level. At this point the
\&\f(CW\*(C`build_op\*(C'\fR function is called, being passed the left\- and right-hand operands
as optree fragments. It is expected to combine them into the resulting optree
fragment, which it should return.
.Sp
After the \f(CW\*(C`build_op\*(C'\fR function has returned, if the variable pointed to by
\&\f(CW\*(C`opdata\*(C'\fR was set to a non\-\f(CW\*(C`NULL\*(C'\fR value, it will then be destroyed by calling
\&\f(CWSvREFCNT_dec()\fR.
.Sp
For thread safety, modules should not set this variable directly.
Instead, use the function "wrap_infix_plugin".
.Sp
However, that all said, the introductory note above still applies. This
variable is provided in core perl only for the benefit of the
\&\f(CW\*(C`XS::Parse::Infix\*(C'\fR module. That module acts as a central registry for infix
operators, automatically handling things like deparse support and
discovery/reflection, and these abilities only work because it knows all the
registered operators. Other modules should not use this interpreter variable
directly to implement them because then those central features would no longer
work properly.
.Sp
Furthermore, it is likely that this (experimental) API will be replaced in a
future Perl version by a more complete API that fully implements the central
registry and other semantics currently provided by \f(CW\*(C`XS::Parse::Infix\*(C'\fR, once
the module has had sufficient experimental testing time. This current
mechanism exists only as an interim measure to get to that stage.
.ie n .IP """PL_keyword_plugin""" 4
.el .IP \f(CWPL_keyword_plugin\fR 4
.IX Xref "PL_keyword_plugin"
.IX Item "PL_keyword_plugin"
NOTE: \f(CW\*(C`PL_keyword_plugin\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Function pointer, pointing at a function used to handle extended keywords.
The function should be declared as
.Sp
.Vb 3
\&        int keyword_plugin_function(pTHX_
\&                char *keyword_ptr, STRLEN keyword_len,
\&                OP **op_ptr)
.Ve
.Sp
The function is called from the tokeniser, whenever a possible keyword
is seen.  \f(CW\*(C`keyword_ptr\*(C'\fR points at the word in the parser's input
buffer, and \f(CW\*(C`keyword_len\*(C'\fR gives its length; it is not null-terminated.
The function is expected to examine the word, and possibly other state
such as %^H, to decide whether it wants to handle it
as an extended keyword.  If it does not, the function should return
\&\f(CW\*(C`KEYWORD_PLUGIN_DECLINE\*(C'\fR, and the normal parser process will continue.
.Sp
If the function wants to handle the keyword, it first must
parse anything following the keyword that is part of the syntax
introduced by the keyword.  See "Lexer interface" for details.
.Sp
When a keyword is being handled, the plugin function must build
a tree of \f(CW\*(C`OP\*(C'\fR structures, representing the code that was parsed.
The root of the tree must be stored in \f(CW*op_ptr\fR.  The function then
returns a constant indicating the syntactic role of the construct that
it has parsed: \f(CW\*(C`KEYWORD_PLUGIN_STMT\*(C'\fR if it is a complete statement, or
\&\f(CW\*(C`KEYWORD_PLUGIN_EXPR\*(C'\fR if it is an expression.  Note that a statement
construct cannot be used inside an expression (except via \f(CW\*(C`do BLOCK\*(C'\fR
and similar), and an expression is not a complete statement (it requires
at least a terminating semicolon).
.Sp
When a keyword is handled, the plugin function may also have
(compile-time) side effects.  It may modify \f(CW\*(C`%^H\*(C'\fR, define functions, and
so on.  Typically, if side effects are the main purpose of a handler,
it does not wish to generate any ops to be included in the normal
compilation.  In this case it is still required to supply an op tree,
but it suffices to generate a single null op.
.Sp
That's how the \f(CW*PL_keyword_plugin\fR function needs to behave overall.
Conventionally, however, one does not completely replace the existing
handler function.  Instead, take a copy of \f(CW\*(C`PL_keyword_plugin\*(C'\fR before
assigning your own function pointer to it.  Your handler function should
look for keywords that it is interested in and handle those.  Where it
is not interested, it should call the saved plugin function, passing on
the arguments it received.  Thus \f(CW\*(C`PL_keyword_plugin\*(C'\fR actually points
at a chain of handler functions, all of which have an opportunity to
handle keywords, and only the last function in the chain (built into
the Perl core) will normally return \f(CW\*(C`KEYWORD_PLUGIN_DECLINE\*(C'\fR.
.Sp
For thread safety, modules should not set this variable directly.
Instead, use the function "wrap_keyword_plugin".
.ie n .IP """PL_phase""" 4
.el .IP \f(CWPL_phase\fR 4
.IX Xref "PL_phase"
.IX Item "PL_phase"
A value that indicates the current Perl interpreter's phase. Possible values
include \f(CW\*(C`PERL_PHASE_CONSTRUCT\*(C'\fR, \f(CW\*(C`PERL_PHASE_START\*(C'\fR, \f(CW\*(C`PERL_PHASE_CHECK\*(C'\fR,
\&\f(CW\*(C`PERL_PHASE_INIT\*(C'\fR, \f(CW\*(C`PERL_PHASE_RUN\*(C'\fR, \f(CW\*(C`PERL_PHASE_END\*(C'\fR, and
\&\f(CW\*(C`PERL_PHASE_DESTRUCT\*(C'\fR.
.Sp
For example, the following determines whether the interpreter is in
global destruction:
.Sp
.Vb 3
\&    if (PL_phase == PERL_PHASE_DESTRUCT) {
\&        // we are in global destruction
\&    }
.Ve
.Sp
\&\f(CW\*(C`PL_phase\*(C'\fR was introduced in Perl 5.14; in prior perls you can use
\&\f(CW\*(C`PL_dirty\*(C'\fR (boolean) to determine whether the interpreter is in global
destruction. (Use of \f(CW\*(C`PL_dirty\*(C'\fR is discouraged since 5.14.)
.RS 4
.Sp
.Vb 1
\& enum perl_phase  PL_phase
.Ve
.RE
.RS 4
.RE
.SH "GV Handling and Stashes"
.IX Xref "GV GV_ADD GV_ADDMG GV_ADDMULTI GV_ADDWARN GV_NOADD_NOINIT GV_NOEXPAND GV_NOINIT GV_NOTQUAL GV_NO_SVGMAGIC GV_SUPER SVf_UTF8"
.IX Header "GV Handling and Stashes"
A GV is a structure which corresponds to to a Perl typeglob, ie *foo.
It is a structure that holds a pointer to a scalar, an array, a hash etc,
corresponding to \f(CW$foo\fR, \f(CW@foo\fR, \f(CW%foo\fR.
.PP
GVs are usually found as values in stashes (symbol table hashes) where
Perl stores its global variables.
.PP
A \fBstash\fR is a hash that contains all variables that are defined
within a package.  See "Stashes and Globs" in perlguts
.ie n .IP """amagic_call""" 4
.el .IP \f(CWamagic_call\fR 4
.IX Xref "amagic_call"
.IX Item "amagic_call"
Perform the overloaded (active magic) operation given by \f(CW\*(C`method\*(C'\fR.
\&\f(CW\*(C`method\*(C'\fR is one of the values found in \fIoverload.h\fR.
.Sp
\&\f(CW\*(C`flags\*(C'\fR affects how the operation is performed, as follows:
.RS 4
.ie n .IP """AMGf_noleft""" 4
.el .IP \f(CWAMGf_noleft\fR 4
.IX Item "AMGf_noleft"
\&\f(CW\*(C`left\*(C'\fR is not to be used in this operation.
.ie n .IP """AMGf_noright""" 4
.el .IP \f(CWAMGf_noright\fR 4
.IX Item "AMGf_noright"
\&\f(CW\*(C`right\*(C'\fR is not to be used in this operation.
.ie n .IP """AMGf_unary""" 4
.el .IP \f(CWAMGf_unary\fR 4
.IX Item "AMGf_unary"
The operation is done only on just one operand.
.ie n .IP """AMGf_assign""" 4
.el .IP \f(CWAMGf_assign\fR 4
.IX Item "AMGf_assign"
The operation changes one of the operands, e.g., \f(CW$x\fR += 1
.RE
.RS 4
.Sp
.Vb 1
\& SV *  amagic_call(SV *left, SV *right, int method, int dir)
.Ve
.RE
.RS 4
.RE
.ie n .IP """amagic_deref_call""" 4
.el .IP \f(CWamagic_deref_call\fR 4
.IX Xref "amagic_deref_call"
.IX Item "amagic_deref_call"
Perform \f(CW\*(C`method\*(C'\fR overloading dereferencing on \f(CW\*(C`ref\*(C'\fR, returning the
dereferenced result.  \f(CW\*(C`method\*(C'\fR must be one of the dereference operations given
in \fIoverload.h\fR.
.Sp
If overloading is inactive on \f(CW\*(C`ref\*(C'\fR, returns \f(CW\*(C`ref\*(C'\fR itself.
.RS 4
.Sp
.Vb 1
\& SV *  amagic_deref_call(SV *ref, int method)
.Ve
.RE
.RS 4
.RE
.ie n .IP """gv_add_by_type""" 4
.el .IP \f(CWgv_add_by_type\fR 4
.IX Xref "gv_add_by_type"
.IX Item "gv_add_by_type"
Make sure there is a slot of type \f(CW\*(C`type\*(C'\fR in the GV \f(CW\*(C`gv\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& GV *  gv_add_by_type(GV *gv, svtype type)
.Ve
.RE
.RS 4
.RE
.ie n .IP """Gv_AMupdate""" 4
.el .IP \f(CWGv_AMupdate\fR 4
.IX Xref "Gv_AMupdate"
.IX Item "Gv_AMupdate"
Recalculates overload magic in the package given by \f(CW\*(C`stash\*(C'\fR.
.Sp
Returns:
.RS 4
.IP "1 on success and there is some overload" 4
.IX Item "1 on success and there is some overload"
.PD 0
.IP "0 if there is no overload" 4
.IX Item "0 if there is no overload"
.ie n .IP "\-1 if some error occurred and it couldn't croak (because ""destructing"" is true)." 4
.el .IP "\-1 if some error occurred and it couldn't croak (because \f(CWdestructing\fR is true)." 4
.IX Item "-1 if some error occurred and it couldn't croak (because destructing is true)."
.RE
.RS 4
.PD
.Sp
.Vb 1
\& int  Gv_AMupdate(HV *stash, bool destructing)
.Ve
.RE
.RS 4
.RE
.ie n .IP """gv_autoload_pv""" 4
.el .IP \f(CWgv_autoload_pv\fR 4
.IX Item "gv_autoload_pv"
.PD 0
.ie n .IP """gv_autoload_pvn""" 4
.el .IP \f(CWgv_autoload_pvn\fR 4
.IX Item "gv_autoload_pvn"
.ie n .IP """gv_autoload_sv""" 4
.el .IP \f(CWgv_autoload_sv\fR 4
.IX Xref "gv_autoload_pv gv_autoload_pvn gv_autoload_sv"
.IX Item "gv_autoload_sv"
.PD
These each search for an \f(CW\*(C`AUTOLOAD\*(C'\fR method, returning NULL if not found, or
else returning a pointer to its GV, while setting the package
\&\f(CW$AUTOLOAD\fR variable to \f(CW\*(C`name\*(C'\fR (fully qualified).  Also,
if found and the GV's CV is an XSUB, the CV's PV will be set to \f(CW\*(C`name\*(C'\fR, and
its stash will be set to the stash of the GV.
.Sp
Searching is done in \f(CW\*(C`MRO\*(C'\fR order, as specified in
"\f(CW\*(C`gv_fetchmeth\*(C'\fR", beginning with \f(CW\*(C`stash\*(C'\fR if it isn't NULL.
.Sp
The forms differ only in how \f(CW\*(C`name\*(C'\fR is specified.
.Sp
In \f(CW\*(C`gv_autoload_pv\*(C'\fR, \f(CW\*(C`namepv\*(C'\fR is a C language NUL-terminated string.
.Sp
In \f(CW\*(C`gv_autoload_pvn\*(C'\fR, \f(CW\*(C`name\*(C'\fR points to the first byte of the name, and an
additional parameter, \f(CW\*(C`len\*(C'\fR, specifies its length in bytes.  Hence, \f(CW*name\fR
may contain embedded-NUL characters.
.Sp
In \f(CW\*(C`gv_autoload_sv\*(C'\fR, \f(CW*namesv\fR is an SV, and the name is the PV extracted
from that using "\f(CW\*(C`SvPV\*(C'\fR".  If the SV is marked as being in UTF\-8, the
extracted PV will also be.
.RS 4
.Sp
.Vb 4
\& GV *  gv_autoload_pv (HV *stash, const char *namepv, U32 flags)
\& GV *  gv_autoload_pvn(HV *stash, const char *name, STRLEN len,
\&                       U32 flags)
\& GV *  gv_autoload_sv (HV *stash, SV *namesv, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """gv_autoload4""" 4
.el .IP \f(CWgv_autoload4\fR 4
.IX Xref "gv_autoload4"
.IX Item "gv_autoload4"
Equivalent to \f(CW"gv_autoload_pvn"\fR.
.RS 4
.Sp
.Vb 2
\& GV *  gv_autoload4(HV *stash, const char *name, STRLEN len,
\&                    I32 method)
.Ve
.RE
.RS 4
.RE
.ie n .IP """GvAV""" 4
.el .IP \f(CWGvAV\fR 4
.IX Xref "GvAV"
.IX Item "GvAV"
Return the AV from the GV.
.RS 4
.Sp
.Vb 1
\& AV*  GvAV(GV* gv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """gv_AVadd""" 4
.el .IP \f(CWgv_AVadd\fR 4
.IX Item "gv_AVadd"
.PD 0
.ie n .IP """gv_HVadd""" 4
.el .IP \f(CWgv_HVadd\fR 4
.IX Item "gv_HVadd"
.ie n .IP """gv_IOadd""" 4
.el .IP \f(CWgv_IOadd\fR 4
.IX Item "gv_IOadd"
.ie n .IP """gv_SVadd""" 4
.el .IP \f(CWgv_SVadd\fR 4
.IX Xref "gv_AVadd gv_HVadd gv_IOadd gv_SVadd"
.IX Item "gv_SVadd"
.PD
Make sure there is a slot of the given type (AV, HV, IO, SV) in the GV \f(CW\*(C`gv\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& GV *  gv_AVadd(GV *gv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """gv_const_sv""" 4
.el .IP \f(CWgv_const_sv\fR 4
.IX Xref "gv_const_sv"
.IX Item "gv_const_sv"
If \f(CW\*(C`gv\*(C'\fR is a typeglob whose subroutine entry is a constant sub eligible for
inlining, or \f(CW\*(C`gv\*(C'\fR is a placeholder reference that would be promoted to such
a typeglob, then returns the value returned by the sub.  Otherwise, returns
\&\f(CW\*(C`NULL\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& SV *  gv_const_sv(GV *gv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """GvCV""" 4
.el .IP \f(CWGvCV\fR 4
.IX Xref "GvCV"
.IX Item "GvCV"
Return the CV from the GV.
.RS 4
.Sp
.Vb 1
\& CV*  GvCV(GV* gv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """gv_efullname3""" 4
.el .IP \f(CWgv_efullname3\fR 4
.IX Item "gv_efullname3"
.PD 0
.ie n .IP """gv_efullname4""" 4
.el .IP \f(CWgv_efullname4\fR 4
.IX Item "gv_efullname4"
.ie n .IP """gv_fullname3""" 4
.el .IP \f(CWgv_fullname3\fR 4
.IX Item "gv_fullname3"
.ie n .IP """gv_fullname4""" 4
.el .IP \f(CWgv_fullname4\fR 4
.IX Xref "gv_efullname3 gv_efullname4 gv_fullname3 gv_fullname4"
.IX Item "gv_fullname4"
.PD
Place the full package name of \f(CW\*(C`gv\*(C'\fR into \f(CW\*(C`sv\*(C'\fR.  The \f(CW\*(C`gv_e*\*(C'\fR forms return
instead the effective package name (see "HvENAME").
.Sp
If \f(CW\*(C`prefix\*(C'\fR is non-NULL, it is considered to be a C language NUL-terminated
string, and the stored name will be prefaced with it.
.Sp
The other difference between the functions is that the \f(CW*4\fR forms have an
extra parameter, \f(CW\*(C`keepmain\*(C'\fR.  If \f(CW\*(C`true\*(C'\fR an initial \f(CW\*(C`main::\*(C'\fR in the name is
kept; if \f(CW\*(C`false\*(C'\fR it is stripped.  With the \f(CW*3\fR forms, it is always kept.
.RS 4
.Sp
.Vb 6
\& void  gv_efullname3(SV *sv, const GV *gv, const char *prefix)
\& void  gv_efullname4(SV *sv, const GV *gv, const char *prefix,
\&                     bool keepmain)
\& void  gv_fullname3 (SV *sv, const GV *gv, const char *prefix)
\& void  gv_fullname4 (SV *sv, const GV *gv, const char *prefix,
\&                     bool keepmain)
.Ve
.RE
.RS 4
.RE
.ie n .IP """gv_fetchfile""" 4
.el .IP \f(CWgv_fetchfile\fR 4
.IX Item "gv_fetchfile"
.PD 0
.ie n .IP """gv_fetchfile_flags""" 4
.el .IP \f(CWgv_fetchfile_flags\fR 4
.IX Xref "gv_fetchfile gv_fetchfile_flags"
.IX Item "gv_fetchfile_flags"
.PD
These return the debugger glob for the file (compiled by Perl) whose name is
given by the \f(CW\*(C`name\*(C'\fR parameter.
.Sp
There are currently exactly two differences between these functions.
.Sp
The \f(CW\*(C`name\*(C'\fR parameter to \f(CW\*(C`gv_fetchfile\*(C'\fR is a C string, meaning it is
\&\f(CW\*(C`NUL\*(C'\fR\-terminated; whereas the \f(CW\*(C`name\*(C'\fR parameter to \f(CW\*(C`gv_fetchfile_flags\*(C'\fR is a
Perl string, whose length (in bytes) is passed in via the \f(CW\*(C`namelen\*(C'\fR parameter
This means the name may contain embedded \f(CW\*(C`NUL\*(C'\fR characters.
\&\f(CW\*(C`namelen\*(C'\fR doesn't exist in plain \f(CW\*(C`gv_fetchfile\*(C'\fR).
.Sp
The other difference is that \f(CW\*(C`gv_fetchfile_flags\*(C'\fR has an extra \f(CW\*(C`flags\*(C'\fR
parameter, which is currently completely ignored, but allows for possible
future extensions.
.RS 4
.Sp
.Vb 3
\& GV *  gv_fetchfile      (const char *name)
\& GV *  gv_fetchfile_flags(const char * const name,
\&                          const STRLEN len, const U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """gv_fetchmeth""" 4
.el .IP \f(CWgv_fetchmeth\fR 4
.IX Item "gv_fetchmeth"
.PD 0
.ie n .IP """gv_fetchmeth_pv""" 4
.el .IP \f(CWgv_fetchmeth_pv\fR 4
.IX Item "gv_fetchmeth_pv"
.ie n .IP """gv_fetchmeth_pvn""" 4
.el .IP \f(CWgv_fetchmeth_pvn\fR 4
.IX Item "gv_fetchmeth_pvn"
.ie n .IP """gv_fetchmeth_sv""" 4
.el .IP \f(CWgv_fetchmeth_sv\fR 4
.IX Xref "gv_fetchmeth gv_fetchmeth_pv gv_fetchmeth_pvn gv_fetchmeth_sv"
.IX Item "gv_fetchmeth_sv"
.PD
These each look for a glob with name \f(CW\*(C`name\*(C'\fR, containing a defined subroutine,
returning the GV of that glob if found, or \f(CW\*(C`NULL\*(C'\fR if not.
.Sp
\&\f(CW\*(C`stash\*(C'\fR is always searched (first), unless it is \f(CW\*(C`NULL\*(C'\fR.
.Sp
If \f(CW\*(C`stash\*(C'\fR is NULL, or was searched but nothing was found in it, and the
\&\f(CW\*(C`GV_SUPER\*(C'\fR bit is set in \f(CW\*(C`flags\*(C'\fR, stashes accessible via \f(CW@ISA\fR are searched
next.  Searching is conducted according to \f(CW\*(C`MRO\*(C'\fR order.
.Sp
Finally, if no matches were found so far, and the \f(CW\*(C`GV_NOUNIVERSAL\*(C'\fR flag in
\&\f(CW\*(C`flags\*(C'\fR is not set,  \f(CW\*(C`UNIVERSAL::\*(C'\fR is searched.
.Sp
The argument \f(CW\*(C`level\*(C'\fR should be either 0 or \-1.  If \-1, the function will
return without any side effects or caching.  If 0, the function makes sure
there is a glob named \f(CW\*(C`name\*(C'\fR in \f(CW\*(C`stash\*(C'\fR, creating one if necessary.
The subroutine slot in the glob will be set to any subroutine found in the
\&\f(CW\*(C`stash\*(C'\fR and \f(CW\*(C`SUPER::\*(C'\fR search, hence caching any \f(CW\*(C`SUPER::\*(C'\fR result.  Note that
subroutines found in \f(CW\*(C`UNIVERSAL::\*(C'\fR are not cached.
.Sp
The GV returned from these may be a method cache entry, which is not visible to
Perl code.  So when calling \f(CW\*(C`call_sv\*(C'\fR, you should not use the GV directly;
instead, you should use the method's CV, which can be obtained from the GV with
the \f(CW\*(C`GvCV\*(C'\fR macro.
.Sp
The only other significant value for \f(CW\*(C`flags\*(C'\fR is \f(CW\*(C`SVf_UTF8\*(C'\fR, indicating that
\&\f(CW\*(C`name\*(C'\fR is to be treated as being encoded in UTF\-8.
.Sp
Plain \f(CW\*(C`gv_fetchmeth\*(C'\fR lacks a \f(CW\*(C`flags\*(C'\fR parameter, hence always searches in
\&\f(CW\*(C`stash\*(C'\fR, then \f(CW\*(C`UNIVERSAL::\*(C'\fR, and \f(CW\*(C`name\*(C'\fR is never UTF\-8.  Otherwise it is
exactly like \f(CW\*(C`gv_fetchmeth_pvn\*(C'\fR.
.Sp
The other forms do have a \f(CW\*(C`flags\*(C'\fR parameter, and differ only in how the glob
name is specified.
.Sp
In \f(CW\*(C`gv_fetchmeth_pv\*(C'\fR, \f(CW\*(C`name\*(C'\fR is a C language NUL-terminated string.
.Sp
In \f(CW\*(C`gv_fetchmeth_pvn\*(C'\fR, \f(CW\*(C`name\*(C'\fR points to the first byte of the name, and an
additional parameter, \f(CW\*(C`len\*(C'\fR, specifies its length in bytes.  Hence, the name
may contain embedded-NUL characters.
.Sp
In \f(CW\*(C`gv_fetchmeth_sv\*(C'\fR, \f(CW*name\fR is an SV, and the name is the PV extracted from
that, using "\f(CW\*(C`SvPV\*(C'\fR".  If the SV is marked as being in UTF\-8, the extracted
PV will also be.
.RS 4
.Sp
.Vb 8
\& GV *  gv_fetchmeth    (HV *stash, const char *name, STRLEN len,
\&                        I32 level)
\& GV *  gv_fetchmeth_pv (HV *stash, const char *name, I32 level,
\&                        U32 flags)
\& GV *  gv_fetchmeth_pvn(HV *stash, const char *name, STRLEN len,
\&                        I32 level, U32 flags)
\& GV *  gv_fetchmeth_sv (HV *stash, SV *namesv, I32 level,
\&                        U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """gv_fetchmeth_autoload""" 4
.el .IP \f(CWgv_fetchmeth_autoload\fR 4
.IX Xref "gv_fetchmeth_autoload"
.IX Item "gv_fetchmeth_autoload"
This is the old form of "gv_fetchmeth_pvn_autoload", which has no flags
parameter.
.RS 4
.Sp
.Vb 2
\& GV *  gv_fetchmeth_autoload(HV *stash, const char *name,
\&                             STRLEN len, I32 level)
.Ve
.RE
.RS 4
.RE
.ie n .IP """gv_fetchmethod""" 4
.el .IP \f(CWgv_fetchmethod\fR 4
.IX Xref "gv_fetchmethod"
.IX Item "gv_fetchmethod"
See "gv_fetchmethod_autoload".
.RS 4
.Sp
.Vb 1
\& GV *  gv_fetchmethod(HV *stash, const char *name)
.Ve
.RE
.RS 4
.RE
.ie n .IP """gv_fetchmethod_autoload""" 4
.el .IP \f(CWgv_fetchmethod_autoload\fR 4
.IX Xref "gv_fetchmethod_autoload"
.IX Item "gv_fetchmethod_autoload"
Returns the glob which contains the subroutine to call to invoke the method
on the \f(CW\*(C`stash\*(C'\fR.  In fact in the presence of autoloading this may be the
glob for "AUTOLOAD".  In this case the corresponding variable \f(CW$AUTOLOAD\fR is
already setup.
.Sp
The third parameter of \f(CW\*(C`gv_fetchmethod_autoload\*(C'\fR determines whether
AUTOLOAD lookup is performed if the given method is not present: non-zero
means yes, look for AUTOLOAD; zero means no, don't look for AUTOLOAD.
Calling \f(CW\*(C`gv_fetchmethod\*(C'\fR is equivalent to calling \f(CW\*(C`gv_fetchmethod_autoload\*(C'\fR
with a non-zero \f(CW\*(C`autoload\*(C'\fR parameter.
.Sp
These functions grant \f(CW"SUPER"\fR token
as a prefix of the method name.  Note
that if you want to keep the returned glob for a long time, you need to
check for it being "AUTOLOAD", since at the later time the call may load a
different subroutine due to \f(CW$AUTOLOAD\fR changing its value.  Use the glob
created as a side effect to do this.
.Sp
These functions have the same side-effects as \f(CW\*(C`gv_fetchmeth\*(C'\fR with
\&\f(CW\*(C`level==0\*(C'\fR.  The warning against passing the GV returned by
\&\f(CW\*(C`gv_fetchmeth\*(C'\fR to \f(CW\*(C`call_sv\*(C'\fR applies equally to these functions.
.RS 4
.Sp
.Vb 2
\& GV *  gv_fetchmethod_autoload(HV *stash, const char *name,
\&                               I32 autoload)
.Ve
.RE
.RS 4
.RE
.ie n .IP """gv_fetchmeth_pv_autoload""" 4
.el .IP \f(CWgv_fetchmeth_pv_autoload\fR 4
.IX Xref "gv_fetchmeth_pv_autoload"
.IX Item "gv_fetchmeth_pv_autoload"
Exactly like "gv_fetchmeth_pvn_autoload", but takes a nul-terminated string
instead of a string/length pair.
.RS 4
.Sp
.Vb 2
\& GV *  gv_fetchmeth_pv_autoload(HV *stash, const char *name,
\&                                I32 level, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """gv_fetchmeth_pvn_autoload""" 4
.el .IP \f(CWgv_fetchmeth_pvn_autoload\fR 4
.IX Xref "gv_fetchmeth_pvn_autoload"
.IX Item "gv_fetchmeth_pvn_autoload"
Same as \f(CWgv_fetchmeth_pvn()\fR, but looks for autoloaded subroutines too.
Returns a glob for the subroutine.
.Sp
For an autoloaded subroutine without a GV, will create a GV even
if \f(CW\*(C`level < 0\*(C'\fR.  For an autoloaded subroutine without a stub, \f(CWGvCV()\fR
of the result may be zero.
.Sp
Currently, the only significant value for \f(CW\*(C`flags\*(C'\fR is \f(CW\*(C`SVf_UTF8\*(C'\fR.
.RS 4
.Sp
.Vb 2
\& GV *  gv_fetchmeth_pvn_autoload(HV *stash, const char *name,
\&                                 STRLEN len, I32 level, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """gv_fetchmeth_sv_autoload""" 4
.el .IP \f(CWgv_fetchmeth_sv_autoload\fR 4
.IX Xref "gv_fetchmeth_sv_autoload"
.IX Item "gv_fetchmeth_sv_autoload"
Exactly like "gv_fetchmeth_pvn_autoload", but takes the name string in the form
of an SV instead of a string/length pair.
.RS 4
.Sp
.Vb 2
\& GV *  gv_fetchmeth_sv_autoload(HV *stash, SV *namesv, I32 level,
\&                                U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """gv_fetchpv""" 4
.el .IP \f(CWgv_fetchpv\fR 4
.IX Item "gv_fetchpv"
.PD 0
.ie n .IP """gv_fetchpvn""" 4
.el .IP \f(CWgv_fetchpvn\fR 4
.IX Item "gv_fetchpvn"
.ie n .IP """gv_fetchpvn_flags""" 4
.el .IP \f(CWgv_fetchpvn_flags\fR 4
.IX Item "gv_fetchpvn_flags"
.ie n .IP """gv_fetchpvs""" 4
.el .IP \f(CWgv_fetchpvs\fR 4
.IX Item "gv_fetchpvs"
.ie n .IP """gv_fetchsv""" 4
.el .IP \f(CWgv_fetchsv\fR 4
.IX Item "gv_fetchsv"
.ie n .IP """gv_fetchsv_nomg""" 4
.el .IP \f(CWgv_fetchsv_nomg\fR 4
.IX Xref "gv_fetchpv gv_fetchpvn gv_fetchpvn_flags gv_fetchpvs gv_fetchsv gv_fetchsv_nomg"
.IX Item "gv_fetchsv_nomg"
.PD
These all return the GV of type \f(CW\*(C`sv_type\*(C'\fR whose name is given by the inputs,
or NULL if no GV of that name and type could be found.  See "Stashes
and Globs" in perlguts.
.Sp
The only differences are how the input name is specified, and if 'get' magic is
normally used in getting that name.
.Sp
Don't be fooled by the fact that only one form has \f(CW\*(C`flags\*(C'\fR in its name.  They
all have a \f(CW\*(C`flags\*(C'\fR parameter in fact, and all the flag bits have the same
meanings for all
.Sp
If any of the flags \f(CW\*(C`GV_ADD\*(C'\fR, \f(CW\*(C`GV_ADDMG\*(C'\fR, \f(CW\*(C`GV_ADDWARN\*(C'\fR, \f(CW\*(C`GV_ADDMULTI\*(C'\fR, or
\&\f(CW\*(C`GV_NOINIT\*(C'\fR is set, a GV is created if none already exists for the input name
and type.  However, \f(CW\*(C`GV_ADDMG\*(C'\fR will only do the creation for magical GV's.
For all of these flags except \f(CW\*(C`GV_NOINIT\*(C'\fR, \f(CW"gv_init_pvn"\fR is called after
the addition.  \f(CW\*(C`GV_ADDWARN\*(C'\fR is used when the caller expects that adding won't
be necessary because the symbol should already exist; but if not, add it
anyway, with a warning that it was unexpectedly absent.  The \f(CW\*(C`GV_ADDMULTI\*(C'\fR
flag means to pretend that the GV has been seen before (\fIi.e.\fR, suppress "Used
once" warnings).
.Sp
The flag \f(CW\*(C`GV_NOADD_NOINIT\*(C'\fR causes \f(CW"gv_init_pvn"\fR not be to called if the
GV existed but isn't PVGV.
.Sp
If the \f(CW\*(C`SVf_UTF8\*(C'\fR bit is set, the name is treated as being encoded in UTF\-8;
otherwise the name won't be considered to be UTF\-8 in the \f(CW\*(C`pv\*(C'\fR\-named forms,
and the UTF\-8ness of the underlying SVs will be used in the \f(CW\*(C`sv\*(C'\fR forms.
.Sp
If the flag \f(CW\*(C`GV_NOTQUAL\*(C'\fR is set, the caller warrants that the input name is a
plain symbol name, not qualified with a package, otherwise the name is checked
for being a qualified one.
.Sp
In \f(CW\*(C`gv_fetchpv\*(C'\fR, \f(CW\*(C`nambeg\*(C'\fR is a C string, NUL-terminated with no intermediate
NULs.
.Sp
In \f(CW\*(C`gv_fetchpvs\*(C'\fR, \f(CW\*(C`name\*(C'\fR is a literal C string, hence is enclosed in
double quotes.
.Sp
\&\f(CW\*(C`gv_fetchpvn\*(C'\fR and \f(CW\*(C`gv_fetchpvn_flags\*(C'\fR are identical.  In these, <nambeg> is
a Perl string whose byte length is given by \f(CW\*(C`full_len\*(C'\fR, and may contain
embedded NULs.
.Sp
In \f(CW\*(C`gv_fetchsv\*(C'\fR and \f(CW\*(C`gv_fetchsv_nomg\*(C'\fR, the name is extracted from the PV of
the input \f(CW\*(C`name\*(C'\fR SV.  The only difference between these two forms is that
\&'get' magic is normally done on \f(CW\*(C`name\*(C'\fR in \f(CW\*(C`gv_fetchsv\*(C'\fR, and always skipped
with \f(CW\*(C`gv_fetchsv_nomg\*(C'\fR.  Including \f(CW\*(C`GV_NO_SVGMAGIC\*(C'\fR in the \f(CW\*(C`flags\*(C'\fR parameter
to \f(CW\*(C`gv_fetchsv\*(C'\fR makes it behave identically to \f(CW\*(C`gv_fetchsv_nomg\*(C'\fR.
.RS 4
.Sp
.Vb 9
\& GV *  gv_fetchpv       (const char *nambeg, I32 flags,
\&                         const svtype sv_type)
\& GV *  gv_fetchpvn      (const char * nambeg, STRLEN full_len,
\&                         I32 flags, const svtype sv_type)
\& GV *  gv_fetchpvn_flags(const char *name, STRLEN len, I32 flags,
\&                         const svtype sv_type)
\& GV *  gv_fetchpvs      ("name", I32 flags, const svtype sv_type)
\& GV *  gv_fetchsv       (SV *name, I32 flags, const svtype sv_type)
\& GV *  gv_fetchsv_nomg  (SV *name, I32 flags, const svtype sv_type)
.Ve
.RE
.RS 4
.RE
.ie n .IP """GvHV""" 4
.el .IP \f(CWGvHV\fR 4
.IX Xref "GvHV"
.IX Item "GvHV"
Return the HV from the GV.
.RS 4
.Sp
.Vb 1
\& HV*  GvHV(GV* gv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """gv_init""" 4
.el .IP \f(CWgv_init\fR 4
.IX Xref "gv_init"
.IX Item "gv_init"
The old form of \f(CWgv_init_pvn()\fR.  It does not work with UTF\-8 strings, as it
has no flags parameter.  If the \f(CW\*(C`multi\*(C'\fR parameter is set, the
\&\f(CW\*(C`GV_ADDMULTI\*(C'\fR flag will be passed to \f(CWgv_init_pvn()\fR.
.RS 4
.Sp
.Vb 2
\& void  gv_init(GV *gv, HV *stash, const char *name, STRLEN len,
\&               int multi)
.Ve
.RE
.RS 4
.RE
.ie n .IP """gv_init_pv""" 4
.el .IP \f(CWgv_init_pv\fR 4
.IX Xref "gv_init_pv"
.IX Item "gv_init_pv"
Same as \f(CWgv_init_pvn()\fR, but takes a nul-terminated string for the name
instead of separate char * and length parameters.
.RS 4
.Sp
.Vb 1
\& void  gv_init_pv(GV *gv, HV *stash, const char *name, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """gv_init_pvn""" 4
.el .IP \f(CWgv_init_pvn\fR 4
.IX Xref "gv_init_pvn"
.IX Item "gv_init_pvn"
Converts a scalar into a typeglob.  This is an incoercible typeglob;
assigning a reference to it will assign to one of its slots, instead of
overwriting it as happens with typeglobs created by \f(CW\*(C`SvSetSV\*(C'\fR.  Converting
any scalar that is \f(CWSvOK()\fR may produce unpredictable results and is reserved
for perl's internal use.
.Sp
\&\f(CW\*(C`gv\*(C'\fR is the scalar to be converted.
.Sp
\&\f(CW\*(C`stash\*(C'\fR is the parent stash/package, if any.
.Sp
\&\f(CW\*(C`name\*(C'\fR and \f(CW\*(C`len\*(C'\fR give the name.  The name must be unqualified;
that is, it must not include the package name.  If \f(CW\*(C`gv\*(C'\fR is a
stash element, it is the caller's responsibility to ensure that the name
passed to this function matches the name of the element.  If it does not
match, perl's internal bookkeeping will get out of sync.
.Sp
\&\f(CW\*(C`flags\*(C'\fR can be set to \f(CW\*(C`SVf_UTF8\*(C'\fR if \f(CW\*(C`name\*(C'\fR is a UTF\-8 string, or
the return value of SvUTF8(sv).  It can also take the
\&\f(CW\*(C`GV_ADDMULTI\*(C'\fR flag, which means to pretend that the GV has been
seen before (i.e., suppress "Used once" warnings).
.RS 4
.Sp
.Vb 2
\& void  gv_init_pvn(GV *gv, HV *stash, const char *name, STRLEN len,
\&                   U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """gv_init_sv""" 4
.el .IP \f(CWgv_init_sv\fR 4
.IX Xref "gv_init_sv"
.IX Item "gv_init_sv"
Same as \f(CWgv_init_pvn()\fR, but takes an SV * for the name instead of separate
char * and length parameters.  \f(CW\*(C`flags\*(C'\fR is currently unused.
.RS 4
.Sp
.Vb 1
\& void  gv_init_sv(GV *gv, HV *stash, SV *namesv, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """gv_name_set""" 4
.el .IP \f(CWgv_name_set\fR 4
.IX Xref "gv_name_set"
.IX Item "gv_name_set"
Set the name for GV \f(CW\*(C`gv\*(C'\fR to \f(CW\*(C`name\*(C'\fR which is \f(CW\*(C`len\*(C'\fR bytes long.  Thus it may
contain embedded NUL characters.
.Sp
If \f(CW\*(C`flags\*(C'\fR contains \f(CW\*(C`SVf_UTF8\*(C'\fR, the name is treated as being encoded in
UTF\-8; otherwise not.
.RS 4
.Sp
.Vb 1
\& void  gv_name_set(GV *gv, const char *name, U32 len, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """gv_stashpv""" 4
.el .IP \f(CWgv_stashpv\fR 4
.IX Xref "gv_stashpv"
.IX Item "gv_stashpv"
Returns a pointer to the stash for a specified package.  Uses \f(CW\*(C`strlen\*(C'\fR to
determine the length of \f(CW\*(C`name\*(C'\fR, then calls \f(CWgv_stashpvn()\fR.
.RS 4
.Sp
.Vb 1
\& HV *  gv_stashpv(const char *name, I32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """gv_stashpvn""" 4
.el .IP \f(CWgv_stashpvn\fR 4
.IX Xref "gv_stashpvn"
.IX Item "gv_stashpvn"
Returns a pointer to the stash for a specified package.  The \f(CW\*(C`namelen\*(C'\fR
parameter indicates the length of the \f(CW\*(C`name\*(C'\fR, in bytes.  \f(CW\*(C`flags\*(C'\fR is passed
to \f(CWgv_fetchpvn_flags()\fR, so if set to \f(CW\*(C`GV_ADD\*(C'\fR then the package will be
created if it does not already exist.  If the package does not exist and
\&\f(CW\*(C`flags\*(C'\fR is 0 (or any other setting that does not create packages) then \f(CW\*(C`NULL\*(C'\fR
is returned.
.Sp
Flags may be one of:
.Sp
.Vb 7
\& GV_ADD           Create and initialize the package if doesn\*(Aqt
\&                  already exist
\& GV_NOADD_NOINIT  Don\*(Aqt create the package,
\& GV_ADDMG         GV_ADD iff the GV is magical
\& GV_NOINIT        GV_ADD, but don\*(Aqt initialize
\& GV_NOEXPAND      Don\*(Aqt expand SvOK() entries to PVGV
\& SVf_UTF8         The name is in UTF\-8
.Ve
.Sp
The most important of which are probably \f(CW\*(C`GV_ADD\*(C'\fR and \f(CW\*(C`SVf_UTF8\*(C'\fR.
.Sp
Note, use of \f(CW\*(C`gv_stashsv\*(C'\fR instead of \f(CW\*(C`gv_stashpvn\*(C'\fR where possible is strongly
recommended for performance reasons.
.RS 4
.Sp
.Vb 1
\& HV *  gv_stashpvn(const char *name, U32 namelen, I32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """gv_stashpvs""" 4
.el .IP \f(CWgv_stashpvs\fR 4
.IX Xref "gv_stashpvs"
.IX Item "gv_stashpvs"
Like \f(CW\*(C`gv_stashpvn\*(C'\fR, but takes a literal string instead of a
string/length pair.
.RS 4
.Sp
.Vb 1
\& HV*  gv_stashpvs("name", I32 create)
.Ve
.RE
.RS 4
.RE
.ie n .IP """gv_stashsv""" 4
.el .IP \f(CWgv_stashsv\fR 4
.IX Xref "gv_stashsv"
.IX Item "gv_stashsv"
Returns a pointer to the stash for a specified package.  See
\&\f(CW"gv_stashpvn"\fR.
.Sp
Note this interface is strongly preferred over \f(CW\*(C`gv_stashpvn\*(C'\fR for performance
reasons.
.RS 4
.Sp
.Vb 1
\& HV *  gv_stashsv(SV *sv, I32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """GvSV""" 4
.el .IP \f(CWGvSV\fR 4
.IX Xref "GvSV"
.IX Item "GvSV"
Return the SV from the GV.
.Sp
Prior to Perl v5.9.3, this would add a scalar if none existed.  Nowadays, use
\&\f(CW"GvSVn"\fR for that, or compile perl with \f(CW\*(C`\-DPERL_CREATE_GVSV\*(C'\fR.  See
perl5100delta.
.RS 4
.Sp
.Vb 1
\& SV*  GvSV(GV* gv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """GvSVn""" 4
.el .IP \f(CWGvSVn\fR 4
.IX Xref "GvSVn"
.IX Item "GvSVn"
Like \f(CW"GvSV"\fR, but creates an empty scalar if none already exists.
.RS 4
.Sp
.Vb 1
\& SV*  GvSVn(GV* gv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newGVgen""" 4
.el .IP \f(CWnewGVgen\fR 4
.IX Item "newGVgen"
.PD 0
.ie n .IP """newGVgen_flags""" 4
.el .IP \f(CWnewGVgen_flags\fR 4
.IX Xref "newGVgen newGVgen_flags"
.IX Item "newGVgen_flags"
.PD
Create a new, guaranteed to be unique, GV in the package given by the
NUL-terminated C language string \f(CW\*(C`pack\*(C'\fR, and return a pointer to it.
.Sp
For \f(CW\*(C`newGVgen\*(C'\fR or if \f(CW\*(C`flags\*(C'\fR in \f(CW\*(C`newGVgen_flags\*(C'\fR is 0, \f(CW\*(C`pack\*(C'\fR is to be
considered to be encoded in Latin\-1.  The only other legal \f(CW\*(C`flags\*(C'\fR value is
\&\f(CW\*(C`SVf_UTF8\*(C'\fR, which indicates \f(CW\*(C`pack\*(C'\fR is to be considered to be encoded in
UTF\-8.
.RS 4
.Sp
.Vb 2
\& GV *  newGVgen      (const char *pack)
\& GV *  newGVgen_flags(const char *pack, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PL_curstash""" 4
.el .IP \f(CWPL_curstash\fR 4
.IX Xref "PL_curstash"
.IX Item "PL_curstash"
The stash for the package code will be compiled into.
.Sp
On threaded perls, each thread has an independent copy of this variable;
each initialized at creation time with the current value of the creating
thread's copy.
.RS 4
.Sp
.Vb 1
\& HV*  PL_curstash
.Ve
.RE
.RS 4
.RE
.ie n .IP """PL_defgv""" 4
.el .IP \f(CWPL_defgv\fR 4
.IX Xref "PL_defgv"
.IX Item "PL_defgv"
The GV representing \f(CW*_\fR.  Useful for access to \f(CW$_\fR.
.Sp
On threaded perls, each thread has an independent copy of this variable;
each initialized at creation time with the current value of the creating
thread's copy.
.RS 4
.Sp
.Vb 1
\& GV *  PL_defgv
.Ve
.RE
.RS 4
.RE
.ie n .IP """PL_defoutgv""" 4
.el .IP \f(CWPL_defoutgv\fR 4
.IX Xref "PL_defoutgv"
.IX Item "PL_defoutgv"
See \f(CW"setdefout"\fR.
.ie n .IP """PL_defstash""" 4
.el .IP \f(CWPL_defstash\fR 4
.IX Item "PL_defstash"
Described in perlguts.
.ie n .IP """save_gp""" 4
.el .IP \f(CWsave_gp\fR 4
.IX Xref "save_gp"
.IX Item "save_gp"
Saves the current GP of gv on the save stack to be restored on scope exit.
.Sp
If \f(CW\*(C`empty\*(C'\fR is true, replace the GP with a new GP.
.Sp
If \f(CW\*(C`empty\*(C'\fR is false, mark \f(CW\*(C`gv\*(C'\fR with \f(CW\*(C`GVf_INTRO\*(C'\fR so the next reference
assigned is localized, which is how \f(CW\*(C`\ local\ *foo\ =\ $someref;\ \*(C'\fR works.
.RS 4
.Sp
.Vb 1
\& void  save_gp(GV *gv, I32 empty)
.Ve
.RE
.RS 4
.RE
.ie n .IP """setdefout""" 4
.el .IP \f(CWsetdefout\fR 4
.IX Xref "setdefout"
.IX Item "setdefout"
Sets \f(CW\*(C`PL_defoutgv\*(C'\fR, the default file handle for output, to the passed in
typeglob.  As \f(CW\*(C`PL_defoutgv\*(C'\fR "owns" a reference on its typeglob, the reference
count of the passed in typeglob is increased by one, and the reference count
of the typeglob that \f(CW\*(C`PL_defoutgv\*(C'\fR points to is decreased by one.
.RS 4
.Sp
.Vb 1
\& void  setdefout(GV *gv)
.Ve
.RE
.RS 4
.RE
.SH "Hook manipulation"
.IX Header "Hook manipulation"
These functions provide convenient and thread-safe means of manipulating
hook variables.
.ie n .IP """rcpv_copy""" 4
.el .IP \f(CWrcpv_copy\fR 4
.IX Xref "rcpv_copy"
.IX Item "rcpv_copy"
refcount increment a shared memory refcounted string, and when
the refcount goes to 0 free it using \fBPerlMemShared_free()\fR.
.Sp
It is the callers responsibility to ensure that the pv is the
result of a \fBrcpv_new()\fR call.
.Sp
Returns the same pointer that was passed in.
.Sp
.Vb 1
\&    new = rcpv_copy(pv);
.Ve
.RS 4
.Sp
.Vb 1
\& char *  rcpv_copy(char * const pv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """rcpv_free""" 4
.el .IP \f(CWrcpv_free\fR 4
.IX Xref "rcpv_free"
.IX Item "rcpv_free"
refcount decrement a shared memory refcounted string, and when
the refcount goes to 0 free it using \fBperlmemshared_free()\fR.
.Sp
it is the callers responsibility to ensure that the pv is the
result of a \fBrcpv_new()\fR call.
.Sp
Always returns NULL so it can be used like this:
.Sp
.Vb 1
\&    thing = rcpv_free(thing);
.Ve
.RS 4
.Sp
.Vb 1
\& char *  rcpv_free(char * const pv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """rcpv_new""" 4
.el .IP \f(CWrcpv_new\fR 4
.IX Xref "rcpv_new"
.IX Item "rcpv_new"
Create a new shared memory refcounted string with the requested size, and
with the requested initialization and a refcount of 1. The actual space
allocated will be 1 byte more than requested and \fBrcpv_new()\fR will ensure that
the extra byte is a null regardless of any flags settings.
.Sp
If the RCPVf_NO_COPY flag is set then the pv argument will be
ignored, otherwise the contents of the pv pointer will be copied into
the new buffer or if it is NULL the function will do nothing and return NULL.
.Sp
If the RCPVf_USE_STRLEN flag is set then the len argument is ignored and
recomputed using \f(CWstrlen(pv)\fR. It is an error to combine RCPVf_USE_STRLEN
and RCPVf_NO_COPY at the same time.
.Sp
Under DEBUGGING \fBrcpv_new()\fR will \fBassert()\fR if it is asked to create a 0 length
shared string unless the RCPVf_ALLOW_EMPTY flag is set.
.Sp
The return value from the function is suitable for passing into \fBrcpv_copy()\fR and
\&\fBrcpv_free()\fR. To access the RCPV * from the returned value use the \fBRCPVx()\fR macro.
The 'len' member of the RCPV struct stores the allocated length (including the
extra byte), but the \fBRCPV_LEN()\fR macro returns the requested length (not
including the extra byte).
.Sp
Note that \fBrcpv_new()\fR does NOT use a hash table or anything like that to
dedupe inputs given the same text content. Each call with a non-null pv
parameter will produce a distinct pointer with its own refcount regardless of
the input content.
.RS 4
.Sp
.Vb 1
\& char *  rcpv_new(const char * const pv, STRLEN len, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """wrap_op_checker""" 4
.el .IP \f(CWwrap_op_checker\fR 4
.IX Xref "wrap_op_checker"
.IX Item "wrap_op_checker"
Puts a C function into the chain of check functions for a specified op
type.  This is the preferred way to manipulate the "PL_check" array.
\&\f(CW\*(C`opcode\*(C'\fR specifies which type of op is to be affected.  \f(CW\*(C`new_checker\*(C'\fR
is a pointer to the C function that is to be added to that opcode's
check chain, and \f(CW\*(C`old_checker_p\*(C'\fR points to the storage location where a
pointer to the next function in the chain will be stored.  The value of
\&\f(CW\*(C`new_checker\*(C'\fR is written into the "PL_check" array, while the value
previously stored there is written to \f(CW*old_checker_p\fR.
.Sp
"PL_check" is global to an entire process, and a module wishing to
hook op checking may find itself invoked more than once per process,
typically in different threads.  To handle that situation, this function
is idempotent.  The location \f(CW*old_checker_p\fR must initially (once
per process) contain a null pointer.  A C variable of static duration
(declared at file scope, typically also marked \f(CW\*(C`static\*(C'\fR to give
it internal linkage) will be implicitly initialised appropriately,
if it does not have an explicit initialiser.  This function will only
actually modify the check chain if it finds \f(CW*old_checker_p\fR to be null.
This function is also thread safe on the small scale.  It uses appropriate
locking to avoid race conditions in accessing "PL_check".
.Sp
When this function is called, the function referenced by \f(CW\*(C`new_checker\*(C'\fR
must be ready to be called, except for \f(CW*old_checker_p\fR being unfilled.
In a threading situation, \f(CW\*(C`new_checker\*(C'\fR may be called immediately,
even before this function has returned.  \f(CW*old_checker_p\fR will always
be appropriately set before \f(CW\*(C`new_checker\*(C'\fR is called.  If \f(CW\*(C`new_checker\*(C'\fR
decides not to do anything special with an op that it is given (which
is the usual case for most uses of op check hooking), it must chain the
check function referenced by \f(CW*old_checker_p\fR.
.Sp
Taken all together, XS code to hook an op checker should typically look
something like this:
.Sp
.Vb 9
\&    static Perl_check_t nxck_frob;
\&    static OP *myck_frob(pTHX_ OP *op) {
\&        ...
\&        op = nxck_frob(aTHX_ op);
\&        ...
\&        return op;
\&    }
\&    BOOT:
\&        wrap_op_checker(OP_FROB, myck_frob, &nxck_frob);
.Ve
.Sp
If you want to influence compilation of calls to a specific subroutine,
then use "cv_set_call_checker_flags" rather than hooking checking of
all \f(CW\*(C`entersub\*(C'\fR ops.
.RS 4
.Sp
.Vb 2
\& void  wrap_op_checker(Optype opcode, Perl_check_t new_checker,
\&                       Perl_check_t *old_checker_p)
.Ve
.RE
.RS 4
.RE
.SH "HV Handling"
.IX Xref "HV_ITERNEXT_WANTPLACEHOLDERS HV_NAME_SETALL HvNAMELEN_get"
.IX Header "HV Handling"
A HV structure represents a Perl hash.  It consists mainly of an array
of pointers, each of which points to a linked list of HE structures.  The
array is indexed by the hash function of the key, so each linked list
represents all the hash entries with the same hash value.  Each HE contains
a pointer to the actual value, plus a pointer to a HEK structure which
holds the key and hash value.
.ie n .IP """get_hv""" 4
.el .IP \f(CWget_hv\fR 4
.IX Xref "get_hv"
.IX Item "get_hv"
Returns the HV of the specified Perl hash.  \f(CW\*(C`flags\*(C'\fR are passed to
\&\f(CW\*(C`gv_fetchpv\*(C'\fR.  If \f(CW\*(C`GV_ADD\*(C'\fR is set and the
Perl variable does not exist then it will be created.  If \f(CW\*(C`flags\*(C'\fR is zero
(ignoring \f(CW\*(C`SVf_UTF8\*(C'\fR) and the variable does not exist then \f(CW\*(C`NULL\*(C'\fR is
returned.
.Sp
NOTE: the \f(CWperl_get_hv()\fR form is \fBdeprecated\fR.
.RS 4
.Sp
.Vb 1
\& HV *  get_hv(const char *name, I32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """HE""" 4
.el .IP \f(CWHE\fR 4
.IX Item "HE"
Described in perlguts.
.ie n .IP """HEf_SVKEY""" 4
.el .IP \f(CWHEf_SVKEY\fR 4
.IX Xref "HEf_SVKEY"
.IX Item "HEf_SVKEY"
This flag, used in the length slot of hash entries and magic structures,
specifies the structure contains an \f(CW\*(C`SV*\*(C'\fR pointer where a \f(CW\*(C`char*\*(C'\fR pointer
is to be expected.  (For information only\-\-not to be used).
.ie n .IP """HeHASH""" 4
.el .IP \f(CWHeHASH\fR 4
.IX Xref "HeHASH"
.IX Item "HeHASH"
Returns the computed hash stored in the hash entry.
.RS 4
.Sp
.Vb 1
\& U32  HeHASH(HE* he)
.Ve
.RE
.RS 4
.RE
.ie n .IP """HeKEY""" 4
.el .IP \f(CWHeKEY\fR 4
.IX Xref "HeKEY"
.IX Item "HeKEY"
Returns the actual pointer stored in the key slot of the hash entry.  The
pointer may be either \f(CW\*(C`char*\*(C'\fR or \f(CW\*(C`SV*\*(C'\fR, depending on the value of
\&\f(CWHeKLEN()\fR.  Can be assigned to.  The \f(CWHePV()\fR or \f(CWHeSVKEY()\fR macros are
usually preferable for finding the value of a key.
.RS 4
.Sp
.Vb 1
\& void*  HeKEY(HE* he)
.Ve
.RE
.RS 4
.RE
.ie n .IP """HeKLEN""" 4
.el .IP \f(CWHeKLEN\fR 4
.IX Xref "HeKLEN"
.IX Item "HeKLEN"
If this is negative, and amounts to \f(CW\*(C`HEf_SVKEY\*(C'\fR, it indicates the entry
holds an \f(CW\*(C`SV*\*(C'\fR key.  Otherwise, holds the actual length of the key.  Can
be assigned to.  The \f(CWHePV()\fR macro is usually preferable for finding key
lengths.
.RS 4
.Sp
.Vb 1
\& STRLEN  HeKLEN(HE* he)
.Ve
.RE
.RS 4
.RE
.ie n .IP """HePV""" 4
.el .IP \f(CWHePV\fR 4
.IX Xref "HePV"
.IX Item "HePV"
Returns the key slot of the hash entry as a \f(CW\*(C`char*\*(C'\fR value, doing any
necessary dereferencing of possibly \f(CW\*(C`SV*\*(C'\fR keys.  The length of the string
is placed in \f(CW\*(C`len\*(C'\fR (this is a macro, so do \fInot\fR use \f(CW&len\fR).  If you do
not care about what the length of the key is, you may use the global
variable \f(CW\*(C`PL_na\*(C'\fR, though this is rather less efficient than using a local
variable.  Remember though, that hash keys in perl are free to contain
embedded nulls, so using \f(CWstrlen()\fR or similar is not a good way to find
the length of hash keys.  This is very similar to the \f(CWSvPV()\fR macro
described elsewhere in this document.  See also \f(CW"HeUTF8"\fR.
.Sp
If you are using \f(CW\*(C`HePV\*(C'\fR to get values to pass to \f(CWnewSVpvn()\fR to create a
new SV, you should consider using \f(CW\*(C`newSVhek(HeKEY_hek(he))\*(C'\fR as it is more
efficient.
.RS 4
.Sp
.Vb 1
\& char*  HePV(HE* he, STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """HeSVKEY""" 4
.el .IP \f(CWHeSVKEY\fR 4
.IX Xref "HeSVKEY"
.IX Item "HeSVKEY"
Returns the key as an \f(CW\*(C`SV*\*(C'\fR, or \f(CW\*(C`NULL\*(C'\fR if the hash entry does not
contain an \f(CW\*(C`SV*\*(C'\fR key.
.RS 4
.Sp
.Vb 1
\& SV*  HeSVKEY(HE* he)
.Ve
.RE
.RS 4
.RE
.ie n .IP """HeSVKEY_force""" 4
.el .IP \f(CWHeSVKEY_force\fR 4
.IX Xref "HeSVKEY_force"
.IX Item "HeSVKEY_force"
Returns the key as an \f(CW\*(C`SV*\*(C'\fR.  Will create and return a temporary mortal
\&\f(CW\*(C`SV*\*(C'\fR if the hash entry contains only a \f(CW\*(C`char*\*(C'\fR key.
.RS 4
.Sp
.Vb 1
\& SV*  HeSVKEY_force(HE* he)
.Ve
.RE
.RS 4
.RE
.ie n .IP """HeSVKEY_set""" 4
.el .IP \f(CWHeSVKEY_set\fR 4
.IX Xref "HeSVKEY_set"
.IX Item "HeSVKEY_set"
Sets the key to a given \f(CW\*(C`SV*\*(C'\fR, taking care to set the appropriate flags to
indicate the presence of an \f(CW\*(C`SV*\*(C'\fR key, and returns the same
\&\f(CW\*(C`SV*\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& SV*  HeSVKEY_set(HE* he, SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """HeUTF8""" 4
.el .IP \f(CWHeUTF8\fR 4
.IX Xref "HeUTF8"
.IX Item "HeUTF8"
Returns whether the \f(CW\*(C`char *\*(C'\fR value returned by \f(CW\*(C`HePV\*(C'\fR is encoded in UTF\-8,
doing any necessary dereferencing of possibly \f(CW\*(C`SV*\*(C'\fR keys.  The value returned
will be 0 or non\-0, not necessarily 1 (or even a value with any low bits set),
so \fBdo not\fR blindly assign this to a \f(CW\*(C`bool\*(C'\fR variable, as \f(CW\*(C`bool\*(C'\fR may be a
typedef for \f(CW\*(C`char\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& U32  HeUTF8(HE* he)
.Ve
.RE
.RS 4
.RE
.ie n .IP """HeVAL""" 4
.el .IP \f(CWHeVAL\fR 4
.IX Xref "HeVAL"
.IX Item "HeVAL"
Returns the value slot (type \f(CW\*(C`SV*\*(C'\fR)
stored in the hash entry.  Can be assigned
to.
.Sp
.Vb 2
\&  SV *foo= HeVAL(hv);
\&  HeVAL(hv)= sv;
.Ve
.RS 4
.Sp
.Vb 1
\& SV*  HeVAL(HE* he)
.Ve
.RE
.RS 4
.RE
.ie n .IP """HV""" 4
.el .IP \f(CWHV\fR 4
.IX Item "HV"
Described in perlguts.
.ie n .IP """hv_assert""" 4
.el .IP \f(CWhv_assert\fR 4
.IX Xref "hv_assert"
.IX Item "hv_assert"
Check that a hash is in an internally consistent state.
.Sp
NOTE: \f(CW\*(C`hv_assert\*(C'\fR must be explicitly called as
\&\f(CW\*(C`Perl_hv_assert\*(C'\fR
with an \f(CW\*(C`aTHX_\*(C'\fR parameter.
.RS 4
.Sp
.Vb 1
\& void  Perl_hv_assert(pTHX_ HV *hv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """hv_bucket_ratio""" 4
.el .IP \f(CWhv_bucket_ratio\fR 4
.IX Xref "hv_bucket_ratio"
.IX Item "hv_bucket_ratio"
NOTE: \f(CW\*(C`hv_bucket_ratio\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
If the hash is tied dispatches through to the SCALAR tied method,
otherwise if the hash contains no keys returns 0, otherwise returns
a mortal sv containing a string specifying the number of used buckets,
followed by a slash, followed by the number of available buckets.
.Sp
This function is expensive, it must scan all of the buckets
to determine which are used, and the count is NOT cached.
In a large hash this could be a lot of buckets.
.RS 4
.Sp
.Vb 1
\& SV *  hv_bucket_ratio(HV *hv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """hv_clear""" 4
.el .IP \f(CWhv_clear\fR 4
.IX Xref "hv_clear"
.IX Item "hv_clear"
Frees all the elements of a hash, leaving it empty.
The XS equivalent of \f(CW\*(C`%hash = ()\*(C'\fR.  See also "hv_undef".
.Sp
See "av_clear" for a note about the hash possibly being invalid on
return.
.RS 4
.Sp
.Vb 1
\& void  hv_clear(HV *hv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """hv_clear_placeholders""" 4
.el .IP \f(CWhv_clear_placeholders\fR 4
.IX Xref "hv_clear_placeholders"
.IX Item "hv_clear_placeholders"
Clears any placeholders from a hash.  If a restricted hash has any of its keys
marked as readonly and the key is subsequently deleted, the key is not actually
deleted but is marked by assigning it a value of \f(CW&PL_sv_placeholder\fR.  This tags
it so it will be ignored by future operations such as iterating over the hash,
but will still allow the hash to have a value reassigned to the key at some
future point.  This function clears any such placeholder keys from the hash.
See \f(CWHash::Util::lock_keys()\fR for an example of its
use.
.RS 4
.Sp
.Vb 1
\& void  hv_clear_placeholders(HV *hv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """hv_copy_hints_hv""" 4
.el .IP \f(CWhv_copy_hints_hv\fR 4
.IX Xref "hv_copy_hints_hv"
.IX Item "hv_copy_hints_hv"
A specialised version of "newHVhv" for copying \f(CW\*(C`%^H\*(C'\fR.  \f(CW\*(C`ohv\*(C'\fR must be
a pointer to a hash (which may have \f(CW\*(C`%^H\*(C'\fR magic, but should be generally
non-magical), or \f(CW\*(C`NULL\*(C'\fR (interpreted as an empty hash).  The content
of \f(CW\*(C`ohv\*(C'\fR is copied to a new hash, which has the \f(CW\*(C`%^H\*(C'\fR\-specific magic
added to it.  A pointer to the new hash is returned.
.RS 4
.Sp
.Vb 1
\& HV *  hv_copy_hints_hv(HV * const ohv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """hv_delete""" 4
.el .IP \f(CWhv_delete\fR 4
.IX Xref "hv_delete"
.IX Item "hv_delete"
Deletes a key/value pair in the hash.  The value's SV is removed from
the hash, made mortal, and returned to the caller.  The absolute
value of \f(CW\*(C`klen\*(C'\fR is the length of the key.  If \f(CW\*(C`klen\*(C'\fR is negative the
key is assumed to be in UTF\-8\-encoded Unicode.  The \f(CW\*(C`flags\*(C'\fR value
will normally be zero; if set to \f(CW\*(C`G_DISCARD\*(C'\fR then \f(CW\*(C`NULL\*(C'\fR will be returned.
\&\f(CW\*(C`NULL\*(C'\fR will also be returned if the key is not found.
.RS 4
.Sp
.Vb 1
\& SV *  hv_delete(HV *hv, const char *key, I32 klen, I32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """hv_delete_ent""" 4
.el .IP \f(CWhv_delete_ent\fR 4
.IX Xref "hv_delete_ent"
.IX Item "hv_delete_ent"
Deletes a key/value pair in the hash.  The value SV is removed from the hash,
made mortal, and returned to the caller.  The \f(CW\*(C`flags\*(C'\fR value will normally be
zero; if set to \f(CW\*(C`G_DISCARD\*(C'\fR then \f(CW\*(C`NULL\*(C'\fR will be returned.  \f(CW\*(C`NULL\*(C'\fR will also
be returned if the key is not found.  \f(CW\*(C`hash\*(C'\fR can be a valid precomputed hash
value, or 0 to ask for it to be computed.
.RS 4
.Sp
.Vb 1
\& SV *  hv_delete_ent(HV *hv, SV *keysv, I32 flags, U32 hash)
.Ve
.RE
.RS 4
.RE
.ie n .IP """HvENAME""" 4
.el .IP \f(CWHvENAME\fR 4
.IX Xref "HvENAME"
.IX Item "HvENAME"
Returns the effective name of a stash, or NULL if there is none.  The
effective name represents a location in the symbol table where this stash
resides.  It is updated automatically when packages are aliased or deleted.
A stash that is no longer in the symbol table has no effective name.  This
name is preferable to \f(CW\*(C`HvNAME\*(C'\fR for use in MRO linearisations and isa
caches.
.RS 4
.Sp
.Vb 1
\& char*  HvENAME(HV* stash)
.Ve
.RE
.RS 4
.RE
.ie n .IP """HvENAMELEN""" 4
.el .IP \f(CWHvENAMELEN\fR 4
.IX Xref "HvENAMELEN"
.IX Item "HvENAMELEN"
Returns the length of the stash's effective name.
.RS 4
.Sp
.Vb 1
\& STRLEN  HvENAMELEN(HV *stash)
.Ve
.RE
.RS 4
.RE
.ie n .IP """HvENAMEUTF8""" 4
.el .IP \f(CWHvENAMEUTF8\fR 4
.IX Xref "HvENAMEUTF8"
.IX Item "HvENAMEUTF8"
Returns true if the effective name is in UTF\-8 encoding.
.RS 4
.Sp
.Vb 1
\& unsigned char  HvENAMEUTF8(HV *stash)
.Ve
.RE
.RS 4
.RE
.ie n .IP """hv_exists""" 4
.el .IP \f(CWhv_exists\fR 4
.IX Xref "hv_exists"
.IX Item "hv_exists"
Returns a boolean indicating whether the specified hash key exists.  The
absolute value of \f(CW\*(C`klen\*(C'\fR is the length of the key.  If \f(CW\*(C`klen\*(C'\fR is
negative the key is assumed to be in UTF\-8\-encoded Unicode.
.RS 4
.Sp
.Vb 1
\& bool  hv_exists(HV *hv, const char *key, I32 klen)
.Ve
.RE
.RS 4
.RE
.ie n .IP """hv_exists_ent""" 4
.el .IP \f(CWhv_exists_ent\fR 4
.IX Xref "hv_exists_ent"
.IX Item "hv_exists_ent"
Returns a boolean indicating whether
the specified hash key exists.  \f(CW\*(C`hash\*(C'\fR
can be a valid precomputed hash value, or 0 to ask for it to be
computed.
.RS 4
.Sp
.Vb 1
\& bool  hv_exists_ent(HV *hv, SV *keysv, U32 hash)
.Ve
.RE
.RS 4
.RE
.ie n .IP """hv_fetch""" 4
.el .IP \f(CWhv_fetch\fR 4
.IX Xref "hv_fetch"
.IX Item "hv_fetch"
Returns the SV which corresponds to the specified key in the hash.
The absolute value of \f(CW\*(C`klen\*(C'\fR is the length of the key.  If \f(CW\*(C`klen\*(C'\fR is
negative the key is assumed to be in UTF\-8\-encoded Unicode.  If
\&\f(CW\*(C`lval\*(C'\fR is set then the fetch will be part of a store.  This means that if
there is no value in the hash associated with the given key, then one is
created and a pointer to it is returned.  The \f(CW\*(C`SV*\*(C'\fR it points to can be
assigned to.  But always check that the
return value is non-null before dereferencing it to an \f(CW\*(C`SV*\*(C'\fR.
.Sp
See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more
information on how to use this function on tied hashes.
.RS 4
.Sp
.Vb 1
\& SV **  hv_fetch(HV *hv, const char *key, I32 klen, I32 lval)
.Ve
.RE
.RS 4
.RE
.ie n .IP """hv_fetch_ent""" 4
.el .IP \f(CWhv_fetch_ent\fR 4
.IX Xref "hv_fetch_ent"
.IX Item "hv_fetch_ent"
Returns the hash entry which corresponds to the specified key in the hash.
\&\f(CW\*(C`hash\*(C'\fR must be a valid precomputed hash number for the given \f(CW\*(C`key\*(C'\fR, or 0
if you want the function to compute it.  IF \f(CW\*(C`lval\*(C'\fR is set then the fetch
will be part of a store.  Make sure the return value is non-null before
accessing it.  The return value when \f(CW\*(C`hv\*(C'\fR is a tied hash is a pointer to a
static location, so be sure to make a copy of the structure if you need to
store it somewhere.
.Sp
See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more
information on how to use this function on tied hashes.
.RS 4
.Sp
.Vb 1
\& HE *  hv_fetch_ent(HV *hv, SV *keysv, I32 lval, U32 hash)
.Ve
.RE
.RS 4
.RE
.ie n .IP """hv_fetchs""" 4
.el .IP \f(CWhv_fetchs\fR 4
.IX Xref "hv_fetchs"
.IX Item "hv_fetchs"
Like \f(CW\*(C`hv_fetch\*(C'\fR, but takes a literal string instead of a
string/length pair.
.RS 4
.Sp
.Vb 1
\& SV**  hv_fetchs(HV* tb, "key", I32 lval)
.Ve
.RE
.RS 4
.RE
.ie n .IP """HvFILL""" 4
.el .IP \f(CWHvFILL\fR 4
.IX Xref "HvFILL"
.IX Item "HvFILL"
Returns the number of hash buckets that happen to be in use.
.Sp
As of perl 5.25 this function is used only for debugging
purposes, and the number of used hash buckets is not
in any way cached, thus this function can be costly
to execute as it must iterate over all the buckets in the
hash.
.RS 4
.Sp
.Vb 1
\& STRLEN  HvFILL(HV *const hv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """HvHasAUX""" 4
.el .IP \f(CWHvHasAUX\fR 4
.IX Xref "HvHasAUX"
.IX Item "HvHasAUX"
Returns true if the HV has a \f(CW\*(C`struct xpvhv_aux\*(C'\fR extension. Use this to check
whether it is valid to call \f(CWHvAUX()\fR.
.RS 4
.Sp
.Vb 1
\& bool  HvHasAUX(HV *const hv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """hv_iterinit""" 4
.el .IP \f(CWhv_iterinit\fR 4
.IX Xref "hv_iterinit"
.IX Item "hv_iterinit"
Prepares a starting point to traverse a hash table.  Returns the number of
keys in the hash, including placeholders (i.e. the same as \f(CWHvTOTALKEYS(hv)\fR).
The return value is currently only meaningful for hashes without tie magic.
.Sp
NOTE: Before version 5.004_65, \f(CW\*(C`hv_iterinit\*(C'\fR used to return the number of
hash buckets that happen to be in use.  If you still need that esoteric
value, you can get it through the macro \f(CWHvFILL(hv)\fR.
.RS 4
.Sp
.Vb 1
\& I32  hv_iterinit(HV *hv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """hv_iterkey""" 4
.el .IP \f(CWhv_iterkey\fR 4
.IX Xref "hv_iterkey"
.IX Item "hv_iterkey"
Returns the key from the current position of the hash iterator.  See
\&\f(CW"hv_iterinit"\fR.
.RS 4
.Sp
.Vb 1
\& char *  hv_iterkey(HE *entry, I32 *retlen)
.Ve
.RE
.RS 4
.RE
.ie n .IP """hv_iterkeysv""" 4
.el .IP \f(CWhv_iterkeysv\fR 4
.IX Xref "hv_iterkeysv"
.IX Item "hv_iterkeysv"
Returns the key as an \f(CW\*(C`SV*\*(C'\fR from the current position of the hash
iterator.  The return value will always be a mortal copy of the key.  Also
see \f(CW"hv_iterinit"\fR.
.RS 4
.Sp
.Vb 1
\& SV *  hv_iterkeysv(HE *entry)
.Ve
.RE
.RS 4
.RE
.ie n .IP """hv_iternext""" 4
.el .IP \f(CWhv_iternext\fR 4
.IX Xref "hv_iternext"
.IX Item "hv_iternext"
Returns entries from a hash iterator.  See \f(CW"hv_iterinit"\fR.
.Sp
You may call \f(CW\*(C`hv_delete\*(C'\fR or \f(CW\*(C`hv_delete_ent\*(C'\fR on the hash entry that the
iterator currently points to, without losing your place or invalidating your
iterator.  Note that in this case the current entry is deleted from the hash
with your iterator holding the last reference to it.  Your iterator is flagged
to free the entry on the next call to \f(CW\*(C`hv_iternext\*(C'\fR, so you must not discard
your iterator immediately else the entry will leak \- call \f(CW\*(C`hv_iternext\*(C'\fR to
trigger the resource deallocation.
.RS 4
.Sp
.Vb 1
\& HE *  hv_iternext(HV *hv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """hv_iternext_flags""" 4
.el .IP \f(CWhv_iternext_flags\fR 4
.IX Xref "hv_iternext_flags"
.IX Item "hv_iternext_flags"
NOTE: \f(CW\*(C`hv_iternext_flags\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Returns entries from a hash iterator.  See \f(CW"hv_iterinit"\fR and
\&\f(CW"hv_iternext"\fR.
The \f(CW\*(C`flags\*(C'\fR value will normally be zero; if \f(CW\*(C`HV_ITERNEXT_WANTPLACEHOLDERS\*(C'\fR is
set the placeholders keys (for restricted hashes) will be returned in addition
to normal keys.  By default placeholders are automatically skipped over.
Currently a placeholder is implemented with a value that is
\&\f(CW&PL_sv_placeholder\fR.  Note that the implementation of placeholders and
restricted hashes may change, and the implementation currently is
insufficiently abstracted for any change to be tidy.
.RS 4
.Sp
.Vb 1
\& HE *  hv_iternext_flags(HV *hv, I32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """hv_iternextsv""" 4
.el .IP \f(CWhv_iternextsv\fR 4
.IX Xref "hv_iternextsv"
.IX Item "hv_iternextsv"
Performs an \f(CW\*(C`hv_iternext\*(C'\fR, \f(CW\*(C`hv_iterkey\*(C'\fR, and \f(CW\*(C`hv_iterval\*(C'\fR in one
operation.
.RS 4
.Sp
.Vb 1
\& SV *  hv_iternextsv(HV *hv, char **key, I32 *retlen)
.Ve
.RE
.RS 4
.RE
.ie n .IP """hv_iterval""" 4
.el .IP \f(CWhv_iterval\fR 4
.IX Xref "hv_iterval"
.IX Item "hv_iterval"
Returns the value from the current position of the hash iterator.  See
\&\f(CW"hv_iterkey"\fR.
.RS 4
.Sp
.Vb 1
\& SV *  hv_iterval(HV *hv, HE *entry)
.Ve
.RE
.RS 4
.RE
.ie n .IP """hv_ksplit""" 4
.el .IP \f(CWhv_ksplit\fR 4
.IX Xref "hv_ksplit"
.IX Item "hv_ksplit"
Attempt to grow the hash \f(CW\*(C`hv\*(C'\fR so it has at least \f(CW\*(C`newmax\*(C'\fR buckets available.
Perl chooses the actual number for its convenience.
.Sp
This is the same as doing the following in Perl code:
.Sp
.Vb 1
\& keys %hv = newmax;
.Ve
.RS 4
.Sp
.Vb 1
\& void  hv_ksplit(HV *hv, IV newmax)
.Ve
.RE
.RS 4
.RE
.ie n .IP """hv_magic""" 4
.el .IP \f(CWhv_magic\fR 4
.IX Xref "hv_magic"
.IX Item "hv_magic"
Adds magic to a hash.  See \f(CW"sv_magic"\fR.
.RS 4
.Sp
.Vb 1
\& void  hv_magic(HV *hv, GV *gv, int how)
.Ve
.RE
.RS 4
.RE
.ie n .IP """HvNAME""" 4
.el .IP \f(CWHvNAME\fR 4
.IX Xref "HvNAME"
.IX Item "HvNAME"
Returns the package name of a stash, or \f(CW\*(C`NULL\*(C'\fR if \f(CW\*(C`stash\*(C'\fR isn't a stash.
See \f(CW"SvSTASH"\fR, \f(CW"CvSTASH"\fR.
.RS 4
.Sp
.Vb 1
\& char*  HvNAME(HV* stash)
.Ve
.RE
.RS 4
.RE
.ie n .IP """HvNAMELEN""" 4
.el .IP \f(CWHvNAMELEN\fR 4
.IX Xref "HvNAMELEN"
.IX Item "HvNAMELEN"
Returns the length of the stash's name.
.Sp
Disfavored forms of HvNAME and HvNAMELEN; suppress mention of them
.RS 4
.Sp
.Vb 1
\& STRLEN  HvNAMELEN(HV *stash)
.Ve
.RE
.RS 4
.RE
.ie n .IP """hv_name_set""" 4
.el .IP \f(CWhv_name_set\fR 4
.IX Item "hv_name_set"
.PD 0
.ie n .IP """hv_name_sets""" 4
.el .IP \f(CWhv_name_sets\fR 4
.IX Xref "hv_name_set hv_name_sets"
.IX Item "hv_name_sets"
.PD
These each set the name of stash \f(CW\*(C`hv\*(C'\fR to the specified name.
.Sp
They differ only in how the name is specified.
.Sp
In \f(CW\*(C`hv_name_sets\*(C'\fR, the name is a literal C string, enclosed in double quotes.
.Sp
In \f(CW\*(C`hv_name_set\*(C'\fR, \f(CW\*(C`name\*(C'\fR points to the first byte of the name, and an
additional parameter, \f(CW\*(C`len\*(C'\fR, specifies its length in bytes.  Hence, the name
may contain embedded-NUL characters.
.Sp
If \f(CW\*(C`SVf_UTF8\*(C'\fR is set in \f(CW\*(C`flags\*(C'\fR, the name is treated as being in UTF\-8;
otherwise not.
.Sp
If \f(CW\*(C`HV_NAME_SETALL\*(C'\fR is set in \f(CW\*(C`flags\*(C'\fR, both the name and the effective name
are set.
.RS 4
.Sp
.Vb 2
\& void  hv_name_set (HV *hv, const char *name, U32 len, U32 flags)
\& void  hv_name_sets(HV *hv, "name", U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """HvNAMEUTF8""" 4
.el .IP \f(CWHvNAMEUTF8\fR 4
.IX Xref "HvNAMEUTF8"
.IX Item "HvNAMEUTF8"
Returns true if the name is in UTF\-8 encoding.
.RS 4
.Sp
.Vb 1
\& unsigned char  HvNAMEUTF8(HV *stash)
.Ve
.RE
.RS 4
.RE
.ie n .IP """hv_scalar""" 4
.el .IP \f(CWhv_scalar\fR 4
.IX Xref "hv_scalar"
.IX Item "hv_scalar"
Evaluates the hash in scalar context and returns the result.
.Sp
When the hash is tied dispatches through to the SCALAR method,
otherwise returns a mortal SV containing the number of keys
in the hash.
.Sp
Note, prior to 5.25 this function returned what is now
returned by the \fBhv_bucket_ratio()\fR function.
.RS 4
.Sp
.Vb 1
\& SV *  hv_scalar(HV *hv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """hv_store""" 4
.el .IP \f(CWhv_store\fR 4
.IX Item "hv_store"
.PD 0
.ie n .IP """hv_stores""" 4
.el .IP \f(CWhv_stores\fR 4
.IX Xref "hv_store hv_stores"
.IX Item "hv_stores"
.PD
These each store SV \f(CW\*(C`val\*(C'\fR with the specified key in hash \f(CW\*(C`hv\*(C'\fR, returning NULL
if the operation failed or if the value did not need to be actually stored
within the hash (as in the case of tied hashes).  Otherwise it can be
dereferenced to get the original \f(CW\*(C`SV*\*(C'\fR.
.Sp
They differ only in how the hash key is specified.
.Sp
In \f(CW\*(C`hv_stores\*(C'\fR, the key is a C language string literal, enclosed in double
quotes.  It is never treated as being in UTF\-8.
.Sp
In \f(CW\*(C`hv_store\*(C'\fR, \f(CW\*(C`key\*(C'\fR is either NULL or points to the first byte of the string
specifying the key, and its length in bytes is given by the absolute value of
an additional parameter, \f(CW\*(C`klen\*(C'\fR.  A NULL key indicates the key is to be
treated as \f(CW\*(C`undef\*(C'\fR, and \f(CW\*(C`klen\*(C'\fR is ignored; otherwise the key string may
contain embedded-NUL bytes.  If \f(CW\*(C`klen\*(C'\fR is negative, the string is treated as
being encoded in UTF\-8; otherwise not.
.Sp
\&\f(CW\*(C`hv_store\*(C'\fR has another extra parameter, \f(CW\*(C`hash\*(C'\fR, a precomputed hash of the key
string, or zero if it has not been precomputed.  This parameter is omitted from
\&\f(CW\*(C`hv_stores\*(C'\fR, as it is computed automatically at compile time.
.Sp
If <hv> is NULL, NULL is returned and no action is taken.
.Sp
If \f(CW\*(C`val\*(C'\fR is NULL, it is treated as being \f(CW\*(C`undef\*(C'\fR; otherwise the caller is
responsible for suitably incrementing the reference count of \f(CW\*(C`val\*(C'\fR before
the call, and decrementing it if the function returned \f(CW\*(C`NULL\*(C'\fR.  Effectively
a successful \f(CW\*(C`hv_store\*(C'\fR takes ownership of one reference to \f(CW\*(C`val\*(C'\fR.  This is
usually what you want; a newly created SV has a reference count of one, so
if all your code does is create SVs then store them in a hash, \f(CW\*(C`hv_store\*(C'\fR
will own the only reference to the new SV, and your code doesn't need to do
anything further to tidy up.
.Sp
\&\f(CW\*(C`hv_store\*(C'\fR is not implemented as a call to "\f(CW\*(C`hv_store_ent\*(C'\fR", and does not
create a temporary SV for the key, so if your key data is not already in SV
form then use \f(CW\*(C`hv_store\*(C'\fR in preference to \f(CW\*(C`hv_store_ent\*(C'\fR.
.Sp
See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more
information on how to use this function on tied hashes.
.RS 4
.Sp
.Vb 3
\& SV **  hv_store (HV *hv, const char *key, I32 klen, SV *val,
\&                  U32 hash)
\& SV **  hv_stores(HV *hv, "key", SV *val)
.Ve
.RE
.RS 4
.RE
.ie n .IP """hv_store_ent""" 4
.el .IP \f(CWhv_store_ent\fR 4
.IX Xref "hv_store_ent"
.IX Item "hv_store_ent"
Stores \f(CW\*(C`val\*(C'\fR in a hash.  The hash key is specified as \f(CW\*(C`key\*(C'\fR.  The \f(CW\*(C`hash\*(C'\fR
parameter is the precomputed hash value; if it is zero then Perl will
compute it.  The return value is the new hash entry so created.  It will be
\&\f(CW\*(C`NULL\*(C'\fR if the operation failed or if the value did not need to be actually
stored within the hash (as in the case of tied hashes).  Otherwise the
contents of the return value can be accessed using the \f(CW\*(C`He?\*(C'\fR macros
described here.  Note that the caller is responsible for suitably
incrementing the reference count of \f(CW\*(C`val\*(C'\fR before the call, and
decrementing it if the function returned NULL.  Effectively a successful
\&\f(CW\*(C`hv_store_ent\*(C'\fR takes ownership of one reference to \f(CW\*(C`val\*(C'\fR.  This is
usually what you want; a newly created SV has a reference count of one, so
if all your code does is create SVs then store them in a hash, \f(CW\*(C`hv_store\*(C'\fR
will own the only reference to the new SV, and your code doesn't need to do
anything further to tidy up.  Note that \f(CW\*(C`hv_store_ent\*(C'\fR only reads the \f(CW\*(C`key\*(C'\fR;
unlike \f(CW\*(C`val\*(C'\fR it does not take ownership of it, so maintaining the correct
reference count on \f(CW\*(C`key\*(C'\fR is entirely the caller's responsibility.  The reason
it does not take ownership, is that \f(CW\*(C`key\*(C'\fR is not used after this function
returns, and so can be freed immediately.  \f(CW\*(C`hv_store\*(C'\fR
is not implemented as a call to \f(CW\*(C`hv_store_ent\*(C'\fR, and does not create a temporary
SV for the key, so if your key data is not already in SV form then use
\&\f(CW\*(C`hv_store\*(C'\fR in preference to \f(CW\*(C`hv_store_ent\*(C'\fR.
.Sp
See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more
information on how to use this function on tied hashes.
.RS 4
.Sp
.Vb 1
\& HE *  hv_store_ent(HV *hv, SV *key, SV *val, U32 hash)
.Ve
.RE
.RS 4
.RE
.ie n .IP """hv_undef""" 4
.el .IP \f(CWhv_undef\fR 4
.IX Xref "hv_undef"
.IX Item "hv_undef"
Undefines the hash.  The XS equivalent of \f(CWundef(%hash)\fR.
.Sp
As well as freeing all the elements of the hash (like \f(CWhv_clear()\fR), this
also frees any auxiliary data and storage associated with the hash.
.Sp
See "av_clear" for a note about the hash possibly being invalid on
return.
.RS 4
.Sp
.Vb 1
\& void  hv_undef(HV *hv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newHV""" 4
.el .IP \f(CWnewHV\fR 4
.IX Xref "newHV"
.IX Item "newHV"
Creates a new HV.  The reference count is set to 1.
.RS 4
.Sp
.Vb 1
\& HV *  newHV()
.Ve
.RE
.RS 4
.RE
.ie n .IP """newHVhv""" 4
.el .IP \f(CWnewHVhv\fR 4
.IX Xref "newHVhv"
.IX Item "newHVhv"
The content of \f(CW\*(C`ohv\*(C'\fR is copied to a new hash.  A pointer to the new hash is
returned.
.RS 4
.Sp
.Vb 1
\& HV *  newHVhv(HV *hv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """Nullhv""" 4
.el .IP \f(CWNullhv\fR 4
.IX Xref "Nullhv"
.IX Item "Nullhv"
\&\f(CW\*(C`\fR\f(CBDEPRECATED!\fR\f(CW\*(C'\fR  It is planned to remove \f(CW\*(C`Nullhv\*(C'\fR
from a future release of Perl.  Do not use it for
new code; remove it from existing code.
.Sp
Null HV pointer.
.Sp
(deprecated \- use \f(CW\*(C`(HV *)NULL\*(C'\fR instead)
.ie n .IP """PERL_HASH""" 4
.el .IP \f(CWPERL_HASH\fR 4
.IX Item "PERL_HASH"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& void  PERL_HASH(U32 hash, char *key, STRLEN klen)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PL_modglobal""" 4
.el .IP \f(CWPL_modglobal\fR 4
.IX Xref "PL_modglobal"
.IX Item "PL_modglobal"
\&\f(CW\*(C`PL_modglobal\*(C'\fR is a general purpose, interpreter global HV for use by
extensions that need to keep information on a per-interpreter basis.
In a pinch, it can also be used as a symbol table for extensions
to share data among each other.  It is a good idea to use keys
prefixed by the package name of the extension that owns the data.
.Sp
On threaded perls, each thread has an independent copy of this variable;
each initialized at creation time with the current value of the creating
thread's copy.
.RS 4
.Sp
.Vb 1
\& HV*  PL_modglobal
.Ve
.RE
.RS 4
.RE
.SH Input/Output
.IX Header "Input/Output"
.ie n .IP """do_close""" 4
.el .IP \f(CWdo_close\fR 4
.IX Xref "do_close"
.IX Item "do_close"
Close an I/O stream.  This implements Perl "\f(CW\*(C`close\*(C'\fR" in perlfunc.
.Sp
\&\f(CW\*(C`gv\*(C'\fR is the glob associated with the stream.
.Sp
\&\f(CW\*(C`is_explict\*(C'\fR is \f(CW\*(C`true\*(C'\fR if this is an explicit close of the stream; \f(CW\*(C`false\*(C'\fR
if it is part of another operation, such as closing a pipe (which involves
implicitly closing both ends).
.Sp
Returns \f(CW\*(C`true\*(C'\fR if successful; otherwise returns \f(CW\*(C`false\*(C'\fR and sets \f(CW\*(C`errno\*(C'\fR to
indicate the cause.
.RS 4
.Sp
.Vb 1
\& bool  do_close(GV *gv, bool is_explicit)
.Ve
.RE
.RS 4
.RE
.ie n .IP """IoDIRP""" 4
.el .IP \f(CWIoDIRP\fR 4
.IX Item "IoDIRP"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& DIR *  IoDIRP(IO *io)
.Ve
.RE
.RS 4
.RE
.ie n .IP """IOf_FLUSH""" 4
.el .IP \f(CWIOf_FLUSH\fR 4
.IX Item "IOf_FLUSH"
Described in perlguts.
.ie n .IP """IoFLAGS""" 4
.el .IP \f(CWIoFLAGS\fR 4
.IX Item "IoFLAGS"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& U8  IoFLAGS(IO *io)
.Ve
.RE
.RS 4
.RE
.ie n .IP """IOf_UNTAINT""" 4
.el .IP \f(CWIOf_UNTAINT\fR 4
.IX Item "IOf_UNTAINT"
Described in perlguts.
.ie n .IP """IoIFP""" 4
.el .IP \f(CWIoIFP\fR 4
.IX Item "IoIFP"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& PerlIO *  IoIFP(IO *io)
.Ve
.RE
.RS 4
.RE
.ie n .IP """IoOFP""" 4
.el .IP \f(CWIoOFP\fR 4
.IX Item "IoOFP"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& PerlIO *  IoOFP(IO *io)
.Ve
.RE
.RS 4
.RE
.ie n .IP """IoTYPE""" 4
.el .IP \f(CWIoTYPE\fR 4
.IX Item "IoTYPE"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& char  IoTYPE(IO *io)
.Ve
.RE
.RS 4
.RE
.ie n .IP """my_chsize""" 4
.el .IP \f(CWmy_chsize\fR 4
.IX Xref "my_chsize"
.IX Item "my_chsize"
The C library \fBchsize\fR\|(3) if available, or a Perl implementation of it.
.RS 4
.Sp
.Vb 1
\& I32  my_chsize(int fd, Off_t length)
.Ve
.RE
.RS 4
.RE
.ie n .IP """my_dirfd""" 4
.el .IP \f(CWmy_dirfd\fR 4
.IX Xref "my_dirfd"
.IX Item "my_dirfd"
The C library \f(CWdirfd(3)\fR if available, or a Perl implementation of it, or die
if not easily emulatable.
.RS 4
.Sp
.Vb 1
\& int  my_dirfd(DIR *dir)
.Ve
.RE
.RS 4
.RE
.ie n .IP """my_pclose""" 4
.el .IP \f(CWmy_pclose\fR 4
.IX Xref "my_pclose"
.IX Item "my_pclose"
A wrapper for the C library \fBpclose\fR\|(3).  Don't use the latter, as the Perl
version knows things that interact with the rest of the perl interpreter.
.RS 4
.Sp
.Vb 1
\& I32  my_pclose(PerlIO *ptr)
.Ve
.RE
.RS 4
.RE
.ie n .IP """my_popen""" 4
.el .IP \f(CWmy_popen\fR 4
.IX Xref "my_popen"
.IX Item "my_popen"
A wrapper for the C library \fBpopen\fR\|(3).  Don't use the latter, as the Perl
version knows things that interact with the rest of the perl interpreter.
.RS 4
.Sp
.Vb 1
\& PerlIO *  my_popen(const char *cmd, const char *mode)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newIO""" 4
.el .IP \f(CWnewIO\fR 4
.IX Xref "newIO"
.IX Item "newIO"
Create a new IO, setting the reference count to 1.
.RS 4
.Sp
.Vb 1
\& IO *  newIO()
.Ve
.RE
.RS 4
.RE
.ie n .IP """PERL_FLUSHALL_FOR_CHILD""" 4
.el .IP \f(CWPERL_FLUSHALL_FOR_CHILD\fR 4
.IX Xref "PERL_FLUSHALL_FOR_CHILD"
.IX Item "PERL_FLUSHALL_FOR_CHILD"
This defines a way to flush all output buffers.  This may be a
performance issue, so we allow people to disable it.  Also, if
we are using stdio, there are broken implementations of fflush(NULL)
out there, Solaris being the most prominent.
.RS 4
.Sp
.Vb 1
\& void  PERL_FLUSHALL_FOR_CHILD
.Ve
.RE
.RS 4
.RE
.ie n .IP """PerlIO_apply_layers""" 4
.el .IP \f(CWPerlIO_apply_layers\fR 4
.IX Item "PerlIO_apply_layers"
.PD 0
.ie n .IP """PerlIO_binmode""" 4
.el .IP \f(CWPerlIO_binmode\fR 4
.IX Item "PerlIO_binmode"
.ie n .IP """PerlIO_canset_cnt""" 4
.el .IP \f(CWPerlIO_canset_cnt\fR 4
.IX Item "PerlIO_canset_cnt"
.ie n .IP """PerlIO_clearerr""" 4
.el .IP \f(CWPerlIO_clearerr\fR 4
.IX Item "PerlIO_clearerr"
.ie n .IP """PerlIO_close""" 4
.el .IP \f(CWPerlIO_close\fR 4
.IX Item "PerlIO_close"
.ie n .IP """PerlIO_debug""" 4
.el .IP \f(CWPerlIO_debug\fR 4
.IX Item "PerlIO_debug"
.ie n .IP """PerlIO_eof""" 4
.el .IP \f(CWPerlIO_eof\fR 4
.IX Item "PerlIO_eof"
.ie n .IP """PerlIO_error""" 4
.el .IP \f(CWPerlIO_error\fR 4
.IX Item "PerlIO_error"
.ie n .IP """PerlIO_exportFILE""" 4
.el .IP \f(CWPerlIO_exportFILE\fR 4
.IX Item "PerlIO_exportFILE"
.ie n .IP """PerlIO_fast_gets""" 4
.el .IP \f(CWPerlIO_fast_gets\fR 4
.IX Item "PerlIO_fast_gets"
.ie n .IP """PerlIO_fdopen""" 4
.el .IP \f(CWPerlIO_fdopen\fR 4
.IX Item "PerlIO_fdopen"
.ie n .IP """PerlIO_fileno""" 4
.el .IP \f(CWPerlIO_fileno\fR 4
.IX Item "PerlIO_fileno"
.ie n .IP """PerlIO_fill""" 4
.el .IP \f(CWPerlIO_fill\fR 4
.IX Item "PerlIO_fill"
.ie n .IP """PerlIO_findFILE""" 4
.el .IP \f(CWPerlIO_findFILE\fR 4
.IX Item "PerlIO_findFILE"
.ie n .IP """PerlIO_flush""" 4
.el .IP \f(CWPerlIO_flush\fR 4
.IX Item "PerlIO_flush"
.ie n .IP """PerlIO_get_base""" 4
.el .IP \f(CWPerlIO_get_base\fR 4
.IX Item "PerlIO_get_base"
.ie n .IP """PerlIO_get_bufsiz""" 4
.el .IP \f(CWPerlIO_get_bufsiz\fR 4
.IX Item "PerlIO_get_bufsiz"
.ie n .IP """PerlIO_get_cnt""" 4
.el .IP \f(CWPerlIO_get_cnt\fR 4
.IX Item "PerlIO_get_cnt"
.ie n .IP """PerlIO_get_ptr""" 4
.el .IP \f(CWPerlIO_get_ptr\fR 4
.IX Item "PerlIO_get_ptr"
.ie n .IP """PerlIO_getc""" 4
.el .IP \f(CWPerlIO_getc\fR 4
.IX Item "PerlIO_getc"
.ie n .IP """PerlIO_getpos""" 4
.el .IP \f(CWPerlIO_getpos\fR 4
.IX Item "PerlIO_getpos"
.ie n .IP """PerlIO_has_base""" 4
.el .IP \f(CWPerlIO_has_base\fR 4
.IX Item "PerlIO_has_base"
.ie n .IP """PerlIO_has_cntptr""" 4
.el .IP \f(CWPerlIO_has_cntptr\fR 4
.IX Item "PerlIO_has_cntptr"
.ie n .IP """PerlIO_importFILE""" 4
.el .IP \f(CWPerlIO_importFILE\fR 4
.IX Item "PerlIO_importFILE"
.ie n .IP """PerlIO_open""" 4
.el .IP \f(CWPerlIO_open\fR 4
.IX Item "PerlIO_open"
.ie n .IP """PerlIO_printf""" 4
.el .IP \f(CWPerlIO_printf\fR 4
.IX Item "PerlIO_printf"
.ie n .IP """PerlIO_putc""" 4
.el .IP \f(CWPerlIO_putc\fR 4
.IX Item "PerlIO_putc"
.ie n .IP """PerlIO_puts""" 4
.el .IP \f(CWPerlIO_puts\fR 4
.IX Item "PerlIO_puts"
.ie n .IP """PerlIO_read""" 4
.el .IP \f(CWPerlIO_read\fR 4
.IX Item "PerlIO_read"
.ie n .IP """PerlIO_releaseFILE""" 4
.el .IP \f(CWPerlIO_releaseFILE\fR 4
.IX Item "PerlIO_releaseFILE"
.ie n .IP """PerlIO_reopen""" 4
.el .IP \f(CWPerlIO_reopen\fR 4
.IX Item "PerlIO_reopen"
.ie n .IP """PerlIO_rewind""" 4
.el .IP \f(CWPerlIO_rewind\fR 4
.IX Item "PerlIO_rewind"
.ie n .IP """PerlIO_seek""" 4
.el .IP \f(CWPerlIO_seek\fR 4
.IX Item "PerlIO_seek"
.ie n .IP """PerlIO_set_cnt""" 4
.el .IP \f(CWPerlIO_set_cnt\fR 4
.IX Item "PerlIO_set_cnt"
.ie n .IP """PerlIO_set_ptrcnt""" 4
.el .IP \f(CWPerlIO_set_ptrcnt\fR 4
.IX Item "PerlIO_set_ptrcnt"
.ie n .IP """PerlIO_setlinebuf""" 4
.el .IP \f(CWPerlIO_setlinebuf\fR 4
.IX Item "PerlIO_setlinebuf"
.ie n .IP """PerlIO_setpos""" 4
.el .IP \f(CWPerlIO_setpos\fR 4
.IX Item "PerlIO_setpos"
.ie n .IP """PerlIO_stderr""" 4
.el .IP \f(CWPerlIO_stderr\fR 4
.IX Item "PerlIO_stderr"
.ie n .IP """PerlIO_stdin""" 4
.el .IP \f(CWPerlIO_stdin\fR 4
.IX Item "PerlIO_stdin"
.ie n .IP """PerlIO_stdout""" 4
.el .IP \f(CWPerlIO_stdout\fR 4
.IX Item "PerlIO_stdout"
.ie n .IP """PerlIO_stdoutf""" 4
.el .IP \f(CWPerlIO_stdoutf\fR 4
.IX Item "PerlIO_stdoutf"
.ie n .IP """PerlIO_tell""" 4
.el .IP \f(CWPerlIO_tell\fR 4
.IX Item "PerlIO_tell"
.ie n .IP """PerlIO_ungetc""" 4
.el .IP \f(CWPerlIO_ungetc\fR 4
.IX Item "PerlIO_ungetc"
.ie n .IP """PerlIO_unread""" 4
.el .IP \f(CWPerlIO_unread\fR 4
.IX Item "PerlIO_unread"
.ie n .IP """PerlIO_vprintf""" 4
.el .IP \f(CWPerlIO_vprintf\fR 4
.IX Item "PerlIO_vprintf"
.ie n .IP """PerlIO_write""" 4
.el .IP \f(CWPerlIO_write\fR 4
.IX Item "PerlIO_write"
.PD
Described in perlapio.
.RS 4
.Sp
.Vb 10
\& int        PerlIO_apply_layers(PerlIO *f, const char *mode,
\&                                const char *layers)
\& int        PerlIO_binmode     (PerlIO *f, int ptype, int imode,
\&                                const char *layers)
\& int        PerlIO_canset_cnt  (PerlIO *f)
\& void       PerlIO_clearerr    (PerlIO *f)
\& int        PerlIO_close       (PerlIO *f)
\& void       PerlIO_debug       (const char *fmt, ...)
\& int        PerlIO_eof         (PerlIO *f)
\& int        PerlIO_error       (PerlIO *f)
\& FILE *     PerlIO_exportFILE  (PerlIO *f, const char *mode)
\& int        PerlIO_fast_gets   (PerlIO *f)
\& PerlIO *   PerlIO_fdopen      (int fd, const char *mode)
\& int        PerlIO_fileno      (PerlIO *f)
\& int        PerlIO_fill        (PerlIO *f)
\& FILE *     PerlIO_findFILE    (PerlIO *f)
\& int        PerlIO_flush       (PerlIO *f)
\& STDCHAR *  PerlIO_get_base    (PerlIO *f)
\& SSize_t    PerlIO_get_bufsiz  (PerlIO *f)
\& SSize_t    PerlIO_get_cnt     (PerlIO *f)
\& STDCHAR *  PerlIO_get_ptr     (PerlIO *f)
\& int        PerlIO_getc        (PerlIO *d)
\& int        PerlIO_getpos      (PerlIO *f, SV *save)
\& int        PerlIO_has_base    (PerlIO *f)
\& int        PerlIO_has_cntptr  (PerlIO *f)
\& PerlIO *   PerlIO_importFILE  (FILE *stdio, const char *mode)
\& PerlIO *   PerlIO_open        (const char *path, const char *mode)
\& int        PerlIO_printf      (PerlIO *f, const char *fmt, ...)
\& int        PerlIO_putc        (PerlIO *f, int ch)
\& int        PerlIO_puts        (PerlIO *f, const char *string)
\& SSize_t    PerlIO_read        (PerlIO *f, void *vbuf,
\&                                Size_t count)
\& void       PerlIO_releaseFILE (PerlIO *f, FILE *stdio)
\& PerlIO *   PerlIO_reopen      (const char *path, const char *mode,
\&                                PerlIO *old)
\& void       PerlIO_rewind      (PerlIO *f)
\& int        PerlIO_seek        (PerlIO *f, Off_t offset,
\&                                int whence)
\& void       PerlIO_set_cnt     (PerlIO *f, SSize_t cnt)
\& void       PerlIO_set_ptrcnt  (PerlIO *f, STDCHAR *ptr,
\&                                SSize_t cnt)
\& void       PerlIO_setlinebuf  (PerlIO *f)
\& int        PerlIO_setpos      (PerlIO *f, SV *saved)
\& PerlIO *   PerlIO_stderr      (PerlIO *f, const char *mode,
\&                                const char *layers)
\& PerlIO *   PerlIO_stdin       (PerlIO *f, const char *mode,
\&                                const char *layers)
\& PerlIO *   PerlIO_stdout      (PerlIO *f, const char *mode,
\&                                const char *layers)
\& int        PerlIO_stdoutf     (const char *fmt, ...)
\& Off_t      PerlIO_tell        (PerlIO *f)
\& int        PerlIO_ungetc      (PerlIO *f, int ch)
\& SSize_t    PerlIO_unread      (PerlIO *f, const void *vbuf,
\&                                Size_t count)
\& int        PerlIO_vprintf     (PerlIO *f, const char *fmt,
\&                                va_list args)
\& SSize_t    PerlIO_write       (PerlIO *f, const void *vbuf,
\&                                Size_t count)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PERLIO_F_APPEND""" 4
.el .IP \f(CWPERLIO_F_APPEND\fR 4
.IX Item "PERLIO_F_APPEND"
.PD 0
.ie n .IP """PERLIO_F_CANREAD""" 4
.el .IP \f(CWPERLIO_F_CANREAD\fR 4
.IX Item "PERLIO_F_CANREAD"
.ie n .IP """PERLIO_F_CANWRITE""" 4
.el .IP \f(CWPERLIO_F_CANWRITE\fR 4
.IX Item "PERLIO_F_CANWRITE"
.ie n .IP """PERLIO_F_CRLF""" 4
.el .IP \f(CWPERLIO_F_CRLF\fR 4
.IX Item "PERLIO_F_CRLF"
.ie n .IP """PERLIO_F_EOF""" 4
.el .IP \f(CWPERLIO_F_EOF\fR 4
.IX Item "PERLIO_F_EOF"
.ie n .IP """PERLIO_F_ERROR""" 4
.el .IP \f(CWPERLIO_F_ERROR\fR 4
.IX Item "PERLIO_F_ERROR"
.ie n .IP """PERLIO_F_FASTGETS""" 4
.el .IP \f(CWPERLIO_F_FASTGETS\fR 4
.IX Item "PERLIO_F_FASTGETS"
.ie n .IP """PERLIO_F_LINEBUF""" 4
.el .IP \f(CWPERLIO_F_LINEBUF\fR 4
.IX Item "PERLIO_F_LINEBUF"
.ie n .IP """PERLIO_F_OPEN""" 4
.el .IP \f(CWPERLIO_F_OPEN\fR 4
.IX Item "PERLIO_F_OPEN"
.ie n .IP """PERLIO_F_RDBUF""" 4
.el .IP \f(CWPERLIO_F_RDBUF\fR 4
.IX Item "PERLIO_F_RDBUF"
.ie n .IP """PERLIO_F_TEMP""" 4
.el .IP \f(CWPERLIO_F_TEMP\fR 4
.IX Item "PERLIO_F_TEMP"
.ie n .IP """PERLIO_F_TRUNCATE""" 4
.el .IP \f(CWPERLIO_F_TRUNCATE\fR 4
.IX Item "PERLIO_F_TRUNCATE"
.ie n .IP """PERLIO_F_UNBUF""" 4
.el .IP \f(CWPERLIO_F_UNBUF\fR 4
.IX Item "PERLIO_F_UNBUF"
.ie n .IP """PERLIO_F_UTF8""" 4
.el .IP \f(CWPERLIO_F_UTF8\fR 4
.IX Item "PERLIO_F_UTF8"
.ie n .IP """PERLIO_F_WRBUF""" 4
.el .IP \f(CWPERLIO_F_WRBUF\fR 4
.IX Item "PERLIO_F_WRBUF"
.PD
Described in perliol.
.ie n .IP """PERLIO_FUNCS_CAST""" 4
.el .IP \f(CWPERLIO_FUNCS_CAST\fR 4
.IX Xref "PERLIO_FUNCS_CAST"
.IX Item "PERLIO_FUNCS_CAST"
Cast the pointer \f(CW\*(C`func\*(C'\fR to be of type \f(CW\*(C`PerlIO_funcs\ *\*(C'\fR.
.ie n .IP """PERLIO_FUNCS_DECL""" 4
.el .IP \f(CWPERLIO_FUNCS_DECL\fR 4
.IX Xref "PERLIO_FUNCS_DECL"
.IX Item "PERLIO_FUNCS_DECL"
Declare \f(CW\*(C`ftab\*(C'\fR to be a PerlIO function table, that is, of type
\&\f(CW\*(C`PerlIO_funcs\*(C'\fR.
.RS 4
.Sp
.Vb 1
\&   PERLIO_FUNCS_DECL(PerlIO * ftab)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PERLIO_K_BUFFERED""" 4
.el .IP \f(CWPERLIO_K_BUFFERED\fR 4
.IX Item "PERLIO_K_BUFFERED"
.PD 0
.ie n .IP """PERLIO_K_CANCRLF""" 4
.el .IP \f(CWPERLIO_K_CANCRLF\fR 4
.IX Item "PERLIO_K_CANCRLF"
.ie n .IP """PERLIO_K_FASTGETS""" 4
.el .IP \f(CWPERLIO_K_FASTGETS\fR 4
.IX Item "PERLIO_K_FASTGETS"
.ie n .IP """PERLIO_K_MULTIARG""" 4
.el .IP \f(CWPERLIO_K_MULTIARG\fR 4
.IX Item "PERLIO_K_MULTIARG"
.ie n .IP """PERLIO_K_RAW""" 4
.el .IP \f(CWPERLIO_K_RAW\fR 4
.IX Item "PERLIO_K_RAW"
.PD
Described in perliol.
.ie n .IP """PERLIO_NOT_STDIO""" 4
.el .IP \f(CWPERLIO_NOT_STDIO\fR 4
.IX Item "PERLIO_NOT_STDIO"
Described in perlapio.
.ie n .IP """PL_maxsysfd""" 4
.el .IP \f(CWPL_maxsysfd\fR 4
.IX Item "PL_maxsysfd"
Described in perliol.
.ie n .IP """repeatcpy""" 4
.el .IP \f(CWrepeatcpy\fR 4
.IX Xref "repeatcpy"
.IX Item "repeatcpy"
Make \f(CW\*(C`count\*(C'\fR copies of the \f(CW\*(C`len\*(C'\fR bytes beginning at \f(CW\*(C`from\*(C'\fR, placing them
into memory beginning at \f(CW\*(C`to\*(C'\fR, which must be big enough to accommodate them
all.
.RS 4
.Sp
.Vb 1
\& void  repeatcpy(char *to, const char *from, I32 len, IV count)
.Ve
.RE
.RS 4
.RE
.ie n .IP """USE_STDIO""" 4
.el .IP \f(CWUSE_STDIO\fR 4
.IX Item "USE_STDIO"
Described in perlapio.
.SH Integer
.IX Header "Integer"
.ie n .IP """CASTI32""" 4
.el .IP \f(CWCASTI32\fR 4
.IX Xref "CASTI32"
.IX Item "CASTI32"
This symbol is defined if the C compiler can cast negative
or large floating point numbers to 32\-bit ints.
.ie n .IP """HAS_INT64_T""" 4
.el .IP \f(CWHAS_INT64_T\fR 4
.IX Xref "HAS_INT64_T"
.IX Item "HAS_INT64_T"
This symbol will defined if the C compiler supports \f(CW\*(C`int64_t\*(C'\fR.
Usually the \fIinttypes.h\fR needs to be included, but sometimes
\&\fIsys/types.h\fR is enough.
.ie n .IP """HAS_LONG_LONG""" 4
.el .IP \f(CWHAS_LONG_LONG\fR 4
.IX Xref "HAS_LONG_LONG"
.IX Item "HAS_LONG_LONG"
This symbol will be defined if the C compiler supports long long.
.ie n .IP """HAS_QUAD""" 4
.el .IP \f(CWHAS_QUAD\fR 4
.IX Xref "HAS_QUAD"
.IX Item "HAS_QUAD"
This symbol, if defined, tells that there's a 64\-bit integer type,
\&\f(CW\*(C`Quad_t\*(C'\fR, and its unsigned counterpart, \f(CW\*(C`Uquad_t\*(C'\fR. \f(CW\*(C`QUADKIND\*(C'\fR will be one
of \f(CW\*(C`QUAD_IS_INT\*(C'\fR, \f(CW\*(C`QUAD_IS_LONG\*(C'\fR, \f(CW\*(C`QUAD_IS_LONG_LONG\*(C'\fR, \f(CW\*(C`QUAD_IS_INT64_T\*(C'\fR,
or \f(CW\*(C`QUAD_IS_\|_\|_INT64\*(C'\fR.
.ie n .IP """I32df""" 4
.el .IP \f(CWI32df\fR 4
.IX Xref "I32df"
.IX Item "I32df"
This symbol defines the format string used for printing a Perl I32
as a signed decimal integer.
.ie n .IP """INT16_C""" 4
.el .IP \f(CWINT16_C\fR 4
.IX Item "INT16_C"
.PD 0
.ie n .IP """INT32_C""" 4
.el .IP \f(CWINT32_C\fR 4
.IX Item "INT32_C"
.ie n .IP """INT64_C""" 4
.el .IP \f(CWINT64_C\fR 4
.IX Xref "INT16_C INT32_C INT64_C"
.IX Item "INT64_C"
.PD
Returns a token the C compiler recognizes for the constant \f(CW\*(C`number\*(C'\fR of the
corresponding integer type on the machine.
.Sp
If the machine does not have a 64\-bit type, \f(CW\*(C`INT64_C\*(C'\fR is undefined.
Use \f(CW"INTMAX_C"\fR to get the largest type available on the platform.
.RS 4
.Sp
.Vb 3
\& I16  INT16_C(number)
\& I32  INT32_C(number)
\& I64  INT64_C(number)
.Ve
.RE
.RS 4
.RE
.ie n .IP """INTMAX_C""" 4
.el .IP \f(CWINTMAX_C\fR 4
.IX Xref "INTMAX_C"
.IX Item "INTMAX_C"
Returns a token the C compiler recognizes for the constant \f(CW\*(C`number\*(C'\fR of the
widest integer type on the machine.  For example, if the machine has \f(CW\*(C`long
long\*(C'\fRs, \f(CWINTMAX_C(\-1)\fR would yield
.Sp
.Vb 1
\& \-1LL
.Ve
.Sp
See also, for example, \f(CW"INT32_C"\fR.
.Sp
Use "IV" to declare variables of the maximum usable size on this platform.
.RS 4
.Sp
.Vb 1
\&   INTMAX_C(number)
.Ve
.RE
.RS 4
.RE
.ie n .IP """INTSIZE""" 4
.el .IP \f(CWINTSIZE\fR 4
.IX Xref "INTSIZE"
.IX Item "INTSIZE"
This symbol contains the value of \f(CWsizeof(int)\fR so that the C
preprocessor can make decisions based on it.
.ie n .IP """I8SIZE""" 4
.el .IP \f(CWI8SIZE\fR 4
.IX Xref "I8SIZE"
.IX Item "I8SIZE"
This symbol contains the \f(CWsizeof(I8)\fR.
.ie n .IP """I16SIZE""" 4
.el .IP \f(CWI16SIZE\fR 4
.IX Xref "I16SIZE"
.IX Item "I16SIZE"
This symbol contains the \f(CWsizeof(I16)\fR.
.ie n .IP """I32SIZE""" 4
.el .IP \f(CWI32SIZE\fR 4
.IX Xref "I32SIZE"
.IX Item "I32SIZE"
This symbol contains the \f(CWsizeof(I32)\fR.
.ie n .IP """I64SIZE""" 4
.el .IP \f(CWI64SIZE\fR 4
.IX Xref "I64SIZE"
.IX Item "I64SIZE"
This symbol contains the \f(CWsizeof(I64)\fR.
.ie n .IP """I8TYPE""" 4
.el .IP \f(CWI8TYPE\fR 4
.IX Xref "I8TYPE"
.IX Item "I8TYPE"
This symbol defines the C type used for Perl's I8.
.ie n .IP """I16TYPE""" 4
.el .IP \f(CWI16TYPE\fR 4
.IX Xref "I16TYPE"
.IX Item "I16TYPE"
This symbol defines the C type used for Perl's I16.
.ie n .IP """I32TYPE""" 4
.el .IP \f(CWI32TYPE\fR 4
.IX Xref "I32TYPE"
.IX Item "I32TYPE"
This symbol defines the C type used for Perl's I32.
.ie n .IP """I64TYPE""" 4
.el .IP \f(CWI64TYPE\fR 4
.IX Xref "I64TYPE"
.IX Item "I64TYPE"
This symbol defines the C type used for Perl's I64.
.ie n .IP """IV""" 4
.el .IP \f(CWIV\fR 4
.IX Item "IV"
.PD 0
.ie n .IP """I8""" 4
.el .IP \f(CWI8\fR 4
.IX Item "I8"
.ie n .IP """I16""" 4
.el .IP \f(CWI16\fR 4
.IX Item "I16"
.ie n .IP """I32""" 4
.el .IP \f(CWI32\fR 4
.IX Item "I32"
.ie n .IP """I64""" 4
.el .IP \f(CWI64\fR 4
.IX Item "I64"
.PD
Described in perlguts.
.ie n .IP """IV_MAX""" 4
.el .IP \f(CWIV_MAX\fR 4
.IX Xref "IV_MAX"
.IX Item "IV_MAX"
The largest signed integer that fits in an IV on this platform.
.RS 4
.Sp
.Vb 1
\& IV  IV_MAX
.Ve
.RE
.RS 4
.RE
.ie n .IP """IV_MIN""" 4
.el .IP \f(CWIV_MIN\fR 4
.IX Xref "IV_MIN"
.IX Item "IV_MIN"
The negative signed integer furthest away from 0 that fits in an IV on this
platform.
.RS 4
.Sp
.Vb 1
\& IV  IV_MIN
.Ve
.RE
.RS 4
.RE
.ie n .IP """IVSIZE""" 4
.el .IP \f(CWIVSIZE\fR 4
.IX Xref "IVSIZE"
.IX Item "IVSIZE"
This symbol contains the \f(CWsizeof(IV)\fR.
.ie n .IP """IVTYPE""" 4
.el .IP \f(CWIVTYPE\fR 4
.IX Xref "IVTYPE"
.IX Item "IVTYPE"
This symbol defines the C type used for Perl's IV.
.ie n .IP """line_t""" 4
.el .IP \f(CWline_t\fR 4
.IX Xref "line_t"
.IX Item "line_t"
The typedef to use to declare variables that are to hold line numbers.
.ie n .IP """LONGLONGSIZE""" 4
.el .IP \f(CWLONGLONGSIZE\fR 4
.IX Xref "LONGLONGSIZE"
.IX Item "LONGLONGSIZE"
This symbol contains the size of a long long, so that the
C preprocessor can make decisions based on it.  It is only
defined if the system supports long long.
.ie n .IP """LONGSIZE""" 4
.el .IP \f(CWLONGSIZE\fR 4
.IX Xref "LONGSIZE"
.IX Item "LONGSIZE"
This symbol contains the value of \f(CWsizeof(long)\fR so that the C
preprocessor can make decisions based on it.
.ie n .IP """memzero""" 4
.el .IP \f(CWmemzero\fR 4
.IX Xref "memzero"
.IX Item "memzero"
Set the \f(CW\*(C`l\*(C'\fR bytes starting at \f(CW*d\fR to all zeroes.
.RS 4
.Sp
.Vb 1
\& void  memzero(void * d, Size_t l)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PERL_INT_FAST8_T""" 4
.el .IP \f(CWPERL_INT_FAST8_T\fR 4
.IX Item "PERL_INT_FAST8_T"
.PD 0
.ie n .IP """PERL_INT_FAST16_T""" 4
.el .IP \f(CWPERL_INT_FAST16_T\fR 4
.IX Item "PERL_INT_FAST16_T"
.ie n .IP """PERL_UINT_FAST8_T""" 4
.el .IP \f(CWPERL_UINT_FAST8_T\fR 4
.IX Item "PERL_UINT_FAST8_T"
.ie n .IP """PERL_UINT_FAST16_T""" 4
.el .IP \f(CWPERL_UINT_FAST16_T\fR 4
.IX Xref "PERL_INT_FAST8_T PERL_INT_FAST16_T PERL_UINT_FAST8_T PERL_UINT_FAST16_T"
.IX Item "PERL_UINT_FAST16_T"
.PD
These are equivalent to the correspondingly-named C99 typedefs on platforms
that have those; they evaluate to \f(CW\*(C`int\*(C'\fR and \f(CW\*(C`unsigned int\*(C'\fR on platforms that
don't, so that you can portably take advantage of this C99 feature.
.ie n .IP """PERL_INT_MAX""" 4
.el .IP \f(CWPERL_INT_MAX\fR 4
.IX Item "PERL_INT_MAX"
.PD 0
.ie n .IP """PERL_INT_MIN""" 4
.el .IP \f(CWPERL_INT_MIN\fR 4
.IX Item "PERL_INT_MIN"
.ie n .IP """PERL_LONG_MAX""" 4
.el .IP \f(CWPERL_LONG_MAX\fR 4
.IX Item "PERL_LONG_MAX"
.ie n .IP """PERL_LONG_MIN""" 4
.el .IP \f(CWPERL_LONG_MIN\fR 4
.IX Item "PERL_LONG_MIN"
.ie n .IP """PERL_QUAD_MAX""" 4
.el .IP \f(CWPERL_QUAD_MAX\fR 4
.IX Item "PERL_QUAD_MAX"
.ie n .IP """PERL_QUAD_MIN""" 4
.el .IP \f(CWPERL_QUAD_MIN\fR 4
.IX Item "PERL_QUAD_MIN"
.ie n .IP """PERL_SHORT_MAX""" 4
.el .IP \f(CWPERL_SHORT_MAX\fR 4
.IX Item "PERL_SHORT_MAX"
.ie n .IP """PERL_SHORT_MIN""" 4
.el .IP \f(CWPERL_SHORT_MIN\fR 4
.IX Item "PERL_SHORT_MIN"
.ie n .IP """PERL_UCHAR_MAX""" 4
.el .IP \f(CWPERL_UCHAR_MAX\fR 4
.IX Item "PERL_UCHAR_MAX"
.ie n .IP """PERL_UCHAR_MIN""" 4
.el .IP \f(CWPERL_UCHAR_MIN\fR 4
.IX Item "PERL_UCHAR_MIN"
.ie n .IP """PERL_UINT_MAX""" 4
.el .IP \f(CWPERL_UINT_MAX\fR 4
.IX Item "PERL_UINT_MAX"
.ie n .IP """PERL_UINT_MIN""" 4
.el .IP \f(CWPERL_UINT_MIN\fR 4
.IX Item "PERL_UINT_MIN"
.ie n .IP """PERL_ULONG_MAX""" 4
.el .IP \f(CWPERL_ULONG_MAX\fR 4
.IX Item "PERL_ULONG_MAX"
.ie n .IP """PERL_ULONG_MIN""" 4
.el .IP \f(CWPERL_ULONG_MIN\fR 4
.IX Item "PERL_ULONG_MIN"
.ie n .IP """PERL_UQUAD_MAX""" 4
.el .IP \f(CWPERL_UQUAD_MAX\fR 4
.IX Item "PERL_UQUAD_MAX"
.ie n .IP """PERL_UQUAD_MIN""" 4
.el .IP \f(CWPERL_UQUAD_MIN\fR 4
.IX Item "PERL_UQUAD_MIN"
.ie n .IP """PERL_USHORT_MAX""" 4
.el .IP \f(CWPERL_USHORT_MAX\fR 4
.IX Item "PERL_USHORT_MAX"
.ie n .IP """PERL_USHORT_MIN""" 4
.el .IP \f(CWPERL_USHORT_MIN\fR 4
.IX Xref "PERL_INT_MAX PERL_INT_MIN PERL_LONG_MAX PERL_LONG_MIN PERL_QUAD_MAX PERL_QUAD_MIN PERL_SHORT_MAX PERL_SHORT_MIN PERL_UCHAR_MAX PERL_UCHAR_MIN PERL_UINT_MAX PERL_UINT_MIN PERL_ULONG_MAX PERL_ULONG_MIN PERL_UQUAD_MAX PERL_UQUAD_MIN PERL_USHORT_MAX PERL_USHORT_MIN"
.IX Item "PERL_USHORT_MIN"
.PD
These give the largest and smallest number representable in the current
platform in variables of the corresponding types.
.Sp
For signed types, the smallest representable number is the most negative
number, the one furthest away from zero.
.Sp
For C99 and later compilers, these correspond to things like \f(CW\*(C`INT_MAX\*(C'\fR, which
are available to the C code.  But these constants, furnished by Perl,
allow code compiled on earlier compilers to portably have access to the same
constants.
.RS 4
.Sp
.Vb 10
\& int             PERL_INT_MAX
\& int             PERL_INT_MIN
\& long            PERL_LONG_MAX
\& long            PERL_LONG_MIN
\& IV              PERL_QUAD_MAX
\& IV              PERL_QUAD_MIN
\& short           PERL_SHORT_MAX
\& short           PERL_SHORT_MIN
\& U8              PERL_UCHAR_MAX
\& U8              PERL_UCHAR_MIN
\& unsigned int    PERL_UINT_MAX
\& unsigned int    PERL_UINT_MIN
\& unsigned long   PERL_ULONG_MAX
\& unsigned long   PERL_ULONG_MIN
\& UV              PERL_UQUAD_MAX
\& UV              PERL_UQUAD_MIN
\& unsigned short  PERL_USHORT_MAX
\& unsigned short  PERL_USHORT_MIN
.Ve
.RE
.RS 4
.RE
.ie n .IP """SHORTSIZE""" 4
.el .IP \f(CWSHORTSIZE\fR 4
.IX Xref "SHORTSIZE"
.IX Item "SHORTSIZE"
This symbol contains the value of \f(CWsizeof(short)\fR so that the C
preprocessor can make decisions based on it.
.ie n .IP """UINT16_C""" 4
.el .IP \f(CWUINT16_C\fR 4
.IX Item "UINT16_C"
.PD 0
.ie n .IP """UINT32_C""" 4
.el .IP \f(CWUINT32_C\fR 4
.IX Item "UINT32_C"
.ie n .IP """UINT64_C""" 4
.el .IP \f(CWUINT64_C\fR 4
.IX Xref "UINT16_C UINT32_C UINT64_C"
.IX Item "UINT64_C"
.PD
Returns a token the C compiler recognizes for the constant \f(CW\*(C`number\*(C'\fR of the
corresponding unsigned integer type on the machine.
.Sp
If the machine does not have a 64\-bit type, \f(CW\*(C`UINT64_C\*(C'\fR is undefined.
Use \f(CW"UINTMAX_C"\fR to get the largest type available on the platform.
.RS 4
.Sp
.Vb 3
\& U16  UINT16_C(number)
\& U32  UINT32_C(number)
\& U64  UINT64_C(number)
.Ve
.RE
.RS 4
.RE
.ie n .IP """UINTMAX_C""" 4
.el .IP \f(CWUINTMAX_C\fR 4
.IX Xref "UINTMAX_C"
.IX Item "UINTMAX_C"
Returns a token the C compiler recognizes for the constant \f(CW\*(C`number\*(C'\fR of the
widest unsigned integer type on the machine.  For example, if the machine has
\&\f(CW\*(C`long\*(C'\fRs, \f(CWUINTMAX_C(1)\fR would yield
.Sp
.Vb 1
\& 1UL
.Ve
.Sp
See also, for example, \f(CW"UINT32_C"\fR.
.Sp
Use "UV" to declare variables of the maximum usable size on this platform.
.RS 4
.Sp
.Vb 1
\&   UINTMAX_C(number)
.Ve
.RE
.RS 4
.RE
.ie n .IP """U32of""" 4
.el .IP \f(CWU32of\fR 4
.IX Xref "U32of"
.IX Item "U32of"
This symbol defines the format string used for printing a Perl U32
as an unsigned octal integer.
.ie n .IP """U8SIZE""" 4
.el .IP \f(CWU8SIZE\fR 4
.IX Xref "U8SIZE"
.IX Item "U8SIZE"
This symbol contains the \f(CWsizeof(U8)\fR.
.ie n .IP """U16SIZE""" 4
.el .IP \f(CWU16SIZE\fR 4
.IX Xref "U16SIZE"
.IX Item "U16SIZE"
This symbol contains the \f(CWsizeof(U16)\fR.
.ie n .IP """U32SIZE""" 4
.el .IP \f(CWU32SIZE\fR 4
.IX Xref "U32SIZE"
.IX Item "U32SIZE"
This symbol contains the \f(CWsizeof(U32)\fR.
.ie n .IP """U64SIZE""" 4
.el .IP \f(CWU64SIZE\fR 4
.IX Xref "U64SIZE"
.IX Item "U64SIZE"
This symbol contains the \f(CWsizeof(U64)\fR.
.ie n .IP """U8TYPE""" 4
.el .IP \f(CWU8TYPE\fR 4
.IX Xref "U8TYPE"
.IX Item "U8TYPE"
This symbol defines the C type used for Perl's U8.
.ie n .IP """U16TYPE""" 4
.el .IP \f(CWU16TYPE\fR 4
.IX Xref "U16TYPE"
.IX Item "U16TYPE"
This symbol defines the C type used for Perl's U16.
.ie n .IP """U32TYPE""" 4
.el .IP \f(CWU32TYPE\fR 4
.IX Xref "U32TYPE"
.IX Item "U32TYPE"
This symbol defines the C type used for Perl's U32.
.ie n .IP """U64TYPE""" 4
.el .IP \f(CWU64TYPE\fR 4
.IX Xref "U64TYPE"
.IX Item "U64TYPE"
This symbol defines the C type used for Perl's U64.
.ie n .IP """U32uf""" 4
.el .IP \f(CWU32uf\fR 4
.IX Xref "U32uf"
.IX Item "U32uf"
This symbol defines the format string used for printing a Perl U32
as an unsigned decimal integer.
.ie n .IP """UV""" 4
.el .IP \f(CWUV\fR 4
.IX Item "UV"
.PD 0
.ie n .IP """U8""" 4
.el .IP \f(CWU8\fR 4
.IX Item "U8"
.ie n .IP """U16""" 4
.el .IP \f(CWU16\fR 4
.IX Item "U16"
.ie n .IP """U32""" 4
.el .IP \f(CWU32\fR 4
.IX Item "U32"
.ie n .IP """U64""" 4
.el .IP \f(CWU64\fR 4
.IX Item "U64"
.PD
Described in perlguts.
.ie n .IP """UV_MAX""" 4
.el .IP \f(CWUV_MAX\fR 4
.IX Xref "UV_MAX"
.IX Item "UV_MAX"
The largest unsigned integer that fits in a UV on this platform.
.RS 4
.Sp
.Vb 1
\& UV  UV_MAX
.Ve
.RE
.RS 4
.RE
.ie n .IP """UV_MIN""" 4
.el .IP \f(CWUV_MIN\fR 4
.IX Xref "UV_MIN"
.IX Item "UV_MIN"
The smallest unsigned integer that fits in a UV on this platform.  It should
equal zero.
.RS 4
.Sp
.Vb 1
\& UV  UV_MIN
.Ve
.RE
.RS 4
.RE
.ie n .IP """UVSIZE""" 4
.el .IP \f(CWUVSIZE\fR 4
.IX Xref "UVSIZE"
.IX Item "UVSIZE"
This symbol contains the \f(CWsizeof(UV)\fR.
.ie n .IP """UVTYPE""" 4
.el .IP \f(CWUVTYPE\fR 4
.IX Xref "UVTYPE"
.IX Item "UVTYPE"
This symbol defines the C type used for Perl's UV.
.ie n .IP """U32Xf""" 4
.el .IP \f(CWU32Xf\fR 4
.IX Xref "U32Xf"
.IX Item "U32Xf"
This symbol defines the format string used for printing a Perl U32
as an unsigned hexadecimal integer in uppercase \f(CW\*(C`ABCDEF\*(C'\fR.
.ie n .IP """U32xf""" 4
.el .IP \f(CWU32xf\fR 4
.IX Xref "U32xf"
.IX Item "U32xf"
This symbol defines the format string used for printing a Perl U32
as an unsigned hexadecimal integer in lowercase abcdef.
.ie n .IP """WIDEST_UTYPE""" 4
.el .IP \f(CWWIDEST_UTYPE\fR 4
.IX Xref "WIDEST_UTYPE"
.IX Item "WIDEST_UTYPE"
Yields the widest unsigned integer type on the platform, currently either
\&\f(CW\*(C`U32\*(C'\fR or \f(CW\*(C`U64\*(C'\fR.  This can be used in declarations such as
.Sp
.Vb 1
\& WIDEST_UTYPE my_uv;
.Ve
.Sp
or casts
.Sp
.Vb 1
\& my_uv = (WIDEST_UTYPE) val;
.Ve
.SH "I/O Formats"
.IX Header "I/O Formats"
These are used for formatting the corresponding type For example,
instead of saying
.PP
.Vb 1
\& Perl_newSVpvf(pTHX_ "Create an SV with a %d in it\en", iv);
.Ve
.PP
use
.PP
.Vb 1
\& Perl_newSVpvf(pTHX_ "Create an SV with a " IVdf " in it\en", iv);
.Ve
.PP
This keeps you from having to know if, say an IV, needs to be
printed as \f(CW%d\fR, \f(CW%ld\fR, or something else.
.ie n .IP """HvNAMEf""" 4
.el .IP \f(CWHvNAMEf\fR 4
.IX Item "HvNAMEf"
Described in perlguts.
.ie n .IP """HvNAMEf_QUOTEDPREFIX""" 4
.el .IP \f(CWHvNAMEf_QUOTEDPREFIX\fR 4
.IX Item "HvNAMEf_QUOTEDPREFIX"
Described in perlguts.
.ie n .IP """IVdf""" 4
.el .IP \f(CWIVdf\fR 4
.IX Xref "IVdf"
.IX Item "IVdf"
This symbol defines the format string used for printing a Perl IV
as a signed decimal integer.
.ie n .IP """NVef""" 4
.el .IP \f(CWNVef\fR 4
.IX Xref "NVef"
.IX Item "NVef"
This symbol defines the format string used for printing a Perl NV
using \f(CW%e\fR\-ish floating point format.
.ie n .IP """NVff""" 4
.el .IP \f(CWNVff\fR 4
.IX Xref "NVff"
.IX Item "NVff"
This symbol defines the format string used for printing a Perl NV
using \f(CW%f\fR\-ish floating point format.
.ie n .IP """NVgf""" 4
.el .IP \f(CWNVgf\fR 4
.IX Xref "NVgf"
.IX Item "NVgf"
This symbol defines the format string used for printing a Perl NV
using \f(CW%g\fR\-ish floating point format.
.ie n .IP """PERL_PRIeldbl""" 4
.el .IP \f(CWPERL_PRIeldbl\fR 4
.IX Xref "PERL_PRIeldbl"
.IX Item "PERL_PRIeldbl"
This symbol, if defined, contains the string used by stdio to
format long doubles (format 'e') for output.
.ie n .IP """PERL_PRIfldbl""" 4
.el .IP \f(CWPERL_PRIfldbl\fR 4
.IX Xref "PERL_PRIfldbl"
.IX Item "PERL_PRIfldbl"
This symbol, if defined, contains the string used by stdio to
format long doubles (format 'f') for output.
.ie n .IP """PERL_PRIgldbl""" 4
.el .IP \f(CWPERL_PRIgldbl\fR 4
.IX Xref "PERL_PRIgldbl"
.IX Item "PERL_PRIgldbl"
This symbol, if defined, contains the string used by stdio to
format long doubles (format 'g') for output.
.ie n .IP """PERL_SCNfldbl""" 4
.el .IP \f(CWPERL_SCNfldbl\fR 4
.IX Xref "PERL_SCNfldbl"
.IX Item "PERL_SCNfldbl"
This symbol, if defined, contains the string used by stdio to
format long doubles (format 'f') for input.
.ie n .IP """PRINTF_FORMAT_NULL_OK""" 4
.el .IP \f(CWPRINTF_FORMAT_NULL_OK\fR 4
.IX Xref "PRINTF_FORMAT_NULL_OK"
.IX Item "PRINTF_FORMAT_NULL_OK"
Allows \f(CW\*(C`_\|_printf_\|_\*(C'\fR format to be null when checking printf-style
.ie n .IP """SVf""" 4
.el .IP \f(CWSVf\fR 4
.IX Item "SVf"
Described in perlguts.
.ie n .IP """SVfARG""" 4
.el .IP \f(CWSVfARG\fR 4
.IX Item "SVfARG"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\&   SVfARG(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SVf_QUOTEDPREFIX""" 4
.el .IP \f(CWSVf_QUOTEDPREFIX\fR 4
.IX Item "SVf_QUOTEDPREFIX"
Described in perlguts.
.ie n .IP """UTF8f""" 4
.el .IP \f(CWUTF8f\fR 4
.IX Item "UTF8f"
Described in perlguts.
.ie n .IP """UTF8fARG""" 4
.el .IP \f(CWUTF8fARG\fR 4
.IX Item "UTF8fARG"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\&   UTF8fARG(bool is_utf8, Size_t byte_len, char *str)
.Ve
.RE
.RS 4
.RE
.ie n .IP """UTF8f_QUOTEDPREFIX""" 4
.el .IP \f(CWUTF8f_QUOTEDPREFIX\fR 4
.IX Item "UTF8f_QUOTEDPREFIX"
Described in perlguts.
.ie n .IP """UVf""" 4
.el .IP \f(CWUVf\fR 4
.IX Xref "UVf"
.IX Item "UVf"
\&\f(CW\*(C`\fR\f(CBDEPRECATED!\fR\f(CW\*(C'\fR  It is planned to remove \f(CW\*(C`UVf\*(C'\fR
from a future release of Perl.  Do not use it for
new code; remove it from existing code.
.Sp
Obsolete form of \f(CW\*(C`UVuf\*(C'\fR, which you should convert to instead use
.RS 4
.Sp
.Vb 1
\& const char *  UVf
.Ve
.RE
.RS 4
.RE
.ie n .IP """UVof""" 4
.el .IP \f(CWUVof\fR 4
.IX Xref "UVof"
.IX Item "UVof"
This symbol defines the format string used for printing a Perl UV
as an unsigned octal integer.
.ie n .IP """UVuf""" 4
.el .IP \f(CWUVuf\fR 4
.IX Xref "UVuf"
.IX Item "UVuf"
This symbol defines the format string used for printing a Perl UV
as an unsigned decimal integer.
.ie n .IP """UVXf""" 4
.el .IP \f(CWUVXf\fR 4
.IX Xref "UVXf"
.IX Item "UVXf"
This symbol defines the format string used for printing a Perl UV
as an unsigned hexadecimal integer in uppercase \f(CW\*(C`ABCDEF\*(C'\fR.
.ie n .IP """UVxf""" 4
.el .IP \f(CWUVxf\fR 4
.IX Xref "UVxf"
.IX Item "UVxf"
This symbol defines the format string used for printing a Perl UV
as an unsigned hexadecimal integer in lowercase abcdef.
.SH "Lexer interface"
.IX Xref "LEX_KEEP_PREVIOUS LEX_STUFF_UTF8 PARSE_OPTIONAL"
.IX Header "Lexer interface"
This is the lower layer of the Perl parser, managing characters and tokens.
.ie n .IP """BHK""" 4
.el .IP \f(CWBHK\fR 4
.IX Item "BHK"
Described in perlguts.
.ie n .IP """lex_bufutf8""" 4
.el .IP \f(CWlex_bufutf8\fR 4
.IX Xref "lex_bufutf8"
.IX Item "lex_bufutf8"
NOTE: \f(CW\*(C`lex_bufutf8\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Indicates whether the octets in the lexer buffer
("PL_parser\->linestr") should be interpreted as the UTF\-8 encoding
of Unicode characters.  If not, they should be interpreted as Latin\-1
characters.  This is analogous to the \f(CW\*(C`SvUTF8\*(C'\fR flag for scalars.
.Sp
In UTF\-8 mode, it is not guaranteed that the lexer buffer actually
contains valid UTF\-8.  Lexing code must be robust in the face of invalid
encoding.
.Sp
The actual \f(CW\*(C`SvUTF8\*(C'\fR flag of the "PL_parser\->linestr" scalar
is significant, but not the whole story regarding the input character
encoding.  Normally, when a file is being read, the scalar contains octets
and its \f(CW\*(C`SvUTF8\*(C'\fR flag is off, but the octets should be interpreted as
UTF\-8 if the \f(CW\*(C`use utf8\*(C'\fR pragma is in effect.  During a string eval,
however, the scalar may have the \f(CW\*(C`SvUTF8\*(C'\fR flag on, and in this case its
octets should be interpreted as UTF\-8 unless the \f(CW\*(C`use bytes\*(C'\fR pragma
is in effect.  This logic may change in the future; use this function
instead of implementing the logic yourself.
.RS 4
.Sp
.Vb 1
\& bool  lex_bufutf8()
.Ve
.RE
.RS 4
.RE
.ie n .IP """lex_discard_to""" 4
.el .IP \f(CWlex_discard_to\fR 4
.IX Xref "lex_discard_to"
.IX Item "lex_discard_to"
NOTE: \f(CW\*(C`lex_discard_to\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Discards the first part of the "PL_parser\->linestr" buffer,
up to \f(CW\*(C`ptr\*(C'\fR.  The remaining content of the buffer will be moved, and
all pointers into the buffer updated appropriately.  \f(CW\*(C`ptr\*(C'\fR must not
be later in the buffer than the position of "PL_parser\->bufptr":
it is not permitted to discard text that has yet to be lexed.
.Sp
Normally it is not necessarily to do this directly, because it suffices to
use the implicit discarding behaviour of "lex_next_chunk" and things
based on it.  However, if a token stretches across multiple lines,
and the lexing code has kept multiple lines of text in the buffer for
that purpose, then after completion of the token it would be wise to
explicitly discard the now-unneeded earlier lines, to avoid future
multi-line tokens growing the buffer without bound.
.RS 4
.Sp
.Vb 1
\& void  lex_discard_to(char *ptr)
.Ve
.RE
.RS 4
.RE
.ie n .IP """lex_grow_linestr""" 4
.el .IP \f(CWlex_grow_linestr\fR 4
.IX Xref "lex_grow_linestr"
.IX Item "lex_grow_linestr"
NOTE: \f(CW\*(C`lex_grow_linestr\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Reallocates the lexer buffer ("PL_parser\->linestr") to accommodate
at least \f(CW\*(C`len\*(C'\fR octets (including terminating \f(CW\*(C`NUL\*(C'\fR).  Returns a
pointer to the reallocated buffer.  This is necessary before making
any direct modification of the buffer that would increase its length.
"lex_stuff_pvn" provides a more convenient way to insert text into
the buffer.
.Sp
Do not use \f(CW\*(C`SvGROW\*(C'\fR or \f(CW\*(C`sv_grow\*(C'\fR directly on \f(CW\*(C`PL_parser\->linestr\*(C'\fR;
this function updates all of the lexer's variables that point directly
into the buffer.
.RS 4
.Sp
.Vb 1
\& char *  lex_grow_linestr(STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """lex_next_chunk""" 4
.el .IP \f(CWlex_next_chunk\fR 4
.IX Xref "lex_next_chunk"
.IX Item "lex_next_chunk"
NOTE: \f(CW\*(C`lex_next_chunk\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Reads in the next chunk of text to be lexed, appending it to
"PL_parser\->linestr".  This should be called when lexing code has
looked to the end of the current chunk and wants to know more.  It is
usual, but not necessary, for lexing to have consumed the entirety of
the current chunk at this time.
.Sp
If "PL_parser\->bufptr" is pointing to the very end of the current
chunk (i.e., the current chunk has been entirely consumed), normally the
current chunk will be discarded at the same time that the new chunk is
read in.  If \f(CW\*(C`flags\*(C'\fR has the \f(CW\*(C`LEX_KEEP_PREVIOUS\*(C'\fR bit set, the current chunk
will not be discarded.  If the current chunk has not been entirely
consumed, then it will not be discarded regardless of the flag.
.Sp
Returns true if some new text was added to the buffer, or false if the
buffer has reached the end of the input text.
.RS 4
.Sp
.Vb 1
\& bool  lex_next_chunk(U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """lex_peek_unichar""" 4
.el .IP \f(CWlex_peek_unichar\fR 4
.IX Xref "lex_peek_unichar"
.IX Item "lex_peek_unichar"
NOTE: \f(CW\*(C`lex_peek_unichar\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Looks ahead one (Unicode) character in the text currently being lexed.
Returns the codepoint (unsigned integer value) of the next character,
or \-1 if lexing has reached the end of the input text.  To consume the
peeked character, use "lex_read_unichar".
.Sp
If the next character is in (or extends into) the next chunk of input
text, the next chunk will be read in.  Normally the current chunk will be
discarded at the same time, but if \f(CW\*(C`flags\*(C'\fR has the \f(CW\*(C`LEX_KEEP_PREVIOUS\*(C'\fR
bit set, then the current chunk will not be discarded.
.Sp
If the input is being interpreted as UTF\-8 and a UTF\-8 encoding error
is encountered, an exception is generated.
.RS 4
.Sp
.Vb 1
\& I32  lex_peek_unichar(U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """lex_read_space""" 4
.el .IP \f(CWlex_read_space\fR 4
.IX Xref "lex_read_space"
.IX Item "lex_read_space"
NOTE: \f(CW\*(C`lex_read_space\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Reads optional spaces, in Perl style, in the text currently being
lexed.  The spaces may include ordinary whitespace characters and
Perl-style comments.  \f(CW\*(C`#line\*(C'\fR directives are processed if encountered.
"PL_parser\->bufptr" is moved past the spaces, so that it points
at a non-space character (or the end of the input text).
.Sp
If spaces extend into the next chunk of input text, the next chunk will
be read in.  Normally the current chunk will be discarded at the same
time, but if \f(CW\*(C`flags\*(C'\fR has the \f(CW\*(C`LEX_KEEP_PREVIOUS\*(C'\fR bit set, then the current
chunk will not be discarded.
.RS 4
.Sp
.Vb 1
\& void  lex_read_space(U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """lex_read_to""" 4
.el .IP \f(CWlex_read_to\fR 4
.IX Xref "lex_read_to"
.IX Item "lex_read_to"
NOTE: \f(CW\*(C`lex_read_to\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Consume text in the lexer buffer, from "PL_parser\->bufptr" up
to \f(CW\*(C`ptr\*(C'\fR.  This advances "PL_parser\->bufptr" to match \f(CW\*(C`ptr\*(C'\fR,
performing the correct bookkeeping whenever a newline character is passed.
This is the normal way to consume lexed text.
.Sp
Interpretation of the buffer's octets can be abstracted out by
using the slightly higher-level functions "lex_peek_unichar" and
"lex_read_unichar".
.RS 4
.Sp
.Vb 1
\& void  lex_read_to(char *ptr)
.Ve
.RE
.RS 4
.RE
.ie n .IP """lex_read_unichar""" 4
.el .IP \f(CWlex_read_unichar\fR 4
.IX Xref "lex_read_unichar"
.IX Item "lex_read_unichar"
NOTE: \f(CW\*(C`lex_read_unichar\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Reads the next (Unicode) character in the text currently being lexed.
Returns the codepoint (unsigned integer value) of the character read,
and moves "PL_parser\->bufptr" past the character, or returns \-1
if lexing has reached the end of the input text.  To non-destructively
examine the next character, use "lex_peek_unichar" instead.
.Sp
If the next character is in (or extends into) the next chunk of input
text, the next chunk will be read in.  Normally the current chunk will be
discarded at the same time, but if \f(CW\*(C`flags\*(C'\fR has the \f(CW\*(C`LEX_KEEP_PREVIOUS\*(C'\fR
bit set, then the current chunk will not be discarded.
.Sp
If the input is being interpreted as UTF\-8 and a UTF\-8 encoding error
is encountered, an exception is generated.
.RS 4
.Sp
.Vb 1
\& I32  lex_read_unichar(U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """lex_start""" 4
.el .IP \f(CWlex_start\fR 4
.IX Xref "lex_start"
.IX Item "lex_start"
NOTE: \f(CW\*(C`lex_start\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Creates and initialises a new lexer/parser state object, supplying
a context in which to lex and parse from a new source of Perl code.
A pointer to the new state object is placed in "PL_parser".  An entry
is made on the save stack so that upon unwinding, the new state object
will be destroyed and the former value of "PL_parser" will be restored.
Nothing else need be done to clean up the parsing context.
.Sp
The code to be parsed comes from \f(CW\*(C`line\*(C'\fR and \f(CW\*(C`rsfp\*(C'\fR.  \f(CW\*(C`line\*(C'\fR, if
non-null, provides a string (in SV form) containing code to be parsed.
A copy of the string is made, so subsequent modification of \f(CW\*(C`line\*(C'\fR
does not affect parsing.  \f(CW\*(C`rsfp\*(C'\fR, if non-null, provides an input stream
from which code will be read to be parsed.  If both are non-null, the
code in \f(CW\*(C`line\*(C'\fR comes first and must consist of complete lines of input,
and \f(CW\*(C`rsfp\*(C'\fR supplies the remainder of the source.
.Sp
The \f(CW\*(C`flags\*(C'\fR parameter is reserved for future use.  Currently it is only
used by perl internally, so extensions should always pass zero.
.RS 4
.Sp
.Vb 1
\& void  lex_start(SV *line, PerlIO *rsfp, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """lex_stuff_pv""" 4
.el .IP \f(CWlex_stuff_pv\fR 4
.IX Xref "lex_stuff_pv"
.IX Item "lex_stuff_pv"
NOTE: \f(CW\*(C`lex_stuff_pv\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Insert characters into the lexer buffer ("PL_parser\->linestr"),
immediately after the current lexing point ("PL_parser\->bufptr"),
reallocating the buffer if necessary.  This means that lexing code that
runs later will see the characters as if they had appeared in the input.
It is not recommended to do this as part of normal parsing, and most
uses of this facility run the risk of the inserted characters being
interpreted in an unintended manner.
.Sp
The string to be inserted is represented by octets starting at \f(CW\*(C`pv\*(C'\fR
and continuing to the first nul.  These octets are interpreted as either
UTF\-8 or Latin\-1, according to whether the \f(CW\*(C`LEX_STUFF_UTF8\*(C'\fR flag is set
in \f(CW\*(C`flags\*(C'\fR.  The characters are recoded for the lexer buffer, according
to how the buffer is currently being interpreted ("lex_bufutf8").
If it is not convenient to nul-terminate a string to be inserted, the
"lex_stuff_pvn" function is more appropriate.
.RS 4
.Sp
.Vb 1
\& void  lex_stuff_pv(const char *pv, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """lex_stuff_pvn""" 4
.el .IP \f(CWlex_stuff_pvn\fR 4
.IX Xref "lex_stuff_pvn"
.IX Item "lex_stuff_pvn"
NOTE: \f(CW\*(C`lex_stuff_pvn\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Insert characters into the lexer buffer ("PL_parser\->linestr"),
immediately after the current lexing point ("PL_parser\->bufptr"),
reallocating the buffer if necessary.  This means that lexing code that
runs later will see the characters as if they had appeared in the input.
It is not recommended to do this as part of normal parsing, and most
uses of this facility run the risk of the inserted characters being
interpreted in an unintended manner.
.Sp
The string to be inserted is represented by \f(CW\*(C`len\*(C'\fR octets starting
at \f(CW\*(C`pv\*(C'\fR.  These octets are interpreted as either UTF\-8 or Latin\-1,
according to whether the \f(CW\*(C`LEX_STUFF_UTF8\*(C'\fR flag is set in \f(CW\*(C`flags\*(C'\fR.
The characters are recoded for the lexer buffer, according to how the
buffer is currently being interpreted ("lex_bufutf8").  If a string
to be inserted is available as a Perl scalar, the "lex_stuff_sv"
function is more convenient.
.RS 4
.Sp
.Vb 1
\& void  lex_stuff_pvn(const char *pv, STRLEN len, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """lex_stuff_pvs""" 4
.el .IP \f(CWlex_stuff_pvs\fR 4
.IX Xref "lex_stuff_pvs"
.IX Item "lex_stuff_pvs"
NOTE: \f(CW\*(C`lex_stuff_pvs\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Like "lex_stuff_pvn", but takes a literal string instead of
a string/length pair.
.RS 4
.Sp
.Vb 1
\& void  lex_stuff_pvs("pv", U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """lex_stuff_sv""" 4
.el .IP \f(CWlex_stuff_sv\fR 4
.IX Xref "lex_stuff_sv"
.IX Item "lex_stuff_sv"
NOTE: \f(CW\*(C`lex_stuff_sv\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Insert characters into the lexer buffer ("PL_parser\->linestr"),
immediately after the current lexing point ("PL_parser\->bufptr"),
reallocating the buffer if necessary.  This means that lexing code that
runs later will see the characters as if they had appeared in the input.
It is not recommended to do this as part of normal parsing, and most
uses of this facility run the risk of the inserted characters being
interpreted in an unintended manner.
.Sp
The string to be inserted is the string value of \f(CW\*(C`sv\*(C'\fR.  The characters
are recoded for the lexer buffer, according to how the buffer is currently
being interpreted ("lex_bufutf8").  If a string to be inserted is
not already a Perl scalar, the "lex_stuff_pvn" function avoids the
need to construct a scalar.
.RS 4
.Sp
.Vb 1
\& void  lex_stuff_sv(SV *sv, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """lex_unstuff""" 4
.el .IP \f(CWlex_unstuff\fR 4
.IX Xref "lex_unstuff"
.IX Item "lex_unstuff"
NOTE: \f(CW\*(C`lex_unstuff\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Discards text about to be lexed, from "PL_parser\->bufptr" up to
\&\f(CW\*(C`ptr\*(C'\fR.  Text following \f(CW\*(C`ptr\*(C'\fR will be moved, and the buffer shortened.
This hides the discarded text from any lexing code that runs later,
as if the text had never appeared.
.Sp
This is not the normal way to consume lexed text.  For that, use
"lex_read_to".
.RS 4
.Sp
.Vb 1
\& void  lex_unstuff(char *ptr)
.Ve
.RE
.RS 4
.RE
.ie n .IP """parse_arithexpr""" 4
.el .IP \f(CWparse_arithexpr\fR 4
.IX Xref "parse_arithexpr"
.IX Item "parse_arithexpr"
NOTE: \f(CW\*(C`parse_arithexpr\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Parse a Perl arithmetic expression.  This may contain operators of precedence
down to the bit shift operators.  The expression must be followed (and thus
terminated) either by a comparison or lower-precedence operator or by
something that would normally terminate an expression such as semicolon.
If \f(CW\*(C`flags\*(C'\fR has the \f(CW\*(C`PARSE_OPTIONAL\*(C'\fR bit set, then the expression is optional,
otherwise it is mandatory.  It is up to the caller to ensure that the
dynamic parser state ("PL_parser" et al) is correctly set to reflect
the source of the code to be parsed and the lexical context for the
expression.
.Sp
The op tree representing the expression is returned.  If an optional
expression is absent, a null pointer is returned, otherwise the pointer
will be non-null.
.Sp
If an error occurs in parsing or compilation, in most cases a valid op
tree is returned anyway.  The error is reflected in the parser state,
normally resulting in a single exception at the top level of parsing
which covers all the compilation errors that occurred.  Some compilation
errors, however, will throw an exception immediately.
.RS 4
.Sp
.Vb 1
\& OP *  parse_arithexpr(U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """parse_barestmt""" 4
.el .IP \f(CWparse_barestmt\fR 4
.IX Xref "parse_barestmt"
.IX Item "parse_barestmt"
NOTE: \f(CW\*(C`parse_barestmt\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Parse a single unadorned Perl statement.  This may be a normal imperative
statement or a declaration that has compile-time effect.  It does not
include any label or other affixture.  It is up to the caller to ensure
that the dynamic parser state ("PL_parser" et al) is correctly set to
reflect the source of the code to be parsed and the lexical context for
the statement.
.Sp
The op tree representing the statement is returned.  This may be a
null pointer if the statement is null, for example if it was actually
a subroutine definition (which has compile-time side effects).  If not
null, it will be ops directly implementing the statement, suitable to
pass to "newSTATEOP".  It will not normally include a \f(CW\*(C`nextstate\*(C'\fR or
equivalent op (except for those embedded in a scope contained entirely
within the statement).
.Sp
If an error occurs in parsing or compilation, in most cases a valid op
tree (most likely null) is returned anyway.  The error is reflected in
the parser state, normally resulting in a single exception at the top
level of parsing which covers all the compilation errors that occurred.
Some compilation errors, however, will throw an exception immediately.
.Sp
The \f(CW\*(C`flags\*(C'\fR parameter is reserved for future use, and must always
be zero.
.RS 4
.Sp
.Vb 1
\& OP *  parse_barestmt(U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """parse_block""" 4
.el .IP \f(CWparse_block\fR 4
.IX Xref "parse_block"
.IX Item "parse_block"
NOTE: \f(CW\*(C`parse_block\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Parse a single complete Perl code block.  This consists of an opening
brace, a sequence of statements, and a closing brace.  The block
constitutes a lexical scope, so \f(CW\*(C`my\*(C'\fR variables and various compile-time
effects can be contained within it.  It is up to the caller to ensure
that the dynamic parser state ("PL_parser" et al) is correctly set to
reflect the source of the code to be parsed and the lexical context for
the statement.
.Sp
The op tree representing the code block is returned.  This is always a
real op, never a null pointer.  It will normally be a \f(CW\*(C`lineseq\*(C'\fR list,
including \f(CW\*(C`nextstate\*(C'\fR or equivalent ops.  No ops to construct any kind
of runtime scope are included by virtue of it being a block.
.Sp
If an error occurs in parsing or compilation, in most cases a valid op
tree (most likely null) is returned anyway.  The error is reflected in
the parser state, normally resulting in a single exception at the top
level of parsing which covers all the compilation errors that occurred.
Some compilation errors, however, will throw an exception immediately.
.Sp
The \f(CW\*(C`flags\*(C'\fR parameter is reserved for future use, and must always
be zero.
.RS 4
.Sp
.Vb 1
\& OP *  parse_block(U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """parse_fullexpr""" 4
.el .IP \f(CWparse_fullexpr\fR 4
.IX Xref "parse_fullexpr"
.IX Item "parse_fullexpr"
NOTE: \f(CW\*(C`parse_fullexpr\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Parse a single complete Perl expression.  This allows the full
expression grammar, including the lowest-precedence operators such
as \f(CW\*(C`or\*(C'\fR.  The expression must be followed (and thus terminated) by a
token that an expression would normally be terminated by: end-of-file,
closing bracketing punctuation, semicolon, or one of the keywords that
signals a postfix expression-statement modifier.  If \f(CW\*(C`flags\*(C'\fR has the
\&\f(CW\*(C`PARSE_OPTIONAL\*(C'\fR bit set, then the expression is optional, otherwise it is
mandatory.  It is up to the caller to ensure that the dynamic parser
state ("PL_parser" et al) is correctly set to reflect the source of
the code to be parsed and the lexical context for the expression.
.Sp
The op tree representing the expression is returned.  If an optional
expression is absent, a null pointer is returned, otherwise the pointer
will be non-null.
.Sp
If an error occurs in parsing or compilation, in most cases a valid op
tree is returned anyway.  The error is reflected in the parser state,
normally resulting in a single exception at the top level of parsing
which covers all the compilation errors that occurred.  Some compilation
errors, however, will throw an exception immediately.
.RS 4
.Sp
.Vb 1
\& OP *  parse_fullexpr(U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """parse_fullstmt""" 4
.el .IP \f(CWparse_fullstmt\fR 4
.IX Xref "parse_fullstmt"
.IX Item "parse_fullstmt"
NOTE: \f(CW\*(C`parse_fullstmt\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Parse a single complete Perl statement.  This may be a normal imperative
statement or a declaration that has compile-time effect, and may include
optional labels.  It is up to the caller to ensure that the dynamic
parser state ("PL_parser" et al) is correctly set to reflect the source
of the code to be parsed and the lexical context for the statement.
.Sp
The op tree representing the statement is returned.  This may be a
null pointer if the statement is null, for example if it was actually
a subroutine definition (which has compile-time side effects).  If not
null, it will be the result of a "newSTATEOP" call, normally including
a \f(CW\*(C`nextstate\*(C'\fR or equivalent op.
.Sp
If an error occurs in parsing or compilation, in most cases a valid op
tree (most likely null) is returned anyway.  The error is reflected in
the parser state, normally resulting in a single exception at the top
level of parsing which covers all the compilation errors that occurred.
Some compilation errors, however, will throw an exception immediately.
.Sp
The \f(CW\*(C`flags\*(C'\fR parameter is reserved for future use, and must always
be zero.
.RS 4
.Sp
.Vb 1
\& OP *  parse_fullstmt(U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """parse_label""" 4
.el .IP \f(CWparse_label\fR 4
.IX Xref "parse_label"
.IX Item "parse_label"
NOTE: \f(CW\*(C`parse_label\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Parse a single label, possibly optional, of the type that may prefix a
Perl statement.  It is up to the caller to ensure that the dynamic parser
state ("PL_parser" et al) is correctly set to reflect the source of
the code to be parsed.  If \f(CW\*(C`flags\*(C'\fR has the \f(CW\*(C`PARSE_OPTIONAL\*(C'\fR bit set, then the
label is optional, otherwise it is mandatory.
.Sp
The name of the label is returned in the form of a fresh scalar.  If an
optional label is absent, a null pointer is returned.
.Sp
If an error occurs in parsing, which can only occur if the label is
mandatory, a valid label is returned anyway.  The error is reflected in
the parser state, normally resulting in a single exception at the top
level of parsing which covers all the compilation errors that occurred.
.RS 4
.Sp
.Vb 1
\& SV *  parse_label(U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """parse_listexpr""" 4
.el .IP \f(CWparse_listexpr\fR 4
.IX Xref "parse_listexpr"
.IX Item "parse_listexpr"
NOTE: \f(CW\*(C`parse_listexpr\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Parse a Perl list expression.  This may contain operators of precedence
down to the comma operator.  The expression must be followed (and thus
terminated) either by a low-precedence logic operator such as \f(CW\*(C`or\*(C'\fR or by
something that would normally terminate an expression such as semicolon.
If \f(CW\*(C`flags\*(C'\fR has the \f(CW\*(C`PARSE_OPTIONAL\*(C'\fR bit set, then the expression is optional,
otherwise it is mandatory.  It is up to the caller to ensure that the
dynamic parser state ("PL_parser" et al) is correctly set to reflect
the source of the code to be parsed and the lexical context for the
expression.
.Sp
The op tree representing the expression is returned.  If an optional
expression is absent, a null pointer is returned, otherwise the pointer
will be non-null.
.Sp
If an error occurs in parsing or compilation, in most cases a valid op
tree is returned anyway.  The error is reflected in the parser state,
normally resulting in a single exception at the top level of parsing
which covers all the compilation errors that occurred.  Some compilation
errors, however, will throw an exception immediately.
.RS 4
.Sp
.Vb 1
\& OP *  parse_listexpr(U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """parse_stmtseq""" 4
.el .IP \f(CWparse_stmtseq\fR 4
.IX Xref "parse_stmtseq"
.IX Item "parse_stmtseq"
NOTE: \f(CW\*(C`parse_stmtseq\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Parse a sequence of zero or more Perl statements.  These may be normal
imperative statements, including optional labels, or declarations
that have compile-time effect, or any mixture thereof.  The statement
sequence ends when a closing brace or end-of-file is encountered in a
place where a new statement could have validly started.  It is up to
the caller to ensure that the dynamic parser state ("PL_parser" et al)
is correctly set to reflect the source of the code to be parsed and the
lexical context for the statements.
.Sp
The op tree representing the statement sequence is returned.  This may
be a null pointer if the statements were all null, for example if there
were no statements or if there were only subroutine definitions (which
have compile-time side effects).  If not null, it will be a \f(CW\*(C`lineseq\*(C'\fR
list, normally including \f(CW\*(C`nextstate\*(C'\fR or equivalent ops.
.Sp
If an error occurs in parsing or compilation, in most cases a valid op
tree is returned anyway.  The error is reflected in the parser state,
normally resulting in a single exception at the top level of parsing
which covers all the compilation errors that occurred.  Some compilation
errors, however, will throw an exception immediately.
.Sp
The \f(CW\*(C`flags\*(C'\fR parameter is reserved for future use, and must always
be zero.
.RS 4
.Sp
.Vb 1
\& OP *  parse_stmtseq(U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """parse_subsignature""" 4
.el .IP \f(CWparse_subsignature\fR 4
.IX Xref "parse_subsignature"
.IX Item "parse_subsignature"
NOTE: \f(CW\*(C`parse_subsignature\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Parse a subroutine signature declaration. This is the contents of the
parentheses following a named or anonymous subroutine declaration when the
\&\f(CW\*(C`signatures\*(C'\fR feature is enabled. Note that this function neither expects
nor consumes the opening and closing parentheses around the signature; it
is the caller's job to handle these.
.Sp
This function must only be called during parsing of a subroutine; after
"start_subparse" has been called. It might allocate lexical variables on
the pad for the current subroutine.
.Sp
The op tree to unpack the arguments from the stack at runtime is returned.
This op tree should appear at the beginning of the compiled function. The
caller may wish to use "op_append_list" to build their function body
after it, or splice it together with the body before calling "newATTRSUB".
.Sp
The \f(CW\*(C`flags\*(C'\fR parameter is reserved for future use, and must always
be zero.
.RS 4
.Sp
.Vb 1
\& OP *  parse_subsignature(U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """parse_termexpr""" 4
.el .IP \f(CWparse_termexpr\fR 4
.IX Xref "parse_termexpr"
.IX Item "parse_termexpr"
NOTE: \f(CW\*(C`parse_termexpr\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Parse a Perl term expression.  This may contain operators of precedence
down to the assignment operators.  The expression must be followed (and thus
terminated) either by a comma or lower-precedence operator or by
something that would normally terminate an expression such as semicolon.
If \f(CW\*(C`flags\*(C'\fR has the \f(CW\*(C`PARSE_OPTIONAL\*(C'\fR bit set, then the expression is optional,
otherwise it is mandatory.  It is up to the caller to ensure that the
dynamic parser state ("PL_parser" et al) is correctly set to reflect
the source of the code to be parsed and the lexical context for the
expression.
.Sp
The op tree representing the expression is returned.  If an optional
expression is absent, a null pointer is returned, otherwise the pointer
will be non-null.
.Sp
If an error occurs in parsing or compilation, in most cases a valid op
tree is returned anyway.  The error is reflected in the parser state,
normally resulting in a single exception at the top level of parsing
which covers all the compilation errors that occurred.  Some compilation
errors, however, will throw an exception immediately.
.RS 4
.Sp
.Vb 1
\& OP *  parse_termexpr(U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PL_parser""" 4
.el .IP \f(CWPL_parser\fR 4
.IX Xref "PL_parser"
.IX Item "PL_parser"
Pointer to a structure encapsulating the state of the parsing operation
currently in progress.  The pointer can be locally changed to perform
a nested parse without interfering with the state of an outer parse.
Individual members of \f(CW\*(C`PL_parser\*(C'\fR have their own documentation.
.ie n .IP """PL_parser\->bufend""" 4
.el .IP \f(CWPL_parser\->bufend\fR 4
.IX Xref "PL_parser->bufend"
.IX Item "PL_parser->bufend"
NOTE: \f(CW\*(C`PL_parser\->bufend\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Direct pointer to the end of the chunk of text currently being lexed, the
end of the lexer buffer.  This is equal to \f(CW\*(C`SvPVX(PL_parser\->linestr)
+ SvCUR(PL_parser\->linestr)\*(C'\fR.  A \f(CW\*(C`NUL\*(C'\fR character (zero octet) is
always located at the end of the buffer, and does not count as part of
the buffer's contents.
.ie n .IP """PL_parser\->bufptr""" 4
.el .IP \f(CWPL_parser\->bufptr\fR 4
.IX Xref "PL_parser->bufptr"
.IX Item "PL_parser->bufptr"
NOTE: \f(CW\*(C`PL_parser\->bufptr\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Points to the current position of lexing inside the lexer buffer.
Characters around this point may be freely examined, within
the range delimited by \f(CWSvPVX("PL_parser\->linestr")\fR and
"PL_parser\->bufend".  The octets of the buffer may be intended to be
interpreted as either UTF\-8 or Latin\-1, as indicated by "lex_bufutf8".
.Sp
Lexing code (whether in the Perl core or not) moves this pointer past
the characters that it consumes.  It is also expected to perform some
bookkeeping whenever a newline character is consumed.  This movement
can be more conveniently performed by the function "lex_read_to",
which handles newlines appropriately.
.Sp
Interpretation of the buffer's octets can be abstracted out by
using the slightly higher-level functions "lex_peek_unichar" and
"lex_read_unichar".
.ie n .IP """PL_parser\->linestart""" 4
.el .IP \f(CWPL_parser\->linestart\fR 4
.IX Xref "PL_parser->linestart"
.IX Item "PL_parser->linestart"
NOTE: \f(CW\*(C`PL_parser\->linestart\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Points to the start of the current line inside the lexer buffer.
This is useful for indicating at which column an error occurred, and
not much else.  This must be updated by any lexing code that consumes
a newline; the function "lex_read_to" handles this detail.
.ie n .IP """PL_parser\->linestr""" 4
.el .IP \f(CWPL_parser\->linestr\fR 4
.IX Xref "PL_parser->linestr"
.IX Item "PL_parser->linestr"
NOTE: \f(CW\*(C`PL_parser\->linestr\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Buffer scalar containing the chunk currently under consideration of the
text currently being lexed.  This is always a plain string scalar (for
which \f(CW\*(C`SvPOK\*(C'\fR is true).  It is not intended to be used as a scalar by
normal scalar means; instead refer to the buffer directly by the pointer
variables described below.
.Sp
The lexer maintains various \f(CW\*(C`char*\*(C'\fR pointers to things in the
\&\f(CW\*(C`PL_parser\->linestr\*(C'\fR buffer.  If \f(CW\*(C`PL_parser\->linestr\*(C'\fR is ever
reallocated, all of these pointers must be updated.  Don't attempt to
do this manually, but rather use "lex_grow_linestr" if you need to
reallocate the buffer.
.Sp
The content of the text chunk in the buffer is commonly exactly one
complete line of input, up to and including a newline terminator,
but there are situations where it is otherwise.  The octets of the
buffer may be intended to be interpreted as either UTF\-8 or Latin\-1.
The function "lex_bufutf8" tells you which.  Do not use the \f(CW\*(C`SvUTF8\*(C'\fR
flag on this scalar, which may disagree with it.
.Sp
For direct examination of the buffer, the variable
"PL_parser\->bufend" points to the end of the buffer.  The current
lexing position is pointed to by "PL_parser\->bufptr".  Direct use
of these pointers is usually preferable to examination of the scalar
through normal scalar means.
.ie n .IP """suspend_compcv""" 4
.el .IP \f(CWsuspend_compcv\fR 4
.IX Xref "suspend_compcv"
.IX Item "suspend_compcv"
Implements part of the concept of a "suspended compilation CV", which can be
used to pause the parser and compiler during parsing a CV in order to come
back to it later on.
.Sp
This function saves the current state of the subroutine under compilation
(\f(CW\*(C`PL_compcv\*(C'\fR) into the supplied buffer.  This should be used initially to
create the state in the buffer, as the final thing before a \f(CW\*(C`LEAVE\*(C'\fR within a
block.
.Sp
.Vb 3
\&    ENTER;
\&    start_subparse(0);
\&    ...
\&
\&    suspend_compcv(&buffer);
\&    LEAVE;
.Ve
.Sp
Once suspended, the \f(CW\*(C`resume_compcv\*(C'\fR or \f(CW\*(C`resume_compcv_and_save\*(C'\fR function can
later be used to continue the parsing from the point this stopped.
.RS 4
.Sp
.Vb 1
\& void  suspend_compcv(struct suspended_compcv *buffer)
.Ve
.RE
.RS 4
.RE
.ie n .IP """wrap_infix_plugin""" 4
.el .IP \f(CWwrap_infix_plugin\fR 4
.IX Xref "wrap_infix_plugin"
.IX Item "wrap_infix_plugin"
NOTE: \f(CW\*(C`wrap_infix_plugin\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
\&\fBNOTE:\fR This API exists entirely for the purpose of making the CPAN module
\&\f(CW\*(C`XS::Parse::Infix\*(C'\fR work. It is not expected that additional modules will make
use of it; rather, that they should use \f(CW\*(C`XS::Parse::Infix\*(C'\fR to provide parsing
of new infix operators.
.Sp
Puts a C function into the chain of infix plugins.  This is the preferred
way to manipulate the "PL_infix_plugin" variable.  \f(CW\*(C`new_plugin\*(C'\fR is a
pointer to the C function that is to be added to the infix plugin chain, and
\&\f(CW\*(C`old_plugin_p\*(C'\fR points to a storage location where a pointer to the next
function in the chain will be stored.  The value of \f(CW\*(C`new_plugin\*(C'\fR is written
into the "PL_infix_plugin" variable, while the value previously stored there
is written to \f(CW*old_plugin_p\fR.
.Sp
Direct access to "PL_infix_plugin" should be avoided.
.RS 4
.Sp
.Vb 2
\& void  wrap_infix_plugin(Perl_infix_plugin_t new_plugin,
\&                         Perl_infix_plugin_t *old_plugin_p)
.Ve
.RE
.RS 4
.RE
.ie n .IP """wrap_keyword_plugin""" 4
.el .IP \f(CWwrap_keyword_plugin\fR 4
.IX Xref "wrap_keyword_plugin"
.IX Item "wrap_keyword_plugin"
NOTE: \f(CW\*(C`wrap_keyword_plugin\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Puts a C function into the chain of keyword plugins.  This is the
preferred way to manipulate the "PL_keyword_plugin" variable.
\&\f(CW\*(C`new_plugin\*(C'\fR is a pointer to the C function that is to be added to the
keyword plugin chain, and \f(CW\*(C`old_plugin_p\*(C'\fR points to the storage location
where a pointer to the next function in the chain will be stored.  The
value of \f(CW\*(C`new_plugin\*(C'\fR is written into the "PL_keyword_plugin" variable,
while the value previously stored there is written to \f(CW*old_plugin_p\fR.
.Sp
"PL_keyword_plugin" is global to an entire process, and a module wishing
to hook keyword parsing may find itself invoked more than once per
process, typically in different threads.  To handle that situation, this
function is idempotent.  The location \f(CW*old_plugin_p\fR must initially
(once per process) contain a null pointer.  A C variable of static
duration (declared at file scope, typically also marked \f(CW\*(C`static\*(C'\fR to give
it internal linkage) will be implicitly initialised appropriately, if it
does not have an explicit initialiser.  This function will only actually
modify the plugin chain if it finds \f(CW*old_plugin_p\fR to be null.  This
function is also thread safe on the small scale.  It uses appropriate
locking to avoid race conditions in accessing "PL_keyword_plugin".
.Sp
When this function is called, the function referenced by \f(CW\*(C`new_plugin\*(C'\fR
must be ready to be called, except for \f(CW*old_plugin_p\fR being unfilled.
In a threading situation, \f(CW\*(C`new_plugin\*(C'\fR may be called immediately, even
before this function has returned.  \f(CW*old_plugin_p\fR will always be
appropriately set before \f(CW\*(C`new_plugin\*(C'\fR is called.  If \f(CW\*(C`new_plugin\*(C'\fR
decides not to do anything special with the identifier that it is given
(which is the usual case for most calls to a keyword plugin), it must
chain the plugin function referenced by \f(CW*old_plugin_p\fR.
.Sp
Taken all together, XS code to install a keyword plugin should typically
look something like this:
.Sp
.Vb 10
\&    static Perl_keyword_plugin_t next_keyword_plugin;
\&    static OP *my_keyword_plugin(pTHX_
\&        char *keyword_ptr, STRLEN keyword_len, OP **op_ptr)
\&    {
\&        if (memEQs(keyword_ptr, keyword_len,
\&                   "my_new_keyword")) {
\&            ...
\&        } else {
\&            return next_keyword_plugin(aTHX_
\&                keyword_ptr, keyword_len, op_ptr);
\&        }
\&    }
\&    BOOT:
\&        wrap_keyword_plugin(my_keyword_plugin,
\&                            &next_keyword_plugin);
.Ve
.Sp
Direct access to "PL_keyword_plugin" should be avoided.
.RS 4
.Sp
.Vb 2
\& void  wrap_keyword_plugin(Perl_keyword_plugin_t new_plugin,
\&                           Perl_keyword_plugin_t *old_plugin_p)
.Ve
.RE
.RS 4
.RE
.SH Locales
.IX Header "Locales"
.ie n .IP """DECLARATION_FOR_LC_NUMERIC_MANIPULATION""" 4
.el .IP \f(CWDECLARATION_FOR_LC_NUMERIC_MANIPULATION\fR 4
.IX Xref "DECLARATION_FOR_LC_NUMERIC_MANIPULATION"
.IX Item "DECLARATION_FOR_LC_NUMERIC_MANIPULATION"
This macro should be used as a statement.  It declares a private variable
(whose name begins with an underscore) that is needed by the other macros in
this section.  Failing to include this correctly should lead to a syntax error.
For compatibility with C89 C compilers it should be placed in a block before
any executable statements.
.RS 4
.Sp
.Vb 1
\& void  DECLARATION_FOR_LC_NUMERIC_MANIPULATION
.Ve
.RE
.RS 4
.RE
.ie n .IP """foldEQ_locale""" 4
.el .IP \f(CWfoldEQ_locale\fR 4
.IX Xref "foldEQ_locale"
.IX Item "foldEQ_locale"
Returns true if the leading \f(CW\*(C`len\*(C'\fR bytes of the strings \f(CW\*(C`s1\*(C'\fR and \f(CW\*(C`s2\*(C'\fR are the
same case-insensitively in the current locale; false otherwise.
.RS 4
.Sp
.Vb 1
\& I32  foldEQ_locale(const char *a, const char *b, I32 len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """HAS_DUPLOCALE""" 4
.el .IP \f(CWHAS_DUPLOCALE\fR 4
.IX Xref "HAS_DUPLOCALE"
.IX Item "HAS_DUPLOCALE"
This symbol, if defined, indicates that the \f(CW\*(C`duplocale\*(C'\fR routine is
available to duplicate a locale object.
.ie n .IP """HAS_FREELOCALE""" 4
.el .IP \f(CWHAS_FREELOCALE\fR 4
.IX Xref "HAS_FREELOCALE"
.IX Item "HAS_FREELOCALE"
This symbol, if defined, indicates that the \f(CW\*(C`freelocale\*(C'\fR routine is
available to deallocates the resources associated with a locale object.
.ie n .IP """HAS_LC_MONETARY_2008""" 4
.el .IP \f(CWHAS_LC_MONETARY_2008\fR 4
.IX Xref "HAS_LC_MONETARY_2008"
.IX Item "HAS_LC_MONETARY_2008"
This symbol, if defined, indicates that the localeconv routine is
available and has the additional members added in \f(CW\*(C`POSIX\*(C'\fR 1003.1\-2008.
.ie n .IP """HAS_LOCALECONV""" 4
.el .IP \f(CWHAS_LOCALECONV\fR 4
.IX Xref "HAS_LOCALECONV"
.IX Item "HAS_LOCALECONV"
This symbol, if defined, indicates that the \f(CW\*(C`localeconv\*(C'\fR routine is
available for numeric and monetary formatting conventions.
.ie n .IP """HAS_LOCALECONV_L""" 4
.el .IP \f(CWHAS_LOCALECONV_L\fR 4
.IX Xref "HAS_LOCALECONV_L"
.IX Item "HAS_LOCALECONV_L"
This symbol, if defined, indicates that the \f(CW\*(C`localeconv_l\*(C'\fR routine is
available to query certain information about a locale.
.ie n .IP """HAS_NEWLOCALE""" 4
.el .IP \f(CWHAS_NEWLOCALE\fR 4
.IX Xref "HAS_NEWLOCALE"
.IX Item "HAS_NEWLOCALE"
This symbol, if defined, indicates that the \f(CW\*(C`newlocale\*(C'\fR routine is
available to return a new locale object or modify an existing
locale object.
.ie n .IP """HAS_NL_LANGINFO""" 4
.el .IP \f(CWHAS_NL_LANGINFO\fR 4
.IX Xref "HAS_NL_LANGINFO"
.IX Item "HAS_NL_LANGINFO"
This symbol, if defined, indicates that the \f(CW\*(C`nl_langinfo\*(C'\fR routine is
available to return local data.  You will also need \fIlanginfo.h\fR
and therefore \f(CW\*(C`I_LANGINFO\*(C'\fR.
.ie n .IP """HAS_NL_LANGINFO_L""" 4
.el .IP \f(CWHAS_NL_LANGINFO_L\fR 4
.IX Xref "HAS_NL_LANGINFO_L"
.IX Item "HAS_NL_LANGINFO_L"
This symbol, when defined, indicates presence of the \f(CWnl_langinfo_l()\fR
function
.ie n .IP """HAS_QUERYLOCALE""" 4
.el .IP \f(CWHAS_QUERYLOCALE\fR 4
.IX Xref "HAS_QUERYLOCALE"
.IX Item "HAS_QUERYLOCALE"
This symbol, if defined, indicates that the \f(CW\*(C`querylocale\*(C'\fR routine is
available to return the name of the locale for a category mask.
.ie n .IP """HAS_SETLOCALE""" 4
.el .IP \f(CWHAS_SETLOCALE\fR 4
.IX Xref "HAS_SETLOCALE"
.IX Item "HAS_SETLOCALE"
This symbol, if defined, indicates that the \f(CW\*(C`setlocale\*(C'\fR routine is
available to handle locale-specific ctype implementations.
.ie n .IP """HAS_SETLOCALE_R""" 4
.el .IP \f(CWHAS_SETLOCALE_R\fR 4
.IX Xref "HAS_SETLOCALE_R"
.IX Item "HAS_SETLOCALE_R"
This symbol, if defined, indicates that the \f(CW\*(C`setlocale_r\*(C'\fR routine
is available to setlocale re-entrantly.
.ie n .IP """HAS_THREAD_SAFE_NL_LANGINFO_L""" 4
.el .IP \f(CWHAS_THREAD_SAFE_NL_LANGINFO_L\fR 4
.IX Xref "HAS_THREAD_SAFE_NL_LANGINFO_L"
.IX Item "HAS_THREAD_SAFE_NL_LANGINFO_L"
This symbol, when defined, indicates presence of the \f(CWnl_langinfo_l()\fR
function, and that it is thread-safe.
.ie n .IP """HAS_USELOCALE""" 4
.el .IP \f(CWHAS_USELOCALE\fR 4
.IX Xref "HAS_USELOCALE"
.IX Item "HAS_USELOCALE"
This symbol, if defined, indicates that the \f(CW\*(C`uselocale\*(C'\fR routine is
available to set the current locale for the calling thread.
.ie n .IP """I_LANGINFO""" 4
.el .IP \f(CWI_LANGINFO\fR 4
.IX Xref "I_LANGINFO"
.IX Item "I_LANGINFO"
This symbol, if defined, indicates that \fIlanginfo.h\fR exists and
should be included.
.RS 4
.Sp
.Vb 3
\& #ifdef I_LANGINFO
\&     #include <langinfo.h>
\& #endif
.Ve
.RE
.RS 4
.RE
.ie n .IP """I_LOCALE""" 4
.el .IP \f(CWI_LOCALE\fR 4
.IX Xref "I_LOCALE"
.IX Item "I_LOCALE"
This symbol, if defined, indicates to the C program that it should
include \fIlocale.h\fR.
.RS 4
.Sp
.Vb 3
\& #ifdef I_LOCALE
\&     #include <locale.h>
\& #endif
.Ve
.RE
.RS 4
.RE
.ie n .IP """IN_LOCALE""" 4
.el .IP \f(CWIN_LOCALE\fR 4
.IX Xref "IN_LOCALE"
.IX Item "IN_LOCALE"
Evaluates to TRUE if the plain locale pragma without a parameter (\f(CW\*(C`use\ locale\*(C'\fR) is in effect.
.RS 4
.Sp
.Vb 1
\& bool  IN_LOCALE
.Ve
.RE
.RS 4
.RE
.ie n .IP """IN_LOCALE_COMPILETIME""" 4
.el .IP \f(CWIN_LOCALE_COMPILETIME\fR 4
.IX Xref "IN_LOCALE_COMPILETIME"
.IX Item "IN_LOCALE_COMPILETIME"
Evaluates to TRUE if, when compiling a perl program (including an \f(CW\*(C`eval\*(C'\fR) if
the plain locale pragma without a parameter (\f(CW\*(C`use\ locale\*(C'\fR) is in effect.
.RS 4
.Sp
.Vb 1
\& bool  IN_LOCALE_COMPILETIME
.Ve
.RE
.RS 4
.RE
.ie n .IP """IN_LOCALE_RUNTIME""" 4
.el .IP \f(CWIN_LOCALE_RUNTIME\fR 4
.IX Xref "IN_LOCALE_RUNTIME"
.IX Item "IN_LOCALE_RUNTIME"
Evaluates to TRUE if, when executing a perl program (including an \f(CW\*(C`eval\*(C'\fR) if
the plain locale pragma without a parameter (\f(CW\*(C`use\ locale\*(C'\fR) is in effect.
.RS 4
.Sp
.Vb 1
\& bool  IN_LOCALE_RUNTIME
.Ve
.RE
.RS 4
.RE
.ie n .IP """I_XLOCALE""" 4
.el .IP \f(CWI_XLOCALE\fR 4
.IX Xref "I_XLOCALE"
.IX Item "I_XLOCALE"
This symbol, if defined, indicates to the C program that the
header \fIxlocale.h\fR is available.  See also \f(CW"NEED_XLOCALE_H"\fR
.RS 4
.Sp
.Vb 3
\& #ifdef I_XLOCALE
\&     #include <xlocale.h>
\& #endif
.Ve
.RE
.RS 4
.RE
.ie n .IP """NEED_XLOCALE_H""" 4
.el .IP \f(CWNEED_XLOCALE_H\fR 4
.IX Xref "NEED_XLOCALE_H"
.IX Item "NEED_XLOCALE_H"
This symbol, if defined, indicates that the C program should
include \fIxlocale.h\fR to get \f(CWnewlocale()\fR and its friends.
.ie n .IP """Perl_langinfo""" 4
.el .IP \f(CWPerl_langinfo\fR 4
.IX Item "Perl_langinfo"
.PD 0
.ie n .IP """Perl_langinfo8""" 4
.el .IP \f(CWPerl_langinfo8\fR 4
.IX Xref "Perl_langinfo Perl_langinfo8"
.IX Item "Perl_langinfo8"
.PD
\&\f(CW\*(C`Perl_langinfo\*(C'\fR is an (almost) drop-in replacement for the system
\&\f(CWnl_langinfo(3)\fR, taking the same \f(CW\*(C`item\*(C'\fR parameter values, and returning
the same information.  But it is more thread-safe than regular
\&\f(CWnl_langinfo()\fR, and hides the quirks of Perl's locale handling from your
code, and can be used on systems that lack a native \f(CW\*(C`nl_langinfo\*(C'\fR.
.Sp
However, you should instead use the improved version of this:
"Perl_langinfo8", which behaves identically except for an additional
parameter, a pointer to a variable declared as "\f(CW\*(C`utf8ness_t\*(C'\fR", into which it
returns to you how you should treat the returned string with regards to it
being encoded in UTF\-8 or not.
.Sp
Concerning the differences between these and plain \f(CWnl_langinfo()\fR:
.RS 4
.IP a. 4
.IX Item "a."
\&\f(CW\*(C`Perl_langinfo8\*(C'\fR has an extra parameter, described above.  Besides this, the
other reason they aren't quite a drop-in replacement is actually an advantage.
The \f(CW\*(C`const\*(C'\fRness of the return allows the compiler to catch attempts to write
into the returned buffer, which is illegal and could cause run-time crashes.
.IP b. 4
.IX Item "b."
They deliver the correct results for the \f(CW\*(C`RADIXCHAR\*(C'\fR and \f(CW\*(C`THOUSEP\*(C'\fR items,
without you having to write extra code.  The reason for the extra code would be
because these are from the \f(CW\*(C`LC_NUMERIC\*(C'\fR locale category, which is normally
kept set by Perl so that the radix is a dot, and the separator is the empty
string, no matter what the underlying locale is supposed to be, and so to get
the expected results, you have to temporarily toggle into the underlying
locale, and later toggle back.  (You could use plain \f(CW\*(C`nl_langinfo\*(C'\fR and
\&\f(CW"STORE_LC_NUMERIC_FORCE_TO_UNDERLYING"\fR for this but then you wouldn't get
the other advantages of \f(CWPerl_langinfo()\fR; not keeping \f(CW\*(C`LC_NUMERIC\*(C'\fR in the C
(or equivalent) locale would break a lot of CPAN, which is expecting the radix
(decimal point) character to be a dot.)
.IP c. 4
.IX Item "c."
The system function they replace can have its static return buffer trashed,
not only by a subsequent call to that function, but by a \f(CW\*(C`freelocale\*(C'\fR,
\&\f(CW\*(C`setlocale\*(C'\fR, or other locale change.  The returned buffer of these functions
is not changed until the next call to one or the other, so the buffer is never
in a trashed state.
.IP d. 4
.IX Item "d."
The return buffer is per-thread, so it also is never overwritten by a call to
these functions from another thread;  unlike the function it replaces.
.IP e. 4
.IX Item "e."
But most importantly, they work on systems that don't have \f(CW\*(C`nl_langinfo\*(C'\fR, such
as Windows, hence making your code more portable.  Of the fifty-some possible
items specified by the POSIX 2008 standard,
<http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/langinfo.h.html>,
only one is completely unimplemented, though on non-Windows platforms, another
significant one is not fully implemented).  They use various techniques to
recover the other items, including calling \f(CWlocaleconv(3)\fR, and
\&\f(CWstrftime(3)\fR, both of which are specified in C89, so should be always be
available.  Later \f(CWstrftime()\fR versions have additional capabilities; What the
C locale yields or \f(CW""\fR is returned for any item not available on your system.
.Sp
It is important to note that, when called with an item that is recovered by
using \f(CW\*(C`localeconv\*(C'\fR, the buffer from any previous explicit call to
\&\f(CWlocaleconv(3)\fR will be overwritten.  But you shouldn't be using
\&\f(CW\*(C`localeconv\*(C'\fR anyway because it is is very much not thread-safe, and suffers
from the same problems outlined in item 'b.' above for the fields it returns that
are controlled by the LC_NUMERIC locale category.  Instead, avoid all of those
problems by calling "Perl_localeconv", which is thread-safe; or by using the
methods given in perlcall  to call
\&\f(CWPOSIX::localeconv()\fR, which is also thread-safe.
.RE
.RS 4
.Sp
The details for those items which may deviate from what this emulation returns
and what a native \f(CWnl_langinfo()\fR would return are specified in
I18N::Langinfo.
.Sp
When using \f(CW\*(C`Perl_langinfo8\*(C'\fR (or plain \f(CW\*(C`Perl_langinfo\*(C'\fR) on systems that don't
have a native \f(CWnl_langinfo()\fR, you must
.Sp
.Vb 1
\& #include "perl_langinfo.h"
.Ve
.Sp
before the \f(CW\*(C`perl.h\*(C'\fR \f(CW\*(C`#include\*(C'\fR.  You can replace your \fIlanginfo.h\fR
\&\f(CW\*(C`#include\*(C'\fR with this one.  (Doing it this way keeps out the symbols that plain
\&\fIlanginfo.h\fR would try to import into the namespace for code that doesn't need
it.)
.Sp
.Vb 2
\& const char *  Perl_langinfo (const int item)
\& const char *  Perl_langinfo8(const int item, utf8ness_t *utf8ness)
.Ve
.RE
.RS 4
.RE
.ie n .IP """Perl_localeconv""" 4
.el .IP \f(CWPerl_localeconv\fR 4
.IX Xref "Perl_localeconv"
.IX Item "Perl_localeconv"
This is a thread-safe version of the libc \fBlocaleconv\fR\|(3).  It is the same as
POSIX::localeconv (returning a hash of the \f(CWlocaleconv()\fR
fields), but directly callable from XS code.
.RS 4
.Sp
.Vb 1
\& HV *  Perl_localeconv(pTHX)
.Ve
.RE
.RS 4
.RE
.ie n .IP """Perl_setlocale""" 4
.el .IP \f(CWPerl_setlocale\fR 4
.IX Xref "Perl_setlocale"
.IX Item "Perl_setlocale"
This is an (almost) drop-in replacement for the system \f(CWsetlocale(3)\fR,
taking the same parameters, and returning the same information, except that it
returns the correct underlying \f(CW\*(C`LC_NUMERIC\*(C'\fR locale.  Regular \f(CW\*(C`setlocale\*(C'\fR will
instead return \f(CW\*(C`C\*(C'\fR if the underlying locale has a non-dot decimal point
character, or a non-empty thousands separator for displaying floating point
numbers.  This is because perl keeps that locale category such that it has a
dot and empty separator, changing the locale briefly during the operations
where the underlying one is required. \f(CW\*(C`Perl_setlocale\*(C'\fR knows about this, and
compensates; regular \f(CW\*(C`setlocale\*(C'\fR doesn't.
.Sp
Another reason it isn't completely a drop-in replacement is that it is
declared to return \f(CW\*(C`const\ char\ *\*(C'\fR, whereas the system setlocale omits the
\&\f(CW\*(C`const\*(C'\fR (presumably because its API was specified long ago, and can't be
updated; it is illegal to change the information \f(CW\*(C`setlocale\*(C'\fR returns; doing
so leads to segfaults.)
.Sp
Finally, \f(CW\*(C`Perl_setlocale\*(C'\fR works under all circumstances, whereas plain
\&\f(CW\*(C`setlocale\*(C'\fR can be completely ineffective on some platforms under some
configurations.
.Sp
Changing the locale is not a good idea when more than one thread is running,
except on systems where the predefined variable \f(CW\*(C`${^SAFE_LOCALES}\*(C'\fR is 1.
This is because on such systems the locale is global to the whole process and
not local to just the thread calling the function.  So changing it in one
thread instantaneously changes it in all.  On some such systems, the system
\&\f(CWsetlocale()\fR is ineffective, returning the wrong information, and failing to
actually change the locale.  z/OS refuses to try to change the locale once a
second thread is created.  \f(CW\*(C`Perl_setlocale\*(C'\fR, should give you accurate results
of what actually happened on these problematic platforms, returning NULL if the
system forbade the locale change.
.Sp
The return points to a per-thread static buffer, which is overwritten the next
time \f(CW\*(C`Perl_setlocale\*(C'\fR is called from the same thread.
.RS 4
.Sp
.Vb 2
\& const char *  Perl_setlocale(const int category,
\&                              const char *locale)
.Ve
.RE
.RS 4
.RE
.ie n .IP """RESTORE_LC_NUMERIC""" 4
.el .IP \f(CWRESTORE_LC_NUMERIC\fR 4
.IX Xref "RESTORE_LC_NUMERIC"
.IX Item "RESTORE_LC_NUMERIC"
This is used in conjunction with one of the macros
"STORE_LC_NUMERIC_SET_TO_NEEDED"
and "STORE_LC_NUMERIC_FORCE_TO_UNDERLYING" to properly restore the
\&\f(CW\*(C`LC_NUMERIC\*(C'\fR state.
.Sp
A call to "DECLARATION_FOR_LC_NUMERIC_MANIPULATION" must have been made to
declare at compile time a private variable used by this macro and the two
\&\f(CW\*(C`STORE\*(C'\fR ones.  This macro should be called as a single statement, not an
expression, but with an empty argument list, like this:
.Sp
.Vb 6
\& {
\&    DECLARATION_FOR_LC_NUMERIC_MANIPULATION;
\&     ...
\&    RESTORE_LC_NUMERIC();
\&     ...
\& }
.Ve
.RS 4
.Sp
.Vb 1
\& void  RESTORE_LC_NUMERIC()
.Ve
.RE
.RS 4
.RE
.ie n .IP """SETLOCALE_ACCEPTS_ANY_LOCALE_NAME""" 4
.el .IP \f(CWSETLOCALE_ACCEPTS_ANY_LOCALE_NAME\fR 4
.IX Xref "SETLOCALE_ACCEPTS_ANY_LOCALE_NAME"
.IX Item "SETLOCALE_ACCEPTS_ANY_LOCALE_NAME"
This symbol, if defined, indicates that the setlocale routine is
available and it accepts any input locale name as valid.
.ie n .IP """STORE_LC_NUMERIC_FORCE_TO_UNDERLYING""" 4
.el .IP \f(CWSTORE_LC_NUMERIC_FORCE_TO_UNDERLYING\fR 4
.IX Xref "STORE_LC_NUMERIC_FORCE_TO_UNDERLYING"
.IX Item "STORE_LC_NUMERIC_FORCE_TO_UNDERLYING"
This is used by XS code that is \f(CW\*(C`LC_NUMERIC\*(C'\fR locale-aware to force the
locale for category \f(CW\*(C`LC_NUMERIC\*(C'\fR to be what perl thinks is the current
underlying locale.  (The perl interpreter could be wrong about what the
underlying locale actually is if some C or XS code has called the C library
function \fBsetlocale\fR\|(3) behind its back; calling "sync_locale" before calling
this macro will update perl's records.)
.Sp
A call to "DECLARATION_FOR_LC_NUMERIC_MANIPULATION" must have been made to
declare at compile time a private variable used by this macro.  This macro
should be called as a single statement, not an expression, but with an empty
argument list, like this:
.Sp
.Vb 8
\& {
\&    DECLARATION_FOR_LC_NUMERIC_MANIPULATION;
\&     ...
\&    STORE_LC_NUMERIC_FORCE_TO_UNDERLYING();
\&     ...
\&    RESTORE_LC_NUMERIC();
\&     ...
\& }
.Ve
.Sp
The private variable is used to save the current locale state, so
that the requisite matching call to "RESTORE_LC_NUMERIC" can restore it.
.Sp
On threaded perls not operating with thread-safe functionality, this macro uses
a mutex to force a critical section.  Therefore the matching RESTORE should be
close by, and guaranteed to be called.
.RS 4
.Sp
.Vb 1
\& void  STORE_LC_NUMERIC_FORCE_TO_UNDERLYING()
.Ve
.RE
.RS 4
.RE
.ie n .IP """STORE_LC_NUMERIC_SET_TO_NEEDED""" 4
.el .IP \f(CWSTORE_LC_NUMERIC_SET_TO_NEEDED\fR 4
.IX Xref "STORE_LC_NUMERIC_SET_TO_NEEDED"
.IX Item "STORE_LC_NUMERIC_SET_TO_NEEDED"
This is used to help wrap XS or C code that is \f(CW\*(C`LC_NUMERIC\*(C'\fR locale-aware.
This locale category is generally kept set to a locale where the decimal radix
character is a dot, and the separator between groups of digits is empty.  This
is because most XS code that reads floating point numbers is expecting them to
have this syntax.
.Sp
This macro makes sure the current \f(CW\*(C`LC_NUMERIC\*(C'\fR state is set properly, to be
aware of locale if the call to the XS or C code from the Perl program is
from within the scope of a \f(CW\*(C`use\ locale\*(C'\fR; or to ignore locale if the call is
instead from outside such scope.
.Sp
This macro is the start of wrapping the C or XS code; the wrap ending is done
by calling the "RESTORE_LC_NUMERIC" macro after the operation.  Otherwise
the state can be changed that will adversely affect other XS code.
.Sp
A call to "DECLARATION_FOR_LC_NUMERIC_MANIPULATION" must have been made to
declare at compile time a private variable used by this macro.  This macro
should be called as a single statement, not an expression, but with an empty
argument list, like this:
.Sp
.Vb 8
\& {
\&    DECLARATION_FOR_LC_NUMERIC_MANIPULATION;
\&     ...
\&    STORE_LC_NUMERIC_SET_TO_NEEDED();
\&     ...
\&    RESTORE_LC_NUMERIC();
\&     ...
\& }
.Ve
.Sp
On threaded perls not operating with thread-safe functionality, this macro uses
a mutex to force a critical section.  Therefore the matching RESTORE should be
close by, and guaranteed to be called; see "WITH_LC_NUMERIC_SET_TO_NEEDED"
for a more contained way to ensure that.
.RS 4
.Sp
.Vb 1
\& void  STORE_LC_NUMERIC_SET_TO_NEEDED()
.Ve
.RE
.RS 4
.RE
.ie n .IP """STORE_LC_NUMERIC_SET_TO_NEEDED_IN""" 4
.el .IP \f(CWSTORE_LC_NUMERIC_SET_TO_NEEDED_IN\fR 4
.IX Xref "STORE_LC_NUMERIC_SET_TO_NEEDED_IN"
.IX Item "STORE_LC_NUMERIC_SET_TO_NEEDED_IN"
Same as "STORE_LC_NUMERIC_SET_TO_NEEDED" with in_lc_numeric provided
as the precalculated value of \f(CWIN_LC(LC_NUMERIC)\fR. It is the caller's
responsibility to ensure that the status of \f(CW\*(C`PL_compiling\*(C'\fR and \f(CW\*(C`PL_hints\*(C'\fR
cannot have changed since the precalculation.
.RS 4
.Sp
.Vb 1
\& void  STORE_LC_NUMERIC_SET_TO_NEEDED_IN(bool in_lc_numeric)
.Ve
.RE
.RS 4
.RE
.ie n .IP """WITH_LC_NUMERIC_SET_TO_NEEDED""" 4
.el .IP \f(CWWITH_LC_NUMERIC_SET_TO_NEEDED\fR 4
.IX Xref "WITH_LC_NUMERIC_SET_TO_NEEDED"
.IX Item "WITH_LC_NUMERIC_SET_TO_NEEDED"
This macro invokes the supplied statement or block within the context
of a "STORE_LC_NUMERIC_SET_TO_NEEDED" .. "RESTORE_LC_NUMERIC" pair
if required, so eg:
.Sp
.Vb 3
\&  WITH_LC_NUMERIC_SET_TO_NEEDED(
\&    SNPRINTF_G(fv, ebuf, sizeof(ebuf), precis)
\&  );
.Ve
.Sp
is equivalent to:
.Sp
.Vb 10
\&  {
\&#ifdef USE_LOCALE_NUMERIC
\&    DECLARATION_FOR_LC_NUMERIC_MANIPULATION;
\&    STORE_LC_NUMERIC_SET_TO_NEEDED();
\&#endif
\&    SNPRINTF_G(fv, ebuf, sizeof(ebuf), precis);
\&#ifdef USE_LOCALE_NUMERIC
\&    RESTORE_LC_NUMERIC();
\&#endif
\&  }
.Ve
.RS 4
.Sp
.Vb 1
\& void  WITH_LC_NUMERIC_SET_TO_NEEDED(block)
.Ve
.RE
.RS 4
.RE
.ie n .IP """WITH_LC_NUMERIC_SET_TO_NEEDED_IN""" 4
.el .IP \f(CWWITH_LC_NUMERIC_SET_TO_NEEDED_IN\fR 4
.IX Xref "WITH_LC_NUMERIC_SET_TO_NEEDED_IN"
.IX Item "WITH_LC_NUMERIC_SET_TO_NEEDED_IN"
Same as "WITH_LC_NUMERIC_SET_TO_NEEDED" with in_lc_numeric provided
as the precalculated value of \f(CWIN_LC(LC_NUMERIC)\fR. It is the caller's
responsibility to ensure that the status of \f(CW\*(C`PL_compiling\*(C'\fR and \f(CW\*(C`PL_hints\*(C'\fR
cannot have changed since the precalculation.
.RS 4
.Sp
.Vb 1
\& void  WITH_LC_NUMERIC_SET_TO_NEEDED_IN(bool in_lc_numeric, block)
.Ve
.RE
.RS 4
.RE
.SH Magic
.IX Xref "MAGIC"
.IX Header "Magic"
"Magic" is special data attached to SV structures in order to give them
"magical" properties.  When any Perl code tries to read from, or assign to,
an SV marked as magical, it calls the 'get' or 'set' function associated
with that SV's magic.  A get is called prior to reading an SV, in order to
give it a chance to update its internal value (get on $. writes the line
number of the last read filehandle into the SV's IV slot), while
set is called after an SV has been written to, in order to allow it to make
use of its changed value (set on $/ copies the SV's new value to the
PL_rs global variable).
.PP
Magic is implemented as a linked list of MAGIC structures attached to the
SV.  Each MAGIC struct holds the type of the magic, a pointer to an array
of functions that implement the \fBget()\fR, \fBset()\fR, \fBlength()\fR etc functions,
plus space for some flags and pointers.  For example, a tied variable has
a MAGIC structure that contains a pointer to the object associated with the
tie.
.ie n .IP """mg_clear""" 4
.el .IP \f(CWmg_clear\fR 4
.IX Xref "mg_clear"
.IX Item "mg_clear"
Clear something magical that the SV represents.  See \f(CW"sv_magic"\fR.
.RS 4
.Sp
.Vb 1
\& int  mg_clear(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """mg_copy""" 4
.el .IP \f(CWmg_copy\fR 4
.IX Xref "mg_copy"
.IX Item "mg_copy"
Copies the magic from one SV to another.  See \f(CW"sv_magic"\fR.
.RS 4
.Sp
.Vb 1
\& int  mg_copy(SV *sv, SV *nsv, const char *key, I32 klen)
.Ve
.RE
.RS 4
.RE
.ie n .IP """MGf_COPY""" 4
.el .IP \f(CWMGf_COPY\fR 4
.IX Item "MGf_COPY"
.PD 0
.ie n .IP """MGf_DUP""" 4
.el .IP \f(CWMGf_DUP\fR 4
.IX Item "MGf_DUP"
.ie n .IP """MGf_LOCAL""" 4
.el .IP \f(CWMGf_LOCAL\fR 4
.IX Item "MGf_LOCAL"
.PD
Described in perlguts.
.ie n .IP """mg_find""" 4
.el .IP \f(CWmg_find\fR 4
.IX Xref "mg_find"
.IX Item "mg_find"
Finds the magic pointer for \f(CW\*(C`type\*(C'\fR matching the SV.  See \f(CW"sv_magic"\fR.
.RS 4
.Sp
.Vb 1
\& MAGIC *  mg_find(const SV *sv, int type)
.Ve
.RE
.RS 4
.RE
.ie n .IP """mg_findext""" 4
.el .IP \f(CWmg_findext\fR 4
.IX Xref "mg_findext"
.IX Item "mg_findext"
Finds the magic pointer of \f(CW\*(C`type\*(C'\fR with the given \f(CW\*(C`vtbl\*(C'\fR for the \f(CW\*(C`SV\*(C'\fR.  See
\&\f(CW"sv_magicext"\fR.
.RS 4
.Sp
.Vb 1
\& MAGIC *  mg_findext(const SV *sv, int type, const MGVTBL *vtbl)
.Ve
.RE
.RS 4
.RE
.ie n .IP """mg_free""" 4
.el .IP \f(CWmg_free\fR 4
.IX Xref "mg_free"
.IX Item "mg_free"
Free any magic storage used by the SV.  See \f(CW"sv_magic"\fR.
.RS 4
.Sp
.Vb 1
\& int  mg_free(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """mg_freeext""" 4
.el .IP \f(CWmg_freeext\fR 4
.IX Xref "mg_freeext"
.IX Item "mg_freeext"
Remove any magic of type \f(CW\*(C`how\*(C'\fR using virtual table \f(CW\*(C`vtbl\*(C'\fR from the
SV \f(CW\*(C`sv\*(C'\fR.  See "sv_magic".
.Sp
\&\f(CW\*(C`mg_freeext(sv, how, NULL)\*(C'\fR is equivalent to \f(CW\*(C`mg_free_type(sv, how)\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& void  mg_freeext(SV *sv, int how, const MGVTBL *vtbl)
.Ve
.RE
.RS 4
.RE
.ie n .IP """mg_free_type""" 4
.el .IP \f(CWmg_free_type\fR 4
.IX Xref "mg_free_type"
.IX Item "mg_free_type"
Remove any magic of type \f(CW\*(C`how\*(C'\fR from the SV \f(CW\*(C`sv\*(C'\fR.  See "sv_magic".
.RS 4
.Sp
.Vb 1
\& void  mg_free_type(SV *sv, int how)
.Ve
.RE
.RS 4
.RE
.ie n .IP """mg_get""" 4
.el .IP \f(CWmg_get\fR 4
.IX Xref "mg_get"
.IX Item "mg_get"
Do magic before a value is retrieved from the SV.  The type of SV must
be >= \f(CW\*(C`SVt_PVMG\*(C'\fR.  See \f(CW"sv_magic"\fR.
.RS 4
.Sp
.Vb 1
\& int  mg_get(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """mg_magical""" 4
.el .IP \f(CWmg_magical\fR 4
.IX Xref "mg_magical"
.IX Item "mg_magical"
Turns on the magical status of an SV.  See \f(CW"sv_magic"\fR.
.RS 4
.Sp
.Vb 1
\& void  mg_magical(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """mg_set""" 4
.el .IP \f(CWmg_set\fR 4
.IX Xref "mg_set"
.IX Item "mg_set"
Do magic after a value is assigned to the SV.  See \f(CW"sv_magic"\fR.
.RS 4
.Sp
.Vb 1
\& int  mg_set(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """MGVTBL""" 4
.el .IP \f(CWMGVTBL\fR 4
.IX Item "MGVTBL"
Described in perlguts.
.ie n .IP """PERL_MAGIC_arylen""" 4
.el .IP \f(CWPERL_MAGIC_arylen\fR 4
.IX Item "PERL_MAGIC_arylen"
.PD 0
.ie n .IP """PERL_MAGIC_arylen_p""" 4
.el .IP \f(CWPERL_MAGIC_arylen_p\fR 4
.IX Item "PERL_MAGIC_arylen_p"
.ie n .IP """PERL_MAGIC_backref""" 4
.el .IP \f(CWPERL_MAGIC_backref\fR 4
.IX Item "PERL_MAGIC_backref"
.ie n .IP """PERL_MAGIC_bm""" 4
.el .IP \f(CWPERL_MAGIC_bm\fR 4
.IX Item "PERL_MAGIC_bm"
.ie n .IP """PERL_MAGIC_checkcall""" 4
.el .IP \f(CWPERL_MAGIC_checkcall\fR 4
.IX Item "PERL_MAGIC_checkcall"
.ie n .IP """PERL_MAGIC_collxfrm""" 4
.el .IP \f(CWPERL_MAGIC_collxfrm\fR 4
.IX Item "PERL_MAGIC_collxfrm"
.ie n .IP """PERL_MAGIC_dbfile""" 4
.el .IP \f(CWPERL_MAGIC_dbfile\fR 4
.IX Item "PERL_MAGIC_dbfile"
.ie n .IP """PERL_MAGIC_dbline""" 4
.el .IP \f(CWPERL_MAGIC_dbline\fR 4
.IX Item "PERL_MAGIC_dbline"
.ie n .IP """PERL_MAGIC_debugvar""" 4
.el .IP \f(CWPERL_MAGIC_debugvar\fR 4
.IX Item "PERL_MAGIC_debugvar"
.ie n .IP """PERL_MAGIC_defelem""" 4
.el .IP \f(CWPERL_MAGIC_defelem\fR 4
.IX Item "PERL_MAGIC_defelem"
.ie n .IP """PERL_MAGIC_destruct""" 4
.el .IP \f(CWPERL_MAGIC_destruct\fR 4
.IX Item "PERL_MAGIC_destruct"
.ie n .IP """PERL_MAGIC_env""" 4
.el .IP \f(CWPERL_MAGIC_env\fR 4
.IX Item "PERL_MAGIC_env"
.ie n .IP """PERL_MAGIC_envelem""" 4
.el .IP \f(CWPERL_MAGIC_envelem\fR 4
.IX Item "PERL_MAGIC_envelem"
.ie n .IP """PERL_MAGIC_ext""" 4
.el .IP \f(CWPERL_MAGIC_ext\fR 4
.IX Item "PERL_MAGIC_ext"
.ie n .IP """PERL_MAGIC_extvalue""" 4
.el .IP \f(CWPERL_MAGIC_extvalue\fR 4
.IX Item "PERL_MAGIC_extvalue"
.ie n .IP """PERL_MAGIC_fm""" 4
.el .IP \f(CWPERL_MAGIC_fm\fR 4
.IX Item "PERL_MAGIC_fm"
.ie n .IP """PERL_MAGIC_hints""" 4
.el .IP \f(CWPERL_MAGIC_hints\fR 4
.IX Item "PERL_MAGIC_hints"
.ie n .IP """PERL_MAGIC_hintselem""" 4
.el .IP \f(CWPERL_MAGIC_hintselem\fR 4
.IX Item "PERL_MAGIC_hintselem"
.ie n .IP """PERL_MAGIC_hook""" 4
.el .IP \f(CWPERL_MAGIC_hook\fR 4
.IX Item "PERL_MAGIC_hook"
.ie n .IP """PERL_MAGIC_hookelem""" 4
.el .IP \f(CWPERL_MAGIC_hookelem\fR 4
.IX Item "PERL_MAGIC_hookelem"
.ie n .IP """PERL_MAGIC_isa""" 4
.el .IP \f(CWPERL_MAGIC_isa\fR 4
.IX Item "PERL_MAGIC_isa"
.ie n .IP """PERL_MAGIC_isaelem""" 4
.el .IP \f(CWPERL_MAGIC_isaelem\fR 4
.IX Item "PERL_MAGIC_isaelem"
.ie n .IP """PERL_MAGIC_lvref""" 4
.el .IP \f(CWPERL_MAGIC_lvref\fR 4
.IX Item "PERL_MAGIC_lvref"
.ie n .IP """PERL_MAGIC_nkeys""" 4
.el .IP \f(CWPERL_MAGIC_nkeys\fR 4
.IX Item "PERL_MAGIC_nkeys"
.ie n .IP """PERL_MAGIC_nonelem""" 4
.el .IP \f(CWPERL_MAGIC_nonelem\fR 4
.IX Item "PERL_MAGIC_nonelem"
.ie n .IP """PERL_MAGIC_overload_table""" 4
.el .IP \f(CWPERL_MAGIC_overload_table\fR 4
.IX Item "PERL_MAGIC_overload_table"
.ie n .IP """PERL_MAGIC_pos""" 4
.el .IP \f(CWPERL_MAGIC_pos\fR 4
.IX Item "PERL_MAGIC_pos"
.ie n .IP """PERL_MAGIC_qr""" 4
.el .IP \f(CWPERL_MAGIC_qr\fR 4
.IX Item "PERL_MAGIC_qr"
.ie n .IP """PERL_MAGIC_regdata""" 4
.el .IP \f(CWPERL_MAGIC_regdata\fR 4
.IX Item "PERL_MAGIC_regdata"
.ie n .IP """PERL_MAGIC_regdatum""" 4
.el .IP \f(CWPERL_MAGIC_regdatum\fR 4
.IX Item "PERL_MAGIC_regdatum"
.ie n .IP """PERL_MAGIC_regex_global""" 4
.el .IP \f(CWPERL_MAGIC_regex_global\fR 4
.IX Item "PERL_MAGIC_regex_global"
.ie n .IP """PERL_MAGIC_rhash""" 4
.el .IP \f(CWPERL_MAGIC_rhash\fR 4
.IX Item "PERL_MAGIC_rhash"
.ie n .IP """PERL_MAGIC_shared""" 4
.el .IP \f(CWPERL_MAGIC_shared\fR 4
.IX Item "PERL_MAGIC_shared"
.ie n .IP """PERL_MAGIC_shared_scalar""" 4
.el .IP \f(CWPERL_MAGIC_shared_scalar\fR 4
.IX Item "PERL_MAGIC_shared_scalar"
.ie n .IP """PERL_MAGIC_sig""" 4
.el .IP \f(CWPERL_MAGIC_sig\fR 4
.IX Item "PERL_MAGIC_sig"
.ie n .IP """PERL_MAGIC_sigelem""" 4
.el .IP \f(CWPERL_MAGIC_sigelem\fR 4
.IX Item "PERL_MAGIC_sigelem"
.ie n .IP """PERL_MAGIC_substr""" 4
.el .IP \f(CWPERL_MAGIC_substr\fR 4
.IX Item "PERL_MAGIC_substr"
.ie n .IP """PERL_MAGIC_sv""" 4
.el .IP \f(CWPERL_MAGIC_sv\fR 4
.IX Item "PERL_MAGIC_sv"
.ie n .IP """PERL_MAGIC_symtab""" 4
.el .IP \f(CWPERL_MAGIC_symtab\fR 4
.IX Item "PERL_MAGIC_symtab"
.ie n .IP """PERL_MAGIC_taint""" 4
.el .IP \f(CWPERL_MAGIC_taint\fR 4
.IX Item "PERL_MAGIC_taint"
.ie n .IP """PERL_MAGIC_tied""" 4
.el .IP \f(CWPERL_MAGIC_tied\fR 4
.IX Item "PERL_MAGIC_tied"
.ie n .IP """PERL_MAGIC_tiedelem""" 4
.el .IP \f(CWPERL_MAGIC_tiedelem\fR 4
.IX Item "PERL_MAGIC_tiedelem"
.ie n .IP """PERL_MAGIC_tiedscalar""" 4
.el .IP \f(CWPERL_MAGIC_tiedscalar\fR 4
.IX Item "PERL_MAGIC_tiedscalar"
.ie n .IP """PERL_MAGIC_utf8""" 4
.el .IP \f(CWPERL_MAGIC_utf8\fR 4
.IX Item "PERL_MAGIC_utf8"
.ie n .IP """PERL_MAGIC_uvar""" 4
.el .IP \f(CWPERL_MAGIC_uvar\fR 4
.IX Item "PERL_MAGIC_uvar"
.ie n .IP """PERL_MAGIC_uvar_elem""" 4
.el .IP \f(CWPERL_MAGIC_uvar_elem\fR 4
.IX Item "PERL_MAGIC_uvar_elem"
.ie n .IP """PERL_MAGIC_vec""" 4
.el .IP \f(CWPERL_MAGIC_vec\fR 4
.IX Item "PERL_MAGIC_vec"
.ie n .IP """PERL_MAGIC_vstring""" 4
.el .IP \f(CWPERL_MAGIC_vstring\fR 4
.IX Item "PERL_MAGIC_vstring"
.PD
Described in perlguts.
.ie n .IP """SvTIED_obj""" 4
.el .IP \f(CWSvTIED_obj\fR 4
.IX Item "SvTIED_obj"
Described in perlinterp.
.RS 4
.Sp
.Vb 1
\&   SvTIED_obj(SV *sv, MAGIC *mg)
.Ve
.RE
.RS 4
.RE
.SH "Memory Management"
.IX Header "Memory Management"
.ie n .IP """dump_mstats""" 4
.el .IP \f(CWdump_mstats\fR 4
.IX Xref "dump_mstats"
.IX Item "dump_mstats"
When enabled by compiling with \f(CW\*(C`\-DDEBUGGING_MSTATS\*(C'\fR, print out statistics
about malloc as two lines of numbers, one showing the length of the free list
for each size category, the second showing the number of mallocs\ \-\ frees for
each size category.
.Sp
\&\f(CW\*(C`s\*(C'\fR, if not NULL, is used as a phrase to include in the output, such as
"after\ compilation".
.RS 4
.Sp
.Vb 1
\& void  dump_mstats(const char *s)
.Ve
.RE
.RS 4
.RE
.ie n .IP """HASATTRIBUTE_MALLOC""" 4
.el .IP \f(CWHASATTRIBUTE_MALLOC\fR 4
.IX Xref "HASATTRIBUTE_MALLOC"
.IX Item "HASATTRIBUTE_MALLOC"
Can we handle \f(CW\*(C`GCC\*(C'\fR attribute for malloc-style functions.
.ie n .IP """HAS_MALLOC_GOOD_SIZE""" 4
.el .IP \f(CWHAS_MALLOC_GOOD_SIZE\fR 4
.IX Xref "HAS_MALLOC_GOOD_SIZE"
.IX Item "HAS_MALLOC_GOOD_SIZE"
This symbol, if defined, indicates that the \f(CW\*(C`malloc_good_size\*(C'\fR
routine is available for use.
.ie n .IP """HAS_MALLOC_SIZE""" 4
.el .IP \f(CWHAS_MALLOC_SIZE\fR 4
.IX Xref "HAS_MALLOC_SIZE"
.IX Item "HAS_MALLOC_SIZE"
This symbol, if defined, indicates that the \f(CW\*(C`malloc_size\*(C'\fR
routine is available for use.
.ie n .IP """I_MALLOCMALLOC""" 4
.el .IP \f(CWI_MALLOCMALLOC\fR 4
.IX Xref "I_MALLOCMALLOC"
.IX Item "I_MALLOCMALLOC"
This symbol, if defined, indicates to the C program that it should
include \fImalloc/malloc.h\fR.
.RS 4
.Sp
.Vb 3
\& #ifdef I_MALLOCMALLOC
\&     #include <mallocmalloc.h>
\& #endif
.Ve
.RE
.RS 4
.RE
.ie n .IP """MYMALLOC""" 4
.el .IP \f(CWMYMALLOC\fR 4
.IX Xref "MYMALLOC"
.IX Item "MYMALLOC"
This symbol, if defined, indicates that we're using our own malloc.
.ie n .IP """Newx""" 4
.el .IP \f(CWNewx\fR 4
.IX Item "Newx"
.PD 0
.ie n .IP """safemalloc""" 4
.el .IP \f(CWsafemalloc\fR 4
.IX Xref "Newx safemalloc"
.IX Item "safemalloc"
.PD
The XSUB-writer's interface to the C \f(CW\*(C`malloc\*(C'\fR function.
.Sp
Memory obtained by this should \fBONLY\fR be freed with "Safefree".
.Sp
In 5.9.3, \fBNewx()\fR and friends replace the older \fBNew()\fR API, and drops
the first parameter, \fIx\fR, a debug aid which allowed callers to identify
themselves.  This aid has been superseded by a new build option,
PERL_MEM_LOG (see "PERL_MEM_LOG" in perlhacktips).  The older API is still
there for use in XS modules supporting older perls.
.RS 4
.Sp
.Vb 2
\& void   Newx      (void* ptr, int nitems, type)
\& void*  safemalloc(size_t size)
.Ve
.RE
.RS 4
.RE
.ie n .IP """Newxc""" 4
.el .IP \f(CWNewxc\fR 4
.IX Xref "Newxc"
.IX Item "Newxc"
The XSUB-writer's interface to the C \f(CW\*(C`malloc\*(C'\fR function, with
cast.  See also \f(CW"Newx"\fR.
.Sp
Memory obtained by this should \fBONLY\fR be freed with "Safefree".
.RS 4
.Sp
.Vb 1
\& void  Newxc(void* ptr, int nitems, type, cast)
.Ve
.RE
.RS 4
.RE
.ie n .IP """Newxz""" 4
.el .IP \f(CWNewxz\fR 4
.IX Item "Newxz"
.PD 0
.ie n .IP """safecalloc""" 4
.el .IP \f(CWsafecalloc\fR 4
.IX Xref "Newxz safecalloc"
.IX Item "safecalloc"
.PD
The XSUB-writer's interface to the C \f(CW\*(C`malloc\*(C'\fR function.  The allocated
memory is zeroed with \f(CW\*(C`memzero\*(C'\fR.  See also \f(CW"Newx"\fR.
.Sp
Memory obtained by this should \fBONLY\fR be freed with "Safefree".
.RS 4
.Sp
.Vb 2
\& void   Newxz     (void* ptr, int nitems, type)
\& void*  safecalloc(size_t nitems, size_t item_size)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PERL_MALLOC_WRAP""" 4
.el .IP \f(CWPERL_MALLOC_WRAP\fR 4
.IX Xref "PERL_MALLOC_WRAP"
.IX Item "PERL_MALLOC_WRAP"
This symbol, if defined, indicates that we'd like malloc wrap checks.
.ie n .IP """Renew""" 4
.el .IP \f(CWRenew\fR 4
.IX Item "Renew"
.PD 0
.ie n .IP """saferealloc""" 4
.el .IP \f(CWsaferealloc\fR 4
.IX Xref "Renew saferealloc"
.IX Item "saferealloc"
.PD
The XSUB-writer's interface to the C \f(CW\*(C`realloc\*(C'\fR function.
.Sp
Memory obtained by this should \fBONLY\fR be freed with "Safefree".
.RS 4
.Sp
.Vb 2
\& void   Renew      (void* ptr, int nitems, type)
\& void*  saferealloc(void *ptr, size_t size)
.Ve
.RE
.RS 4
.RE
.ie n .IP """Renewc""" 4
.el .IP \f(CWRenewc\fR 4
.IX Xref "Renewc"
.IX Item "Renewc"
The XSUB-writer's interface to the C \f(CW\*(C`realloc\*(C'\fR function, with
cast.
.Sp
Memory obtained by this should \fBONLY\fR be freed with "Safefree".
.RS 4
.Sp
.Vb 1
\& void  Renewc(void* ptr, int nitems, type, cast)
.Ve
.RE
.RS 4
.RE
.ie n .IP """Safefree""" 4
.el .IP \f(CWSafefree\fR 4
.IX Xref "Safefree"
.IX Item "Safefree"
The XSUB-writer's interface to the C \f(CW\*(C`free\*(C'\fR function.
.Sp
This should \fBONLY\fR be used on memory obtained using "Newx" and friends.
.RS 4
.Sp
.Vb 1
\& void  Safefree(void* ptr)
.Ve
.RE
.RS 4
.RE
.ie n .IP """safesyscalloc""" 4
.el .IP \f(CWsafesyscalloc\fR 4
.IX Xref "safesyscalloc"
.IX Item "safesyscalloc"
Safe version of system's \fBcalloc()\fR
.RS 4
.Sp
.Vb 1
\& Malloc_t  safesyscalloc(MEM_SIZE elements, MEM_SIZE size)
.Ve
.RE
.RS 4
.RE
.ie n .IP """safesysfree""" 4
.el .IP \f(CWsafesysfree\fR 4
.IX Xref "safesysfree"
.IX Item "safesysfree"
Safe version of system's \fBfree()\fR
.RS 4
.Sp
.Vb 1
\& Free_t  safesysfree(Malloc_t where)
.Ve
.RE
.RS 4
.RE
.ie n .IP """safesysmalloc""" 4
.el .IP \f(CWsafesysmalloc\fR 4
.IX Xref "safesysmalloc"
.IX Item "safesysmalloc"
Paranoid version of system's \fBmalloc()\fR
.RS 4
.Sp
.Vb 1
\& Malloc_t  safesysmalloc(MEM_SIZE nbytes)
.Ve
.RE
.RS 4
.RE
.ie n .IP """safesysrealloc""" 4
.el .IP \f(CWsafesysrealloc\fR 4
.IX Xref "safesysrealloc"
.IX Item "safesysrealloc"
Paranoid version of system's \fBrealloc()\fR
.RS 4
.Sp
.Vb 1
\& Malloc_t  safesysrealloc(Malloc_t where, MEM_SIZE nbytes)
.Ve
.RE
.RS 4
.RE
.SH MRO
.IX Header "MRO"
These functions are related to the method resolution order of perl classes
Also see perlmroapi.
.ie n .IP """HvMROMETA""" 4
.el .IP \f(CWHvMROMETA\fR 4
.IX Item "HvMROMETA"
Described in perlmroapi.
.RS 4
.Sp
.Vb 1
\& struct mro_meta *  HvMROMETA(HV *hv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """mro_get_from_name""" 4
.el .IP \f(CWmro_get_from_name\fR 4
.IX Xref "mro_get_from_name"
.IX Item "mro_get_from_name"
Returns the previously registered mro with the given \f(CW\*(C`name\*(C'\fR, or NULL if not
registered.  See "\f(CW\*(C`mro_register\*(C'\fR".
.Sp
NOTE: \f(CW\*(C`mro_get_from_name\*(C'\fR must be explicitly called as
\&\f(CW\*(C`Perl_mro_get_from_name\*(C'\fR
with an \f(CW\*(C`aTHX_\*(C'\fR parameter.
.RS 4
.Sp
.Vb 1
\& const struct mro_alg *  Perl_mro_get_from_name(pTHX_ SV *name)
.Ve
.RE
.RS 4
.RE
.ie n .IP """mro_get_linear_isa""" 4
.el .IP \f(CWmro_get_linear_isa\fR 4
.IX Xref "mro_get_linear_isa"
.IX Item "mro_get_linear_isa"
Returns the mro linearisation for the given stash.  By default, this
will be whatever \f(CW\*(C`mro_get_linear_isa_dfs\*(C'\fR returns unless some
other MRO is in effect for the stash.  The return value is a
read-only AV* whose values are string SVs giving class names.
.Sp
You are responsible for \f(CWSvREFCNT_inc()\fR on the
return value if you plan to store it anywhere
semi-permanently (otherwise it might be deleted
out from under you the next time the cache is
invalidated).
.RS 4
.Sp
.Vb 1
\& AV *  mro_get_linear_isa(HV *stash)
.Ve
.RE
.RS 4
.RE
.ie n .IP """MRO_GET_PRIVATE_DATA""" 4
.el .IP \f(CWMRO_GET_PRIVATE_DATA\fR 4
.IX Item "MRO_GET_PRIVATE_DATA"
Described in perlmroapi.
.RS 4
.Sp
.Vb 2
\& SV*  MRO_GET_PRIVATE_DATA(struct mro_meta *const smeta,
\&                           const struct mro_alg *const which)
.Ve
.RE
.RS 4
.RE
.ie n .IP """mro_method_changed_in""" 4
.el .IP \f(CWmro_method_changed_in\fR 4
.IX Xref "mro_method_changed_in"
.IX Item "mro_method_changed_in"
Invalidates method caching on any child classes
of the given stash, so that they might notice
the changes in this one.
.Sp
Ideally, all instances of \f(CW\*(C`PL_sub_generation++\*(C'\fR in
perl source outside of \fImro.c\fR should be
replaced by calls to this.
.Sp
Perl automatically handles most of the common
ways a method might be redefined.  However, there
are a few ways you could change a method in a stash
without the cache code noticing, in which case you
need to call this method afterwards:
.Sp
1) Directly manipulating the stash HV entries from
XS code.
.Sp
2) Assigning a reference to a readonly scalar
constant into a stash entry in order to create
a constant subroutine (like \fIconstant.pm\fR
does).
.Sp
This same method is available from pure perl
via, \f(CWmro::method_changed_in(classname)\fR.
.RS 4
.Sp
.Vb 1
\& void  mro_method_changed_in(HV *stash)
.Ve
.RE
.RS 4
.RE
.ie n .IP """mro_register""" 4
.el .IP \f(CWmro_register\fR 4
.IX Xref "mro_register"
.IX Item "mro_register"
Registers a custom mro plugin.  See perlmroapi for details on this and other
mro functions.
.Sp
NOTE: \f(CW\*(C`mro_register\*(C'\fR must be explicitly called as
\&\f(CW\*(C`Perl_mro_register\*(C'\fR
with an \f(CW\*(C`aTHX_\*(C'\fR parameter.
.RS 4
.Sp
.Vb 1
\& void  Perl_mro_register(pTHX_ const struct mro_alg *mro)
.Ve
.RE
.RS 4
.RE
.ie n .IP """mro_set_mro""" 4
.el .IP \f(CWmro_set_mro\fR 4
.IX Xref "mro_set_mro"
.IX Item "mro_set_mro"
Set \f(CW\*(C`meta\*(C'\fR to the value contained in the registered mro plugin whose name is
\&\f(CW\*(C`name\*(C'\fR.
.Sp
Croaks if \f(CW\*(C`name\*(C'\fR hasn't been registered
.Sp
NOTE: \f(CW\*(C`mro_set_mro\*(C'\fR must be explicitly called as
\&\f(CW\*(C`Perl_mro_set_mro\*(C'\fR
with an \f(CW\*(C`aTHX_\*(C'\fR parameter.
.RS 4
.Sp
.Vb 2
\& void  Perl_mro_set_mro(pTHX_ struct mro_meta * const meta,
\&                        SV * const name)
.Ve
.RE
.RS 4
.RE
.ie n .IP """mro_set_private_data""" 4
.el .IP \f(CWmro_set_private_data\fR 4
.IX Item "mro_set_private_data"
Described in perlmroapi.
.Sp
NOTE: \f(CW\*(C`mro_set_private_data\*(C'\fR must be explicitly called as
\&\f(CW\*(C`Perl_mro_set_private_data\*(C'\fR
with an \f(CW\*(C`aTHX_\*(C'\fR parameter.
.RS 4
.Sp
.Vb 4
\& SV *  Perl_mro_set_private_data(pTHX_
\&                                struct mro_meta * const smeta,
\&                                const struct mro_alg * const which,
\&                                SV * const data)
.Ve
.RE
.RS 4
.RE
.SH "Multicall Functions"
.IX Header "Multicall Functions"
.ie n .IP """dMULTICALL""" 4
.el .IP \f(CWdMULTICALL\fR 4
.IX Xref "dMULTICALL"
.IX Item "dMULTICALL"
Declare local variables for a multicall.  See "LIGHTWEIGHT CALLBACKS" in perlcall.
.RS 4
.Sp
.Vb 1
\&   dMULTICALL;
.Ve
.RE
.RS 4
.RE
.ie n .IP """MULTICALL""" 4
.el .IP \f(CWMULTICALL\fR 4
.IX Xref "MULTICALL"
.IX Item "MULTICALL"
Make a lightweight callback.  See "LIGHTWEIGHT CALLBACKS" in perlcall.
.RS 4
.Sp
.Vb 1
\&   MULTICALL;
.Ve
.RE
.RS 4
.RE
.ie n .IP """POP_MULTICALL""" 4
.el .IP \f(CWPOP_MULTICALL\fR 4
.IX Xref "POP_MULTICALL"
.IX Item "POP_MULTICALL"
Closing bracket for a lightweight callback.
See "LIGHTWEIGHT CALLBACKS" in perlcall.
.RS 4
.Sp
.Vb 1
\&   POP_MULTICALL;
.Ve
.RE
.RS 4
.RE
.ie n .IP """PUSH_MULTICALL""" 4
.el .IP \f(CWPUSH_MULTICALL\fR 4
.IX Xref "PUSH_MULTICALL"
.IX Item "PUSH_MULTICALL"
Opening bracket for a lightweight callback.
See "LIGHTWEIGHT CALLBACKS" in perlcall.
.RS 4
.Sp
.Vb 1
\&   PUSH_MULTICALL(CV* the_cv);
.Ve
.RE
.RS 4
.RE
.SH "Numeric Functions"
.IX Xref "IS_NUMBER_GREATER_THAN_UV_MAX IS_NUMBER_INFINITY IS_NUMBER_IN_UV IS_NUMBER_NAN IS_NUMBER_NEG IS_NUMBER_NOT_INT PERL_SCAN_ALLOW_UNDERSCORES PERL_SCAN_DISALLOW_PREFIX PERL_SCAN_GREATER_THAN_UV_MAX PERL_SCAN_SILENT_ILLDIGIT PERL_SCAN_TRAILING"
.IX Header "Numeric Functions"
.ie n .IP """Atol""" 4
.el .IP \f(CWAtol\fR 4
.IX Item "Atol"
\&\f(CW\*(C`\fR\f(CBDEPRECATED!\fR\f(CW\*(C'\fR  It is planned to remove \f(CW\*(C`Atol\*(C'\fR
from a future release of Perl.  Do not use it for
new code; remove it from existing code.
.Sp
Described in perlhacktips.
.RS 4
.Sp
.Vb 1
\&   Atol(const char * nptr)
.Ve
.RE
.RS 4
.RE
.ie n .IP """Atoul""" 4
.el .IP \f(CWAtoul\fR 4
.IX Item "Atoul"
\&\f(CW\*(C`\fR\f(CBDEPRECATED!\fR\f(CW\*(C'\fR  It is planned to remove \f(CW\*(C`Atoul\*(C'\fR
from a future release of Perl.  Do not use it for
new code; remove it from existing code.
.Sp
Described in perlhacktips.
.RS 4
.Sp
.Vb 1
\&   Atoul(const char * nptr)
.Ve
.RE
.RS 4
.RE
.ie n .IP """Drand01""" 4
.el .IP \f(CWDrand01\fR 4
.IX Xref "Drand01"
.IX Item "Drand01"
This macro is to be used to generate uniformly distributed
random numbers over the range [0., 1.[.  You may have to supply
an 'extern double \f(CWdrand48()\fR;' in your program since SunOS 4.1.3
doesn't provide you with anything relevant in its headers.
See \f(CW"HAS_DRAND48_PROTO"\fR.
.RS 4
.Sp
.Vb 1
\& double  Drand01()
.Ve
.RE
.RS 4
.RE
.ie n .IP """Gconvert""" 4
.el .IP \f(CWGconvert\fR 4
.IX Xref "Gconvert"
.IX Item "Gconvert"
This preprocessor macro is defined to convert a floating point
number to a string without a trailing decimal point.  This
emulates the behavior of \f(CWsprintf("%g")\fR, but is sometimes much more
efficient.  If \f(CWgconvert()\fR is not available, but \f(CWgcvt()\fR drops the
trailing decimal point, then \f(CWgcvt()\fR is used.  If all else fails,
a macro using \f(CWsprintf("%g")\fR is used. Arguments for the Gconvert
macro are: value, number of digits, whether trailing zeros should
be retained, and the output buffer.
The usual values are:
.Sp
.Vb 3
\& d_Gconvert=\*(Aqgconvert((x),(n),(t),(b))\*(Aq
\& d_Gconvert=\*(Aqgcvt((x),(n),(b))\*(Aq
\& d_Gconvert=\*(Aqsprintf((b),"%.*g",(n),(x))\*(Aq
.Ve
.Sp
The last two assume trailing zeros should not be kept.
.RS 4
.Sp
.Vb 1
\& char *  Gconvert(double x, Size_t n, bool t, char * b)
.Ve
.RE
.RS 4
.RE
.ie n .IP """grok_atoUV""" 4
.el .IP \f(CWgrok_atoUV\fR 4
.IX Xref "grok_atoUV"
.IX Item "grok_atoUV"
parse a string, looking for a decimal unsigned integer.
.Sp
On entry, \f(CW\*(C`pv\*(C'\fR points to the beginning of the string;
\&\f(CW\*(C`valptr\*(C'\fR points to a UV that will receive the converted value, if found;
\&\f(CW\*(C`endptr\*(C'\fR is either NULL or points to a variable that points to one byte
beyond the point in \f(CW\*(C`pv\*(C'\fR that this routine should examine.
If \f(CW\*(C`endptr\*(C'\fR is NULL, \f(CW\*(C`pv\*(C'\fR is assumed to be NUL-terminated.
.Sp
Returns FALSE if \f(CW\*(C`pv\*(C'\fR doesn't represent a valid unsigned integer value (with
no leading zeros).  Otherwise it returns TRUE, and sets \f(CW*valptr\fR to that
value.
.Sp
If you constrain the portion of \f(CW\*(C`pv\*(C'\fR that is looked at by this function (by
passing a non-NULL \f(CW\*(C`endptr\*(C'\fR), and if the initial bytes of that portion form a
valid value, it will return TRUE, setting \f(CW*endptr\fR to the byte following the
final digit of the value.  But if there is no constraint at what's looked at,
all of \f(CW\*(C`pv\*(C'\fR must be valid in order for TRUE to be returned.  \f(CW*endptr\fR is
unchanged from its value on input if FALSE is returned;
.Sp
The only characters this accepts are the decimal digits '0'..'9'.
.Sp
As opposed to \fBatoi\fR\|(3) or \fBstrtol\fR\|(3), \f(CW\*(C`grok_atoUV\*(C'\fR does NOT allow optional
leading whitespace, nor negative inputs.  If such features are required, the
calling code needs to explicitly implement those.
.Sp
Note that this function returns FALSE for inputs that would overflow a UV,
or have leading zeros.  Thus a single \f(CW0\fR is accepted, but not \f(CW00\fR nor
\&\f(CW01\fR, \f(CW002\fR, \fIetc\fR.
.Sp
Background: \f(CW\*(C`atoi\*(C'\fR has severe problems with illegal inputs, it cannot be
used for incremental parsing, and therefore should be avoided
\&\f(CW\*(C`atoi\*(C'\fR and \f(CW\*(C`strtol\*(C'\fR are also affected by locale settings, which can also be
seen as a bug (global state controlled by user environment).
.RS 4
.Sp
.Vb 1
\& bool  grok_atoUV(const char *pv, UV *valptr, const char **endptr)
.Ve
.RE
.RS 4
.RE
.ie n .IP """grok_bin""" 4
.el .IP \f(CWgrok_bin\fR 4
.IX Xref "grok_bin"
.IX Item "grok_bin"
converts a string representing a binary number to numeric form.
.Sp
On entry \f(CW\*(C`start\*(C'\fR and \f(CW*len_p\fR give the string to scan, \f(CW*flags\fR gives
conversion flags, and \f(CW\*(C`result\*(C'\fR should be \f(CW\*(C`NULL\*(C'\fR or a pointer to an NV.  The
scan stops at the end of the string, or at just before the first invalid
character.  Unless \f(CW\*(C`PERL_SCAN_SILENT_ILLDIGIT\*(C'\fR is set in \f(CW*flags\fR,
encountering an invalid character (except NUL) will also trigger a warning.  On
return \f(CW*len_p\fR is set to the length of the scanned string, and \f(CW*flags\fR
gives output flags.
.Sp
If the value is <= \f(CW\*(C`UV_MAX\*(C'\fR it is returned as a UV, the output flags are clear,
and nothing is written to \f(CW*result\fR.  If the value is > \f(CW\*(C`UV_MAX\*(C'\fR, \f(CW\*(C`grok_bin\*(C'\fR
returns \f(CW\*(C`UV_MAX\*(C'\fR, sets \f(CW\*(C`PERL_SCAN_GREATER_THAN_UV_MAX\*(C'\fR in the output flags,
and writes an approximation of the correct value into \f(CW*result\fR (which is an
NV; or the approximation is discarded if \f(CW\*(C`result\*(C'\fR is NULL).
.Sp
The binary number may optionally be prefixed with \f(CW"0b"\fR or \f(CW"b"\fR unless
\&\f(CW\*(C`PERL_SCAN_DISALLOW_PREFIX\*(C'\fR is set in \f(CW*flags\fR on entry.
.Sp
If \f(CW\*(C`PERL_SCAN_ALLOW_UNDERSCORES\*(C'\fR is set in \f(CW*flags\fR then any or all pairs of
digits may be separated from each other by a single underscore; also a single
leading underscore is accepted.
.RS 4
.Sp
.Vb 2
\& UV  grok_bin(const char *start, STRLEN *len_p, I32 *flags,
\&              NV *result)
.Ve
.RE
.RS 4
.RE
.ie n .IP """grok_hex""" 4
.el .IP \f(CWgrok_hex\fR 4
.IX Xref "grok_hex"
.IX Item "grok_hex"
converts a string representing a hex number to numeric form.
.Sp
On entry \f(CW\*(C`start\*(C'\fR and \f(CW*len_p\fR give the string to scan, \f(CW*flags\fR gives
conversion flags, and \f(CW\*(C`result\*(C'\fR should be \f(CW\*(C`NULL\*(C'\fR or a pointer to an NV.  The
scan stops at the end of the string, or at just before the first invalid
character.  Unless \f(CW\*(C`PERL_SCAN_SILENT_ILLDIGIT\*(C'\fR is set in \f(CW*flags\fR,
encountering an invalid character (except NUL) will also trigger a warning.  On
return \f(CW*len_p\fR is set to the length of the scanned string, and \f(CW*flags\fR
gives output flags.
.Sp
If the value is <= \f(CW\*(C`UV_MAX\*(C'\fR it is returned as a UV, the output flags are clear,
and nothing is written to \f(CW*result\fR.  If the value is > \f(CW\*(C`UV_MAX\*(C'\fR, \f(CW\*(C`grok_hex\*(C'\fR
returns \f(CW\*(C`UV_MAX\*(C'\fR, sets \f(CW\*(C`PERL_SCAN_GREATER_THAN_UV_MAX\*(C'\fR in the output flags,
and writes an approximation of the correct value into \f(CW*result\fR (which is an
NV; or the approximation is discarded if \f(CW\*(C`result\*(C'\fR is NULL).
.Sp
The hex number may optionally be prefixed with \f(CW"0x"\fR or \f(CW"x"\fR unless
\&\f(CW\*(C`PERL_SCAN_DISALLOW_PREFIX\*(C'\fR is set in \f(CW*flags\fR on entry.
.Sp
If \f(CW\*(C`PERL_SCAN_ALLOW_UNDERSCORES\*(C'\fR is set in \f(CW*flags\fR then any or all pairs of
digits may be separated from each other by a single underscore; also a single
leading underscore is accepted.
.RS 4
.Sp
.Vb 2
\& UV  grok_hex(const char *start, STRLEN *len_p, I32 *flags,
\&              NV *result)
.Ve
.RE
.RS 4
.RE
.ie n .IP """grok_infnan""" 4
.el .IP \f(CWgrok_infnan\fR 4
.IX Xref "grok_infnan"
.IX Item "grok_infnan"
Helper for \f(CWgrok_number()\fR, accepts various ways of spelling "infinity"
or "not a number", and returns one of the following flag combinations:
.Sp
.Vb 5
\&  IS_NUMBER_INFINITY
\&  IS_NUMBER_NAN
\&  IS_NUMBER_INFINITY | IS_NUMBER_NEG
\&  IS_NUMBER_NAN | IS_NUMBER_NEG
\&  0
.Ve
.Sp
possibly |\-ed with \f(CW\*(C`IS_NUMBER_TRAILING\*(C'\fR.
.Sp
If an infinity or a not-a-number is recognized, \f(CW*sp\fR will point to
one byte past the end of the recognized string.  If the recognition fails,
zero is returned, and \f(CW*sp\fR will not move.
.RS 4
.Sp
.Vb 1
\& int  grok_infnan(const char **sp, const char *send)
.Ve
.RE
.RS 4
.RE
.ie n .IP """grok_number""" 4
.el .IP \f(CWgrok_number\fR 4
.IX Xref "grok_number"
.IX Item "grok_number"
Identical to \f(CWgrok_number_flags()\fR with \f(CW\*(C`flags\*(C'\fR set to zero.
.RS 4
.Sp
.Vb 1
\& int  grok_number(const char *pv, STRLEN len, UV *valuep)
.Ve
.RE
.RS 4
.RE
.ie n .IP """grok_number_flags""" 4
.el .IP \f(CWgrok_number_flags\fR 4
.IX Xref "grok_number_flags"
.IX Item "grok_number_flags"
Recognise (or not) a number.  The type of the number is returned
(0 if unrecognised), otherwise it is a bit-ORed combination of
\&\f(CW\*(C`IS_NUMBER_IN_UV\*(C'\fR, \f(CW\*(C`IS_NUMBER_GREATER_THAN_UV_MAX\*(C'\fR, \f(CW\*(C`IS_NUMBER_NOT_INT\*(C'\fR,
\&\f(CW\*(C`IS_NUMBER_NEG\*(C'\fR, \f(CW\*(C`IS_NUMBER_INFINITY\*(C'\fR, \f(CW\*(C`IS_NUMBER_NAN\*(C'\fR (defined in perl.h).
.Sp
If the value of the number can fit in a UV, it is returned in \f(CW*valuep\fR.
\&\f(CW\*(C`IS_NUMBER_IN_UV\*(C'\fR will be set to indicate that \f(CW*valuep\fR is valid, \f(CW\*(C`IS_NUMBER_IN_UV\*(C'\fR
will never be set unless \f(CW*valuep\fR is valid, but \f(CW*valuep\fR may have been assigned
to during processing even though \f(CW\*(C`IS_NUMBER_IN_UV\*(C'\fR is not set on return.
If \f(CW\*(C`valuep\*(C'\fR is \f(CW\*(C`NULL\*(C'\fR, \f(CW\*(C`IS_NUMBER_IN_UV\*(C'\fR will be set for the same cases as when
\&\f(CW\*(C`valuep\*(C'\fR is non\-\f(CW\*(C`NULL\*(C'\fR, but no actual assignment (or SEGV) will occur.
.Sp
\&\f(CW\*(C`IS_NUMBER_NOT_INT\*(C'\fR will be set with \f(CW\*(C`IS_NUMBER_IN_UV\*(C'\fR if trailing decimals were
seen (in which case \f(CW*valuep\fR gives the true value truncated to an integer), and
\&\f(CW\*(C`IS_NUMBER_NEG\*(C'\fR if the number is negative (in which case \f(CW*valuep\fR holds the
absolute value).  \f(CW\*(C`IS_NUMBER_IN_UV\*(C'\fR is not set if \f(CW\*(C`e\*(C'\fR notation was used or the
number is larger than a UV.
.Sp
\&\f(CW\*(C`flags\*(C'\fR allows only \f(CW\*(C`PERL_SCAN_TRAILING\*(C'\fR, which allows for trailing
non-numeric text on an otherwise successful \fIgrok\fR, setting
\&\f(CW\*(C`IS_NUMBER_TRAILING\*(C'\fR on the result.
.RS 4
.Sp
.Vb 2
\& int  grok_number_flags(const char *pv, STRLEN len, UV *valuep,
\&                        U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """GROK_NUMERIC_RADIX""" 4
.el .IP \f(CWGROK_NUMERIC_RADIX\fR 4
.IX Xref "GROK_NUMERIC_RADIX"
.IX Item "GROK_NUMERIC_RADIX"
A synonym for "grok_numeric_radix"
.RS 4
.Sp
.Vb 1
\& bool  GROK_NUMERIC_RADIX(NN const char **sp, NN const char *send)
.Ve
.RE
.RS 4
.RE
.ie n .IP """grok_numeric_radix""" 4
.el .IP \f(CWgrok_numeric_radix\fR 4
.IX Xref "grok_numeric_radix"
.IX Item "grok_numeric_radix"
Scan and skip for a numeric decimal separator (radix).
.RS 4
.Sp
.Vb 1
\& bool  grok_numeric_radix(const char **sp, const char *send)
.Ve
.RE
.RS 4
.RE
.ie n .IP """grok_oct""" 4
.el .IP \f(CWgrok_oct\fR 4
.IX Xref "grok_oct"
.IX Item "grok_oct"
converts a string representing an octal number to numeric form.
.Sp
On entry \f(CW\*(C`start\*(C'\fR and \f(CW*len_p\fR give the string to scan, \f(CW*flags\fR gives
conversion flags, and \f(CW\*(C`result\*(C'\fR should be \f(CW\*(C`NULL\*(C'\fR or a pointer to an NV.  The
scan stops at the end of the string, or at just before the first invalid
character.  Unless \f(CW\*(C`PERL_SCAN_SILENT_ILLDIGIT\*(C'\fR is set in \f(CW*flags\fR,
encountering an invalid character (except NUL) will also trigger a warning.  On
return \f(CW*len_p\fR is set to the length of the scanned string, and \f(CW*flags\fR
gives output flags.
.Sp
If the value is <= \f(CW\*(C`UV_MAX\*(C'\fR it is returned as a UV, the output flags are clear,
and nothing is written to \f(CW*result\fR.  If the value is > \f(CW\*(C`UV_MAX\*(C'\fR, \f(CW\*(C`grok_oct\*(C'\fR
returns \f(CW\*(C`UV_MAX\*(C'\fR, sets \f(CW\*(C`PERL_SCAN_GREATER_THAN_UV_MAX\*(C'\fR in the output flags,
and writes an approximation of the correct value into \f(CW*result\fR (which is an
NV; or the approximation is discarded if \f(CW\*(C`result\*(C'\fR is NULL).
.Sp
If \f(CW\*(C`PERL_SCAN_ALLOW_UNDERSCORES\*(C'\fR is set in \f(CW*flags\fR then any or all pairs of
digits may be separated from each other by a single underscore; also a single
leading underscore is accepted.
.Sp
The \f(CW\*(C`PERL_SCAN_DISALLOW_PREFIX\*(C'\fR flag is always treated as being set for
this function.
.RS 4
.Sp
.Vb 2
\& UV  grok_oct(const char *start, STRLEN *len_p, I32 *flags,
\&              NV *result)
.Ve
.RE
.RS 4
.RE
.ie n .IP """isinfnan""" 4
.el .IP \f(CWisinfnan\fR 4
.IX Xref "isinfnan"
.IX Item "isinfnan"
\&\f(CWPerl_isinfnan()\fR is a utility function that returns true if the NV
argument is either an infinity or a \f(CW\*(C`NaN\*(C'\fR, false otherwise.  To test
in more detail, use \f(CWPerl_isinf()\fR and \f(CWPerl_isnan()\fR.
.Sp
This is also the logical inverse of \fBPerl_isfinite()\fR.
.RS 4
.Sp
.Vb 1
\& bool  isinfnan(NV nv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """my_atof""" 4
.el .IP \f(CWmy_atof\fR 4
.IX Xref "my_atof"
.IX Item "my_atof"
\&\f(CW\*(C`atof\*(C'\fR(3), but properly works with Perl locale handling, accepting a dot
radix character always, but also the current locale's radix character if and
only if called from within the lexical scope of a Perl \f(CW\*(C`use locale\*(C'\fR statement.
.Sp
N.B. \f(CW\*(C`s\*(C'\fR must be NUL terminated.
.RS 4
.Sp
.Vb 1
\& NV  my_atof(const char *s)
.Ve
.RE
.RS 4
.RE
.ie n .IP """my_strtod""" 4
.el .IP \f(CWmy_strtod\fR 4
.IX Xref "my_strtod"
.IX Item "my_strtod"
This function is equivalent to the libc \fBstrtod()\fR function, and is available
even on platforms that lack plain \fBstrtod()\fR.  Its return value is the best
available precision depending on platform capabilities and \fIConfigure\fR
options.
.Sp
It properly handles the locale radix character, meaning it expects a dot except
when called from within the scope of \f(CW\*(C`use\ locale\*(C'\fR, in which case the radix
character should be that specified by the current locale.
.Sp
The synonym \fBStrtod()\fR may be used instead.
.RS 4
.Sp
.Vb 1
\& NV  my_strtod(const char * const s, char **e)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PERL_ABS""" 4
.el .IP \f(CWPERL_ABS\fR 4
.IX Xref "PERL_ABS"
.IX Item "PERL_ABS"
Typeless \f(CW\*(C`abs\*(C'\fR or \f(CW\*(C`fabs\*(C'\fR, \fIetc\fR.  (The usage below indicates it is for
integers, but it works for any type.)  Use instead of these, since the C
library ones force their argument to be what it is expecting, potentially
leading to disaster.  But also beware that this evaluates its argument twice,
so no \f(CW\*(C`x++\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& int  PERL_ABS(int x)
.Ve
.RE
.RS 4
.RE
.ie n .IP """Perl_acos""" 4
.el .IP \f(CWPerl_acos\fR 4
.IX Item "Perl_acos"
.PD 0
.ie n .IP """Perl_asin""" 4
.el .IP \f(CWPerl_asin\fR 4
.IX Item "Perl_asin"
.ie n .IP """Perl_atan""" 4
.el .IP \f(CWPerl_atan\fR 4
.IX Item "Perl_atan"
.ie n .IP """Perl_atan2""" 4
.el .IP \f(CWPerl_atan2\fR 4
.IX Item "Perl_atan2"
.ie n .IP """Perl_ceil""" 4
.el .IP \f(CWPerl_ceil\fR 4
.IX Item "Perl_ceil"
.ie n .IP """Perl_cos""" 4
.el .IP \f(CWPerl_cos\fR 4
.IX Item "Perl_cos"
.ie n .IP """Perl_cosh""" 4
.el .IP \f(CWPerl_cosh\fR 4
.IX Item "Perl_cosh"
.ie n .IP """Perl_exp""" 4
.el .IP \f(CWPerl_exp\fR 4
.IX Item "Perl_exp"
.ie n .IP """Perl_floor""" 4
.el .IP \f(CWPerl_floor\fR 4
.IX Item "Perl_floor"
.ie n .IP """Perl_fmod""" 4
.el .IP \f(CWPerl_fmod\fR 4
.IX Item "Perl_fmod"
.ie n .IP """Perl_frexp""" 4
.el .IP \f(CWPerl_frexp\fR 4
.IX Item "Perl_frexp"
.ie n .IP """Perl_isfinite""" 4
.el .IP \f(CWPerl_isfinite\fR 4
.IX Item "Perl_isfinite"
.ie n .IP """Perl_isinf""" 4
.el .IP \f(CWPerl_isinf\fR 4
.IX Item "Perl_isinf"
.ie n .IP """Perl_isnan""" 4
.el .IP \f(CWPerl_isnan\fR 4
.IX Item "Perl_isnan"
.ie n .IP """Perl_ldexp""" 4
.el .IP \f(CWPerl_ldexp\fR 4
.IX Item "Perl_ldexp"
.ie n .IP """Perl_log""" 4
.el .IP \f(CWPerl_log\fR 4
.IX Item "Perl_log"
.ie n .IP """Perl_log10""" 4
.el .IP \f(CWPerl_log10\fR 4
.IX Item "Perl_log10"
.ie n .IP """Perl_modf""" 4
.el .IP \f(CWPerl_modf\fR 4
.IX Item "Perl_modf"
.ie n .IP """Perl_pow""" 4
.el .IP \f(CWPerl_pow\fR 4
.IX Item "Perl_pow"
.ie n .IP """Perl_sin""" 4
.el .IP \f(CWPerl_sin\fR 4
.IX Item "Perl_sin"
.ie n .IP """Perl_sinh""" 4
.el .IP \f(CWPerl_sinh\fR 4
.IX Item "Perl_sinh"
.ie n .IP """Perl_sqrt""" 4
.el .IP \f(CWPerl_sqrt\fR 4
.IX Item "Perl_sqrt"
.ie n .IP """Perl_tan""" 4
.el .IP \f(CWPerl_tan\fR 4
.IX Item "Perl_tan"
.ie n .IP """Perl_tanh""" 4
.el .IP \f(CWPerl_tanh\fR 4
.IX Xref "Perl_acos Perl_asin Perl_atan Perl_atan2 Perl_ceil Perl_cos Perl_cosh Perl_exp Perl_floor Perl_fmod Perl_frexp Perl_isfinite Perl_isinf Perl_isnan Perl_ldexp Perl_log Perl_log10 Perl_modf Perl_pow Perl_sin Perl_sinh Perl_sqrt Perl_tan Perl_tanh"
.IX Item "Perl_tanh"
.PD
These perform the corresponding mathematical operation on the operand(s), using
the libc function designed for the task that has just enough precision for an
NV on this platform.  If no such function with sufficient precision exists,
the highest precision one available is used.
.RS 4
.Sp
.Vb 10
\& NV  Perl_acos    (NV x)
\& NV  Perl_asin    (NV x)
\& NV  Perl_atan    (NV x)
\& NV  Perl_atan2   (NV x, NV y)
\& NV  Perl_ceil    (NV x)
\& NV  Perl_cos     (NV x)
\& NV  Perl_cosh    (NV x)
\& NV  Perl_exp     (NV x)
\& NV  Perl_floor   (NV x)
\& NV  Perl_fmod    (NV x, NV y)
\& NV  Perl_frexp   (NV x, int *exp)
\& IV  Perl_isfinite(NV x)
\& IV  Perl_isinf   (NV x)
\& IV  Perl_isnan   (NV x)
\& NV  Perl_ldexp   (NV x, int exp)
\& NV  Perl_log     (NV x)
\& NV  Perl_log10   (NV x)
\& NV  Perl_modf    (NV x, NV *iptr)
\& NV  Perl_pow     (NV x, NV y)
\& NV  Perl_sin     (NV x)
\& NV  Perl_sinh    (NV x)
\& NV  Perl_sqrt    (NV x)
\& NV  Perl_tan     (NV x)
\& NV  Perl_tanh    (NV x)
.Ve
.RE
.RS 4
.RE
.ie n .IP """Perl_signbit""" 4
.el .IP \f(CWPerl_signbit\fR 4
.IX Xref "Perl_signbit"
.IX Item "Perl_signbit"
NOTE: \f(CW\*(C`Perl_signbit\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Return a non-zero integer if the sign bit on an NV is set, and 0 if
it is not.
.Sp
If \fIConfigure\fR detects this system has a \f(CWsignbit()\fR that will work with
our NVs, then we just use it via the \f(CW\*(C`#define\*(C'\fR in \fIperl.h\fR.  Otherwise,
fall back on this implementation.  The main use of this function
is catching \f(CW\-0.0\fR.
.Sp
\&\f(CW\*(C`Configure\*(C'\fR notes:  This function is called \f(CW\*(AqPerl_signbit\*(Aq\fR instead of a
plain \f(CW\*(Aqsignbit\*(Aq\fR because it is easy to imagine a system having a \f(CWsignbit()\fR
function or macro that doesn't happen to work with our particular choice
of NVs.  We shouldn't just re\-\f(CW\*(C`#define\*(C'\fR \f(CW\*(C`signbit\*(C'\fR as \f(CW\*(C`Perl_signbit\*(C'\fR and expect
the standard system headers to be happy.  Also, this is a no-context
function (no \f(CW\*(C`pTHX_\*(C'\fR) because \f(CWPerl_signbit()\fR is usually re\-\f(CW\*(C`#defined\*(C'\fR in
\&\fIperl.h\fR as a simple macro call to the system's \f(CWsignbit()\fR.
Users should just always call \f(CWPerl_signbit()\fR.
.RS 4
.Sp
.Vb 1
\& int  Perl_signbit(NV f)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PL_hexdigit""" 4
.el .IP \f(CWPL_hexdigit\fR 4
.IX Xref "PL_hexdigit"
.IX Item "PL_hexdigit"
This array, indexed by an integer, converts that value into the character that
represents it.  For example, if the input is 8, the return will be a string
whose first character is '8'.  What is actually returned is a pointer into a
string.  All you are interested in is the first character of that string.  To
get uppercase letters (for the values 10..15), add 16 to the index.  Hence,
\&\f(CW\*(C`PL_hexdigit[11]\*(C'\fR is \f(CW\*(Aqb\*(Aq\fR, and \f(CW\*(C`PL_hexdigit[11+16]\*(C'\fR is \f(CW\*(AqB\*(Aq\fR.  Adding 16
to an index whose representation is '0'..'9' yields the same as not adding 16.
Indices outside the range 0..31 result in (bad) undedefined behavior.
.ie n .IP """READ_XDIGIT""" 4
.el .IP \f(CWREAD_XDIGIT\fR 4
.IX Xref "READ_XDIGIT"
.IX Item "READ_XDIGIT"
Returns the value of an ASCII-range hex digit and advances the string pointer.
Behaviour is only well defined when isXDIGIT(*str) is true.
.RS 4
.Sp
.Vb 1
\& U8  READ_XDIGIT(char str*)
.Ve
.RE
.RS 4
.RE
.ie n .IP """scan_bin""" 4
.el .IP \f(CWscan_bin\fR 4
.IX Xref "scan_bin"
.IX Item "scan_bin"
For backwards compatibility.  Use \f(CW\*(C`grok_bin\*(C'\fR instead.
.RS 4
.Sp
.Vb 1
\& NV  scan_bin(const char *start, STRLEN len, STRLEN *retlen)
.Ve
.RE
.RS 4
.RE
.ie n .IP """scan_hex""" 4
.el .IP \f(CWscan_hex\fR 4
.IX Xref "scan_hex"
.IX Item "scan_hex"
For backwards compatibility.  Use \f(CW\*(C`grok_hex\*(C'\fR instead.
.RS 4
.Sp
.Vb 1
\& NV  scan_hex(const char *start, STRLEN len, STRLEN *retlen)
.Ve
.RE
.RS 4
.RE
.ie n .IP """scan_oct""" 4
.el .IP \f(CWscan_oct\fR 4
.IX Xref "scan_oct"
.IX Item "scan_oct"
For backwards compatibility.  Use \f(CW\*(C`grok_oct\*(C'\fR instead.
.RS 4
.Sp
.Vb 1
\& NV  scan_oct(const char *start, STRLEN len, STRLEN *retlen)
.Ve
.RE
.RS 4
.RE
.ie n .IP """seedDrand01""" 4
.el .IP \f(CWseedDrand01\fR 4
.IX Xref "seedDrand01"
.IX Item "seedDrand01"
This symbol defines the macro to be used in seeding the
random number generator (see \f(CW"Drand01"\fR).
.RS 4
.Sp
.Vb 1
\& void  seedDrand01(Rand_seed_t x)
.Ve
.RE
.RS 4
.RE
.ie n .IP """Strtod""" 4
.el .IP \f(CWStrtod\fR 4
.IX Xref "Strtod"
.IX Item "Strtod"
This is a synonym for "my_strtod".
.RS 4
.Sp
.Vb 1
\& NV  Strtod(NN const char * const s, NULLOK char ** e)
.Ve
.RE
.RS 4
.RE
.ie n .IP """Strtol""" 4
.el .IP \f(CWStrtol\fR 4
.IX Xref "Strtol"
.IX Item "Strtol"
Platform and configuration independent \f(CW\*(C`strtol\*(C'\fR.  This expands to the
appropriate \f(CW\*(C`strotol\*(C'\fR\-like function based on the platform and \fIConfigure\fR
options>.  For example it could expand to \f(CW\*(C`strtoll\*(C'\fR or \f(CW\*(C`strtoq\*(C'\fR instead of
\&\f(CW\*(C`strtol\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& NV  Strtol(NN const char * const s, NULLOK char ** e, int base)
.Ve
.RE
.RS 4
.RE
.ie n .IP """Strtoul""" 4
.el .IP \f(CWStrtoul\fR 4
.IX Xref "Strtoul"
.IX Item "Strtoul"
Platform and configuration independent \f(CW\*(C`strtoul\*(C'\fR.  This expands to the
appropriate \f(CW\*(C`strotoul\*(C'\fR\-like function based on the platform and \fIConfigure\fR
options>.  For example it could expand to \f(CW\*(C`strtoull\*(C'\fR or \f(CW\*(C`strtouq\*(C'\fR instead of
\&\f(CW\*(C`strtoul\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& NV  Strtoul(NN const char * const s, NULLOK char ** e, int base)
.Ve
.RE
.RS 4
.RE
.SH Optrees
.IX Xref "CALL_CHECKER_REQUIRE_GV OPf_KIDS OPpEARLY_CV OPpENTERSUB_AMPER RV2CVOPCV_MARK_EARLY RV2CVOPCV_RETURN_NAME_GV"
.IX Header "Optrees"
.ie n .IP """alloccopstash""" 4
.el .IP \f(CWalloccopstash\fR 4
.IX Xref "alloccopstash"
.IX Item "alloccopstash"
NOTE: \f(CW\*(C`alloccopstash\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Available only under threaded builds, this function allocates an entry in
\&\f(CW\*(C`PL_stashpad\*(C'\fR for the stash passed to it.
.RS 4
.Sp
.Vb 1
\& PADOFFSET  alloccopstash(HV *hv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """BINOP""" 4
.el .IP \f(CWBINOP\fR 4
.IX Item "BINOP"
Described in perlguts.
.ie n .IP """block_end""" 4
.el .IP \f(CWblock_end\fR 4
.IX Xref "block_end"
.IX Item "block_end"
Handles compile-time scope exit.  \f(CW\*(C`floor\*(C'\fR
is the savestack index returned by
\&\f(CW\*(C`block_start\*(C'\fR, and \f(CW\*(C`seq\*(C'\fR is the body of the block.  Returns the block,
possibly modified.
.RS 4
.Sp
.Vb 1
\& OP *  block_end(I32 floor, OP *seq)
.Ve
.RE
.RS 4
.RE
.ie n .IP """block_start""" 4
.el .IP \f(CWblock_start\fR 4
.IX Xref "block_start"
.IX Item "block_start"
Handles compile-time scope entry.
Arranges for hints to be restored on block
exit and also handles pad sequence numbers to make lexical variables scope
right.  Returns a savestack index for use with \f(CW\*(C`block_end\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& int  block_start(int full)
.Ve
.RE
.RS 4
.RE
.ie n .IP """ck_entersub_args_list""" 4
.el .IP \f(CWck_entersub_args_list\fR 4
.IX Xref "ck_entersub_args_list"
.IX Item "ck_entersub_args_list"
Performs the default fixup of the arguments part of an \f(CW\*(C`entersub\*(C'\fR
op tree.  This consists of applying list context to each of the
argument ops.  This is the standard treatment used on a call marked
with \f(CW\*(C`&\*(C'\fR, or a method call, or a call through a subroutine reference,
or any other call where the callee can't be identified at compile time,
or a call where the callee has no prototype.
.RS 4
.Sp
.Vb 1
\& OP *  ck_entersub_args_list(OP *entersubop)
.Ve
.RE
.RS 4
.RE
.ie n .IP """ck_entersub_args_proto""" 4
.el .IP \f(CWck_entersub_args_proto\fR 4
.IX Xref "ck_entersub_args_proto"
.IX Item "ck_entersub_args_proto"
Performs the fixup of the arguments part of an \f(CW\*(C`entersub\*(C'\fR op tree
based on a subroutine prototype.  This makes various modifications to
the argument ops, from applying context up to inserting \f(CW\*(C`refgen\*(C'\fR ops,
and checking the number and syntactic types of arguments, as directed by
the prototype.  This is the standard treatment used on a subroutine call,
not marked with \f(CW\*(C`&\*(C'\fR, where the callee can be identified at compile time
and has a prototype.
.Sp
\&\f(CW\*(C`protosv\*(C'\fR supplies the subroutine prototype to be applied to the call.
It may be a normal defined scalar, of which the string value will be used.
Alternatively, for convenience, it may be a subroutine object (a \f(CW\*(C`CV*\*(C'\fR
that has been cast to \f(CW\*(C`SV*\*(C'\fR) which has a prototype.  The prototype
supplied, in whichever form, does not need to match the actual callee
referenced by the op tree.
.Sp
If the argument ops disagree with the prototype, for example by having
an unacceptable number of arguments, a valid op tree is returned anyway.
The error is reflected in the parser state, normally resulting in a single
exception at the top level of parsing which covers all the compilation
errors that occurred.  In the error message, the callee is referred to
by the name defined by the \f(CW\*(C`namegv\*(C'\fR parameter.
.RS 4
.Sp
.Vb 2
\& OP *  ck_entersub_args_proto(OP *entersubop, GV *namegv,
\&                              SV *protosv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """ck_entersub_args_proto_or_list""" 4
.el .IP \f(CWck_entersub_args_proto_or_list\fR 4
.IX Xref "ck_entersub_args_proto_or_list"
.IX Item "ck_entersub_args_proto_or_list"
Performs the fixup of the arguments part of an \f(CW\*(C`entersub\*(C'\fR op tree either
based on a subroutine prototype or using default list-context processing.
This is the standard treatment used on a subroutine call, not marked
with \f(CW\*(C`&\*(C'\fR, where the callee can be identified at compile time.
.Sp
\&\f(CW\*(C`protosv\*(C'\fR supplies the subroutine prototype to be applied to the call,
or indicates that there is no prototype.  It may be a normal scalar,
in which case if it is defined then the string value will be used
as a prototype, and if it is undefined then there is no prototype.
Alternatively, for convenience, it may be a subroutine object (a \f(CW\*(C`CV*\*(C'\fR
that has been cast to \f(CW\*(C`SV*\*(C'\fR), of which the prototype will be used if it
has one.  The prototype (or lack thereof) supplied, in whichever form,
does not need to match the actual callee referenced by the op tree.
.Sp
If the argument ops disagree with the prototype, for example by having
an unacceptable number of arguments, a valid op tree is returned anyway.
The error is reflected in the parser state, normally resulting in a single
exception at the top level of parsing which covers all the compilation
errors that occurred.  In the error message, the callee is referred to
by the name defined by the \f(CW\*(C`namegv\*(C'\fR parameter.
.RS 4
.Sp
.Vb 2
\& OP *  ck_entersub_args_proto_or_list(OP *entersubop, GV *namegv,
\&                                      SV *protosv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """cv_const_sv""" 4
.el .IP \f(CWcv_const_sv\fR 4
.IX Xref "cv_const_sv"
.IX Item "cv_const_sv"
If \f(CW\*(C`cv\*(C'\fR is a constant sub eligible for inlining, returns the constant
value returned by the sub.  Otherwise, returns \f(CW\*(C`NULL\*(C'\fR.
.Sp
Constant subs can be created with \f(CW\*(C`newCONSTSUB\*(C'\fR or as described in
"Constant Functions" in perlsub.
.RS 4
.Sp
.Vb 1
\& SV *  cv_const_sv(const CV * const cv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """cv_get_call_checker""" 4
.el .IP \f(CWcv_get_call_checker\fR 4
.IX Xref "cv_get_call_checker"
.IX Item "cv_get_call_checker"
The original form of "cv_get_call_checker_flags", which does not return
checker flags.  When using a checker function returned by this function,
it is only safe to call it with a genuine GV as its \f(CW\*(C`namegv\*(C'\fR argument.
.RS 4
.Sp
.Vb 2
\& void  cv_get_call_checker(CV *cv, Perl_call_checker *ckfun_p,
\&                           SV **ckobj_p)
.Ve
.RE
.RS 4
.RE
.ie n .IP """cv_get_call_checker_flags""" 4
.el .IP \f(CWcv_get_call_checker_flags\fR 4
.IX Xref "cv_get_call_checker_flags"
.IX Item "cv_get_call_checker_flags"
Retrieves the function that will be used to fix up a call to \f(CW\*(C`cv\*(C'\fR.
Specifically, the function is applied to an \f(CW\*(C`entersub\*(C'\fR op tree for a
subroutine call, not marked with \f(CW\*(C`&\*(C'\fR, where the callee can be identified
at compile time as \f(CW\*(C`cv\*(C'\fR.
.Sp
The C\-level function pointer is returned in \f(CW*ckfun_p\fR, an SV argument
for it is returned in \f(CW*ckobj_p\fR, and control flags are returned in
\&\f(CW*ckflags_p\fR.  The function is intended to be called in this manner:
.Sp
.Vb 1
\& entersubop = (*ckfun_p)(aTHX_ entersubop, namegv, (*ckobj_p));
.Ve
.Sp
In this call, \f(CW\*(C`entersubop\*(C'\fR is a pointer to the \f(CW\*(C`entersub\*(C'\fR op,
which may be replaced by the check function, and \f(CW\*(C`namegv\*(C'\fR supplies
the name that should be used by the check function to refer
to the callee of the \f(CW\*(C`entersub\*(C'\fR op if it needs to emit any diagnostics.
It is permitted to apply the check function in non-standard situations,
such as to a call to a different subroutine or to a method call.
.Sp
\&\f(CW\*(C`namegv\*(C'\fR may not actually be a GV.  If the \f(CW\*(C`CALL_CHECKER_REQUIRE_GV\*(C'\fR
bit is clear in \f(CW*ckflags_p\fR, it is permitted to pass a CV or other SV
instead, anything that can be used as the first argument to "cv_name".
If the \f(CW\*(C`CALL_CHECKER_REQUIRE_GV\*(C'\fR bit is set in \f(CW*ckflags_p\fR then the
check function requires \f(CW\*(C`namegv\*(C'\fR to be a genuine GV.
.Sp
By default, the check function is
Perl_ck_entersub_args_proto_or_list,
the SV parameter is \f(CW\*(C`cv\*(C'\fR itself, and the \f(CW\*(C`CALL_CHECKER_REQUIRE_GV\*(C'\fR
flag is clear.  This implements standard prototype processing.  It can
be changed, for a particular subroutine, by "cv_set_call_checker_flags".
.Sp
If the \f(CW\*(C`CALL_CHECKER_REQUIRE_GV\*(C'\fR bit is set in \f(CW\*(C`gflags\*(C'\fR then it
indicates that the caller only knows about the genuine GV version of
\&\f(CW\*(C`namegv\*(C'\fR, and accordingly the corresponding bit will always be set in
\&\f(CW*ckflags_p\fR, regardless of the check function's recorded requirements.
If the \f(CW\*(C`CALL_CHECKER_REQUIRE_GV\*(C'\fR bit is clear in \f(CW\*(C`gflags\*(C'\fR then it
indicates the caller knows about the possibility of passing something
other than a GV as \f(CW\*(C`namegv\*(C'\fR, and accordingly the corresponding bit may
be either set or clear in \f(CW*ckflags_p\fR, indicating the check function's
recorded requirements.
.Sp
\&\f(CW\*(C`gflags\*(C'\fR is a bitset passed into \f(CW\*(C`cv_get_call_checker_flags\*(C'\fR, in which
only the \f(CW\*(C`CALL_CHECKER_REQUIRE_GV\*(C'\fR bit currently has a defined meaning
(for which see above).  All other bits should be clear.
.RS 4
.Sp
.Vb 3
\& void  cv_get_call_checker_flags(CV *cv, U32 gflags,
\&                                 Perl_call_checker *ckfun_p,
\&                                 SV **ckobj_p, U32 *ckflags_p)
.Ve
.RE
.RS 4
.RE
.ie n .IP """cv_set_call_checker""" 4
.el .IP \f(CWcv_set_call_checker\fR 4
.IX Xref "cv_set_call_checker"
.IX Item "cv_set_call_checker"
The original form of "cv_set_call_checker_flags", which passes it the
\&\f(CW\*(C`CALL_CHECKER_REQUIRE_GV\*(C'\fR flag for backward-compatibility.  The effect
of that flag setting is that the check function is guaranteed to get a
genuine GV as its \f(CW\*(C`namegv\*(C'\fR argument.
.RS 4
.Sp
.Vb 2
\& void  cv_set_call_checker(CV *cv, Perl_call_checker ckfun,
\&                           SV *ckobj)
.Ve
.RE
.RS 4
.RE
.ie n .IP """cv_set_call_checker_flags""" 4
.el .IP \f(CWcv_set_call_checker_flags\fR 4
.IX Xref "cv_set_call_checker_flags"
.IX Item "cv_set_call_checker_flags"
Sets the function that will be used to fix up a call to \f(CW\*(C`cv\*(C'\fR.
Specifically, the function is applied to an \f(CW\*(C`entersub\*(C'\fR op tree for a
subroutine call, not marked with \f(CW\*(C`&\*(C'\fR, where the callee can be identified
at compile time as \f(CW\*(C`cv\*(C'\fR.
.Sp
The C\-level function pointer is supplied in \f(CW\*(C`ckfun\*(C'\fR, an SV argument for
it is supplied in \f(CW\*(C`ckobj\*(C'\fR, and control flags are supplied in \f(CW\*(C`ckflags\*(C'\fR.
The function should be defined like this:
.Sp
.Vb 1
\&    STATIC OP * ckfun(pTHX_ OP *op, GV *namegv, SV *ckobj)
.Ve
.Sp
It is intended to be called in this manner:
.Sp
.Vb 1
\&    entersubop = ckfun(aTHX_ entersubop, namegv, ckobj);
.Ve
.Sp
In this call, \f(CW\*(C`entersubop\*(C'\fR is a pointer to the \f(CW\*(C`entersub\*(C'\fR op,
which may be replaced by the check function, and \f(CW\*(C`namegv\*(C'\fR supplies
the name that should be used by the check function to refer
to the callee of the \f(CW\*(C`entersub\*(C'\fR op if it needs to emit any diagnostics.
It is permitted to apply the check function in non-standard situations,
such as to a call to a different subroutine or to a method call.
.Sp
\&\f(CW\*(C`namegv\*(C'\fR may not actually be a GV.  For efficiency, perl may pass a
CV or other SV instead.  Whatever is passed can be used as the first
argument to "cv_name".  You can force perl to pass a GV by including
\&\f(CW\*(C`CALL_CHECKER_REQUIRE_GV\*(C'\fR in the \f(CW\*(C`ckflags\*(C'\fR.
.Sp
\&\f(CW\*(C`ckflags\*(C'\fR is a bitset, in which only the \f(CW\*(C`CALL_CHECKER_REQUIRE_GV\*(C'\fR
bit currently has a defined meaning (for which see above).  All other
bits should be clear.
.Sp
The current setting for a particular CV can be retrieved by
"cv_get_call_checker_flags".
.RS 4
.Sp
.Vb 2
\& void  cv_set_call_checker_flags(CV *cv, Perl_call_checker ckfun,
\&                                 SV *ckobj, U32 ckflags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """finalize_optree""" 4
.el .IP \f(CWfinalize_optree\fR 4
.IX Xref "finalize_optree"
.IX Item "finalize_optree"
This function finalizes the optree.  Should be called directly after
the complete optree is built.  It does some additional
checking which can't be done in the normal \f(CW\*(C`ck_\*(C'\fRxxx functions and makes
the tree thread-safe.
.RS 4
.Sp
.Vb 1
\& void  finalize_optree(OP *o)
.Ve
.RE
.RS 4
.RE
.ie n .IP """forbid_outofblock_ops""" 4
.el .IP \f(CWforbid_outofblock_ops\fR 4
.IX Xref "forbid_outofblock_ops"
.IX Item "forbid_outofblock_ops"
NOTE: \f(CW\*(C`forbid_outofblock_ops\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Checks an optree that implements a block, to ensure there are no control-flow
ops that attempt to leave the block.  Any \f(CW\*(C`OP_RETURN\*(C'\fR is forbidden, as is any
\&\f(CW\*(C`OP_GOTO\*(C'\fR. Loops are analysed, so any LOOPEX op (\f(CW\*(C`OP_NEXT\*(C'\fR, \f(CW\*(C`OP_LAST\*(C'\fR or
\&\f(CW\*(C`OP_REDO\*(C'\fR) that affects a loop that contains it within the block are
permitted, but those that do not are forbidden.
.Sp
If any of these forbidden constructions are detected, an exception is thrown
by using the op name and the blockname argument to construct a suitable
message.
.Sp
This function alone is not sufficient to ensure the optree does not perform
any of these forbidden activities during runtime, as it might call a different
function that performs a non-local LOOPEX, or a string\-\fBeval()\fR that performs a
\&\f(CW\*(C`goto\*(C'\fR, or various other things. It is intended purely as a compile-time
check for those that could be detected statically. Additional runtime checks
may be required depending on the circumstance it is used for.
.Sp
Note currently that \fIall\fR \f(CW\*(C`OP_GOTO\*(C'\fR ops are forbidden, even in cases where
they might otherwise be safe to execute.  This may be permitted in a later
version.
.RS 4
.Sp
.Vb 1
\& void  forbid_outofblock_ops(OP *o, const char *blockname)
.Ve
.RE
.RS 4
.RE
.ie n .IP """LINKLIST""" 4
.el .IP \f(CWLINKLIST\fR 4
.IX Xref "LINKLIST"
.IX Item "LINKLIST"
Given the root of an optree, link the tree in execution order using the
\&\f(CW\*(C`op_next\*(C'\fR pointers and return the first op executed.  If this has
already been done, it will not be redone, and \f(CW\*(C`o\->op_next\*(C'\fR will be
returned.  If \f(CW\*(C`o\->op_next\*(C'\fR is not already set, \f(CW\*(C`o\*(C'\fR should be at
least an \f(CW\*(C`UNOP\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& OP*  LINKLIST(OP *o)
.Ve
.RE
.RS 4
.RE
.ie n .IP """LISTOP""" 4
.el .IP \f(CWLISTOP\fR 4
.IX Item "LISTOP"
Described in perlguts.
.ie n .IP """LOGOP""" 4
.el .IP \f(CWLOGOP\fR 4
.IX Item "LOGOP"
Described in perlguts.
.ie n .IP """LOOP""" 4
.el .IP \f(CWLOOP\fR 4
.IX Item "LOOP"
Described in perlguts.
.ie n .IP """newARGDEFELEMOP""" 4
.el .IP \f(CWnewARGDEFELEMOP\fR 4
.IX Xref "newARGDEFELEMOP"
.IX Item "newARGDEFELEMOP"
Constructs and returns a new \f(CW\*(C`OP_ARGDEFELEM\*(C'\fR op which provides a defaulting
expression given by \f(CW\*(C`expr\*(C'\fR for the signature parameter at the index given
by \f(CW\*(C`argindex\*(C'\fR. The expression optree is consumed by this function and
becomes part of the returned optree.
.RS 4
.Sp
.Vb 1
\& OP *  newARGDEFELEMOP(I32 flags, OP *expr, I32 argindex)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newASSIGNOP""" 4
.el .IP \f(CWnewASSIGNOP\fR 4
.IX Xref "newASSIGNOP"
.IX Item "newASSIGNOP"
Constructs, checks, and returns an assignment op.  \f(CW\*(C`left\*(C'\fR and \f(CW\*(C`right\*(C'\fR
supply the parameters of the assignment; they are consumed by this
function and become part of the constructed op tree.
.Sp
If \f(CW\*(C`optype\*(C'\fR is \f(CW\*(C`OP_ANDASSIGN\*(C'\fR, \f(CW\*(C`OP_ORASSIGN\*(C'\fR, or \f(CW\*(C`OP_DORASSIGN\*(C'\fR, then
a suitable conditional optree is constructed.  If \f(CW\*(C`optype\*(C'\fR is the opcode
of a binary operator, such as \f(CW\*(C`OP_BIT_OR\*(C'\fR, then an op is constructed that
performs the binary operation and assigns the result to the left argument.
Either way, if \f(CW\*(C`optype\*(C'\fR is non-zero then \f(CW\*(C`flags\*(C'\fR has no effect.
.Sp
If \f(CW\*(C`optype\*(C'\fR is zero, then a plain scalar or list assignment is
constructed.  Which type of assignment it is is automatically determined.
\&\f(CW\*(C`flags\*(C'\fR gives the eight bits of \f(CW\*(C`op_flags\*(C'\fR, except that \f(CW\*(C`OPf_KIDS\*(C'\fR
will be set automatically, and, shifted up eight bits, the eight bits
of \f(CW\*(C`op_private\*(C'\fR, except that the bit with value 1 or 2 is automatically
set as required.
.RS 4
.Sp
.Vb 1
\& OP *  newASSIGNOP(I32 flags, OP *left, I32 optype, OP *right)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newATTRSUB""" 4
.el .IP \f(CWnewATTRSUB\fR 4
.IX Xref "newATTRSUB"
.IX Item "newATTRSUB"
Construct a Perl subroutine, also performing some surrounding jobs.
.Sp
This is the same as "\f(CW\*(C`newATTRSUB_x\*(C'\fR" in perlintern with its \f(CW\*(C`o_is_gv\*(C'\fR parameter set to
FALSE.  This means that if \f(CW\*(C`o\*(C'\fR is null, the new sub will be anonymous; otherwise
the name will be derived from \f(CW\*(C`o\*(C'\fR in the way described (as with all other
details) in "\f(CW\*(C`newATTRSUB_x\*(C'\fR" in perlintern.
.RS 4
.Sp
.Vb 2
\& CV *  newATTRSUB(I32 floor, OP *o, OP *proto, OP *attrs,
\&                  OP *block)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newBINOP""" 4
.el .IP \f(CWnewBINOP\fR 4
.IX Xref "newBINOP"
.IX Item "newBINOP"
Constructs, checks, and returns an op of any binary type.  \f(CW\*(C`type\*(C'\fR
is the opcode.  \f(CW\*(C`flags\*(C'\fR gives the eight bits of \f(CW\*(C`op_flags\*(C'\fR, except
that \f(CW\*(C`OPf_KIDS\*(C'\fR will be set automatically, and, shifted up eight bits,
the eight bits of \f(CW\*(C`op_private\*(C'\fR, except that the bit with value 1 or
2 is automatically set as required.  \f(CW\*(C`first\*(C'\fR and \f(CW\*(C`last\*(C'\fR supply up to
two ops to be the direct children of the binary op; they are consumed
by this function and become part of the constructed op tree.
.RS 4
.Sp
.Vb 1
\& OP *  newBINOP(I32 type, I32 flags, OP *first, OP *last)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newCONDOP""" 4
.el .IP \f(CWnewCONDOP\fR 4
.IX Xref "newCONDOP"
.IX Item "newCONDOP"
Constructs, checks, and returns a conditional-expression (\f(CW\*(C`cond_expr\*(C'\fR)
op.  \f(CW\*(C`flags\*(C'\fR gives the eight bits of \f(CW\*(C`op_flags\*(C'\fR, except that \f(CW\*(C`OPf_KIDS\*(C'\fR
will be set automatically, and, shifted up eight bits, the eight bits of
\&\f(CW\*(C`op_private\*(C'\fR, except that the bit with value 1 is automatically set.
\&\f(CW\*(C`first\*(C'\fR supplies the expression selecting between the two branches,
and \f(CW\*(C`trueop\*(C'\fR and \f(CW\*(C`falseop\*(C'\fR supply the branches; they are consumed by
this function and become part of the constructed op tree.
.RS 4
.Sp
.Vb 1
\& OP *  newCONDOP(I32 flags, OP *first, OP *trueop, OP *falseop)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newCONSTSUB""" 4
.el .IP \f(CWnewCONSTSUB\fR 4
.IX Xref "newCONSTSUB"
.IX Item "newCONSTSUB"
Behaves like "newCONSTSUB_flags", except that \f(CW\*(C`name\*(C'\fR is nul-terminated
rather than of counted length, and no flags are set.  (This means that
\&\f(CW\*(C`name\*(C'\fR is always interpreted as Latin\-1.)
.RS 4
.Sp
.Vb 1
\& CV *  newCONSTSUB(HV *stash, const char *name, SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newCONSTSUB_flags""" 4
.el .IP \f(CWnewCONSTSUB_flags\fR 4
.IX Xref "newCONSTSUB_flags"
.IX Item "newCONSTSUB_flags"
Construct a constant subroutine, also performing some surrounding
jobs.  A scalar constant-valued subroutine is eligible for inlining
at compile-time, and in Perl code can be created by \f(CW\*(C`sub\ FOO\ ()\ {\ 123\ }\*(C'\fR.  Other kinds of constant subroutine have other treatment.
.Sp
The subroutine will have an empty prototype and will ignore any arguments
when called.  Its constant behaviour is determined by \f(CW\*(C`sv\*(C'\fR.  If \f(CW\*(C`sv\*(C'\fR
is null, the subroutine will yield an empty list.  If \f(CW\*(C`sv\*(C'\fR points to a
scalar, the subroutine will always yield that scalar.  If \f(CW\*(C`sv\*(C'\fR points
to an array, the subroutine will always yield a list of the elements of
that array in list context, or the number of elements in the array in
scalar context.  This function takes ownership of one counted reference
to the scalar or array, and will arrange for the object to live as long
as the subroutine does.  If \f(CW\*(C`sv\*(C'\fR points to a scalar then the inlining
assumes that the value of the scalar will never change, so the caller
must ensure that the scalar is not subsequently written to.  If \f(CW\*(C`sv\*(C'\fR
points to an array then no such assumption is made, so it is ostensibly
safe to mutate the array or its elements, but whether this is really
supported has not been determined.
.Sp
The subroutine will have \f(CW\*(C`CvFILE\*(C'\fR set according to \f(CW\*(C`PL_curcop\*(C'\fR.
Other aspects of the subroutine will be left in their default state.
The caller is free to mutate the subroutine beyond its initial state
after this function has returned.
.Sp
If \f(CW\*(C`name\*(C'\fR is null then the subroutine will be anonymous, with its
\&\f(CW\*(C`CvGV\*(C'\fR referring to an \f(CW\*(C`_\|_ANON_\|_\*(C'\fR glob.  If \f(CW\*(C`name\*(C'\fR is non-null then the
subroutine will be named accordingly, referenced by the appropriate glob.
\&\f(CW\*(C`name\*(C'\fR is a string of length \f(CW\*(C`len\*(C'\fR bytes giving a sigilless symbol
name, in UTF\-8 if \f(CW\*(C`flags\*(C'\fR has the \f(CW\*(C`SVf_UTF8\*(C'\fR bit set and in Latin\-1
otherwise.  The name may be either qualified or unqualified.  If the
name is unqualified then it defaults to being in the stash specified by
\&\f(CW\*(C`stash\*(C'\fR if that is non-null, or to \f(CW\*(C`PL_curstash\*(C'\fR if \f(CW\*(C`stash\*(C'\fR is null.
The symbol is always added to the stash if necessary, with \f(CW\*(C`GV_ADDMULTI\*(C'\fR
semantics.
.Sp
\&\f(CW\*(C`flags\*(C'\fR should not have bits set other than \f(CW\*(C`SVf_UTF8\*(C'\fR.
.Sp
If there is already a subroutine of the specified name, then the new sub
will replace the existing one in the glob.  A warning may be generated
about the redefinition.
.Sp
If the subroutine has one of a few special names, such as \f(CW\*(C`BEGIN\*(C'\fR or
\&\f(CW\*(C`END\*(C'\fR, then it will be claimed by the appropriate queue for automatic
running of phase-related subroutines.  In this case the relevant glob will
be left not containing any subroutine, even if it did contain one before.
Execution of the subroutine will likely be a no-op, unless \f(CW\*(C`sv\*(C'\fR was
a tied array or the caller modified the subroutine in some interesting
way before it was executed.  In the case of \f(CW\*(C`BEGIN\*(C'\fR, the treatment is
buggy: the sub will be executed when only half built, and may be deleted
prematurely, possibly causing a crash.
.Sp
The function returns a pointer to the constructed subroutine.  If the sub
is anonymous then ownership of one counted reference to the subroutine
is transferred to the caller.  If the sub is named then the caller does
not get ownership of a reference.  In most such cases, where the sub
has a non-phase name, the sub will be alive at the point it is returned
by virtue of being contained in the glob that names it.  A phase-named
subroutine will usually be alive by virtue of the reference owned by
the phase's automatic run queue.  A \f(CW\*(C`BEGIN\*(C'\fR subroutine may have been
destroyed already by the time this function returns, but currently bugs
occur in that case before the caller gets control.  It is the caller's
responsibility to ensure that it knows which of these situations applies.
.RS 4
.Sp
.Vb 2
\& CV *  newCONSTSUB_flags(HV *stash, const char *name, STRLEN len,
\&                         U32 flags, SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newDEFEROP""" 4
.el .IP \f(CWnewDEFEROP\fR 4
.IX Xref "newDEFEROP"
.IX Item "newDEFEROP"
NOTE: \f(CW\*(C`newDEFEROP\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Constructs and returns a deferred-block statement that implements the
\&\f(CW\*(C`defer\*(C'\fR semantics.  The \f(CW\*(C`block\*(C'\fR optree is consumed by this function and
becomes part of the returned optree.
.Sp
The \f(CW\*(C`flags\*(C'\fR argument carries additional flags to set on the returned op,
including the \f(CW\*(C`op_private\*(C'\fR field.
.RS 4
.Sp
.Vb 1
\& OP *  newDEFEROP(I32 flags, OP *block)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newDEFSVOP""" 4
.el .IP \f(CWnewDEFSVOP\fR 4
.IX Xref "newDEFSVOP"
.IX Item "newDEFSVOP"
Constructs and returns an op to access \f(CW$_\fR.
.RS 4
.Sp
.Vb 1
\& OP *  newDEFSVOP()
.Ve
.RE
.RS 4
.RE
.ie n .IP """newFOROP""" 4
.el .IP \f(CWnewFOROP\fR 4
.IX Xref "newFOROP"
.IX Item "newFOROP"
Constructs, checks, and returns an op tree expressing a \f(CW\*(C`foreach\*(C'\fR
loop (iteration through a list of values).  This is a heavyweight loop,
with structure that allows exiting the loop by \f(CW\*(C`last\*(C'\fR and suchlike.
.Sp
\&\f(CW\*(C`sv\*(C'\fR optionally supplies the variable(s) that will be aliased to each
item in turn; if null, it defaults to \f(CW$_\fR.
\&\f(CW\*(C`expr\*(C'\fR supplies the list of values to iterate over.  \f(CW\*(C`block\*(C'\fR supplies
the main body of the loop, and \f(CW\*(C`cont\*(C'\fR optionally supplies a \f(CW\*(C`continue\*(C'\fR
block that operates as a second half of the body.  All of these optree
inputs are consumed by this function and become part of the constructed
op tree.
.Sp
\&\f(CW\*(C`flags\*(C'\fR gives the eight bits of \f(CW\*(C`op_flags\*(C'\fR for the \f(CW\*(C`leaveloop\*(C'\fR
op and, shifted up eight bits, the eight bits of \f(CW\*(C`op_private\*(C'\fR for
the \f(CW\*(C`leaveloop\*(C'\fR op, except that (in both cases) some bits will be set
automatically.
.RS 4
.Sp
.Vb 1
\& OP *  newFOROP(I32 flags, OP *sv, OP *expr, OP *block, OP *cont)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newGIVENOP""" 4
.el .IP \f(CWnewGIVENOP\fR 4
.IX Xref "newGIVENOP"
.IX Item "newGIVENOP"
Constructs, checks, and returns an op tree expressing a \f(CW\*(C`given\*(C'\fR block.
\&\f(CW\*(C`cond\*(C'\fR supplies the expression to whose value \f(CW$_\fR will be locally
aliased, and \f(CW\*(C`block\*(C'\fR supplies the body of the \f(CW\*(C`given\*(C'\fR construct; they
are consumed by this function and become part of the constructed op tree.
\&\f(CW\*(C`defsv_off\*(C'\fR must be zero (it used to identity the pad slot of lexical \f(CW$_\fR).
.RS 4
.Sp
.Vb 1
\& OP *  newGIVENOP(OP *cond, OP *block, PADOFFSET defsv_off)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newGVOP""" 4
.el .IP \f(CWnewGVOP\fR 4
.IX Xref "newGVOP"
.IX Item "newGVOP"
Constructs, checks, and returns an op of any type that involves an
embedded reference to a GV.  \f(CW\*(C`type\*(C'\fR is the opcode.  \f(CW\*(C`flags\*(C'\fR gives the
eight bits of \f(CW\*(C`op_flags\*(C'\fR.  \f(CW\*(C`gv\*(C'\fR identifies the GV that the op should
reference; calling this function does not transfer ownership of any
reference to it.
.RS 4
.Sp
.Vb 1
\& OP *  newGVOP(I32 type, I32 flags, GV *gv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newLISTOP""" 4
.el .IP \f(CWnewLISTOP\fR 4
.IX Xref "newLISTOP"
.IX Item "newLISTOP"
Constructs, checks, and returns an op of any list type.  \f(CW\*(C`type\*(C'\fR is
the opcode.  \f(CW\*(C`flags\*(C'\fR gives the eight bits of \f(CW\*(C`op_flags\*(C'\fR, except that
\&\f(CW\*(C`OPf_KIDS\*(C'\fR will be set automatically if required.  \f(CW\*(C`first\*(C'\fR and \f(CW\*(C`last\*(C'\fR
supply up to two ops to be direct children of the list op; they are
consumed by this function and become part of the constructed op tree.
.Sp
For most list operators, the check function expects all the kid ops to be
present already, so calling \f(CW\*(C`newLISTOP(OP_JOIN, ...)\*(C'\fR (e.g.) is not
appropriate.  What you want to do in that case is create an op of type
\&\f(CW\*(C`OP_LIST\*(C'\fR, append more children to it, and then call "op_convert_list".
See "op_convert_list" for more information.
.RS 4
.Sp
.Vb 1
\& OP *  newLISTOP(I32 type, I32 flags, OP *first, OP *last)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newLOGOP""" 4
.el .IP \f(CWnewLOGOP\fR 4
.IX Xref "newLOGOP"
.IX Item "newLOGOP"
Constructs, checks, and returns a logical (flow control) op.  \f(CW\*(C`type\*(C'\fR
is the opcode.  \f(CW\*(C`flags\*(C'\fR gives the eight bits of \f(CW\*(C`op_flags\*(C'\fR, except
that \f(CW\*(C`OPf_KIDS\*(C'\fR will be set automatically, and, shifted up eight bits,
the eight bits of \f(CW\*(C`op_private\*(C'\fR, except that the bit with value 1 is
automatically set.  \f(CW\*(C`first\*(C'\fR supplies the expression controlling the
flow, and \f(CW\*(C`other\*(C'\fR supplies the side (alternate) chain of ops; they are
consumed by this function and become part of the constructed op tree.
.RS 4
.Sp
.Vb 1
\& OP *  newLOGOP(I32 optype, I32 flags, OP *first, OP *other)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newLOOPEX""" 4
.el .IP \f(CWnewLOOPEX\fR 4
.IX Xref "newLOOPEX"
.IX Item "newLOOPEX"
Constructs, checks, and returns a loop-exiting op (such as \f(CW\*(C`goto\*(C'\fR
or \f(CW\*(C`last\*(C'\fR).  \f(CW\*(C`type\*(C'\fR is the opcode.  \f(CW\*(C`label\*(C'\fR supplies the parameter
determining the target of the op; it is consumed by this function and
becomes part of the constructed op tree.
.RS 4
.Sp
.Vb 1
\& OP *  newLOOPEX(I32 type, OP *label)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newLOOPOP""" 4
.el .IP \f(CWnewLOOPOP\fR 4
.IX Xref "newLOOPOP"
.IX Item "newLOOPOP"
Constructs, checks, and returns an op tree expressing a loop.  This is
only a loop in the control flow through the op tree; it does not have
the heavyweight loop structure that allows exiting the loop by \f(CW\*(C`last\*(C'\fR
and suchlike.  \f(CW\*(C`flags\*(C'\fR gives the eight bits of \f(CW\*(C`op_flags\*(C'\fR for the
top-level op, except that some bits will be set automatically as required.
\&\f(CW\*(C`expr\*(C'\fR supplies the expression controlling loop iteration, and \f(CW\*(C`block\*(C'\fR
supplies the body of the loop; they are consumed by this function and
become part of the constructed op tree.  \f(CW\*(C`debuggable\*(C'\fR is currently
unused and should always be 1.
.RS 4
.Sp
.Vb 1
\& OP *  newLOOPOP(I32 flags, I32 debuggable, OP *expr, OP *block)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newMETHOP""" 4
.el .IP \f(CWnewMETHOP\fR 4
.IX Xref "newMETHOP"
.IX Item "newMETHOP"
Constructs, checks, and returns an op of method type with a method name
evaluated at runtime.  \f(CW\*(C`type\*(C'\fR is the opcode.  \f(CW\*(C`flags\*(C'\fR gives the eight
bits of \f(CW\*(C`op_flags\*(C'\fR, except that \f(CW\*(C`OPf_KIDS\*(C'\fR will be set automatically,
and, shifted up eight bits, the eight bits of \f(CW\*(C`op_private\*(C'\fR, except that
the bit with value 1 is automatically set.  \f(CW\*(C`dynamic_meth\*(C'\fR supplies an
op which evaluates method name; it is consumed by this function and
become part of the constructed op tree.
Supported optypes: \f(CW\*(C`OP_METHOD\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& OP *  newMETHOP(I32 type, I32 flags, OP *dynamic_meth)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newMETHOP_named""" 4
.el .IP \f(CWnewMETHOP_named\fR 4
.IX Xref "newMETHOP_named"
.IX Item "newMETHOP_named"
Constructs, checks, and returns an op of method type with a constant
method name.  \f(CW\*(C`type\*(C'\fR is the opcode.  \f(CW\*(C`flags\*(C'\fR gives the eight bits of
\&\f(CW\*(C`op_flags\*(C'\fR, and, shifted up eight bits, the eight bits of
\&\f(CW\*(C`op_private\*(C'\fR.  \f(CW\*(C`const_meth\*(C'\fR supplies a constant method name;
it must be a shared COW string.
Supported optypes: \f(CW\*(C`OP_METHOD_NAMED\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& OP *  newMETHOP_named(I32 type, I32 flags, SV * const_meth)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newNULLLIST""" 4
.el .IP \f(CWnewNULLLIST\fR 4
.IX Xref "newNULLLIST"
.IX Item "newNULLLIST"
Constructs, checks, and returns a new \f(CW\*(C`stub\*(C'\fR op, which represents an
empty list expression.
.RS 4
.Sp
.Vb 1
\& OP *  newNULLLIST()
.Ve
.RE
.RS 4
.RE
.ie n .IP """newOP""" 4
.el .IP \f(CWnewOP\fR 4
.IX Xref "newOP"
.IX Item "newOP"
Constructs, checks, and returns an op of any base type (any type that
has no extra fields).  \f(CW\*(C`type\*(C'\fR is the opcode.  \f(CW\*(C`flags\*(C'\fR gives the
eight bits of \f(CW\*(C`op_flags\*(C'\fR, and, shifted up eight bits, the eight bits
of \f(CW\*(C`op_private\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& OP *  newOP(I32 optype, I32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newPADOP""" 4
.el .IP \f(CWnewPADOP\fR 4
.IX Xref "newPADOP"
.IX Item "newPADOP"
Constructs, checks, and returns an op of any type that involves a
reference to a pad element.  \f(CW\*(C`type\*(C'\fR is the opcode.  \f(CW\*(C`flags\*(C'\fR gives the
eight bits of \f(CW\*(C`op_flags\*(C'\fR.  A pad slot is automatically allocated, and
is populated with \f(CW\*(C`sv\*(C'\fR; this function takes ownership of one reference
to it.
.Sp
This function only exists if Perl has been compiled to use ithreads.
.RS 4
.Sp
.Vb 1
\& OP *  newPADOP(I32 type, I32 flags, SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newPMOP""" 4
.el .IP \f(CWnewPMOP\fR 4
.IX Xref "newPMOP"
.IX Item "newPMOP"
Constructs, checks, and returns an op of any pattern matching type.
\&\f(CW\*(C`type\*(C'\fR is the opcode.  \f(CW\*(C`flags\*(C'\fR gives the eight bits of \f(CW\*(C`op_flags\*(C'\fR
and, shifted up eight bits, the eight bits of \f(CW\*(C`op_private\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& OP *  newPMOP(I32 type, I32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newPVOP""" 4
.el .IP \f(CWnewPVOP\fR 4
.IX Xref "newPVOP"
.IX Item "newPVOP"
Constructs, checks, and returns an op of any type that involves an
embedded C\-level pointer (PV).  \f(CW\*(C`type\*(C'\fR is the opcode.  \f(CW\*(C`flags\*(C'\fR gives
the eight bits of \f(CW\*(C`op_flags\*(C'\fR.  \f(CW\*(C`pv\*(C'\fR supplies the C\-level pointer.
Depending on the op type, the memory referenced by \f(CW\*(C`pv\*(C'\fR may be freed
when the op is destroyed.  If the op is of a freeing type, \f(CW\*(C`pv\*(C'\fR must
have been allocated using \f(CW\*(C`PerlMemShared_malloc\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& OP *  newPVOP(I32 type, I32 flags, char *pv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newRANGE""" 4
.el .IP \f(CWnewRANGE\fR 4
.IX Xref "newRANGE"
.IX Item "newRANGE"
Constructs and returns a \f(CW\*(C`range\*(C'\fR op, with subordinate \f(CW\*(C`flip\*(C'\fR and
\&\f(CW\*(C`flop\*(C'\fR ops.  \f(CW\*(C`flags\*(C'\fR gives the eight bits of \f(CW\*(C`op_flags\*(C'\fR for the
\&\f(CW\*(C`flip\*(C'\fR op and, shifted up eight bits, the eight bits of \f(CW\*(C`op_private\*(C'\fR
for both the \f(CW\*(C`flip\*(C'\fR and \f(CW\*(C`range\*(C'\fR ops, except that the bit with value
1 is automatically set.  \f(CW\*(C`left\*(C'\fR and \f(CW\*(C`right\*(C'\fR supply the expressions
controlling the endpoints of the range; they are consumed by this function
and become part of the constructed op tree.
.RS 4
.Sp
.Vb 1
\& OP *  newRANGE(I32 flags, OP *left, OP *right)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newSLICEOP""" 4
.el .IP \f(CWnewSLICEOP\fR 4
.IX Xref "newSLICEOP"
.IX Item "newSLICEOP"
Constructs, checks, and returns an \f(CW\*(C`lslice\*(C'\fR (list slice) op.  \f(CW\*(C`flags\*(C'\fR
gives the eight bits of \f(CW\*(C`op_flags\*(C'\fR, except that \f(CW\*(C`OPf_KIDS\*(C'\fR will
be set automatically, and, shifted up eight bits, the eight bits of
\&\f(CW\*(C`op_private\*(C'\fR, except that the bit with value 1 or 2 is automatically
set as required.  \f(CW\*(C`listval\*(C'\fR and \f(CW\*(C`subscript\*(C'\fR supply the parameters of
the slice; they are consumed by this function and become part of the
constructed op tree.
.RS 4
.Sp
.Vb 1
\& OP *  newSLICEOP(I32 flags, OP *subscript, OP *listop)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newSTATEOP""" 4
.el .IP \f(CWnewSTATEOP\fR 4
.IX Xref "newSTATEOP"
.IX Item "newSTATEOP"
Constructs a state op (COP).  The state op is normally a \f(CW\*(C`nextstate\*(C'\fR op,
but will be a \f(CW\*(C`dbstate\*(C'\fR op if debugging is enabled for currently-compiled
code.  The state op is populated from \f(CW\*(C`PL_curcop\*(C'\fR (or \f(CW\*(C`PL_compiling\*(C'\fR).
If \f(CW\*(C`label\*(C'\fR is non-null, it supplies the name of a label to attach to
the state op; this function takes ownership of the memory pointed at by
\&\f(CW\*(C`label\*(C'\fR, and will free it.  \f(CW\*(C`flags\*(C'\fR gives the eight bits of \f(CW\*(C`op_flags\*(C'\fR
for the state op.
.Sp
If \f(CW\*(C`o\*(C'\fR is null, the state op is returned.  Otherwise the state op is
combined with \f(CW\*(C`o\*(C'\fR into a \f(CW\*(C`lineseq\*(C'\fR list op, which is returned.  \f(CW\*(C`o\*(C'\fR
is consumed by this function and becomes part of the returned op tree.
.RS 4
.Sp
.Vb 1
\& OP *  newSTATEOP(I32 flags, char *label, OP *o)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newSUB""" 4
.el .IP \f(CWnewSUB\fR 4
.IX Xref "newSUB"
.IX Item "newSUB"
Like \f(CW"newATTRSUB"\fR, but without attributes.
.RS 4
.Sp
.Vb 1
\& CV *  newSUB(I32 floor, OP *o, OP *proto, OP *block)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newSVOP""" 4
.el .IP \f(CWnewSVOP\fR 4
.IX Xref "newSVOP"
.IX Item "newSVOP"
Constructs, checks, and returns an op of any type that involves an
embedded SV.  \f(CW\*(C`type\*(C'\fR is the opcode.  \f(CW\*(C`flags\*(C'\fR gives the eight bits
of \f(CW\*(C`op_flags\*(C'\fR.  \f(CW\*(C`sv\*(C'\fR gives the SV to embed in the op; this function
takes ownership of one reference to it.
.RS 4
.Sp
.Vb 1
\& OP *  newSVOP(I32 type, I32 flags, SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newTRYCATCHOP""" 4
.el .IP \f(CWnewTRYCATCHOP\fR 4
.IX Xref "newTRYCATCHOP"
.IX Item "newTRYCATCHOP"
NOTE: \f(CW\*(C`newTRYCATCHOP\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Constructs and returns a conditional execution statement that implements
the \f(CW\*(C`try\*(C'\fR/\f(CW\*(C`catch\*(C'\fR semantics.  First the op tree in \f(CW\*(C`tryblock\*(C'\fR is executed,
inside a context that traps exceptions.  If an exception occurs then the
optree in \f(CW\*(C`catchblock\*(C'\fR is executed, with the trapped exception set into the
lexical variable given by \f(CW\*(C`catchvar\*(C'\fR (which must be an op of type
\&\f(CW\*(C`OP_PADSV\*(C'\fR).  All the optrees are consumed by this function and become part
of the returned op tree.
.Sp
The \f(CW\*(C`flags\*(C'\fR argument is currently ignored.
.RS 4
.Sp
.Vb 2
\& OP *  newTRYCATCHOP(I32 flags, OP *tryblock, OP *catchvar,
\&                     OP *catchblock)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newUNOP""" 4
.el .IP \f(CWnewUNOP\fR 4
.IX Xref "newUNOP"
.IX Item "newUNOP"
Constructs, checks, and returns an op of any unary type.  \f(CW\*(C`type\*(C'\fR is
the opcode.  \f(CW\*(C`flags\*(C'\fR gives the eight bits of \f(CW\*(C`op_flags\*(C'\fR, except that
\&\f(CW\*(C`OPf_KIDS\*(C'\fR will be set automatically if required, and, shifted up eight
bits, the eight bits of \f(CW\*(C`op_private\*(C'\fR, except that the bit with value 1
is automatically set.  \f(CW\*(C`first\*(C'\fR supplies an optional op to be the direct
child of the unary op; it is consumed by this function and become part
of the constructed op tree.
.RS 4
.Sp
.Vb 1
\& OP *  newUNOP(I32 type, I32 flags, OP *first)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newUNOP_AUX""" 4
.el .IP \f(CWnewUNOP_AUX\fR 4
.IX Xref "newUNOP_AUX"
.IX Item "newUNOP_AUX"
Similar to \f(CW\*(C`newUNOP\*(C'\fR, but creates an \f(CW\*(C`UNOP_AUX\*(C'\fR struct instead, with \f(CW\*(C`op_aux\*(C'\fR
initialised to \f(CW\*(C`aux\*(C'\fR
.RS 4
.Sp
.Vb 2
\& OP *  newUNOP_AUX(I32 type, I32 flags, OP *first,
\&                   UNOP_AUX_item *aux)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newWHENOP""" 4
.el .IP \f(CWnewWHENOP\fR 4
.IX Xref "newWHENOP"
.IX Item "newWHENOP"
Constructs, checks, and returns an op tree expressing a \f(CW\*(C`when\*(C'\fR block.
\&\f(CW\*(C`cond\*(C'\fR supplies the test expression, and \f(CW\*(C`block\*(C'\fR supplies the block
that will be executed if the test evaluates to true; they are consumed
by this function and become part of the constructed op tree.  \f(CW\*(C`cond\*(C'\fR
will be interpreted DWIMically, often as a comparison against \f(CW$_\fR,
and may be null to generate a \f(CW\*(C`default\*(C'\fR block.
.RS 4
.Sp
.Vb 1
\& OP *  newWHENOP(OP *cond, OP *block)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newWHILEOP""" 4
.el .IP \f(CWnewWHILEOP\fR 4
.IX Xref "newWHILEOP"
.IX Item "newWHILEOP"
Constructs, checks, and returns an op tree expressing a \f(CW\*(C`while\*(C'\fR loop.
This is a heavyweight loop, with structure that allows exiting the loop
by \f(CW\*(C`last\*(C'\fR and suchlike.
.Sp
\&\f(CW\*(C`loop\*(C'\fR is an optional preconstructed \f(CW\*(C`enterloop\*(C'\fR op to use in the
loop; if it is null then a suitable op will be constructed automatically.
\&\f(CW\*(C`expr\*(C'\fR supplies the loop's controlling expression.  \f(CW\*(C`block\*(C'\fR supplies the
main body of the loop, and \f(CW\*(C`cont\*(C'\fR optionally supplies a \f(CW\*(C`continue\*(C'\fR block
that operates as a second half of the body.  All of these optree inputs
are consumed by this function and become part of the constructed op tree.
.Sp
\&\f(CW\*(C`flags\*(C'\fR gives the eight bits of \f(CW\*(C`op_flags\*(C'\fR for the \f(CW\*(C`leaveloop\*(C'\fR
op and, shifted up eight bits, the eight bits of \f(CW\*(C`op_private\*(C'\fR for
the \f(CW\*(C`leaveloop\*(C'\fR op, except that (in both cases) some bits will be set
automatically.  \f(CW\*(C`debuggable\*(C'\fR is currently unused and should always be 1.
\&\f(CW\*(C`has_my\*(C'\fR can be supplied as true to force the
loop body to be enclosed in its own scope.
.RS 4
.Sp
.Vb 2
\& OP *  newWHILEOP(I32 flags, I32 debuggable, LOOP *loop, OP *expr,
\&                  OP *block, OP *cont, I32 has_my)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newXS""" 4
.el .IP \f(CWnewXS\fR 4
.IX Xref "newXS"
.IX Item "newXS"
Used by \f(CW\*(C`xsubpp\*(C'\fR to hook up XSUBs as Perl subs.  \f(CW\*(C`filename\*(C'\fR needs to be
static storage, as it is used directly as \fBCvFILE()\fR, without a copy being made.
.ie n .IP """OA_BASEOP""" 4
.el .IP \f(CWOA_BASEOP\fR 4
.IX Item "OA_BASEOP"
.PD 0
.ie n .IP """OA_BINOP""" 4
.el .IP \f(CWOA_BINOP\fR 4
.IX Item "OA_BINOP"
.ie n .IP """OA_COP""" 4
.el .IP \f(CWOA_COP\fR 4
.IX Item "OA_COP"
.ie n .IP """OA_LISTOP""" 4
.el .IP \f(CWOA_LISTOP\fR 4
.IX Item "OA_LISTOP"
.ie n .IP """OA_LOGOP""" 4
.el .IP \f(CWOA_LOGOP\fR 4
.IX Item "OA_LOGOP"
.ie n .IP """OA_LOOP""" 4
.el .IP \f(CWOA_LOOP\fR 4
.IX Item "OA_LOOP"
.ie n .IP """OA_PADOP""" 4
.el .IP \f(CWOA_PADOP\fR 4
.IX Item "OA_PADOP"
.ie n .IP """OA_PMOP""" 4
.el .IP \f(CWOA_PMOP\fR 4
.IX Item "OA_PMOP"
.ie n .IP """OA_PVOP_OR_SVOP""" 4
.el .IP \f(CWOA_PVOP_OR_SVOP\fR 4
.IX Item "OA_PVOP_OR_SVOP"
.ie n .IP """OA_SVOP""" 4
.el .IP \f(CWOA_SVOP\fR 4
.IX Item "OA_SVOP"
.ie n .IP """OA_UNOP""" 4
.el .IP \f(CWOA_UNOP\fR 4
.IX Item "OA_UNOP"
.PD
Described in perlguts.
.ie n .IP """OP""" 4
.el .IP \f(CWOP\fR 4
.IX Item "OP"
Described in perlguts.
.ie n .IP """op_append_elem""" 4
.el .IP \f(CWop_append_elem\fR 4
.IX Xref "op_append_elem"
.IX Item "op_append_elem"
Append an item to the list of ops contained directly within a list-type
op, returning the lengthened list.  \f(CW\*(C`first\*(C'\fR is the list-type op,
and \f(CW\*(C`last\*(C'\fR is the op to append to the list.  \f(CW\*(C`optype\*(C'\fR specifies the
intended opcode for the list.  If \f(CW\*(C`first\*(C'\fR is not already a list of the
right type, it will be upgraded into one.  If either \f(CW\*(C`first\*(C'\fR or \f(CW\*(C`last\*(C'\fR
is null, the other is returned unchanged.
.RS 4
.Sp
.Vb 1
\& OP *  op_append_elem(I32 optype, OP *first, OP *last)
.Ve
.RE
.RS 4
.RE
.ie n .IP """op_append_list""" 4
.el .IP \f(CWop_append_list\fR 4
.IX Xref "op_append_list"
.IX Item "op_append_list"
Concatenate the lists of ops contained directly within two list-type ops,
returning the combined list.  \f(CW\*(C`first\*(C'\fR and \f(CW\*(C`last\*(C'\fR are the list-type ops
to concatenate.  \f(CW\*(C`optype\*(C'\fR specifies the intended opcode for the list.
If either \f(CW\*(C`first\*(C'\fR or \f(CW\*(C`last\*(C'\fR is not already a list of the right type,
it will be upgraded into one.  If either \f(CW\*(C`first\*(C'\fR or \f(CW\*(C`last\*(C'\fR is null,
the other is returned unchanged.
.RS 4
.Sp
.Vb 1
\& OP *  op_append_list(I32 optype, OP *first, OP *last)
.Ve
.RE
.RS 4
.RE
.ie n .IP """OP_CLASS""" 4
.el .IP \f(CWOP_CLASS\fR 4
.IX Xref "OP_CLASS"
.IX Item "OP_CLASS"
Return the class of the provided OP: that is, which of the *OP
structures it uses.  For core ops this currently gets the information out
of \f(CW\*(C`PL_opargs\*(C'\fR, which does not always accurately reflect the type used;
in v5.26 onwards, see also the function \f(CW"op_class"\fR which can do a better
job of determining the used type.
.Sp
For custom ops the type is returned from the registration, and it is up
to the registree to ensure it is accurate.  The value returned will be
one of the \f(CW\*(C`OA_\*(C'\fR* constants from \fIop.h\fR.
.RS 4
.Sp
.Vb 1
\& U32  OP_CLASS(OP *o)
.Ve
.RE
.RS 4
.RE
.ie n .IP """op_contextualize""" 4
.el .IP \f(CWop_contextualize\fR 4
.IX Xref "op_contextualize"
.IX Item "op_contextualize"
Applies a syntactic context to an op tree representing an expression.
\&\f(CW\*(C`o\*(C'\fR is the op tree, and \f(CW\*(C`context\*(C'\fR must be \f(CW\*(C`G_SCALAR\*(C'\fR, \f(CW\*(C`G_LIST\*(C'\fR,
or \f(CW\*(C`G_VOID\*(C'\fR to specify the context to apply.  The modified op tree
is returned.
.RS 4
.Sp
.Vb 1
\& OP *  op_contextualize(OP *o, I32 context)
.Ve
.RE
.RS 4
.RE
.ie n .IP """op_convert_list""" 4
.el .IP \f(CWop_convert_list\fR 4
.IX Xref "op_convert_list"
.IX Item "op_convert_list"
Converts \f(CW\*(C`o\*(C'\fR into a list op if it is not one already, and then converts it
into the specified \f(CW\*(C`type\*(C'\fR, calling its check function, allocating a target if
it needs one, and folding constants.
.Sp
A list-type op is usually constructed one kid at a time via \f(CW\*(C`newLISTOP\*(C'\fR,
\&\f(CW\*(C`op_prepend_elem\*(C'\fR and \f(CW\*(C`op_append_elem\*(C'\fR.  Then finally it is passed to
\&\f(CW\*(C`op_convert_list\*(C'\fR to make it the right type.
.RS 4
.Sp
.Vb 1
\& OP *  op_convert_list(I32 optype, I32 flags, OP *o)
.Ve
.RE
.RS 4
.RE
.ie n .IP """OP_DESC""" 4
.el .IP \f(CWOP_DESC\fR 4
.IX Xref "OP_DESC"
.IX Item "OP_DESC"
Return a short description of the provided OP.
.RS 4
.Sp
.Vb 1
\& const char *  OP_DESC(OP *o)
.Ve
.RE
.RS 4
.RE
.ie n .IP """op_force_list""" 4
.el .IP \f(CWop_force_list\fR 4
.IX Xref "op_force_list"
.IX Item "op_force_list"
Promotes o and any siblings to be an \f(CW\*(C`OP_LIST\*(C'\fR if it is not already. If
a new \f(CW\*(C`OP_LIST\*(C'\fR op was created, its first child will be \f(CW\*(C`OP_PUSHMARK\*(C'\fR.
The returned node itself will be nulled, leaving only its children.
.Sp
This is often what you want to do before putting the optree into list
context; as
.Sp
.Vb 1
\&    o = op_contextualize(op_force_list(o), G_LIST);
.Ve
.RS 4
.Sp
.Vb 1
\& OP *  op_force_list(OP *o)
.Ve
.RE
.RS 4
.RE
.ie n .IP """op_free""" 4
.el .IP \f(CWop_free\fR 4
.IX Xref "op_free"
.IX Item "op_free"
Free an op and its children. Only use this when an op is no longer linked
to from any optree.
.Sp
Remember that any op with \f(CW\*(C`OPf_KIDS\*(C'\fR set is expected to have a valid
\&\f(CW\*(C`op_first\*(C'\fR pointer.  If you are attempting to free an op but preserve its
child op, make sure to clear that flag before calling \f(CWop_free()\fR.  For
example:
.Sp
.Vb 3
\&    OP *kid = o\->op_first; o\->op_first = NULL;
\&    o\->op_flags &= ~OPf_KIDS;
\&    op_free(o);
.Ve
.RS 4
.Sp
.Vb 1
\& void  op_free(OP *arg)
.Ve
.RE
.RS 4
.RE
.ie n .IP """OpHAS_SIBLING""" 4
.el .IP \f(CWOpHAS_SIBLING\fR 4
.IX Xref "OpHAS_SIBLING"
.IX Item "OpHAS_SIBLING"
Returns true if \f(CW\*(C`o\*(C'\fR has a sibling
.RS 4
.Sp
.Vb 1
\& bool  OpHAS_SIBLING(OP *o)
.Ve
.RE
.RS 4
.RE
.ie n .IP """OpLASTSIB_set""" 4
.el .IP \f(CWOpLASTSIB_set\fR 4
.IX Xref "OpLASTSIB_set"
.IX Item "OpLASTSIB_set"
Marks \f(CW\*(C`o\*(C'\fR as having no further siblings and marks
o as having the specified parent. See also \f(CW"OpMORESIB_set"\fR and
\&\f(CW\*(C`OpMAYBESIB_set\*(C'\fR. For a higher-level interface, see
\&\f(CW"op_sibling_splice"\fR.
.RS 4
.Sp
.Vb 1
\& void  OpLASTSIB_set(OP *o, OP *parent)
.Ve
.RE
.RS 4
.RE
.ie n .IP """op_linklist""" 4
.el .IP \f(CWop_linklist\fR 4
.IX Xref "op_linklist"
.IX Item "op_linklist"
This function is the implementation of the "LINKLIST" macro.  It should
not be called directly.
.RS 4
.Sp
.Vb 1
\& OP *  op_linklist(OP *o)
.Ve
.RE
.RS 4
.RE
.ie n .IP """op_lvalue""" 4
.el .IP \f(CWop_lvalue\fR 4
.IX Xref "op_lvalue"
.IX Item "op_lvalue"
NOTE: \f(CW\*(C`op_lvalue\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Propagate lvalue ("modifiable") context to an op and its children.
\&\f(CW\*(C`type\*(C'\fR represents the context type, roughly based on the type of op that
would do the modifying, although \f(CWlocal()\fR is represented by \f(CW\*(C`OP_NULL\*(C'\fR,
because it has no op type of its own (it is signalled by a flag on
the lvalue op).
.Sp
This function detects things that can't be modified, such as \f(CW\*(C`$x+1\*(C'\fR, and
generates errors for them.  For example, \f(CW\*(C`$x+1 = 2\*(C'\fR would cause it to be
called with an op of type \f(CW\*(C`OP_ADD\*(C'\fR and a \f(CW\*(C`type\*(C'\fR argument of \f(CW\*(C`OP_SASSIGN\*(C'\fR.
.Sp
It also flags things that need to behave specially in an lvalue context,
such as \f(CW\*(C`$$x = 5\*(C'\fR which might have to vivify a reference in \f(CW$x\fR.
.RS 4
.Sp
.Vb 1
\& OP *  op_lvalue(OP *o, I32 type)
.Ve
.RE
.RS 4
.RE
.ie n .IP """OpMAYBESIB_set""" 4
.el .IP \f(CWOpMAYBESIB_set\fR 4
.IX Xref "OpMAYBESIB_set"
.IX Item "OpMAYBESIB_set"
Conditionally does \f(CW\*(C`OpMORESIB_set\*(C'\fR or \f(CW\*(C`OpLASTSIB_set\*(C'\fR depending on whether
\&\f(CW\*(C`sib\*(C'\fR is non-null. For a higher-level interface, see \f(CW"op_sibling_splice"\fR.
.RS 4
.Sp
.Vb 1
\& void  OpMAYBESIB_set(OP *o, OP *sib, OP *parent)
.Ve
.RE
.RS 4
.RE
.ie n .IP """OpMORESIB_set""" 4
.el .IP \f(CWOpMORESIB_set\fR 4
.IX Xref "OpMORESIB_set"
.IX Item "OpMORESIB_set"
Sets the sibling of \f(CW\*(C`o\*(C'\fR to the non-zero value \f(CW\*(C`sib\*(C'\fR. See also \f(CW"OpLASTSIB_set"\fR
and \f(CW"OpMAYBESIB_set"\fR. For a higher-level interface, see
\&\f(CW"op_sibling_splice"\fR.
.RS 4
.Sp
.Vb 1
\& void  OpMORESIB_set(OP *o, OP *sib)
.Ve
.RE
.RS 4
.RE
.ie n .IP """OP_NAME""" 4
.el .IP \f(CWOP_NAME\fR 4
.IX Xref "OP_NAME"
.IX Item "OP_NAME"
Return the name of the provided OP.  For core ops this looks up the name
from the op_type; for custom ops from the op_ppaddr.
.RS 4
.Sp
.Vb 1
\& const char *  OP_NAME(OP *o)
.Ve
.RE
.RS 4
.RE
.ie n .IP """op_null""" 4
.el .IP \f(CWop_null\fR 4
.IX Xref "op_null"
.IX Item "op_null"
Neutralizes an op when it is no longer needed, but is still linked to from
other ops.
.RS 4
.Sp
.Vb 1
\& void  op_null(OP *o)
.Ve
.RE
.RS 4
.RE
.ie n .IP """op_parent""" 4
.el .IP \f(CWop_parent\fR 4
.IX Xref "op_parent"
.IX Item "op_parent"
Returns the parent OP of \f(CW\*(C`o\*(C'\fR, if it has a parent. Returns \f(CW\*(C`NULL\*(C'\fR otherwise.
.RS 4
.Sp
.Vb 1
\& OP *  op_parent(OP *o)
.Ve
.RE
.RS 4
.RE
.ie n .IP """op_prepend_elem""" 4
.el .IP \f(CWop_prepend_elem\fR 4
.IX Xref "op_prepend_elem"
.IX Item "op_prepend_elem"
Prepend an item to the list of ops contained directly within a list-type
op, returning the lengthened list.  \f(CW\*(C`first\*(C'\fR is the op to prepend to the
list, and \f(CW\*(C`last\*(C'\fR is the list-type op.  \f(CW\*(C`optype\*(C'\fR specifies the intended
opcode for the list.  If \f(CW\*(C`last\*(C'\fR is not already a list of the right type,
it will be upgraded into one.  If either \f(CW\*(C`first\*(C'\fR or \f(CW\*(C`last\*(C'\fR is null,
the other is returned unchanged.
.RS 4
.Sp
.Vb 1
\& OP *  op_prepend_elem(I32 optype, OP *first, OP *last)
.Ve
.RE
.RS 4
.RE
.ie n .IP """op_scope""" 4
.el .IP \f(CWop_scope\fR 4
.IX Xref "op_scope"
.IX Item "op_scope"
NOTE: \f(CW\*(C`op_scope\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Wraps up an op tree with some additional ops so that at runtime a dynamic
scope will be created.  The original ops run in the new dynamic scope,
and then, provided that they exit normally, the scope will be unwound.
The additional ops used to create and unwind the dynamic scope will
normally be an \f(CW\*(C`enter\*(C'\fR/\f(CW\*(C`leave\*(C'\fR pair, but a \f(CW\*(C`scope\*(C'\fR op may be used
instead if the ops are simple enough to not need the full dynamic scope
structure.
.RS 4
.Sp
.Vb 1
\& OP *  op_scope(OP *o)
.Ve
.RE
.RS 4
.RE
.ie n .IP """OpSIBLING""" 4
.el .IP \f(CWOpSIBLING\fR 4
.IX Xref "OpSIBLING"
.IX Item "OpSIBLING"
Returns the sibling of \f(CW\*(C`o\*(C'\fR, or \f(CW\*(C`NULL\*(C'\fR if there is no sibling
.RS 4
.Sp
.Vb 1
\& OP*  OpSIBLING(OP *o)
.Ve
.RE
.RS 4
.RE
.ie n .IP """op_sibling_splice""" 4
.el .IP \f(CWop_sibling_splice\fR 4
.IX Xref "op_sibling_splice"
.IX Item "op_sibling_splice"
A general function for editing the structure of an existing chain of
op_sibling nodes.  By analogy with the perl-level \f(CWsplice()\fR function, allows
you to delete zero or more sequential nodes, replacing them with zero or
more different nodes.  Performs the necessary op_first/op_last
housekeeping on the parent node and op_sibling manipulation on the
children.  The last deleted node will be marked as the last node by
updating the op_sibling/op_sibparent or op_moresib field as appropriate.
.Sp
Note that op_next is not manipulated, and nodes are not freed; that is the
responsibility of the caller.  It also won't create a new list op for an
empty list etc; use higher-level functions like \fBop_append_elem()\fR for that.
.Sp
\&\f(CW\*(C`parent\*(C'\fR is the parent node of the sibling chain. It may passed as \f(CW\*(C`NULL\*(C'\fR if
the splicing doesn't affect the first or last op in the chain.
.Sp
\&\f(CW\*(C`start\*(C'\fR is the node preceding the first node to be spliced.  Node(s)
following it will be deleted, and ops will be inserted after it.  If it is
\&\f(CW\*(C`NULL\*(C'\fR, the first node onwards is deleted, and nodes are inserted at the
beginning.
.Sp
\&\f(CW\*(C`del_count\*(C'\fR is the number of nodes to delete.  If zero, no nodes are deleted.
If \-1 or greater than or equal to the number of remaining kids, all
remaining kids are deleted.
.Sp
\&\f(CW\*(C`insert\*(C'\fR is the first of a chain of nodes to be inserted in place of the nodes.
If \f(CW\*(C`NULL\*(C'\fR, no nodes are inserted.
.Sp
The head of the chain of deleted ops is returned, or \f(CW\*(C`NULL\*(C'\fR if no ops were
deleted.
.Sp
For example:
.Sp
.Vb 2
\&    action                    before      after         returns
\&    \-\-\-\-\-\-                    \-\-\-\-\-       \-\-\-\-\-         \-\-\-\-\-\-\-
\&
\&                              P           P
\&    splice(P, A, 2, X\-Y\-Z)    |           |             B\-C
\&                              A\-B\-C\-D     A\-X\-Y\-Z\-D
\&
\&                              P           P
\&    splice(P, NULL, 1, X\-Y)   |           |             A
\&                              A\-B\-C\-D     X\-Y\-B\-C\-D
\&
\&                              P           P
\&    splice(P, NULL, 3, NULL)  |           |             A\-B\-C
\&                              A\-B\-C\-D     D
\&
\&                              P           P
\&    splice(P, B, 0, X\-Y)      |           |             NULL
\&                              A\-B\-C\-D     A\-B\-X\-Y\-C\-D
.Ve
.Sp
For lower-level direct manipulation of \f(CW\*(C`op_sibparent\*(C'\fR and \f(CW\*(C`op_moresib\*(C'\fR,
see \f(CW"OpMORESIB_set"\fR, \f(CW"OpLASTSIB_set"\fR, \f(CW"OpMAYBESIB_set"\fR.
.RS 4
.Sp
.Vb 2
\& OP *  op_sibling_splice(OP *parent, OP *start, int del_count,
\&                         OP *insert)
.Ve
.RE
.RS 4
.RE
.ie n .IP """optimize_optree""" 4
.el .IP \f(CWoptimize_optree\fR 4
.IX Xref "optimize_optree"
.IX Item "optimize_optree"
This function applies some optimisations to the optree in top-down order.
It is called before the peephole optimizer, which processes ops in
execution order. Note that \fBfinalize_optree()\fR also does a top-down scan,
but is called *after* the peephole optimizer.
.RS 4
.Sp
.Vb 1
\& void  optimize_optree(OP *o)
.Ve
.RE
.RS 4
.RE
.ie n .IP """OP_TYPE_IS""" 4
.el .IP \f(CWOP_TYPE_IS\fR 4
.IX Xref "OP_TYPE_IS"
.IX Item "OP_TYPE_IS"
Returns true if the given OP is not a \f(CW\*(C`NULL\*(C'\fR pointer
and if it is of the given type.
.Sp
The negation of this macro, \f(CW\*(C`OP_TYPE_ISNT\*(C'\fR is also available
as well as \f(CW\*(C`OP_TYPE_IS_NN\*(C'\fR and \f(CW\*(C`OP_TYPE_ISNT_NN\*(C'\fR which elide
the NULL pointer check.
.RS 4
.Sp
.Vb 1
\& bool  OP_TYPE_IS(OP *o, Optype type)
.Ve
.RE
.RS 4
.RE
.ie n .IP """OP_TYPE_IS_OR_WAS""" 4
.el .IP \f(CWOP_TYPE_IS_OR_WAS\fR 4
.IX Xref "OP_TYPE_IS_OR_WAS"
.IX Item "OP_TYPE_IS_OR_WAS"
Returns true if the given OP is not a NULL pointer and
if it is of the given type or used to be before being
replaced by an OP of type OP_NULL.
.Sp
The negation of this macro, \f(CW\*(C`OP_TYPE_ISNT_AND_WASNT\*(C'\fR
is also available as well as \f(CW\*(C`OP_TYPE_IS_OR_WAS_NN\*(C'\fR
and \f(CW\*(C`OP_TYPE_ISNT_AND_WASNT_NN\*(C'\fR which elide
the \f(CW\*(C`NULL\*(C'\fR pointer check.
.RS 4
.Sp
.Vb 1
\& bool  OP_TYPE_IS_OR_WAS(OP *o, Optype type)
.Ve
.RE
.RS 4
.RE
.ie n .IP """op_wrap_finally""" 4
.el .IP \f(CWop_wrap_finally\fR 4
.IX Xref "op_wrap_finally"
.IX Item "op_wrap_finally"
NOTE: \f(CW\*(C`op_wrap_finally\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Wraps the given \f(CW\*(C`block\*(C'\fR optree fragment in its own scoped block, arranging
for the \f(CW\*(C`finally\*(C'\fR optree fragment to be invoked when leaving that block for
any reason. Both optree fragments are consumed and the combined result is
returned.
.RS 4
.Sp
.Vb 1
\& OP *  op_wrap_finally(OP *block, OP *finally)
.Ve
.RE
.RS 4
.RE
.ie n .IP """peep_t""" 4
.el .IP \f(CWpeep_t\fR 4
.IX Item "peep_t"
Described in perlguts.
.ie n .IP """Perl_cpeep_t""" 4
.el .IP \f(CWPerl_cpeep_t\fR 4
.IX Item "Perl_cpeep_t"
Described in perlguts.
.ie n .IP """PL_opfreehook""" 4
.el .IP \f(CWPL_opfreehook\fR 4
.IX Xref "PL_opfreehook"
.IX Item "PL_opfreehook"
When non\-\f(CW\*(C`NULL\*(C'\fR, the function pointed by this variable will be called each time an OP is freed with the corresponding OP as the argument.
This allows extensions to free any extra attribute they have locally attached to an OP.
It is also assured to first fire for the parent OP and then for its kids.
.Sp
When you replace this variable, it is considered a good practice to store the possibly previously installed hook and that you recall it inside your own.
.Sp
On threaded perls, each thread has an independent copy of this variable;
each initialized at creation time with the current value of the creating
thread's copy.
.RS 4
.Sp
.Vb 1
\& Perl_ophook_t  PL_opfreehook
.Ve
.RE
.RS 4
.RE
.ie n .IP """PL_peepp""" 4
.el .IP \f(CWPL_peepp\fR 4
.IX Xref "PL_peepp"
.IX Item "PL_peepp"
Pointer to the per-subroutine peephole optimiser.  This is a function
that gets called at the end of compilation of a Perl subroutine (or
equivalently independent piece of Perl code) to perform fixups of
some ops and to perform small-scale optimisations.  The function is
called once for each subroutine that is compiled, and is passed, as sole
parameter, a pointer to the op that is the entry point to the subroutine.
It modifies the op tree in place.
.Sp
The peephole optimiser should never be completely replaced.  Rather,
add code to it by wrapping the existing optimiser.  The basic way to do
this can be seen in "Compile pass 3: peephole optimization" in perlguts.
If the new code wishes to operate on ops throughout the subroutine's
structure, rather than just at the top level, it is likely to be more
convenient to wrap the "PL_rpeepp" hook.
.Sp
On threaded perls, each thread has an independent copy of this variable;
each initialized at creation time with the current value of the creating
thread's copy.
.RS 4
.Sp
.Vb 1
\& peep_t  PL_peepp
.Ve
.RE
.RS 4
.RE
.ie n .IP """PL_rpeepp""" 4
.el .IP \f(CWPL_rpeepp\fR 4
.IX Xref "PL_rpeepp"
.IX Item "PL_rpeepp"
Pointer to the recursive peephole optimiser.  This is a function
that gets called at the end of compilation of a Perl subroutine (or
equivalently independent piece of Perl code) to perform fixups of some
ops and to perform small-scale optimisations.  The function is called
once for each chain of ops linked through their \f(CW\*(C`op_next\*(C'\fR fields;
it is recursively called to handle each side chain.  It is passed, as
sole parameter, a pointer to the op that is at the head of the chain.
It modifies the op tree in place.
.Sp
The peephole optimiser should never be completely replaced.  Rather,
add code to it by wrapping the existing optimiser.  The basic way to do
this can be seen in "Compile pass 3: peephole optimization" in perlguts.
If the new code wishes to operate only on ops at a subroutine's top level,
rather than throughout the structure, it is likely to be more convenient
to wrap the "PL_peepp" hook.
.Sp
On threaded perls, each thread has an independent copy of this variable;
each initialized at creation time with the current value of the creating
thread's copy.
.RS 4
.Sp
.Vb 1
\& peep_t  PL_rpeepp
.Ve
.RE
.RS 4
.RE
.ie n .IP """PMOP""" 4
.el .IP \f(CWPMOP\fR 4
.IX Item "PMOP"
Described in perlguts.
.ie n .IP """rv2cv_op_cv""" 4
.el .IP \f(CWrv2cv_op_cv\fR 4
.IX Xref "rv2cv_op_cv"
.IX Item "rv2cv_op_cv"
Examines an op, which is expected to identify a subroutine at runtime,
and attempts to determine at compile time which subroutine it identifies.
This is normally used during Perl compilation to determine whether
a prototype can be applied to a function call.  \f(CW\*(C`cvop\*(C'\fR is the op
being considered, normally an \f(CW\*(C`rv2cv\*(C'\fR op.  A pointer to the identified
subroutine is returned, if it could be determined statically, and a null
pointer is returned if it was not possible to determine statically.
.Sp
Currently, the subroutine can be identified statically if the RV that the
\&\f(CW\*(C`rv2cv\*(C'\fR is to operate on is provided by a suitable \f(CW\*(C`gv\*(C'\fR or \f(CW\*(C`const\*(C'\fR op.
A \f(CW\*(C`gv\*(C'\fR op is suitable if the GV's CV slot is populated.  A \f(CW\*(C`const\*(C'\fR op is
suitable if the constant value must be an RV pointing to a CV.  Details of
this process may change in future versions of Perl.  If the \f(CW\*(C`rv2cv\*(C'\fR op
has the \f(CW\*(C`OPpENTERSUB_AMPER\*(C'\fR flag set then no attempt is made to identify
the subroutine statically: this flag is used to suppress compile-time
magic on a subroutine call, forcing it to use default runtime behaviour.
.Sp
If \f(CW\*(C`flags\*(C'\fR has the bit \f(CW\*(C`RV2CVOPCV_MARK_EARLY\*(C'\fR set, then the handling
of a GV reference is modified.  If a GV was examined and its CV slot was
found to be empty, then the \f(CW\*(C`gv\*(C'\fR op has the \f(CW\*(C`OPpEARLY_CV\*(C'\fR flag set.
If the op is not optimised away, and the CV slot is later populated with
a subroutine having a prototype, that flag eventually triggers the warning
"called too early to check prototype".
.Sp
If \f(CW\*(C`flags\*(C'\fR has the bit \f(CW\*(C`RV2CVOPCV_RETURN_NAME_GV\*(C'\fR set, then instead
of returning a pointer to the subroutine it returns a pointer to the
GV giving the most appropriate name for the subroutine in this context.
Normally this is just the \f(CW\*(C`CvGV\*(C'\fR of the subroutine, but for an anonymous
(\f(CW\*(C`CvANON\*(C'\fR) subroutine that is referenced through a GV it will be the
referencing GV.  The resulting \f(CW\*(C`GV*\*(C'\fR is cast to \f(CW\*(C`CV*\*(C'\fR to be returned.
A null pointer is returned as usual if there is no statically-determinable
subroutine.
.RS 4
.Sp
.Vb 1
\& CV *  rv2cv_op_cv(OP *cvop, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """UNOP""" 4
.el .IP \f(CWUNOP\fR 4
.IX Item "UNOP"
Described in perlguts.
.ie n .IP """XOP""" 4
.el .IP \f(CWXOP\fR 4
.IX Item "XOP"
Described in perlguts.
.SH "Pack and Unpack"
.IX Header "Pack and Unpack"
.ie n .IP """packlist""" 4
.el .IP \f(CWpacklist\fR 4
.IX Xref "packlist"
.IX Item "packlist"
The engine implementing \f(CWpack()\fR Perl function.
.RS 4
.Sp
.Vb 2
\& void  packlist(SV *cat, const char *pat, const char *patend,
\&                SV **beglist, SV **endlist)
.Ve
.RE
.RS 4
.RE
.ie n .IP """unpackstring""" 4
.el .IP \f(CWunpackstring\fR 4
.IX Xref "unpackstring"
.IX Item "unpackstring"
The engine implementing the \f(CWunpack()\fR Perl function.
.Sp
Using the template \f(CW\*(C`pat..patend\*(C'\fR, this function unpacks the string
\&\f(CW\*(C`s..strend\*(C'\fR into a number of mortal SVs, which it pushes onto the perl
argument (\f(CW@_\fR) stack (so you will need to issue a \f(CW\*(C`PUTBACK\*(C'\fR before and
\&\f(CW\*(C`SPAGAIN\*(C'\fR after the call to this function).  It returns the number of
pushed elements.
.Sp
The \f(CW\*(C`strend\*(C'\fR and \f(CW\*(C`patend\*(C'\fR pointers should point to the byte following the
last character of each string.
.Sp
Although this function returns its values on the perl argument stack, it
doesn't take any parameters from that stack (and thus in particular
there's no need to do a \f(CW\*(C`PUSHMARK\*(C'\fR before calling it, unlike "call_pv" for
example).
.RS 4
.Sp
.Vb 3
\& SSize_t  unpackstring(const char *pat, const char *patend,
\&                       const char *s, const char *strend,
\&                       U32 flags)
.Ve
.RE
.RS 4
.RE
.SH "Pad Data Structures"
.IX Xref "SVs_PADSTALE"
.IX Header "Pad Data Structures"
.ie n .IP """CvPADLIST""" 4
.el .IP \f(CWCvPADLIST\fR 4
.IX Xref "CvPADLIST"
.IX Item "CvPADLIST"
NOTE: \f(CW\*(C`CvPADLIST\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
CV's can have CvPADLIST(cv) set to point to a PADLIST.  This is the CV's
scratchpad, which stores lexical variables and opcode temporary and
per-thread values.
.Sp
For these purposes "formats" are a kind-of CV; eval""s are too (except they're
not callable at will and are always thrown away after the eval"" is done
executing).  Require'd files are simply evals without any outer lexical
scope.
.Sp
XSUBs do not have a \f(CW\*(C`CvPADLIST\*(C'\fR.  \f(CW\*(C`dXSTARG\*(C'\fR fetches values from \f(CW\*(C`PL_curpad\*(C'\fR,
but that is really the callers pad (a slot of which is allocated by
every entersub). Do not get or set \f(CW\*(C`CvPADLIST\*(C'\fR if a CV is an XSUB (as
determined by \f(CWCvISXSUB()\fR), \f(CW\*(C`CvPADLIST\*(C'\fR slot is reused for a different
internal purpose in XSUBs.
.Sp
The PADLIST has a C array where pads are stored.
.Sp
The 0th entry of the PADLIST is a PADNAMELIST
which represents the "names" or rather
the "static type information" for lexicals.  The individual elements of a
PADNAMELIST are PADNAMEs.  Future
refactorings might stop the PADNAMELIST from being stored in the PADLIST's
array, so don't rely on it.  See "PadlistNAMES".
.Sp
The CvDEPTH'th entry of a PADLIST is a PAD (an AV) which is the stack frame
at that depth of recursion into the CV.  The 0th slot of a frame AV is an
AV which is \f(CW@_\fR.  Other entries are storage for variables and op targets.
.Sp
Iterating over the PADNAMELIST iterates over all possible pad
items.  Pad slots for targets (\f(CW\*(C`SVs_PADTMP\*(C'\fR)
and GVs end up having &PL_padname_undef "names", while slots for constants 
have \f(CW&PL_padname_const\fR "names" (see \f(CW"pad_alloc"\fR).  That
\&\f(CW&PL_padname_undef\fR
and \f(CW&PL_padname_const\fR are used is an implementation detail subject to
change.  To test for them, use \f(CW\*(C`!PadnamePV(name)\*(C'\fR and
\&\f(CW\*(C`PadnamePV(name)\ &&\ !PadnameLEN(name)\*(C'\fR, respectively.
.Sp
Only \f(CW\*(C`my\*(C'\fR/\f(CW\*(C`our\*(C'\fR variable slots get valid names.
The rest are op targets/GVs/constants which are statically allocated
or resolved at compile time.  These don't have names by which they
can be looked up from Perl code at run time through eval"" the way
\&\f(CW\*(C`my\*(C'\fR/\f(CW\*(C`our\*(C'\fR variables can be.  Since they can't be looked up by "name"
but only by their index allocated at compile time (which is usually
in \f(CW\*(C`PL_op\->op_targ\*(C'\fR), wasting a name SV for them doesn't make sense.
.Sp
The pad names in the PADNAMELIST have their PV holding the name of
the variable.  The \f(CW\*(C`COP_SEQ_RANGE_LOW\*(C'\fR and \f(CW\*(C`_HIGH\*(C'\fR fields form a range
(low+1..high inclusive) of cop_seq numbers for which the name is
valid.  During compilation, these fields may hold the special value
PERL_PADSEQ_INTRO to indicate various stages:
.Sp
.Vb 8
\& COP_SEQ_RANGE_LOW        _HIGH
\& \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-        \-\-\-\-\-
\& PERL_PADSEQ_INTRO            0   variable not yet introduced:
\&                                  { my ($x
\& valid\-seq#   PERL_PADSEQ_INTRO   variable in scope:
\&                                  { my ($x);
\& valid\-seq#          valid\-seq#   compilation of scope complete:
\&                                  { my ($x); .... }
.Ve
.Sp
When a lexical var hasn't yet been introduced, it already exists from the
perspective of duplicate declarations, but not for variable lookups, e.g.
.Sp
.Vb 2
\&    my ($x, $x); # \*(Aq"my" variable $x masks earlier declaration\*(Aq
\&    my $x = $x;  # equal to my $x = $::x;
.Ve
.Sp
For typed lexicals \f(CW\*(C`PadnameTYPE\*(C'\fR points at the type stash.  For \f(CW\*(C`our\*(C'\fR
lexicals, \f(CW\*(C`PadnameOURSTASH\*(C'\fR points at the stash of the associated global (so
that duplicate \f(CW\*(C`our\*(C'\fR declarations in the same package can be detected).
\&\f(CW\*(C`PadnameGEN\*(C'\fR is sometimes used to store the generation number during
compilation.
.Sp
If \f(CW\*(C`PadnameOUTER\*(C'\fR is set on the pad name, then that slot in the frame AV
is a REFCNT'ed reference to a lexical from "outside".  Such entries
are sometimes referred to as 'fake'.  In this case, the name does not
use 'low' and 'high' to store a cop_seq range, since it is in scope
throughout.  Instead 'high' stores some flags containing info about
the real lexical (is it declared in an anon, and is it capable of being
instantiated multiple times?), and for fake ANONs, 'low' contains the index
within the parent's pad where the lexical's value is stored, to make
cloning quicker.
.Sp
If the 'name' is \f(CW\*(C`&\*(C'\fR the corresponding entry in the PAD
is a CV representing a possible closure.
.Sp
Note that formats are treated as anon subs, and are cloned each time
write is called (if necessary).
.Sp
The flag \f(CW\*(C`SVs_PADSTALE\*(C'\fR is cleared on lexicals each time the \f(CWmy()\fR is executed,
and set on scope exit.  This allows the
\&\f(CW"Variable $x is not available"\fR warning
to be generated in evals, such as
.Sp
.Vb 1
\&    { my $x = 1; sub f { eval \*(Aq$x\*(Aq} } f();
.Ve
.Sp
For state vars, \f(CW\*(C`SVs_PADSTALE\*(C'\fR is overloaded to mean 'not yet initialised',
but this internal state is stored in a separate pad entry.
.RS 4
.Sp
.Vb 1
\& PADLIST *  CvPADLIST(CV *cv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """pad_add_name_pvs""" 4
.el .IP \f(CWpad_add_name_pvs\fR 4
.IX Xref "pad_add_name_pvs"
.IX Item "pad_add_name_pvs"
Exactly like "pad_add_name_pvn", but takes a literal string
instead of a string/length pair.
.RS 4
.Sp
.Vb 2
\& PADOFFSET  pad_add_name_pvs("name", U32 flags, HV *typestash,
\&                             HV *ourstash)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PadARRAY""" 4
.el .IP \f(CWPadARRAY\fR 4
.IX Xref "PadARRAY"
.IX Item "PadARRAY"
NOTE: \f(CW\*(C`PadARRAY\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
The C array of pad entries.
.RS 4
.Sp
.Vb 1
\& SV **  PadARRAY(PAD * pad)
.Ve
.RE
.RS 4
.RE
.ie n .IP """pad_findmy_pvs""" 4
.el .IP \f(CWpad_findmy_pvs\fR 4
.IX Xref "pad_findmy_pvs"
.IX Item "pad_findmy_pvs"
Exactly like "pad_findmy_pvn", but takes a literal string
instead of a string/length pair.
.RS 4
.Sp
.Vb 1
\& PADOFFSET  pad_findmy_pvs("name", U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PadlistARRAY""" 4
.el .IP \f(CWPadlistARRAY\fR 4
.IX Xref "PadlistARRAY"
.IX Item "PadlistARRAY"
NOTE: \f(CW\*(C`PadlistARRAY\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
The C array of a padlist, containing the pads.  Only subscript it with
numbers >= 1, as the 0th entry is not guaranteed to remain usable.
.RS 4
.Sp
.Vb 1
\& PAD **  PadlistARRAY(PADLIST * padlist)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PadlistMAX""" 4
.el .IP \f(CWPadlistMAX\fR 4
.IX Xref "PadlistMAX"
.IX Item "PadlistMAX"
NOTE: \f(CW\*(C`PadlistMAX\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
The index of the last allocated space in the padlist.  Note that the last
pad may be in an earlier slot.  Any entries following it will be \f(CW\*(C`NULL\*(C'\fR in
that case.
.RS 4
.Sp
.Vb 1
\& SSize_t  PadlistMAX(PADLIST * padlist)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PadlistNAMES""" 4
.el .IP \f(CWPadlistNAMES\fR 4
.IX Xref "PadlistNAMES"
.IX Item "PadlistNAMES"
NOTE: \f(CW\*(C`PadlistNAMES\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
The names associated with pad entries.
.RS 4
.Sp
.Vb 1
\& PADNAMELIST *  PadlistNAMES(PADLIST * padlist)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PadlistNAMESARRAY""" 4
.el .IP \f(CWPadlistNAMESARRAY\fR 4
.IX Xref "PadlistNAMESARRAY"
.IX Item "PadlistNAMESARRAY"
NOTE: \f(CW\*(C`PadlistNAMESARRAY\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
The C array of pad names.
.RS 4
.Sp
.Vb 1
\& PADNAME **  PadlistNAMESARRAY(PADLIST * padlist)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PadlistNAMESMAX""" 4
.el .IP \f(CWPadlistNAMESMAX\fR 4
.IX Xref "PadlistNAMESMAX"
.IX Item "PadlistNAMESMAX"
NOTE: \f(CW\*(C`PadlistNAMESMAX\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
The index of the last pad name.
.RS 4
.Sp
.Vb 1
\& SSize_t  PadlistNAMESMAX(PADLIST * padlist)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PadlistREFCNT""" 4
.el .IP \f(CWPadlistREFCNT\fR 4
.IX Xref "PadlistREFCNT"
.IX Item "PadlistREFCNT"
NOTE: \f(CW\*(C`PadlistREFCNT\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
The reference count of the padlist.  Currently this is always 1.
.RS 4
.Sp
.Vb 1
\& U32  PadlistREFCNT(PADLIST * padlist)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PadMAX""" 4
.el .IP \f(CWPadMAX\fR 4
.IX Xref "PadMAX"
.IX Item "PadMAX"
NOTE: \f(CW\*(C`PadMAX\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
The index of the last pad entry.
.RS 4
.Sp
.Vb 1
\& SSize_t  PadMAX(PAD * pad)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PadnameLEN""" 4
.el .IP \f(CWPadnameLEN\fR 4
.IX Xref "PadnameLEN"
.IX Item "PadnameLEN"
NOTE: \f(CW\*(C`PadnameLEN\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
The length of the name.
.RS 4
.Sp
.Vb 1
\& STRLEN  PadnameLEN(PADNAME * pn)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PadnamelistARRAY""" 4
.el .IP \f(CWPadnamelistARRAY\fR 4
.IX Xref "PadnamelistARRAY"
.IX Item "PadnamelistARRAY"
NOTE: \f(CW\*(C`PadnamelistARRAY\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
The C array of pad names.
.RS 4
.Sp
.Vb 1
\& PADNAME **  PadnamelistARRAY(PADNAMELIST * pnl)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PadnamelistMAX""" 4
.el .IP \f(CWPadnamelistMAX\fR 4
.IX Xref "PadnamelistMAX"
.IX Item "PadnamelistMAX"
NOTE: \f(CW\*(C`PadnamelistMAX\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
The index of the last pad name.
.RS 4
.Sp
.Vb 1
\& SSize_t  PadnamelistMAX(PADNAMELIST * pnl)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PadnamelistREFCNT""" 4
.el .IP \f(CWPadnamelistREFCNT\fR 4
.IX Xref "PadnamelistREFCNT"
.IX Item "PadnamelistREFCNT"
NOTE: \f(CW\*(C`PadnamelistREFCNT\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
The reference count of the pad name list.
.RS 4
.Sp
.Vb 1
\& SSize_t  PadnamelistREFCNT(PADNAMELIST * pnl)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PadnamelistREFCNT_dec""" 4
.el .IP \f(CWPadnamelistREFCNT_dec\fR 4
.IX Xref "PadnamelistREFCNT_dec"
.IX Item "PadnamelistREFCNT_dec"
NOTE: \f(CW\*(C`PadnamelistREFCNT_dec\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Lowers the reference count of the pad name list.
.RS 4
.Sp
.Vb 1
\& void  PadnamelistREFCNT_dec(PADNAMELIST * pnl)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PadnamePV""" 4
.el .IP \f(CWPadnamePV\fR 4
.IX Xref "PadnamePV"
.IX Item "PadnamePV"
NOTE: \f(CW\*(C`PadnamePV\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
The name stored in the pad name struct.  This returns \f(CW\*(C`NULL\*(C'\fR for a target
slot.
.RS 4
.Sp
.Vb 1
\& char *  PadnamePV(PADNAME * pn)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PadnameREFCNT""" 4
.el .IP \f(CWPadnameREFCNT\fR 4
.IX Xref "PadnameREFCNT"
.IX Item "PadnameREFCNT"
NOTE: \f(CW\*(C`PadnameREFCNT\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
The reference count of the pad name.
.RS 4
.Sp
.Vb 1
\& SSize_t  PadnameREFCNT(PADNAME * pn)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PadnameREFCNT_dec""" 4
.el .IP \f(CWPadnameREFCNT_dec\fR 4
.IX Xref "PadnameREFCNT_dec"
.IX Item "PadnameREFCNT_dec"
NOTE: \f(CW\*(C`PadnameREFCNT_dec\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Lowers the reference count of the pad name.
.RS 4
.Sp
.Vb 1
\& void  PadnameREFCNT_dec(PADNAME * pn)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PadnameREFCNT_inc""" 4
.el .IP \f(CWPadnameREFCNT_inc\fR 4
.IX Xref "PadnameREFCNT_inc"
.IX Item "PadnameREFCNT_inc"
NOTE: \f(CW\*(C`PadnameREFCNT_inc\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Increases the reference count of the pad name.  Returns the pad name itself.
.RS 4
.Sp
.Vb 1
\& PADNAME *  PadnameREFCNT_inc(PADNAME * pn)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PadnameSV""" 4
.el .IP \f(CWPadnameSV\fR 4
.IX Xref "PadnameSV"
.IX Item "PadnameSV"
NOTE: \f(CW\*(C`PadnameSV\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Returns the pad name as a mortal SV.
.RS 4
.Sp
.Vb 1
\& SV *  PadnameSV(PADNAME * pn)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PadnameUTF8""" 4
.el .IP \f(CWPadnameUTF8\fR 4
.IX Xref "PadnameUTF8"
.IX Item "PadnameUTF8"
NOTE: \f(CW\*(C`PadnameUTF8\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Whether PadnamePV is in UTF\-8.  Currently, this is always true.
.RS 4
.Sp
.Vb 1
\& bool  PadnameUTF8(PADNAME * pn)
.Ve
.RE
.RS 4
.RE
.ie n .IP """pad_new""" 4
.el .IP \f(CWpad_new\fR 4
.IX Xref "pad_new"
.IX Item "pad_new"
Create a new padlist, updating the global variables for the
currently-compiling padlist to point to the new padlist.  The following
flags can be OR'ed together:
.Sp
.Vb 3
\&    padnew_CLONE        this pad is for a cloned CV
\&    padnew_SAVE         save old globals on the save stack
\&    padnew_SAVESUB      also save extra stuff for start of sub
.Ve
.RS 4
.Sp
.Vb 1
\& PADLIST *  pad_new(int flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PL_comppad""" 4
.el .IP \f(CWPL_comppad\fR 4
.IX Xref "PL_comppad"
.IX Item "PL_comppad"
NOTE: \f(CW\*(C`PL_comppad\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
During compilation, this points to the array containing the values
part of the pad for the currently-compiling code.  (At runtime a CV may
have many such value arrays; at compile time just one is constructed.)
At runtime, this points to the array containing the currently-relevant
values for the pad for the currently-executing code.
.ie n .IP """PL_comppad_name""" 4
.el .IP \f(CWPL_comppad_name\fR 4
.IX Xref "PL_comppad_name"
.IX Item "PL_comppad_name"
NOTE: \f(CW\*(C`PL_comppad_name\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
During compilation, this points to the array containing the names part
of the pad for the currently-compiling code.
.ie n .IP """PL_curpad""" 4
.el .IP \f(CWPL_curpad\fR 4
.IX Xref "PL_curpad"
.IX Item "PL_curpad"
NOTE: \f(CW\*(C`PL_curpad\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Points directly to the body of the "PL_comppad" array.
(I.e., this is \f(CWPadARRAY(PL_comppad)\fR.)
.ie n .IP """SVs_PADMY""" 4
.el .IP \f(CWSVs_PADMY\fR 4
.IX Item "SVs_PADMY"
\&\f(CW\*(C`\fR\f(CBDEPRECATED!\fR\f(CW\*(C'\fR  It is planned to remove \f(CW\*(C`SVs_PADMY\*(C'\fR
from a future release of Perl.  Do not use it for
new code; remove it from existing code.
.Sp
Described in perlguts.
.ie n .IP """SVs_PADTMP""" 4
.el .IP \f(CWSVs_PADTMP\fR 4
.IX Item "SVs_PADTMP"
Described in perlguts.
.SH "Password and Group access"
.IX Header "Password and Group access"
.ie n .IP """GRPASSWD""" 4
.el .IP \f(CWGRPASSWD\fR 4
.IX Xref "GRPASSWD"
.IX Item "GRPASSWD"
This symbol, if defined, indicates to the C program that \f(CW\*(C`struct group\*(C'\fR
in \fIgrp.h\fR contains \f(CW\*(C`gr_passwd\*(C'\fR.
.ie n .IP """HAS_ENDGRENT""" 4
.el .IP \f(CWHAS_ENDGRENT\fR 4
.IX Xref "HAS_ENDGRENT"
.IX Item "HAS_ENDGRENT"
This symbol, if defined, indicates that the getgrent routine is
available for finalizing sequential access of the group database.
.ie n .IP """HAS_ENDGRENT_R""" 4
.el .IP \f(CWHAS_ENDGRENT_R\fR 4
.IX Xref "HAS_ENDGRENT_R"
.IX Item "HAS_ENDGRENT_R"
This symbol, if defined, indicates that the \f(CW\*(C`endgrent_r\*(C'\fR routine
is available to endgrent re-entrantly.
.ie n .IP """HAS_ENDPWENT""" 4
.el .IP \f(CWHAS_ENDPWENT\fR 4
.IX Xref "HAS_ENDPWENT"
.IX Item "HAS_ENDPWENT"
This symbol, if defined, indicates that the \f(CW\*(C`endpwent\*(C'\fR routine is
available for finalizing sequential access of the passwd database.
.ie n .IP """HAS_ENDPWENT_R""" 4
.el .IP \f(CWHAS_ENDPWENT_R\fR 4
.IX Xref "HAS_ENDPWENT_R"
.IX Item "HAS_ENDPWENT_R"
This symbol, if defined, indicates that the \f(CW\*(C`endpwent_r\*(C'\fR routine
is available to endpwent re-entrantly.
.ie n .IP """HAS_GETGRENT""" 4
.el .IP \f(CWHAS_GETGRENT\fR 4
.IX Xref "HAS_GETGRENT"
.IX Item "HAS_GETGRENT"
This symbol, if defined, indicates that the \f(CW\*(C`getgrent\*(C'\fR routine is
available for sequential access of the group database.
.ie n .IP """HAS_GETGRENT_R""" 4
.el .IP \f(CWHAS_GETGRENT_R\fR 4
.IX Xref "HAS_GETGRENT_R"
.IX Item "HAS_GETGRENT_R"
This symbol, if defined, indicates that the \f(CW\*(C`getgrent_r\*(C'\fR routine
is available to getgrent re-entrantly.
.ie n .IP """HAS_GETPWENT""" 4
.el .IP \f(CWHAS_GETPWENT\fR 4
.IX Xref "HAS_GETPWENT"
.IX Item "HAS_GETPWENT"
This symbol, if defined, indicates that the \f(CW\*(C`getpwent\*(C'\fR routine is
available for sequential access of the passwd database.
If this is not available, the older \f(CWgetpw()\fR function may be available.
.ie n .IP """HAS_GETPWENT_R""" 4
.el .IP \f(CWHAS_GETPWENT_R\fR 4
.IX Xref "HAS_GETPWENT_R"
.IX Item "HAS_GETPWENT_R"
This symbol, if defined, indicates that the \f(CW\*(C`getpwent_r\*(C'\fR routine
is available to getpwent re-entrantly.
.ie n .IP """HAS_SETGRENT""" 4
.el .IP \f(CWHAS_SETGRENT\fR 4
.IX Xref "HAS_SETGRENT"
.IX Item "HAS_SETGRENT"
This symbol, if defined, indicates that the \f(CW\*(C`setgrent\*(C'\fR routine is
available for initializing sequential access of the group database.
.ie n .IP """HAS_SETGRENT_R""" 4
.el .IP \f(CWHAS_SETGRENT_R\fR 4
.IX Xref "HAS_SETGRENT_R"
.IX Item "HAS_SETGRENT_R"
This symbol, if defined, indicates that the \f(CW\*(C`setgrent_r\*(C'\fR routine
is available to setgrent re-entrantly.
.ie n .IP """HAS_SETPWENT""" 4
.el .IP \f(CWHAS_SETPWENT\fR 4
.IX Xref "HAS_SETPWENT"
.IX Item "HAS_SETPWENT"
This symbol, if defined, indicates that the \f(CW\*(C`setpwent\*(C'\fR routine is
available for initializing sequential access of the passwd database.
.ie n .IP """HAS_SETPWENT_R""" 4
.el .IP \f(CWHAS_SETPWENT_R\fR 4
.IX Xref "HAS_SETPWENT_R"
.IX Item "HAS_SETPWENT_R"
This symbol, if defined, indicates that the \f(CW\*(C`setpwent_r\*(C'\fR routine
is available to setpwent re-entrantly.
.ie n .IP """PWAGE""" 4
.el .IP \f(CWPWAGE\fR 4
.IX Xref "PWAGE"
.IX Item "PWAGE"
This symbol, if defined, indicates to the C program that \f(CW\*(C`struct passwd\*(C'\fR
contains \f(CW\*(C`pw_age\*(C'\fR.
.ie n .IP """PWCHANGE""" 4
.el .IP \f(CWPWCHANGE\fR 4
.IX Xref "PWCHANGE"
.IX Item "PWCHANGE"
This symbol, if defined, indicates to the C program that \f(CW\*(C`struct passwd\*(C'\fR
contains \f(CW\*(C`pw_change\*(C'\fR.
.ie n .IP """PWCLASS""" 4
.el .IP \f(CWPWCLASS\fR 4
.IX Xref "PWCLASS"
.IX Item "PWCLASS"
This symbol, if defined, indicates to the C program that \f(CW\*(C`struct passwd\*(C'\fR
contains \f(CW\*(C`pw_class\*(C'\fR.
.ie n .IP """PWCOMMENT""" 4
.el .IP \f(CWPWCOMMENT\fR 4
.IX Xref "PWCOMMENT"
.IX Item "PWCOMMENT"
This symbol, if defined, indicates to the C program that \f(CW\*(C`struct passwd\*(C'\fR
contains \f(CW\*(C`pw_comment\*(C'\fR.
.ie n .IP """PWEXPIRE""" 4
.el .IP \f(CWPWEXPIRE\fR 4
.IX Xref "PWEXPIRE"
.IX Item "PWEXPIRE"
This symbol, if defined, indicates to the C program that \f(CW\*(C`struct passwd\*(C'\fR
contains \f(CW\*(C`pw_expire\*(C'\fR.
.ie n .IP """PWGECOS""" 4
.el .IP \f(CWPWGECOS\fR 4
.IX Xref "PWGECOS"
.IX Item "PWGECOS"
This symbol, if defined, indicates to the C program that \f(CW\*(C`struct passwd\*(C'\fR
contains \f(CW\*(C`pw_gecos\*(C'\fR.
.ie n .IP """PWPASSWD""" 4
.el .IP \f(CWPWPASSWD\fR 4
.IX Xref "PWPASSWD"
.IX Item "PWPASSWD"
This symbol, if defined, indicates to the C program that \f(CW\*(C`struct passwd\*(C'\fR
contains \f(CW\*(C`pw_passwd\*(C'\fR.
.ie n .IP """PWQUOTA""" 4
.el .IP \f(CWPWQUOTA\fR 4
.IX Xref "PWQUOTA"
.IX Item "PWQUOTA"
This symbol, if defined, indicates to the C program that \f(CW\*(C`struct passwd\*(C'\fR
contains \f(CW\*(C`pw_quota\*(C'\fR.
.SH "Paths to system commands"
.IX Header "Paths to system commands"
.ie n .IP """CSH""" 4
.el .IP \f(CWCSH\fR 4
.IX Xref "CSH"
.IX Item "CSH"
This symbol, if defined, contains the full pathname of csh.
.ie n .IP """LOC_SED""" 4
.el .IP \f(CWLOC_SED\fR 4
.IX Xref "LOC_SED"
.IX Item "LOC_SED"
This symbol holds the complete pathname to the sed program.
.ie n .IP """SH_PATH""" 4
.el .IP \f(CWSH_PATH\fR 4
.IX Xref "SH_PATH"
.IX Item "SH_PATH"
This symbol contains the full pathname to the shell used on this
on this system to execute Bourne shell scripts.  Usually, this will be
\&\fI/bin/sh\fR, though it's possible that some systems will have \fI/bin/ksh\fR,
\&\fI/bin/pdksh\fR, \fI/bin/ash\fR, \fI/bin/bash\fR, or even something such as
D:\fI/bin/sh.exe\fR.
.SH "Prototype information"
.IX Header "Prototype information"
.ie n .IP """CRYPT_R_PROTO""" 4
.el .IP \f(CWCRYPT_R_PROTO\fR 4
.IX Xref "CRYPT_R_PROTO"
.IX Item "CRYPT_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`crypt_r\*(C'\fR.
It is zero if \f(CW\*(C`d_crypt_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_crypt_r\*(C'\fR
is defined.
.ie n .IP """CTERMID_R_PROTO""" 4
.el .IP \f(CWCTERMID_R_PROTO\fR 4
.IX Xref "CTERMID_R_PROTO"
.IX Item "CTERMID_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`ctermid_r\*(C'\fR.
It is zero if \f(CW\*(C`d_ctermid_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_ctermid_r\*(C'\fR
is defined.
.ie n .IP """DRAND48_R_PROTO""" 4
.el .IP \f(CWDRAND48_R_PROTO\fR 4
.IX Xref "DRAND48_R_PROTO"
.IX Item "DRAND48_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`drand48_r\*(C'\fR.
It is zero if \f(CW\*(C`d_drand48_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_drand48_r\*(C'\fR
is defined.
.ie n .IP """ENDGRENT_R_PROTO""" 4
.el .IP \f(CWENDGRENT_R_PROTO\fR 4
.IX Xref "ENDGRENT_R_PROTO"
.IX Item "ENDGRENT_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`endgrent_r\*(C'\fR.
It is zero if \f(CW\*(C`d_endgrent_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_endgrent_r\*(C'\fR
is defined.
.ie n .IP """ENDHOSTENT_R_PROTO""" 4
.el .IP \f(CWENDHOSTENT_R_PROTO\fR 4
.IX Xref "ENDHOSTENT_R_PROTO"
.IX Item "ENDHOSTENT_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`endhostent_r\*(C'\fR.
It is zero if \f(CW\*(C`d_endhostent_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_endhostent_r\*(C'\fR
is defined.
.ie n .IP """ENDNETENT_R_PROTO""" 4
.el .IP \f(CWENDNETENT_R_PROTO\fR 4
.IX Xref "ENDNETENT_R_PROTO"
.IX Item "ENDNETENT_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`endnetent_r\*(C'\fR.
It is zero if \f(CW\*(C`d_endnetent_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_endnetent_r\*(C'\fR
is defined.
.ie n .IP """ENDPROTOENT_R_PROTO""" 4
.el .IP \f(CWENDPROTOENT_R_PROTO\fR 4
.IX Xref "ENDPROTOENT_R_PROTO"
.IX Item "ENDPROTOENT_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`endprotoent_r\*(C'\fR.
It is zero if \f(CW\*(C`d_endprotoent_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_endprotoent_r\*(C'\fR
is defined.
.ie n .IP """ENDPWENT_R_PROTO""" 4
.el .IP \f(CWENDPWENT_R_PROTO\fR 4
.IX Xref "ENDPWENT_R_PROTO"
.IX Item "ENDPWENT_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`endpwent_r\*(C'\fR.
It is zero if \f(CW\*(C`d_endpwent_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_endpwent_r\*(C'\fR
is defined.
.ie n .IP """ENDSERVENT_R_PROTO""" 4
.el .IP \f(CWENDSERVENT_R_PROTO\fR 4
.IX Xref "ENDSERVENT_R_PROTO"
.IX Item "ENDSERVENT_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`endservent_r\*(C'\fR.
It is zero if \f(CW\*(C`d_endservent_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_endservent_r\*(C'\fR
is defined.
.ie n .IP """GDBMNDBM_H_USES_PROTOTYPES""" 4
.el .IP \f(CWGDBMNDBM_H_USES_PROTOTYPES\fR 4
.IX Xref "GDBMNDBM_H_USES_PROTOTYPES"
.IX Item "GDBMNDBM_H_USES_PROTOTYPES"
This symbol, if defined, indicates that \fIgdbm/ndbm.h\fR uses real \f(CW\*(C`ANSI\*(C'\fR C
prototypes instead of K&R style function declarations without any
parameter information. While \f(CW\*(C`ANSI\*(C'\fR C prototypes are supported in C++,
K&R style function declarations will yield errors.
.ie n .IP """GDBM_NDBM_H_USES_PROTOTYPES""" 4
.el .IP \f(CWGDBM_NDBM_H_USES_PROTOTYPES\fR 4
.IX Xref "GDBM_NDBM_H_USES_PROTOTYPES"
.IX Item "GDBM_NDBM_H_USES_PROTOTYPES"
This symbol, if defined, indicates that <gdbm\-\fIndbm.h\fR> uses real \f(CW\*(C`ANSI\*(C'\fR C
prototypes instead of K&R style function declarations without any
parameter information. While \f(CW\*(C`ANSI\*(C'\fR C prototypes are supported in C++,
K&R style function declarations will yield errors.
.ie n .IP """GETGRENT_R_PROTO""" 4
.el .IP \f(CWGETGRENT_R_PROTO\fR 4
.IX Xref "GETGRENT_R_PROTO"
.IX Item "GETGRENT_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`getgrent_r\*(C'\fR.
It is zero if \f(CW\*(C`d_getgrent_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_getgrent_r\*(C'\fR
is defined.
.ie n .IP """GETGRGID_R_PROTO""" 4
.el .IP \f(CWGETGRGID_R_PROTO\fR 4
.IX Xref "GETGRGID_R_PROTO"
.IX Item "GETGRGID_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`getgrgid_r\*(C'\fR.
It is zero if \f(CW\*(C`d_getgrgid_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_getgrgid_r\*(C'\fR
is defined.
.ie n .IP """GETGRNAM_R_PROTO""" 4
.el .IP \f(CWGETGRNAM_R_PROTO\fR 4
.IX Xref "GETGRNAM_R_PROTO"
.IX Item "GETGRNAM_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`getgrnam_r\*(C'\fR.
It is zero if \f(CW\*(C`d_getgrnam_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_getgrnam_r\*(C'\fR
is defined.
.ie n .IP """GETHOSTBYADDR_R_PROTO""" 4
.el .IP \f(CWGETHOSTBYADDR_R_PROTO\fR 4
.IX Xref "GETHOSTBYADDR_R_PROTO"
.IX Item "GETHOSTBYADDR_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`gethostbyaddr_r\*(C'\fR.
It is zero if \f(CW\*(C`d_gethostbyaddr_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_gethostbyaddr_r\*(C'\fR
is defined.
.ie n .IP """GETHOSTBYNAME_R_PROTO""" 4
.el .IP \f(CWGETHOSTBYNAME_R_PROTO\fR 4
.IX Xref "GETHOSTBYNAME_R_PROTO"
.IX Item "GETHOSTBYNAME_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`gethostbyname_r\*(C'\fR.
It is zero if \f(CW\*(C`d_gethostbyname_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_gethostbyname_r\*(C'\fR
is defined.
.ie n .IP """GETHOSTENT_R_PROTO""" 4
.el .IP \f(CWGETHOSTENT_R_PROTO\fR 4
.IX Xref "GETHOSTENT_R_PROTO"
.IX Item "GETHOSTENT_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`gethostent_r\*(C'\fR.
It is zero if \f(CW\*(C`d_gethostent_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_gethostent_r\*(C'\fR
is defined.
.ie n .IP """GETLOGIN_R_PROTO""" 4
.el .IP \f(CWGETLOGIN_R_PROTO\fR 4
.IX Xref "GETLOGIN_R_PROTO"
.IX Item "GETLOGIN_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`getlogin_r\*(C'\fR.
It is zero if \f(CW\*(C`d_getlogin_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_getlogin_r\*(C'\fR
is defined.
.ie n .IP """GETNETBYADDR_R_PROTO""" 4
.el .IP \f(CWGETNETBYADDR_R_PROTO\fR 4
.IX Xref "GETNETBYADDR_R_PROTO"
.IX Item "GETNETBYADDR_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`getnetbyaddr_r\*(C'\fR.
It is zero if \f(CW\*(C`d_getnetbyaddr_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_getnetbyaddr_r\*(C'\fR
is defined.
.ie n .IP """GETNETBYNAME_R_PROTO""" 4
.el .IP \f(CWGETNETBYNAME_R_PROTO\fR 4
.IX Xref "GETNETBYNAME_R_PROTO"
.IX Item "GETNETBYNAME_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`getnetbyname_r\*(C'\fR.
It is zero if \f(CW\*(C`d_getnetbyname_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_getnetbyname_r\*(C'\fR
is defined.
.ie n .IP """GETNETENT_R_PROTO""" 4
.el .IP \f(CWGETNETENT_R_PROTO\fR 4
.IX Xref "GETNETENT_R_PROTO"
.IX Item "GETNETENT_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`getnetent_r\*(C'\fR.
It is zero if \f(CW\*(C`d_getnetent_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_getnetent_r\*(C'\fR
is defined.
.ie n .IP """GETPROTOBYNAME_R_PROTO""" 4
.el .IP \f(CWGETPROTOBYNAME_R_PROTO\fR 4
.IX Xref "GETPROTOBYNAME_R_PROTO"
.IX Item "GETPROTOBYNAME_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`getprotobyname_r\*(C'\fR.
It is zero if \f(CW\*(C`d_getprotobyname_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_getprotobyname_r\*(C'\fR
is defined.
.ie n .IP """GETPROTOBYNUMBER_R_PROTO""" 4
.el .IP \f(CWGETPROTOBYNUMBER_R_PROTO\fR 4
.IX Xref "GETPROTOBYNUMBER_R_PROTO"
.IX Item "GETPROTOBYNUMBER_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`getprotobynumber_r\*(C'\fR.
It is zero if \f(CW\*(C`d_getprotobynumber_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_getprotobynumber_r\*(C'\fR
is defined.
.ie n .IP """GETPROTOENT_R_PROTO""" 4
.el .IP \f(CWGETPROTOENT_R_PROTO\fR 4
.IX Xref "GETPROTOENT_R_PROTO"
.IX Item "GETPROTOENT_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`getprotoent_r\*(C'\fR.
It is zero if \f(CW\*(C`d_getprotoent_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_getprotoent_r\*(C'\fR
is defined.
.ie n .IP """GETPWENT_R_PROTO""" 4
.el .IP \f(CWGETPWENT_R_PROTO\fR 4
.IX Xref "GETPWENT_R_PROTO"
.IX Item "GETPWENT_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`getpwent_r\*(C'\fR.
It is zero if \f(CW\*(C`d_getpwent_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_getpwent_r\*(C'\fR
is defined.
.ie n .IP """GETPWNAM_R_PROTO""" 4
.el .IP \f(CWGETPWNAM_R_PROTO\fR 4
.IX Xref "GETPWNAM_R_PROTO"
.IX Item "GETPWNAM_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`getpwnam_r\*(C'\fR.
It is zero if \f(CW\*(C`d_getpwnam_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_getpwnam_r\*(C'\fR
is defined.
.ie n .IP """GETPWUID_R_PROTO""" 4
.el .IP \f(CWGETPWUID_R_PROTO\fR 4
.IX Xref "GETPWUID_R_PROTO"
.IX Item "GETPWUID_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`getpwuid_r\*(C'\fR.
It is zero if \f(CW\*(C`d_getpwuid_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_getpwuid_r\*(C'\fR
is defined.
.ie n .IP """GETSERVBYNAME_R_PROTO""" 4
.el .IP \f(CWGETSERVBYNAME_R_PROTO\fR 4
.IX Xref "GETSERVBYNAME_R_PROTO"
.IX Item "GETSERVBYNAME_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`getservbyname_r\*(C'\fR.
It is zero if \f(CW\*(C`d_getservbyname_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_getservbyname_r\*(C'\fR
is defined.
.ie n .IP """GETSERVBYPORT_R_PROTO""" 4
.el .IP \f(CWGETSERVBYPORT_R_PROTO\fR 4
.IX Xref "GETSERVBYPORT_R_PROTO"
.IX Item "GETSERVBYPORT_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`getservbyport_r\*(C'\fR.
It is zero if \f(CW\*(C`d_getservbyport_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_getservbyport_r\*(C'\fR
is defined.
.ie n .IP """GETSERVENT_R_PROTO""" 4
.el .IP \f(CWGETSERVENT_R_PROTO\fR 4
.IX Xref "GETSERVENT_R_PROTO"
.IX Item "GETSERVENT_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`getservent_r\*(C'\fR.
It is zero if \f(CW\*(C`d_getservent_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_getservent_r\*(C'\fR
is defined.
.ie n .IP """GETSPNAM_R_PROTO""" 4
.el .IP \f(CWGETSPNAM_R_PROTO\fR 4
.IX Xref "GETSPNAM_R_PROTO"
.IX Item "GETSPNAM_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`getspnam_r\*(C'\fR.
It is zero if \f(CW\*(C`d_getspnam_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_getspnam_r\*(C'\fR
is defined.
.ie n .IP """HAS_DBMINIT_PROTO""" 4
.el .IP \f(CWHAS_DBMINIT_PROTO\fR 4
.IX Xref "HAS_DBMINIT_PROTO"
.IX Item "HAS_DBMINIT_PROTO"
This symbol, if defined, indicates that the system provides
a prototype for the \f(CWdbminit()\fR function.  Otherwise, it is up
to the program to supply one.  A good guess is
.Sp
.Vb 1
\& extern int dbminit(char *);
.Ve
.ie n .IP """HAS_DRAND48_PROTO""" 4
.el .IP \f(CWHAS_DRAND48_PROTO\fR 4
.IX Xref "HAS_DRAND48_PROTO"
.IX Item "HAS_DRAND48_PROTO"
This symbol, if defined, indicates that the system provides
a prototype for the \f(CWdrand48()\fR function.  Otherwise, it is up
to the program to supply one.  A good guess is
.Sp
.Vb 1
\& extern double drand48(void);
.Ve
.ie n .IP """HAS_FLOCK_PROTO""" 4
.el .IP \f(CWHAS_FLOCK_PROTO\fR 4
.IX Xref "HAS_FLOCK_PROTO"
.IX Item "HAS_FLOCK_PROTO"
This symbol, if defined, indicates that the system provides
a prototype for the \f(CWflock()\fR function.  Otherwise, it is up
to the program to supply one.  A good guess is
.Sp
.Vb 1
\& extern int flock(int, int);
.Ve
.ie n .IP """HAS_GETHOST_PROTOS""" 4
.el .IP \f(CWHAS_GETHOST_PROTOS\fR 4
.IX Xref "HAS_GETHOST_PROTOS"
.IX Item "HAS_GETHOST_PROTOS"
This symbol, if defined, indicates that \fInetdb.h\fR includes
prototypes for \f(CWgethostent()\fR, \f(CWgethostbyname()\fR, and
\&\f(CWgethostbyaddr()\fR.  Otherwise, it is up to the program to guess
them.  See netdbtype.U (part of metaconfig) for probing for various \f(CW\*(C`Netdb_xxx_t\*(C'\fR types.
.ie n .IP """HAS_GETNET_PROTOS""" 4
.el .IP \f(CWHAS_GETNET_PROTOS\fR 4
.IX Xref "HAS_GETNET_PROTOS"
.IX Item "HAS_GETNET_PROTOS"
This symbol, if defined, indicates that \fInetdb.h\fR includes
prototypes for \f(CWgetnetent()\fR, \f(CWgetnetbyname()\fR, and
\&\f(CWgetnetbyaddr()\fR.  Otherwise, it is up to the program to guess
them.  See netdbtype.U (part of metaconfig) for probing for various \f(CW\*(C`Netdb_xxx_t\*(C'\fR types.
.ie n .IP """HAS_GETPROTO_PROTOS""" 4
.el .IP \f(CWHAS_GETPROTO_PROTOS\fR 4
.IX Xref "HAS_GETPROTO_PROTOS"
.IX Item "HAS_GETPROTO_PROTOS"
This symbol, if defined, indicates that \fInetdb.h\fR includes
prototypes for \f(CWgetprotoent()\fR, \f(CWgetprotobyname()\fR, and
\&\f(CWgetprotobyaddr()\fR.  Otherwise, it is up to the program to guess
them.  See netdbtype.U (part of metaconfig) for probing for various \f(CW\*(C`Netdb_xxx_t\*(C'\fR types.
.ie n .IP """HAS_GETSERV_PROTOS""" 4
.el .IP \f(CWHAS_GETSERV_PROTOS\fR 4
.IX Xref "HAS_GETSERV_PROTOS"
.IX Item "HAS_GETSERV_PROTOS"
This symbol, if defined, indicates that \fInetdb.h\fR includes
prototypes for \f(CWgetservent()\fR, \f(CWgetservbyname()\fR, and
\&\f(CWgetservbyaddr()\fR.  Otherwise, it is up to the program to guess
them.  See netdbtype.U (part of metaconfig) for probing for various \f(CW\*(C`Netdb_xxx_t\*(C'\fR types.
.ie n .IP """HAS_MODFL_PROTO""" 4
.el .IP \f(CWHAS_MODFL_PROTO\fR 4
.IX Xref "HAS_MODFL_PROTO"
.IX Item "HAS_MODFL_PROTO"
This symbol, if defined, indicates that the system provides
a prototype for the \f(CWmodfl()\fR function.  Otherwise, it is up
to the program to supply one.
.ie n .IP """HAS_SBRK_PROTO""" 4
.el .IP \f(CWHAS_SBRK_PROTO\fR 4
.IX Xref "HAS_SBRK_PROTO"
.IX Item "HAS_SBRK_PROTO"
This symbol, if defined, indicates that the system provides
a prototype for the \f(CWsbrk()\fR function.  Otherwise, it is up
to the program to supply one.  Good guesses are
.Sp
.Vb 2
\& extern void* sbrk(int);
\& extern void* sbrk(size_t);
.Ve
.ie n .IP """HAS_SETRESGID_PROTO""" 4
.el .IP \f(CWHAS_SETRESGID_PROTO\fR 4
.IX Xref "HAS_SETRESGID_PROTO"
.IX Item "HAS_SETRESGID_PROTO"
This symbol, if defined, indicates that the system provides
a prototype for the \f(CWsetresgid()\fR function.  Otherwise, it is up
to the program to supply one.  Good guesses are
.Sp
.Vb 1
\& extern int setresgid(uid_t ruid, uid_t euid, uid_t suid);
.Ve
.ie n .IP """HAS_SETRESUID_PROTO""" 4
.el .IP \f(CWHAS_SETRESUID_PROTO\fR 4
.IX Xref "HAS_SETRESUID_PROTO"
.IX Item "HAS_SETRESUID_PROTO"
This symbol, if defined, indicates that the system provides
a prototype for the \f(CWsetresuid()\fR function.  Otherwise, it is up
to the program to supply one.  Good guesses are
.Sp
.Vb 1
\& extern int setresuid(uid_t ruid, uid_t euid, uid_t suid);
.Ve
.ie n .IP """HAS_SHMAT_PROTOTYPE""" 4
.el .IP \f(CWHAS_SHMAT_PROTOTYPE\fR 4
.IX Xref "HAS_SHMAT_PROTOTYPE"
.IX Item "HAS_SHMAT_PROTOTYPE"
This symbol, if defined, indicates that the \fIsys/shm.h\fR includes
a prototype for \f(CWshmat()\fR.  Otherwise, it is up to the program to
guess one.  \f(CW\*(C`Shmat_t\*(C'\fR \f(CW\*(C`shmat(int, Shmat_t, int)\*(C'\fR is a good guess,
but not always right so it should be emitted by the program only
when \f(CW\*(C`HAS_SHMAT_PROTOTYPE\*(C'\fR is not defined to avoid conflicting defs.
.ie n .IP """HAS_SOCKATMARK_PROTO""" 4
.el .IP \f(CWHAS_SOCKATMARK_PROTO\fR 4
.IX Xref "HAS_SOCKATMARK_PROTO"
.IX Item "HAS_SOCKATMARK_PROTO"
This symbol, if defined, indicates that the system provides
a prototype for the \f(CWsockatmark()\fR function.  Otherwise, it is up
to the program to supply one.  A good guess is
.Sp
.Vb 1
\& extern int sockatmark(int);
.Ve
.ie n .IP """HAS_SYSCALL_PROTO""" 4
.el .IP \f(CWHAS_SYSCALL_PROTO\fR 4
.IX Xref "HAS_SYSCALL_PROTO"
.IX Item "HAS_SYSCALL_PROTO"
This symbol, if defined, indicates that the system provides
a prototype for the \f(CWsyscall()\fR function.  Otherwise, it is up
to the program to supply one.  Good guesses are
.Sp
.Vb 2
\& extern int syscall(int,  ...);
\& extern int syscall(long, ...);
.Ve
.ie n .IP """HAS_TELLDIR_PROTO""" 4
.el .IP \f(CWHAS_TELLDIR_PROTO\fR 4
.IX Xref "HAS_TELLDIR_PROTO"
.IX Item "HAS_TELLDIR_PROTO"
This symbol, if defined, indicates that the system provides
a prototype for the \f(CWtelldir()\fR function.  Otherwise, it is up
to the program to supply one.  A good guess is
.Sp
.Vb 1
\& extern long telldir(DIR*);
.Ve
.ie n .IP """NDBM_H_USES_PROTOTYPES""" 4
.el .IP \f(CWNDBM_H_USES_PROTOTYPES\fR 4
.IX Xref "NDBM_H_USES_PROTOTYPES"
.IX Item "NDBM_H_USES_PROTOTYPES"
This symbol, if defined, indicates that \fIndbm.h\fR uses real \f(CW\*(C`ANSI\*(C'\fR C
prototypes instead of K&R style function declarations without any
parameter information. While \f(CW\*(C`ANSI\*(C'\fR C prototypes are supported in C++,
K&R style function declarations will yield errors.
.ie n .IP """RANDOM_R_PROTO""" 4
.el .IP \f(CWRANDOM_R_PROTO\fR 4
.IX Xref "RANDOM_R_PROTO"
.IX Item "RANDOM_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`random_r\*(C'\fR.
It is zero if \f(CW\*(C`d_random_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_random_r\*(C'\fR
is defined.
.ie n .IP """READDIR_R_PROTO""" 4
.el .IP \f(CWREADDIR_R_PROTO\fR 4
.IX Xref "READDIR_R_PROTO"
.IX Item "READDIR_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`readdir_r\*(C'\fR.
It is zero if \f(CW\*(C`d_readdir_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_readdir_r\*(C'\fR
is defined.
.ie n .IP """SETGRENT_R_PROTO""" 4
.el .IP \f(CWSETGRENT_R_PROTO\fR 4
.IX Xref "SETGRENT_R_PROTO"
.IX Item "SETGRENT_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`setgrent_r\*(C'\fR.
It is zero if \f(CW\*(C`d_setgrent_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_setgrent_r\*(C'\fR
is defined.
.ie n .IP """SETHOSTENT_R_PROTO""" 4
.el .IP \f(CWSETHOSTENT_R_PROTO\fR 4
.IX Xref "SETHOSTENT_R_PROTO"
.IX Item "SETHOSTENT_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`sethostent_r\*(C'\fR.
It is zero if \f(CW\*(C`d_sethostent_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_sethostent_r\*(C'\fR
is defined.
.ie n .IP """SETLOCALE_R_PROTO""" 4
.el .IP \f(CWSETLOCALE_R_PROTO\fR 4
.IX Xref "SETLOCALE_R_PROTO"
.IX Item "SETLOCALE_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`setlocale_r\*(C'\fR.
It is zero if \f(CW\*(C`d_setlocale_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_setlocale_r\*(C'\fR
is defined.
.ie n .IP """SETNETENT_R_PROTO""" 4
.el .IP \f(CWSETNETENT_R_PROTO\fR 4
.IX Xref "SETNETENT_R_PROTO"
.IX Item "SETNETENT_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`setnetent_r\*(C'\fR.
It is zero if \f(CW\*(C`d_setnetent_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_setnetent_r\*(C'\fR
is defined.
.ie n .IP """SETPROTOENT_R_PROTO""" 4
.el .IP \f(CWSETPROTOENT_R_PROTO\fR 4
.IX Xref "SETPROTOENT_R_PROTO"
.IX Item "SETPROTOENT_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`setprotoent_r\*(C'\fR.
It is zero if \f(CW\*(C`d_setprotoent_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_setprotoent_r\*(C'\fR
is defined.
.ie n .IP """SETPWENT_R_PROTO""" 4
.el .IP \f(CWSETPWENT_R_PROTO\fR 4
.IX Xref "SETPWENT_R_PROTO"
.IX Item "SETPWENT_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`setpwent_r\*(C'\fR.
It is zero if \f(CW\*(C`d_setpwent_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_setpwent_r\*(C'\fR
is defined.
.ie n .IP """SETSERVENT_R_PROTO""" 4
.el .IP \f(CWSETSERVENT_R_PROTO\fR 4
.IX Xref "SETSERVENT_R_PROTO"
.IX Item "SETSERVENT_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`setservent_r\*(C'\fR.
It is zero if \f(CW\*(C`d_setservent_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_setservent_r\*(C'\fR
is defined.
.ie n .IP """SRANDOM_R_PROTO""" 4
.el .IP \f(CWSRANDOM_R_PROTO\fR 4
.IX Xref "SRANDOM_R_PROTO"
.IX Item "SRANDOM_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`srandom_r\*(C'\fR.
It is zero if \f(CW\*(C`d_srandom_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_srandom_r\*(C'\fR
is defined.
.ie n .IP """SRAND48_R_PROTO""" 4
.el .IP \f(CWSRAND48_R_PROTO\fR 4
.IX Xref "SRAND48_R_PROTO"
.IX Item "SRAND48_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`srand48_r\*(C'\fR.
It is zero if \f(CW\*(C`d_srand48_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_srand48_r\*(C'\fR
is defined.
.ie n .IP """STRERROR_R_PROTO""" 4
.el .IP \f(CWSTRERROR_R_PROTO\fR 4
.IX Xref "STRERROR_R_PROTO"
.IX Item "STRERROR_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`strerror_r\*(C'\fR.
It is zero if \f(CW\*(C`d_strerror_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_strerror_r\*(C'\fR
is defined.
.ie n .IP """TMPNAM_R_PROTO""" 4
.el .IP \f(CWTMPNAM_R_PROTO\fR 4
.IX Xref "TMPNAM_R_PROTO"
.IX Item "TMPNAM_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`tmpnam_r\*(C'\fR.
It is zero if \f(CW\*(C`d_tmpnam_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_tmpnam_r\*(C'\fR
is defined.
.ie n .IP """TTYNAME_R_PROTO""" 4
.el .IP \f(CWTTYNAME_R_PROTO\fR 4
.IX Xref "TTYNAME_R_PROTO"
.IX Item "TTYNAME_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`ttyname_r\*(C'\fR.
It is zero if \f(CW\*(C`d_ttyname_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_ttyname_r\*(C'\fR
is defined.
.SH "REGEXP Functions"
.IX Header "REGEXP Functions"
.ie n .IP """pregcomp""" 4
.el .IP \f(CWpregcomp\fR 4
.IX Item "pregcomp"
Described in perlreguts.
.RS 4
.Sp
.Vb 1
\& REGEXP *  pregcomp(SV * const pattern, const U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """pregexec""" 4
.el .IP \f(CWpregexec\fR 4
.IX Item "pregexec"
Described in perlreguts.
.RS 4
.Sp
.Vb 3
\& I32  pregexec(REGEXP * const prog, char *stringarg, char *strend,
\&               char *strbeg, SSize_t minend, SV *screamer,
\&               U32 nosave)
.Ve
.RE
.RS 4
.RE
.ie n .IP """re_compile""" 4
.el .IP \f(CWre_compile\fR 4
.IX Xref "re_compile"
.IX Item "re_compile"
Compile the regular expression pattern \f(CW\*(C`pattern\*(C'\fR, returning a pointer to the
compiled object for later matching with the internal regex engine.
.Sp
This function is typically used by a custom regexp engine \f(CW\*(C`.comp()\*(C'\fR function
to hand off to the core regexp engine those patterns it doesn't want to handle
itself (typically passing through the same flags it was called with).  In
almost all other cases, a regexp should be compiled by calling "\f(CW\*(C`pregcomp\*(C'\fR"
to compile using the currently active regexp engine.
.Sp
If \f(CW\*(C`pattern\*(C'\fR is already a \f(CW\*(C`REGEXP\*(C'\fR, this function does nothing but return a
pointer to the input.  Otherwise the PV is extracted and treated like a string
representing a pattern.  See perlre.
.Sp
The possible flags for \f(CW\*(C`rx_flags\*(C'\fR are documented in perlreapi.  Their names
all begin with \f(CW\*(C`RXf_\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& REGEXP *  re_compile(SV * const pattern, U32 orig_rx_flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """re_dup_guts""" 4
.el .IP \f(CWre_dup_guts\fR 4
.IX Xref "re_dup_guts"
.IX Item "re_dup_guts"
Duplicate a regexp.
.Sp
This routine is expected to clone a given regexp structure. It is only
compiled under USE_ITHREADS.
.Sp
After all of the core data stored in struct regexp is duplicated
the \f(CW\*(C`regexp_engine.dupe\*(C'\fR method is used to copy any private data
stored in the *pprivate pointer. This allows extensions to handle
any duplication they need to do.
.RS 4
.Sp
.Vb 2
\& void  re_dup_guts(const REGEXP *sstr, REGEXP *dstr,
\&                   CLONE_PARAMS *param)
.Ve
.RE
.RS 4
.RE
.ie n .IP """REGEX_LOCALE_CHARSET""" 4
.el .IP \f(CWREGEX_LOCALE_CHARSET\fR 4
.IX Item "REGEX_LOCALE_CHARSET"
Described in perlreapi.
.ie n .IP """REGEXP""" 4
.el .IP \f(CWREGEXP\fR 4
.IX Item "REGEXP"
Described in perlreapi.
.ie n .IP """regexp_engine""" 4
.el .IP \f(CWregexp_engine\fR 4
.IX Xref "regexp_engine"
.IX Item "regexp_engine"
When a regexp is compiled, its \f(CW\*(C`engine\*(C'\fR field is then set to point at
the appropriate structure, so that when it needs to be used Perl can find
the right routines to do so.
.Sp
In order to install a new regexp handler, \f(CW$^H{regcomp}\fR is set
to an integer which (when casted appropriately) resolves to one of these
structures.  When compiling, the \f(CW\*(C`comp\*(C'\fR method is executed, and the
resulting \f(CW\*(C`regexp\*(C'\fR structure's engine field is expected to point back at
the same structure.
.Sp
The pTHX_ symbol in the definition is a macro used by Perl under threading
to provide an extra argument to the routine holding a pointer back to
the interpreter that is executing the regexp. So under threading all
routines get an extra argument.
.ie n .IP """regexp_paren_pair""" 4
.el .IP \f(CWregexp_paren_pair\fR 4
.IX Item "regexp_paren_pair"
Described in perlreapi.
.ie n .IP """regmatch_info""" 4
.el .IP \f(CWregmatch_info\fR 4
.IX Xref "regmatch_info"
.IX Item "regmatch_info"
Some basic information about the current match that is created by
Perl_regexec_flags and then passed to \fBregtry()\fR, \fBregmatch()\fR etc.
It is allocated as a local var on the stack, so nothing should be
stored in it that needs preserving or clearing up on \fBcroak()\fR.
For that, see the aux_info and aux_info_eval members of the
regmatch_state union.
.ie n .IP """REXEC_COPY_SKIP_POST""" 4
.el .IP \f(CWREXEC_COPY_SKIP_POST\fR 4
.IX Item "REXEC_COPY_SKIP_POST"
.PD 0
.ie n .IP """REXEC_COPY_SKIP_PRE""" 4
.el .IP \f(CWREXEC_COPY_SKIP_PRE\fR 4
.IX Item "REXEC_COPY_SKIP_PRE"
.ie n .IP """REXEC_COPY_STR""" 4
.el .IP \f(CWREXEC_COPY_STR\fR 4
.IX Item "REXEC_COPY_STR"
.PD
Described in perlreapi.
.ie n .IP """RXapif_ALL""" 4
.el .IP \f(CWRXapif_ALL\fR 4
.IX Item "RXapif_ALL"
.PD 0
.ie n .IP """RXapif_CLEAR""" 4
.el .IP \f(CWRXapif_CLEAR\fR 4
.IX Item "RXapif_CLEAR"
.ie n .IP """RXapif_DELETE""" 4
.el .IP \f(CWRXapif_DELETE\fR 4
.IX Item "RXapif_DELETE"
.ie n .IP """RXapif_EXISTS""" 4
.el .IP \f(CWRXapif_EXISTS\fR 4
.IX Item "RXapif_EXISTS"
.ie n .IP """RXapif_FETCH""" 4
.el .IP \f(CWRXapif_FETCH\fR 4
.IX Item "RXapif_FETCH"
.ie n .IP """RXapif_FIRSTKEY""" 4
.el .IP \f(CWRXapif_FIRSTKEY\fR 4
.IX Item "RXapif_FIRSTKEY"
.ie n .IP """RXapif_NEXTKEY""" 4
.el .IP \f(CWRXapif_NEXTKEY\fR 4
.IX Item "RXapif_NEXTKEY"
.ie n .IP """RXapif_ONE""" 4
.el .IP \f(CWRXapif_ONE\fR 4
.IX Item "RXapif_ONE"
.ie n .IP """RXapif_REGNAME""" 4
.el .IP \f(CWRXapif_REGNAME\fR 4
.IX Item "RXapif_REGNAME"
.ie n .IP """RXapif_REGNAMES""" 4
.el .IP \f(CWRXapif_REGNAMES\fR 4
.IX Item "RXapif_REGNAMES"
.ie n .IP """RXapif_REGNAMES_COUNT""" 4
.el .IP \f(CWRXapif_REGNAMES_COUNT\fR 4
.IX Item "RXapif_REGNAMES_COUNT"
.ie n .IP """RXapif_SCALAR""" 4
.el .IP \f(CWRXapif_SCALAR\fR 4
.IX Item "RXapif_SCALAR"
.ie n .IP """RXapif_STORE""" 4
.el .IP \f(CWRXapif_STORE\fR 4
.IX Item "RXapif_STORE"
.PD
Described in perlreapi.
.ie n .IP """RX_BUFF_IDX_CARET_FULLMATCH""" 4
.el .IP \f(CWRX_BUFF_IDX_CARET_FULLMATCH\fR 4
.IX Item "RX_BUFF_IDX_CARET_FULLMATCH"
.PD 0
.ie n .IP """RX_BUFF_IDX_CARET_POSTMATCH""" 4
.el .IP \f(CWRX_BUFF_IDX_CARET_POSTMATCH\fR 4
.IX Item "RX_BUFF_IDX_CARET_POSTMATCH"
.ie n .IP """RX_BUFF_IDX_CARET_PREMATCH""" 4
.el .IP \f(CWRX_BUFF_IDX_CARET_PREMATCH\fR 4
.IX Item "RX_BUFF_IDX_CARET_PREMATCH"
.ie n .IP """RX_BUFF_IDX_FULLMATCH""" 4
.el .IP \f(CWRX_BUFF_IDX_FULLMATCH\fR 4
.IX Item "RX_BUFF_IDX_FULLMATCH"
.ie n .IP """RX_BUFF_IDX_POSTMATCH""" 4
.el .IP \f(CWRX_BUFF_IDX_POSTMATCH\fR 4
.IX Item "RX_BUFF_IDX_POSTMATCH"
.ie n .IP """RX_BUFF_IDX_PREMATCH""" 4
.el .IP \f(CWRX_BUFF_IDX_PREMATCH\fR 4
.IX Item "RX_BUFF_IDX_PREMATCH"
.PD
Described in perlreapi.
.ie n .IP """RXf_NO_INPLACE_SUBST""" 4
.el .IP \f(CWRXf_NO_INPLACE_SUBST\fR 4
.IX Item "RXf_NO_INPLACE_SUBST"
.PD 0
.ie n .IP """RXf_NULL""" 4
.el .IP \f(CWRXf_NULL\fR 4
.IX Item "RXf_NULL"
.ie n .IP """RXf_SKIPWHITE""" 4
.el .IP \f(CWRXf_SKIPWHITE\fR 4
.IX Item "RXf_SKIPWHITE"
.ie n .IP """RXf_SPLIT""" 4
.el .IP \f(CWRXf_SPLIT\fR 4
.IX Item "RXf_SPLIT"
.ie n .IP """RXf_START_ONLY""" 4
.el .IP \f(CWRXf_START_ONLY\fR 4
.IX Item "RXf_START_ONLY"
.ie n .IP """RXf_WHITE""" 4
.el .IP \f(CWRXf_WHITE\fR 4
.IX Item "RXf_WHITE"
.PD
Described in perlreapi.
.ie n .IP """RXf_PMf_EXTENDED""" 4
.el .IP \f(CWRXf_PMf_EXTENDED\fR 4
.IX Item "RXf_PMf_EXTENDED"
.PD 0
.ie n .IP """RXf_PMf_FOLD""" 4
.el .IP \f(CWRXf_PMf_FOLD\fR 4
.IX Item "RXf_PMf_FOLD"
.ie n .IP """RXf_PMf_KEEPCOPY""" 4
.el .IP \f(CWRXf_PMf_KEEPCOPY\fR 4
.IX Item "RXf_PMf_KEEPCOPY"
.ie n .IP """RXf_PMf_MULTILINE""" 4
.el .IP \f(CWRXf_PMf_MULTILINE\fR 4
.IX Item "RXf_PMf_MULTILINE"
.ie n .IP """RXf_PMf_SINGLELINE""" 4
.el .IP \f(CWRXf_PMf_SINGLELINE\fR 4
.IX Item "RXf_PMf_SINGLELINE"
.PD
Described in perlreapi.
.ie n .IP """RX_MATCH_COPIED""" 4
.el .IP \f(CWRX_MATCH_COPIED\fR 4
.IX Item "RX_MATCH_COPIED"
Described in perlreapi.
.RS 4
.Sp
.Vb 1
\&   RX_MATCH_COPIED(const REGEXP * rx)
.Ve
.RE
.RS 4
.RE
.ie n .IP """RX_OFFS""" 4
.el .IP \f(CWRX_OFFS\fR 4
.IX Item "RX_OFFS"
Described in perlreapi.
.RS 4
.Sp
.Vb 1
\&   RX_OFFS(const REGEXP * rx_sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvRX""" 4
.el .IP \f(CWSvRX\fR 4
.IX Xref "SvRX"
.IX Item "SvRX"
Convenience macro to get the REGEXP from a SV.  This is approximately
equivalent to the following snippet:
.Sp
.Vb 6
\&    if (SvMAGICAL(sv))
\&        mg_get(sv);
\&    if (SvROK(sv))
\&        sv = MUTABLE_SV(SvRV(sv));
\&    if (SvTYPE(sv) == SVt_REGEXP)
\&        return (REGEXP*) sv;
.Ve
.Sp
\&\f(CW\*(C`NULL\*(C'\fR will be returned if a REGEXP* is not found.
.RS 4
.Sp
.Vb 1
\& REGEXP *  SvRX(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvRXOK""" 4
.el .IP \f(CWSvRXOK\fR 4
.IX Xref "SvRXOK"
.IX Item "SvRXOK"
Returns a boolean indicating whether the SV (or the one it references)
is a REGEXP.
.Sp
If you want to do something with the REGEXP* later use SvRX instead
and check for NULL.
.RS 4
.Sp
.Vb 1
\& bool  SvRXOK(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SV_SAVED_COPY""" 4
.el .IP \f(CWSV_SAVED_COPY\fR 4
.IX Item "SV_SAVED_COPY"
Described in perlreapi.
.SH "Reports and Formats"
.IX Header "Reports and Formats"
These are used in the simple report generation feature of Perl.
See perlform.
.ie n .IP """IoBOTTOM_GV""" 4
.el .IP \f(CWIoBOTTOM_GV\fR 4
.IX Item "IoBOTTOM_GV"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& GV *  IoBOTTOM_GV(IO *io)
.Ve
.RE
.RS 4
.RE
.ie n .IP """IoBOTTOM_NAME""" 4
.el .IP \f(CWIoBOTTOM_NAME\fR 4
.IX Item "IoBOTTOM_NAME"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& char *  IoBOTTOM_NAME(IO *io)
.Ve
.RE
.RS 4
.RE
.ie n .IP """IoFMT_GV""" 4
.el .IP \f(CWIoFMT_GV\fR 4
.IX Item "IoFMT_GV"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& GV *  IoFMT_GV(IO *io)
.Ve
.RE
.RS 4
.RE
.ie n .IP """IoFMT_NAME""" 4
.el .IP \f(CWIoFMT_NAME\fR 4
.IX Item "IoFMT_NAME"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& char *  IoFMT_NAME(IO *io)
.Ve
.RE
.RS 4
.RE
.ie n .IP """IoLINES""" 4
.el .IP \f(CWIoLINES\fR 4
.IX Item "IoLINES"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& IV  IoLINES(IO *io)
.Ve
.RE
.RS 4
.RE
.ie n .IP """IoLINES_LEFT""" 4
.el .IP \f(CWIoLINES_LEFT\fR 4
.IX Item "IoLINES_LEFT"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& IV  IoLINES_LEFT(IO *io)
.Ve
.RE
.RS 4
.RE
.ie n .IP """IoPAGE""" 4
.el .IP \f(CWIoPAGE\fR 4
.IX Item "IoPAGE"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& IV  IoPAGE(IO *io)
.Ve
.RE
.RS 4
.RE
.ie n .IP """IoPAGE_LEN""" 4
.el .IP \f(CWIoPAGE_LEN\fR 4
.IX Item "IoPAGE_LEN"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& IV  IoPAGE_LEN(IO *io)
.Ve
.RE
.RS 4
.RE
.ie n .IP """IoTOP_GV""" 4
.el .IP \f(CWIoTOP_GV\fR 4
.IX Item "IoTOP_GV"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& GV *  IoTOP_GV(IO *io)
.Ve
.RE
.RS 4
.RE
.ie n .IP """IoTOP_NAME""" 4
.el .IP \f(CWIoTOP_NAME\fR 4
.IX Item "IoTOP_NAME"
Described in perlguts.
.RS 4
.Sp
.Vb 1
\& char *  IoTOP_NAME(IO *io)
.Ve
.RE
.RS 4
.RE
.SH Signals
.IX Header "Signals"
.ie n .IP """HAS_SIGINFO_SI_ADDR""" 4
.el .IP \f(CWHAS_SIGINFO_SI_ADDR\fR 4
.IX Xref "HAS_SIGINFO_SI_ADDR"
.IX Item "HAS_SIGINFO_SI_ADDR"
This symbol, if defined, indicates that \f(CW\*(C`siginfo_t\*(C'\fR has the
\&\f(CW\*(C`si_addr\*(C'\fR member
.ie n .IP """HAS_SIGINFO_SI_BAND""" 4
.el .IP \f(CWHAS_SIGINFO_SI_BAND\fR 4
.IX Xref "HAS_SIGINFO_SI_BAND"
.IX Item "HAS_SIGINFO_SI_BAND"
This symbol, if defined, indicates that \f(CW\*(C`siginfo_t\*(C'\fR has the
\&\f(CW\*(C`si_band\*(C'\fR member
.ie n .IP """HAS_SIGINFO_SI_ERRNO""" 4
.el .IP \f(CWHAS_SIGINFO_SI_ERRNO\fR 4
.IX Xref "HAS_SIGINFO_SI_ERRNO"
.IX Item "HAS_SIGINFO_SI_ERRNO"
This symbol, if defined, indicates that \f(CW\*(C`siginfo_t\*(C'\fR has the
\&\f(CW\*(C`si_errno\*(C'\fR member
.ie n .IP """HAS_SIGINFO_SI_PID""" 4
.el .IP \f(CWHAS_SIGINFO_SI_PID\fR 4
.IX Xref "HAS_SIGINFO_SI_PID"
.IX Item "HAS_SIGINFO_SI_PID"
This symbol, if defined, indicates that \f(CW\*(C`siginfo_t\*(C'\fR has the
\&\f(CW\*(C`si_pid\*(C'\fR member
.ie n .IP """HAS_SIGINFO_SI_STATUS""" 4
.el .IP \f(CWHAS_SIGINFO_SI_STATUS\fR 4
.IX Xref "HAS_SIGINFO_SI_STATUS"
.IX Item "HAS_SIGINFO_SI_STATUS"
This symbol, if defined, indicates that \f(CW\*(C`siginfo_t\*(C'\fR has the
\&\f(CW\*(C`si_status\*(C'\fR member
.ie n .IP """HAS_SIGINFO_SI_UID""" 4
.el .IP \f(CWHAS_SIGINFO_SI_UID\fR 4
.IX Xref "HAS_SIGINFO_SI_UID"
.IX Item "HAS_SIGINFO_SI_UID"
This symbol, if defined, indicates that \f(CW\*(C`siginfo_t\*(C'\fR has the
\&\f(CW\*(C`si_uid\*(C'\fR member
.ie n .IP """HAS_SIGINFO_SI_VALUE""" 4
.el .IP \f(CWHAS_SIGINFO_SI_VALUE\fR 4
.IX Xref "HAS_SIGINFO_SI_VALUE"
.IX Item "HAS_SIGINFO_SI_VALUE"
This symbol, if defined, indicates that \f(CW\*(C`siginfo_t\*(C'\fR has the
\&\f(CW\*(C`si_value\*(C'\fR member
.ie n .IP """PERL_SIGNALS_UNSAFE_FLAG""" 4
.el .IP \f(CWPERL_SIGNALS_UNSAFE_FLAG\fR 4
.IX Xref "PERL_SIGNALS_UNSAFE_FLAG"
.IX Item "PERL_SIGNALS_UNSAFE_FLAG"
If this bit in \f(CW\*(C`PL_signals\*(C'\fR is set, the system is uing the pre-Perl 5.8
unsafe signals.  See "PERL_SIGNALS" in perlrun and "Deferred Signals
(Safe Signals)" in perlipc.
.RS 4
.Sp
.Vb 1
\& U32  PERL_SIGNALS_UNSAFE_FLAG
.Ve
.RE
.RS 4
.RE
.ie n .IP """rsignal""" 4
.el .IP \f(CWrsignal\fR 4
.IX Xref "rsignal"
.IX Item "rsignal"
A wrapper for the C library functions \fBsigaction\fR\|(2) or \fBsignal\fR\|(2).
Use this instead of those libc functions, as the Perl version gives the
safest available implementation, and knows things that interact with the
rest of the perl interpreter.
.RS 4
.Sp
.Vb 1
\& Sighandler_t  rsignal(int i, Sighandler_t t)
.Ve
.RE
.RS 4
.RE
.ie n .IP """rsignal_state""" 4
.el .IP \f(CWrsignal_state\fR 4
.IX Xref "rsignal_state"
.IX Item "rsignal_state"
Returns a the current signal handler for signal \f(CW\*(C`signo\*(C'\fR.
See "\f(CW\*(C`rsignal\*(C'\fR".
.RS 4
.Sp
.Vb 1
\& Sighandler_t  rsignal_state(int i)
.Ve
.RE
.RS 4
.RE
.ie n .IP """Sigjmp_buf""" 4
.el .IP \f(CWSigjmp_buf\fR 4
.IX Xref "Sigjmp_buf"
.IX Item "Sigjmp_buf"
This is the buffer type to be used with Sigsetjmp and Siglongjmp.
.ie n .IP """Siglongjmp""" 4
.el .IP \f(CWSiglongjmp\fR 4
.IX Xref "Siglongjmp"
.IX Item "Siglongjmp"
This macro is used in the same way as \f(CWsiglongjmp()\fR, but will invoke
traditional \f(CWlongjmp()\fR if siglongjmp isn't available.
See \f(CW"HAS_SIGSETJMP"\fR.
.RS 4
.Sp
.Vb 1
\& void  Siglongjmp(jmp_buf env, int val)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SIG_NAME""" 4
.el .IP \f(CWSIG_NAME\fR 4
.IX Xref "SIG_NAME"
.IX Item "SIG_NAME"
This symbol contains a list of signal names in order of
signal number. This is intended
to be used as a static array initialization, like this:
.Sp
.Vb 1
\& char *sig_name[] = { SIG_NAME };
.Ve
.Sp
The signals in the list are separated with commas, and each signal
is surrounded by double quotes. There is no leading \f(CW\*(C`SIG\*(C'\fR in the signal
name, i.e. \f(CW\*(C`SIGQUIT\*(C'\fR is known as "\f(CW\*(C`QUIT\*(C'\fR".
Gaps in the signal numbers (up to \f(CW\*(C`NSIG\*(C'\fR) are filled in with \f(CW\*(C`NUMnn\*(C'\fR,
etc., where nn is the actual signal number (e.g. \f(CW\*(C`NUM37\*(C'\fR).
The signal number for \f(CW\*(C`sig_name[i]\*(C'\fR is stored in \f(CW\*(C`sig_num[i]\*(C'\fR.
The last element is 0 to terminate the list with a \f(CW\*(C`NULL\*(C'\fR.  This
corresponds to the 0 at the end of the \f(CW\*(C`sig_name_init\*(C'\fR list.
Note that this variable is initialized from the \f(CW\*(C`sig_name_init\*(C'\fR,
not from \f(CW\*(C`sig_name\*(C'\fR (which is unused).
.ie n .IP """SIG_NUM""" 4
.el .IP \f(CWSIG_NUM\fR 4
.IX Xref "SIG_NUM"
.IX Item "SIG_NUM"
This symbol contains a list of signal numbers, in the same order as the
\&\f(CW\*(C`SIG_NAME\*(C'\fR list. It is suitable for static array initialization, as in:
.Sp
.Vb 1
\& int sig_num[] = { SIG_NUM };
.Ve
.Sp
The signals in the list are separated with commas, and the indices
within that list and the \f(CW\*(C`SIG_NAME\*(C'\fR list match, so it's easy to compute
the signal name from a number or vice versa at the price of a small
dynamic linear lookup.
Duplicates are allowed, but are moved to the end of the list.
The signal number corresponding to \f(CW\*(C`sig_name[i]\*(C'\fR is \f(CW\*(C`sig_number[i]\*(C'\fR.
if (i < \f(CW\*(C`NSIG\*(C'\fR) then \f(CW\*(C`sig_number[i]\*(C'\fR == i.
The last element is 0, corresponding to the 0 at the end of
the \f(CW\*(C`sig_name_init\*(C'\fR list.
Note that this variable is initialized from the \f(CW\*(C`sig_num_init\*(C'\fR,
not from \f(CW\*(C`sig_num\*(C'\fR (which is unused).
.ie n .IP """Sigsetjmp""" 4
.el .IP \f(CWSigsetjmp\fR 4
.IX Xref "Sigsetjmp"
.IX Item "Sigsetjmp"
This macro is used in the same way as \f(CWsigsetjmp()\fR, but will invoke
traditional \f(CWsetjmp()\fR if sigsetjmp isn't available.
See \f(CW"HAS_SIGSETJMP"\fR.
.RS 4
.Sp
.Vb 1
\& int  Sigsetjmp(jmp_buf env, int savesigs)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SIG_SIZE""" 4
.el .IP \f(CWSIG_SIZE\fR 4
.IX Xref "SIG_SIZE"
.IX Item "SIG_SIZE"
This variable contains the number of elements of the \f(CW\*(C`SIG_NAME\*(C'\fR
and \f(CW\*(C`SIG_NUM\*(C'\fR arrays, excluding the final \f(CW\*(C`NULL\*(C'\fR entry.
.ie n .IP """whichsig""" 4
.el .IP \f(CWwhichsig\fR 4
.IX Item "whichsig"
.PD 0
.ie n .IP """whichsig_pv""" 4
.el .IP \f(CWwhichsig_pv\fR 4
.IX Item "whichsig_pv"
.ie n .IP """whichsig_pvn""" 4
.el .IP \f(CWwhichsig_pvn\fR 4
.IX Item "whichsig_pvn"
.ie n .IP """whichsig_sv""" 4
.el .IP \f(CWwhichsig_sv\fR 4
.IX Xref "whichsig whichsig_pv whichsig_pvn whichsig_sv"
.IX Item "whichsig_sv"
.PD
These all convert a signal name into its corresponding signal number;
returning \-1 if no corresponding number was found.
.Sp
They differ only in the source of the signal name:
.Sp
\&\f(CW\*(C`whichsig_pv\*(C'\fR takes the name from the \f(CW\*(C`NUL\*(C'\fR\-terminated string starting at
\&\f(CW\*(C`sig\*(C'\fR.
.Sp
\&\f(CW\*(C`whichsig\*(C'\fR is merely a different spelling, a synonym, of \f(CW\*(C`whichsig_pv\*(C'\fR.
.Sp
\&\f(CW\*(C`whichsig_pvn\*(C'\fR takes the name from the string starting at \f(CW\*(C`sig\*(C'\fR, with length
\&\f(CW\*(C`len\*(C'\fR bytes.
.Sp
\&\f(CW\*(C`whichsig_sv\*(C'\fR takes the name from the PV stored in the SV \f(CW\*(C`sigsv\*(C'\fR.
.RS 4
.Sp
.Vb 4
\& I32  whichsig    (const char *sig)
\& I32  whichsig_pv (const char *sig)
\& I32  whichsig_pvn(const char *sig, STRLEN len)
\& I32  whichsig_sv (SV *sigsv)
.Ve
.RE
.RS 4
.RE
.SH "Site configuration"
.IX Header "Site configuration"
These variables give details as to where various libraries,
installation destinations, \fIetc.\fR, go, as well as what various
installation options were selected
.ie n .IP """ARCHLIB""" 4
.el .IP \f(CWARCHLIB\fR 4
.IX Xref "ARCHLIB"
.IX Item "ARCHLIB"
This variable, if defined, holds the name of the directory in
which the user wants to put architecture-dependent public
library files for perl5.  It is most often a local directory
such as \fI/usr/local/lib\fR.  Programs using this variable must be
prepared to deal with filename expansion.  If \f(CW\*(C`ARCHLIB\*(C'\fR is the
same as \f(CW\*(C`PRIVLIB\*(C'\fR, it is not defined, since presumably the
program already searches \f(CW\*(C`PRIVLIB\*(C'\fR.
.ie n .IP """ARCHLIB_EXP""" 4
.el .IP \f(CWARCHLIB_EXP\fR 4
.IX Xref "ARCHLIB_EXP"
.IX Item "ARCHLIB_EXP"
This symbol contains the ~name expanded version of \f(CW\*(C`ARCHLIB\*(C'\fR, to be used
in programs that are not prepared to deal with ~ expansion at run-time.
.ie n .IP """ARCHNAME""" 4
.el .IP \f(CWARCHNAME\fR 4
.IX Xref "ARCHNAME"
.IX Item "ARCHNAME"
This symbol holds a string representing the architecture name.
It may be used to construct an architecture-dependant pathname
where library files may be held under a private library, for
instance.
.ie n .IP """BIN""" 4
.el .IP \f(CWBIN\fR 4
.IX Xref "BIN"
.IX Item "BIN"
This symbol holds the path of the bin directory where the package will
be installed. Program must be prepared to deal with ~name substitution.
.ie n .IP """BIN_EXP""" 4
.el .IP \f(CWBIN_EXP\fR 4
.IX Xref "BIN_EXP"
.IX Item "BIN_EXP"
This symbol is the filename expanded version of the \f(CW\*(C`BIN\*(C'\fR symbol, for
programs that do not want to deal with that at run-time.
.ie n .IP """INSTALL_USR_BIN_PERL""" 4
.el .IP \f(CWINSTALL_USR_BIN_PERL\fR 4
.IX Xref "INSTALL_USR_BIN_PERL"
.IX Item "INSTALL_USR_BIN_PERL"
This symbol, if defined, indicates that Perl is to be installed
also as \fI/usr/bin/perl\fR.
.ie n .IP """MULTIARCH""" 4
.el .IP \f(CWMULTIARCH\fR 4
.IX Xref "MULTIARCH"
.IX Item "MULTIARCH"
This symbol, if defined, signifies that the build
process will produce some binary files that are going to be
used in a cross-platform environment.  This is the case for
example with the NeXT "fat" binaries that contain executables
for several \f(CW\*(C`CPUs\*(C'\fR.
.ie n .IP """PERL_INC_VERSION_LIST""" 4
.el .IP \f(CWPERL_INC_VERSION_LIST\fR 4
.IX Xref "PERL_INC_VERSION_LIST"
.IX Item "PERL_INC_VERSION_LIST"
This variable specifies the list of subdirectories in over
which \fIperl.c\fR:\f(CWincpush()\fR and \fIlib/lib.pm\fR will automatically
search when adding directories to @\f(CW\*(C`INC\*(C'\fR, in a format suitable
for a C initialization string.  See the \f(CW\*(C`inc_version_list\*(C'\fR entry
in Porting/Glossary for more details.
.ie n .IP """PERL_OTHERLIBDIRS""" 4
.el .IP \f(CWPERL_OTHERLIBDIRS\fR 4
.IX Xref "PERL_OTHERLIBDIRS"
.IX Item "PERL_OTHERLIBDIRS"
This variable contains a colon-separated set of paths for the perl
binary to search for additional library files or modules.
These directories will be tacked to the end of @\f(CW\*(C`INC\*(C'\fR.
Perl will automatically search below each path for version\-
and architecture-specific directories.  See \f(CW"PERL_INC_VERSION_LIST"\fR
for more details.
.ie n .IP """PERL_RELOCATABLE_INC""" 4
.el .IP \f(CWPERL_RELOCATABLE_INC\fR 4
.IX Xref "PERL_RELOCATABLE_INC"
.IX Item "PERL_RELOCATABLE_INC"
This symbol, if defined, indicates that we'd like to relocate entries
in @\f(CW\*(C`INC\*(C'\fR at run time based on the location of the perl binary.
.ie n .IP """PERL_TARGETARCH""" 4
.el .IP \f(CWPERL_TARGETARCH\fR 4
.IX Xref "PERL_TARGETARCH"
.IX Item "PERL_TARGETARCH"
This symbol, if defined, indicates the target architecture
Perl has been cross-compiled to.  Undefined if not a cross-compile.
.ie n .IP """PERL_USE_DEVEL""" 4
.el .IP \f(CWPERL_USE_DEVEL\fR 4
.IX Xref "PERL_USE_DEVEL"
.IX Item "PERL_USE_DEVEL"
This symbol, if defined, indicates that Perl was configured with
\&\f(CW\*(C`\-Dusedevel\*(C'\fR, to enable development features.  This should not be
done for production builds.
.ie n .IP """PERL_VENDORARCH""" 4
.el .IP \f(CWPERL_VENDORARCH\fR 4
.IX Xref "PERL_VENDORARCH"
.IX Item "PERL_VENDORARCH"
If defined, this symbol contains the name of a private library.
The library is private in the sense that it needn't be in anyone's
execution path, but it should be accessible by the world.
It may have a ~ on the front.
The standard distribution will put nothing in this directory.
Vendors who distribute perl may wish to place their own
architecture-dependent modules and extensions in this directory with
.Sp
.Vb 1
\& MakeMaker Makefile.PL INSTALLDIRS=vendor
.Ve
.Sp
or equivalent.  See \f(CW\*(C`INSTALL\*(C'\fR for details.
.ie n .IP """PERL_VENDORARCH_EXP""" 4
.el .IP \f(CWPERL_VENDORARCH_EXP\fR 4
.IX Xref "PERL_VENDORARCH_EXP"
.IX Item "PERL_VENDORARCH_EXP"
This symbol contains the ~name expanded version of \f(CW\*(C`PERL_VENDORARCH\*(C'\fR, to be used
in programs that are not prepared to deal with ~ expansion at run-time.
.ie n .IP """PERL_VENDORLIB_EXP""" 4
.el .IP \f(CWPERL_VENDORLIB_EXP\fR 4
.IX Xref "PERL_VENDORLIB_EXP"
.IX Item "PERL_VENDORLIB_EXP"
This symbol contains the ~name expanded version of \f(CW\*(C`VENDORLIB\*(C'\fR, to be used
in programs that are not prepared to deal with ~ expansion at run-time.
.ie n .IP """PERL_VENDORLIB_STEM""" 4
.el .IP \f(CWPERL_VENDORLIB_STEM\fR 4
.IX Xref "PERL_VENDORLIB_STEM"
.IX Item "PERL_VENDORLIB_STEM"
This define is \f(CW\*(C`PERL_VENDORLIB_EXP\*(C'\fR with any trailing version-specific component
removed.  The elements in \f(CW\*(C`inc_version_list\*(C'\fR (\f(CW\*(C`inc_version_list\*(C'\fR.U (part of metaconfig)) can
be tacked onto this variable to generate a list of directories to search.
.ie n .IP """PRIVLIB""" 4
.el .IP \f(CWPRIVLIB\fR 4
.IX Xref "PRIVLIB"
.IX Item "PRIVLIB"
This symbol contains the name of the private library for this package.
The library is private in the sense that it needn't be in anyone's
execution path, but it should be accessible by the world.  The program
should be prepared to do ~ expansion.
.ie n .IP """PRIVLIB_EXP""" 4
.el .IP \f(CWPRIVLIB_EXP\fR 4
.IX Xref "PRIVLIB_EXP"
.IX Item "PRIVLIB_EXP"
This symbol contains the ~name expanded version of \f(CW\*(C`PRIVLIB\*(C'\fR, to be used
in programs that are not prepared to deal with ~ expansion at run-time.
.ie n .IP """SITEARCH""" 4
.el .IP \f(CWSITEARCH\fR 4
.IX Xref "SITEARCH"
.IX Item "SITEARCH"
This symbol contains the name of the private library for this package.
The library is private in the sense that it needn't be in anyone's
execution path, but it should be accessible by the world.  The program
should be prepared to do ~ expansion.
The standard distribution will put nothing in this directory.
After perl has been installed, users may install their own local
architecture-dependent modules in this directory with
.Sp
.Vb 1
\& MakeMaker Makefile.PL
.Ve
.Sp
or equivalent.  See \f(CW\*(C`INSTALL\*(C'\fR for details.
.ie n .IP """SITEARCH_EXP""" 4
.el .IP \f(CWSITEARCH_EXP\fR 4
.IX Xref "SITEARCH_EXP"
.IX Item "SITEARCH_EXP"
This symbol contains the ~name expanded version of \f(CW\*(C`SITEARCH\*(C'\fR, to be used
in programs that are not prepared to deal with ~ expansion at run-time.
.ie n .IP """SITELIB""" 4
.el .IP \f(CWSITELIB\fR 4
.IX Xref "SITELIB"
.IX Item "SITELIB"
This symbol contains the name of the private library for this package.
The library is private in the sense that it needn't be in anyone's
execution path, but it should be accessible by the world.  The program
should be prepared to do ~ expansion.
The standard distribution will put nothing in this directory.
After perl has been installed, users may install their own local
architecture-independent modules in this directory with
.Sp
.Vb 1
\& MakeMaker Makefile.PL
.Ve
.Sp
or equivalent.  See \f(CW\*(C`INSTALL\*(C'\fR for details.
.ie n .IP """SITELIB_EXP""" 4
.el .IP \f(CWSITELIB_EXP\fR 4
.IX Xref "SITELIB_EXP"
.IX Item "SITELIB_EXP"
This symbol contains the ~name expanded version of \f(CW\*(C`SITELIB\*(C'\fR, to be used
in programs that are not prepared to deal with ~ expansion at run-time.
.ie n .IP """SITELIB_STEM""" 4
.el .IP \f(CWSITELIB_STEM\fR 4
.IX Xref "SITELIB_STEM"
.IX Item "SITELIB_STEM"
This define is \f(CW\*(C`SITELIB_EXP\*(C'\fR with any trailing version-specific component
removed.  The elements in \f(CW\*(C`inc_version_list\*(C'\fR (\f(CW\*(C`inc_version_list\*(C'\fR.U (part of metaconfig)) can
be tacked onto this variable to generate a list of directories to search.
.ie n .IP """STARTPERL""" 4
.el .IP \f(CWSTARTPERL\fR 4
.IX Xref "STARTPERL"
.IX Item "STARTPERL"
This variable contains the string to put in front of a perl
script to make sure (one hopes) that it runs with perl and not
some shell.
.ie n .IP """USE_64_BIT_ALL""" 4
.el .IP \f(CWUSE_64_BIT_ALL\fR 4
.IX Xref "USE_64_BIT_ALL"
.IX Item "USE_64_BIT_ALL"
This symbol, if defined, indicates that 64\-bit integers should
be used when available.  If not defined, the native integers
will be used (be they 32 or 64 bits).  The maximal possible
64\-bitness is employed: LP64 or \f(CW\*(C`ILP64\*(C'\fR, meaning that you will
be able to use more than 2 gigabytes of memory.  This mode is
even more binary incompatible than \f(CW\*(C`USE_64_BIT_INT\*(C'\fR. You may not
be able to run the resulting executable in a 32\-bit \f(CW\*(C`CPU\*(C'\fR at all or
you may need at least to reboot your OS to 64\-bit mode.
.ie n .IP """USE_64_BIT_INT""" 4
.el .IP \f(CWUSE_64_BIT_INT\fR 4
.IX Xref "USE_64_BIT_INT"
.IX Item "USE_64_BIT_INT"
This symbol, if defined, indicates that 64\-bit integers should
be used when available.  If not defined, the native integers
will be employed (be they 32 or 64 bits).  The minimal possible
64\-bitness is used, just enough to get 64\-bit integers into Perl.
This may mean using for example "long longs", while your memory
may still be limited to 2 gigabytes.
.ie n .IP """USE_BSD_GETPGRP""" 4
.el .IP \f(CWUSE_BSD_GETPGRP\fR 4
.IX Xref "USE_BSD_GETPGRP"
.IX Item "USE_BSD_GETPGRP"
This symbol, if defined, indicates that getpgrp needs one
arguments whereas \f(CW\*(C`USG\*(C'\fR one needs none.
.ie n .IP """USE_BSD_SETPGRP""" 4
.el .IP \f(CWUSE_BSD_SETPGRP\fR 4
.IX Xref "USE_BSD_SETPGRP"
.IX Item "USE_BSD_SETPGRP"
This symbol, if defined, indicates that setpgrp needs two
arguments whereas \f(CW\*(C`USG\*(C'\fR one needs none.  See also \f(CW"HAS_SETPGID"\fR
for a \f(CW\*(C`POSIX\*(C'\fR interface.
.ie n .IP """USE_C_BACKTRACE""" 4
.el .IP \f(CWUSE_C_BACKTRACE\fR 4
.IX Xref "USE_C_BACKTRACE"
.IX Item "USE_C_BACKTRACE"
This symbol, if defined, indicates that Perl should
be built with support for backtrace.
.ie n .IP """USE_CPLUSPLUS""" 4
.el .IP \f(CWUSE_CPLUSPLUS\fR 4
.IX Xref "USE_CPLUSPLUS"
.IX Item "USE_CPLUSPLUS"
This symbol, if defined, indicates that a C++ compiler was
used to compiled Perl and will be used to compile extensions.
.ie n .IP """USE_CROSS_COMPILE""" 4
.el .IP \f(CWUSE_CROSS_COMPILE\fR 4
.IX Xref "USE_CROSS_COMPILE"
.IX Item "USE_CROSS_COMPILE"
This symbol, if defined, indicates that Perl is being cross-compiled.
.ie n .IP """USE_DTRACE""" 4
.el .IP \f(CWUSE_DTRACE\fR 4
.IX Xref "USE_DTRACE"
.IX Item "USE_DTRACE"
This symbol, if defined, indicates that Perl should
be built with support for DTrace.
.ie n .IP """USE_DYNAMIC_LOADING""" 4
.el .IP \f(CWUSE_DYNAMIC_LOADING\fR 4
.IX Xref "USE_DYNAMIC_LOADING"
.IX Item "USE_DYNAMIC_LOADING"
This symbol, if defined, indicates that dynamic loading of
some sort is available.
.ie n .IP """USE_FAST_STDIO""" 4
.el .IP \f(CWUSE_FAST_STDIO\fR 4
.IX Xref "USE_FAST_STDIO"
.IX Item "USE_FAST_STDIO"
This symbol, if defined, indicates that Perl should
be built to use 'fast stdio'.
Defaults to define in Perls 5.8 and earlier, to undef later.
.ie n .IP """USE_ITHREADS""" 4
.el .IP \f(CWUSE_ITHREADS\fR 4
.IX Xref "USE_ITHREADS"
.IX Item "USE_ITHREADS"
This symbol, if defined, indicates that Perl should be built to
use the interpreter-based threading implementation.
.ie n .IP """USE_KERN_PROC_PATHNAME""" 4
.el .IP \f(CWUSE_KERN_PROC_PATHNAME\fR 4
.IX Xref "USE_KERN_PROC_PATHNAME"
.IX Item "USE_KERN_PROC_PATHNAME"
This symbol, if defined, indicates that we can use sysctl with
\&\f(CW\*(C`KERN_PROC_PATHNAME\*(C'\fR to get a full path for the executable, and hence
convert $^X to an absolute path.
.ie n .IP """USE_LARGE_FILES""" 4
.el .IP \f(CWUSE_LARGE_FILES\fR 4
.IX Xref "USE_LARGE_FILES"
.IX Item "USE_LARGE_FILES"
This symbol, if defined, indicates that large file support
should be used when available.
.ie n .IP """USE_LONG_DOUBLE""" 4
.el .IP \f(CWUSE_LONG_DOUBLE\fR 4
.IX Xref "USE_LONG_DOUBLE"
.IX Item "USE_LONG_DOUBLE"
This symbol, if defined, indicates that long doubles should
be used when available.
.ie n .IP """USE_MORE_BITS""" 4
.el .IP \f(CWUSE_MORE_BITS\fR 4
.IX Xref "USE_MORE_BITS"
.IX Item "USE_MORE_BITS"
This symbol, if defined, indicates that 64\-bit interfaces and
long doubles should be used when available.
.ie n .IP """USE_NSGETEXECUTABLEPATH""" 4
.el .IP \f(CWUSE_NSGETEXECUTABLEPATH\fR 4
.IX Xref "USE_NSGETEXECUTABLEPATH"
.IX Item "USE_NSGETEXECUTABLEPATH"
This symbol, if defined, indicates that we can use \f(CW\*(C`_NSGetExecutablePath\*(C'\fR
and realpath to get a full path for the executable, and hence convert
$^X to an absolute path.
.ie n .IP """USE_PERLIO""" 4
.el .IP \f(CWUSE_PERLIO\fR 4
.IX Xref "USE_PERLIO"
.IX Item "USE_PERLIO"
This symbol, if defined, indicates that the PerlIO abstraction should
be used throughout.  If not defined, stdio should be
used in a fully backward compatible manner.
.ie n .IP """USE_QUADMATH""" 4
.el .IP \f(CWUSE_QUADMATH\fR 4
.IX Xref "USE_QUADMATH"
.IX Item "USE_QUADMATH"
This symbol, if defined, indicates that the quadmath library should
be used when available.
.ie n .IP """USE_REENTRANT_API""" 4
.el .IP \f(CWUSE_REENTRANT_API\fR 4
.IX Xref "USE_REENTRANT_API"
.IX Item "USE_REENTRANT_API"
This symbol, if defined, indicates that Perl should
try to use the various \f(CW\*(C`_r\*(C'\fR versions of library functions.
This is extremely experimental.
.ie n .IP """USE_SEMCTL_SEMID_DS""" 4
.el .IP \f(CWUSE_SEMCTL_SEMID_DS\fR 4
.IX Xref "USE_SEMCTL_SEMID_DS"
.IX Item "USE_SEMCTL_SEMID_DS"
This symbol, if defined, indicates that \f(CW\*(C`struct semid_ds\*(C'\fR * is
used for semctl \f(CW\*(C`IPC_STAT\*(C'\fR.
.ie n .IP """USE_SEMCTL_SEMUN""" 4
.el .IP \f(CWUSE_SEMCTL_SEMUN\fR 4
.IX Xref "USE_SEMCTL_SEMUN"
.IX Item "USE_SEMCTL_SEMUN"
This symbol, if defined, indicates that \f(CW\*(C`union semun\*(C'\fR is
used for semctl \f(CW\*(C`IPC_STAT\*(C'\fR.
.ie n .IP """USE_SITECUSTOMIZE""" 4
.el .IP \f(CWUSE_SITECUSTOMIZE\fR 4
.IX Xref "USE_SITECUSTOMIZE"
.IX Item "USE_SITECUSTOMIZE"
This symbol, if defined, indicates that sitecustomize should
be used.
.ie n .IP """USE_SOCKS""" 4
.el .IP \f(CWUSE_SOCKS\fR 4
.IX Xref "USE_SOCKS"
.IX Item "USE_SOCKS"
This symbol, if defined, indicates that Perl should
be built to use socks.
.ie n .IP """USE_STAT_BLOCKS""" 4
.el .IP \f(CWUSE_STAT_BLOCKS\fR 4
.IX Xref "USE_STAT_BLOCKS"
.IX Item "USE_STAT_BLOCKS"
This symbol is defined if this system has a stat structure declaring
\&\f(CW\*(C`st_blksize\*(C'\fR and \f(CW\*(C`st_blocks\*(C'\fR.
.ie n .IP """USE_STDIO_BASE""" 4
.el .IP \f(CWUSE_STDIO_BASE\fR 4
.IX Xref "USE_STDIO_BASE"
.IX Item "USE_STDIO_BASE"
This symbol is defined if the \f(CW\*(C`_base\*(C'\fR field (or similar) of the
stdio \f(CW\*(C`FILE\*(C'\fR structure can be used to access the stdio buffer for
a file handle.  If this is defined, then the \f(CWFILE_base(fp)\fR macro
will also be defined and should be used to access this field.
Also, the \f(CWFILE_bufsiz(fp)\fR macro will be defined and should be used
to determine the number of bytes in the buffer.  \f(CW\*(C`USE_STDIO_BASE\*(C'\fR
will never be defined unless \f(CW\*(C`USE_STDIO_PTR\*(C'\fR is.
.ie n .IP """USE_STDIO_PTR""" 4
.el .IP \f(CWUSE_STDIO_PTR\fR 4
.IX Xref "USE_STDIO_PTR"
.IX Item "USE_STDIO_PTR"
This symbol is defined if the \f(CW\*(C`_ptr\*(C'\fR and \f(CW\*(C`_cnt\*(C'\fR fields (or similar)
of the stdio \f(CW\*(C`FILE\*(C'\fR structure can be used to access the stdio buffer
for a file handle.  If this is defined, then the \f(CWFILE_ptr(fp)\fR
and \f(CWFILE_cnt(fp)\fR macros will also be defined and should be used
to access these fields.
.ie n .IP """USE_STRICT_BY_DEFAULT""" 4
.el .IP \f(CWUSE_STRICT_BY_DEFAULT\fR 4
.IX Xref "USE_STRICT_BY_DEFAULT"
.IX Item "USE_STRICT_BY_DEFAULT"
This symbol, if defined, enables additional defaults.
At this time it only enables implicit strict by default.
.ie n .IP """USE_THREADS""" 4
.el .IP \f(CWUSE_THREADS\fR 4
.IX Xref "USE_THREADS"
.IX Item "USE_THREADS"
This symbol, if defined, indicates that Perl should
be built to use threads.  At present, it is a synonym for
and \f(CW\*(C`USE_ITHREADS\*(C'\fR, but eventually the source ought to be
changed to use this to mean \f(CW\*(C`_any_\*(C'\fR threading implementation.
.SH "Sockets configuration values"
.IX Header "Sockets configuration values"
.ie n .IP """HAS_SOCKADDR_IN6""" 4
.el .IP \f(CWHAS_SOCKADDR_IN6\fR 4
.IX Xref "HAS_SOCKADDR_IN6"
.IX Item "HAS_SOCKADDR_IN6"
This symbol, if defined, indicates the availability of
\&\f(CW\*(C`struct sockaddr_in6\*(C'\fR;
.ie n .IP """HAS_SOCKADDR_SA_LEN""" 4
.el .IP \f(CWHAS_SOCKADDR_SA_LEN\fR 4
.IX Xref "HAS_SOCKADDR_SA_LEN"
.IX Item "HAS_SOCKADDR_SA_LEN"
This symbol, if defined, indicates that the \f(CW\*(C`struct sockaddr\*(C'\fR
structure has a member called \f(CW\*(C`sa_len\*(C'\fR, indicating the length of
the structure.
.ie n .IP """HAS_SOCKADDR_STORAGE""" 4
.el .IP \f(CWHAS_SOCKADDR_STORAGE\fR 4
.IX Xref "HAS_SOCKADDR_STORAGE"
.IX Item "HAS_SOCKADDR_STORAGE"
This symbol, if defined, indicates the availability of
\&\f(CW\*(C`struct sockaddr_storage\*(C'\fR;
.ie n .IP """HAS_SOCKATMARK""" 4
.el .IP \f(CWHAS_SOCKATMARK\fR 4
.IX Xref "HAS_SOCKATMARK"
.IX Item "HAS_SOCKATMARK"
This symbol, if defined, indicates that the \f(CW\*(C`sockatmark\*(C'\fR routine is
available to test whether a socket is at the out-of-band mark.
.ie n .IP """HAS_SOCKET""" 4
.el .IP \f(CWHAS_SOCKET\fR 4
.IX Xref "HAS_SOCKET"
.IX Item "HAS_SOCKET"
This symbol, if defined, indicates that the \f(CW\*(C`BSD\*(C'\fR \f(CW\*(C`socket\*(C'\fR interface is
supported.
.ie n .IP """HAS_SOCKETPAIR""" 4
.el .IP \f(CWHAS_SOCKETPAIR\fR 4
.IX Xref "HAS_SOCKETPAIR"
.IX Item "HAS_SOCKETPAIR"
This symbol, if defined, indicates that the \f(CW\*(C`BSD\*(C'\fR \f(CWsocketpair()\fR call is
supported.
.ie n .IP """HAS_SOCKS5_INIT""" 4
.el .IP \f(CWHAS_SOCKS5_INIT\fR 4
.IX Xref "HAS_SOCKS5_INIT"
.IX Item "HAS_SOCKS5_INIT"
This symbol, if defined, indicates that the \f(CW\*(C`socks5_init\*(C'\fR routine is
available to initialize \f(CW\*(C`SOCKS\*(C'\fR 5.
.ie n .IP """I_SOCKS""" 4
.el .IP \f(CWI_SOCKS\fR 4
.IX Xref "I_SOCKS"
.IX Item "I_SOCKS"
This symbol, if defined, indicates that \fIsocks.h\fR exists and
should be included.
.RS 4
.Sp
.Vb 3
\& #ifdef I_SOCKS
\&     #include <socks.h>
\& #endif
.Ve
.RE
.RS 4
.RE
.ie n .IP """I_SYS_SOCKIO""" 4
.el .IP \f(CWI_SYS_SOCKIO\fR 4
.IX Xref "I_SYS_SOCKIO"
.IX Item "I_SYS_SOCKIO"
This symbol, if defined, indicates the \fIsys/sockio.h\fR should be included
to get socket ioctl options, like \f(CW\*(C`SIOCATMARK\*(C'\fR.
.RS 4
.Sp
.Vb 3
\& #ifdef I_SYS_SOCKIO
\&     #include <sys_sockio.h>
\& #endif
.Ve
.RE
.RS 4
.RE
.SH "Source Filters"
.IX Header "Source Filters"
.ie n .IP """apply_builtin_cv_attributes""" 4
.el .IP \f(CWapply_builtin_cv_attributes\fR 4
.IX Xref "apply_builtin_cv_attributes"
.IX Item "apply_builtin_cv_attributes"
Given an OP_LIST containing attribute definitions, filter it for known builtin
attributes to apply to the cv, returning a possibly-smaller list containing
just the remaining ones.
.RS 4
.Sp
.Vb 1
\& OP *  apply_builtin_cv_attributes(CV *cv, OP *attrlist)
.Ve
.RE
.RS 4
.RE
.ie n .IP """filter_add""" 4
.el .IP \f(CWfilter_add\fR 4
.IX Item "filter_add"
Described in perlfilter.
.RS 4
.Sp
.Vb 1
\& SV *  filter_add(filter_t funcp, SV *datasv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """filter_del""" 4
.el .IP \f(CWfilter_del\fR 4
.IX Xref "filter_del"
.IX Item "filter_del"
Delete most recently added instance of the filter function argument
.RS 4
.Sp
.Vb 1
\& void  filter_del(filter_t funcp)
.Ve
.RE
.RS 4
.RE
.ie n .IP """filter_read""" 4
.el .IP \f(CWfilter_read\fR 4
.IX Item "filter_read"
Described in perlfilter.
.RS 4
.Sp
.Vb 1
\& I32  filter_read(int idx, SV *buf_sv, int maxlen)
.Ve
.RE
.RS 4
.RE
.ie n .IP """scan_vstring""" 4
.el .IP \f(CWscan_vstring\fR 4
.IX Xref "scan_vstring"
.IX Item "scan_vstring"
Returns a pointer to the next character after the parsed
vstring, as well as updating the passed in sv.
.Sp
Function must be called like
.Sp
.Vb 2
\&        sv = sv_2mortal(newSV(5));
\&        s = scan_vstring(s,e,sv);
.Ve
.Sp
where s and e are the start and end of the string.
The sv should already be large enough to store the vstring
passed in, for performance reasons.
.Sp
This function may croak if fatal warnings are enabled in the
calling scope, hence the sv_2mortal in the example (to prevent
a leak).  Make sure to do SvREFCNT_inc afterwards if you use
sv_2mortal.
.RS 4
.Sp
.Vb 1
\& char *  scan_vstring(const char *s, const char * const e, SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """start_subparse""" 4
.el .IP \f(CWstart_subparse\fR 4
.IX Xref "start_subparse"
.IX Item "start_subparse"
Set things up for parsing a subroutine.
.Sp
If \f(CW\*(C`is_format\*(C'\fR is non-zero, the input is to be considered a format sub
(a specialised sub used to implement perl's \f(CW\*(C`format\*(C'\fR feature); else a
normal \f(CW\*(C`sub\*(C'\fR.
.Sp
\&\f(CW\*(C`flags\*(C'\fR are added to the flags for \f(CW\*(C`PL_compcv\*(C'\fR.  \f(CW\*(C`flags\*(C'\fR may include the
\&\f(CW\*(C`CVf_IsMETHOD\*(C'\fR bit, which causes the new subroutine to be a method.
.Sp
This returns the value of \f(CW\*(C`PL_savestack_ix\*(C'\fR that was in effect upon entry to
the function;
.RS 4
.Sp
.Vb 1
\& I32  start_subparse(I32 is_format, U32 flags)
.Ve
.RE
.RS 4
.RE
.SH "Stack Manipulation Macros"
.IX Header "Stack Manipulation Macros"
.ie n .IP """dMARK""" 4
.el .IP \f(CWdMARK\fR 4
.IX Xref "dMARK"
.IX Item "dMARK"
Declare a stack marker variable, \f(CW\*(C`mark\*(C'\fR, for the XSUB.  See \f(CW"MARK"\fR and
\&\f(CW"dORIGMARK"\fR.
.RS 4
.Sp
.Vb 1
\&   dMARK;
.Ve
.RE
.RS 4
.RE
.ie n .IP """dORIGMARK""" 4
.el .IP \f(CWdORIGMARK\fR 4
.IX Xref "dORIGMARK"
.IX Item "dORIGMARK"
Saves the original stack mark for the XSUB.  See \f(CW"ORIGMARK"\fR.
.RS 4
.Sp
.Vb 1
\&   dORIGMARK;
.Ve
.RE
.RS 4
.RE
.ie n .IP """dSP""" 4
.el .IP \f(CWdSP\fR 4
.IX Xref "dSP"
.IX Item "dSP"
Declares a local copy of perl's stack pointer for the XSUB, available via
the \f(CW\*(C`SP\*(C'\fR macro.  See \f(CW"SP"\fR.
.RS 4
.Sp
.Vb 1
\&   dSP;
.Ve
.RE
.RS 4
.RE
.ie n .IP """dTARGET""" 4
.el .IP \f(CWdTARGET\fR 4
.IX Xref "dTARGET"
.IX Item "dTARGET"
Declare that this function uses \f(CW\*(C`TARG\*(C'\fR, and initializes it
.RS 4
.Sp
.Vb 1
\&   dTARGET;
.Ve
.RE
.RS 4
.RE
.ie n .IP """EXTEND""" 4
.el .IP \f(CWEXTEND\fR 4
.IX Xref "EXTEND"
.IX Item "EXTEND"
Used to extend the argument stack for an XSUB's return values.  Once
used, guarantees that there is room for at least \f(CW\*(C`nitems\*(C'\fR to be pushed
onto the stack.
.RS 4
.Sp
.Vb 1
\& void  EXTEND(SP, SSize_t nitems)
.Ve
.RE
.RS 4
.RE
.ie n .IP """MARK""" 4
.el .IP \f(CWMARK\fR 4
.IX Xref "MARK"
.IX Item "MARK"
Stack marker variable for the XSUB.  See \f(CW"dMARK"\fR.
.ie n .IP """mPUSHi""" 4
.el .IP \f(CWmPUSHi\fR 4
.IX Xref "mPUSHi"
.IX Item "mPUSHi"
Push an integer onto the stack.  The stack must have room for this element.
Does not use \f(CW\*(C`TARG\*(C'\fR.  See also \f(CW"PUSHi"\fR, \f(CW"mXPUSHi"\fR and \f(CW"XPUSHi"\fR.
.RS 4
.Sp
.Vb 1
\& void  mPUSHi(IV iv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """mPUSHn""" 4
.el .IP \f(CWmPUSHn\fR 4
.IX Xref "mPUSHn"
.IX Item "mPUSHn"
Push a double onto the stack.  The stack must have room for this element.
Does not use \f(CW\*(C`TARG\*(C'\fR.  See also \f(CW"PUSHn"\fR, \f(CW"mXPUSHn"\fR and \f(CW"XPUSHn"\fR.
.RS 4
.Sp
.Vb 1
\& void  mPUSHn(NV nv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """mPUSHp""" 4
.el .IP \f(CWmPUSHp\fR 4
.IX Xref "mPUSHp"
.IX Item "mPUSHp"
Push a string onto the stack.  The stack must have room for this element.
The \f(CW\*(C`len\*(C'\fR indicates the length of the string.  Does not use \f(CW\*(C`TARG\*(C'\fR.
See also \f(CW"PUSHp"\fR, \f(CW"mXPUSHp"\fR and \f(CW"XPUSHp"\fR.
.RS 4
.Sp
.Vb 1
\& void  mPUSHp(char* str, STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """mPUSHpvs""" 4
.el .IP \f(CWmPUSHpvs\fR 4
.IX Xref "mPUSHpvs"
.IX Item "mPUSHpvs"
A variation on \f(CW\*(C`mPUSHp\*(C'\fR that takes a literal string and calculates its size
directly.
.RS 4
.Sp
.Vb 1
\& void  mPUSHpvs("literal string")
.Ve
.RE
.RS 4
.RE
.ie n .IP """mPUSHs""" 4
.el .IP \f(CWmPUSHs\fR 4
.IX Xref "mPUSHs"
.IX Item "mPUSHs"
Push an SV onto the stack and mortalizes the SV.  The stack must have room
for this element.  Does not use \f(CW\*(C`TARG\*(C'\fR.  See also \f(CW"PUSHs"\fR and
\&\f(CW"mXPUSHs"\fR.
.RS 4
.Sp
.Vb 1
\& void  mPUSHs(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """mPUSHu""" 4
.el .IP \f(CWmPUSHu\fR 4
.IX Xref "mPUSHu"
.IX Item "mPUSHu"
Push an unsigned integer onto the stack.  The stack must have room for this
element.  Does not use \f(CW\*(C`TARG\*(C'\fR.  See also \f(CW"PUSHu"\fR, \f(CW"mXPUSHu"\fR and
\&\f(CW"XPUSHu"\fR.
.RS 4
.Sp
.Vb 1
\& void  mPUSHu(UV uv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """mXPUSHi""" 4
.el .IP \f(CWmXPUSHi\fR 4
.IX Xref "mXPUSHi"
.IX Item "mXPUSHi"
Push an integer onto the stack, extending the stack if necessary.
Does not use \f(CW\*(C`TARG\*(C'\fR.  See also \f(CW"XPUSHi"\fR, \f(CW"mPUSHi"\fR and \f(CW"PUSHi"\fR.
.RS 4
.Sp
.Vb 1
\& void  mXPUSHi(IV iv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """mXPUSHn""" 4
.el .IP \f(CWmXPUSHn\fR 4
.IX Xref "mXPUSHn"
.IX Item "mXPUSHn"
Push a double onto the stack, extending the stack if necessary.
Does not use \f(CW\*(C`TARG\*(C'\fR.  See also \f(CW"XPUSHn"\fR, \f(CW"mPUSHn"\fR and \f(CW"PUSHn"\fR.
.RS 4
.Sp
.Vb 1
\& void  mXPUSHn(NV nv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """mXPUSHp""" 4
.el .IP \f(CWmXPUSHp\fR 4
.IX Xref "mXPUSHp"
.IX Item "mXPUSHp"
Push a string onto the stack, extending the stack if necessary.  The \f(CW\*(C`len\*(C'\fR
indicates the length of the string.  Does not use \f(CW\*(C`TARG\*(C'\fR.  See also
\&\f(CW"XPUSHp"\fR, \f(CW\*(C`mPUSHp\*(C'\fR and \f(CW\*(C`PUSHp\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& void  mXPUSHp(char* str, STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """mXPUSHpvs""" 4
.el .IP \f(CWmXPUSHpvs\fR 4
.IX Xref "mXPUSHpvs"
.IX Item "mXPUSHpvs"
A variation on \f(CW\*(C`mXPUSHp\*(C'\fR that takes a literal string and calculates its size
directly.
.RS 4
.Sp
.Vb 1
\& void  mXPUSHpvs("literal string")
.Ve
.RE
.RS 4
.RE
.ie n .IP """mXPUSHs""" 4
.el .IP \f(CWmXPUSHs\fR 4
.IX Xref "mXPUSHs"
.IX Item "mXPUSHs"
Push an SV onto the stack, extending the stack if necessary and mortalizes
the SV.  Does not use \f(CW\*(C`TARG\*(C'\fR.  See also \f(CW"XPUSHs"\fR and \f(CW"mPUSHs"\fR.
.RS 4
.Sp
.Vb 1
\& void  mXPUSHs(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """mXPUSHu""" 4
.el .IP \f(CWmXPUSHu\fR 4
.IX Xref "mXPUSHu"
.IX Item "mXPUSHu"
Push an unsigned integer onto the stack, extending the stack if necessary.
Does not use \f(CW\*(C`TARG\*(C'\fR.  See also \f(CW"XPUSHu"\fR, \f(CW"mPUSHu"\fR and \f(CW"PUSHu"\fR.
.RS 4
.Sp
.Vb 1
\& void  mXPUSHu(UV uv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newXSproto""" 4
.el .IP \f(CWnewXSproto\fR 4
.IX Xref "newXSproto"
.IX Item "newXSproto"
Used by \f(CW\*(C`xsubpp\*(C'\fR to hook up XSUBs as Perl subs.  Adds Perl prototypes to
the subs.
.ie n .IP """ORIGMARK""" 4
.el .IP \f(CWORIGMARK\fR 4
.IX Xref "ORIGMARK"
.IX Item "ORIGMARK"
The original stack mark for the XSUB.  See \f(CW"dORIGMARK"\fR.
.ie n .IP """PL_markstack""" 4
.el .IP \f(CWPL_markstack\fR 4
.IX Item "PL_markstack"
Described in perlguts.
.ie n .IP """PL_markstack_ptr""" 4
.el .IP \f(CWPL_markstack_ptr\fR 4
.IX Item "PL_markstack_ptr"
Described in perlguts.
.ie n .IP """PL_savestack""" 4
.el .IP \f(CWPL_savestack\fR 4
.IX Item "PL_savestack"
Described in perlguts.
.ie n .IP """PL_savestack_ix""" 4
.el .IP \f(CWPL_savestack_ix\fR 4
.IX Item "PL_savestack_ix"
Described in perlguts.
.ie n .IP """PL_scopestack""" 4
.el .IP \f(CWPL_scopestack\fR 4
.IX Item "PL_scopestack"
Described in perlguts.
.ie n .IP """PL_scopestack_ix""" 4
.el .IP \f(CWPL_scopestack_ix\fR 4
.IX Item "PL_scopestack_ix"
Described in perlguts.
.ie n .IP """PL_scopestack_name""" 4
.el .IP \f(CWPL_scopestack_name\fR 4
.IX Item "PL_scopestack_name"
Described in perlguts.
.ie n .IP """PL_stack_base""" 4
.el .IP \f(CWPL_stack_base\fR 4
.IX Item "PL_stack_base"
Described in perlguts.
.ie n .IP """PL_stack_sp""" 4
.el .IP \f(CWPL_stack_sp\fR 4
.IX Item "PL_stack_sp"
Described in perlguts.
.ie n .IP """PL_tmps_floor""" 4
.el .IP \f(CWPL_tmps_floor\fR 4
.IX Item "PL_tmps_floor"
Described in perlguts.
.ie n .IP """PL_tmps_ix""" 4
.el .IP \f(CWPL_tmps_ix\fR 4
.IX Item "PL_tmps_ix"
Described in perlguts.
.ie n .IP """PL_tmps_stack""" 4
.el .IP \f(CWPL_tmps_stack\fR 4
.IX Item "PL_tmps_stack"
Described in perlguts.
.ie n .IP """POPi""" 4
.el .IP \f(CWPOPi\fR 4
.IX Xref "POPi"
.IX Item "POPi"
Pops an integer off the stack.
.RS 4
.Sp
.Vb 1
\& IV  POPi
.Ve
.RE
.RS 4
.RE
.ie n .IP """POPl""" 4
.el .IP \f(CWPOPl\fR 4
.IX Xref "POPl"
.IX Item "POPl"
Pops a long off the stack.
.RS 4
.Sp
.Vb 1
\& long  POPl
.Ve
.RE
.RS 4
.RE
.ie n .IP """POPn""" 4
.el .IP \f(CWPOPn\fR 4
.IX Xref "POPn"
.IX Item "POPn"
Pops a double off the stack.
.RS 4
.Sp
.Vb 1
\& NV  POPn
.Ve
.RE
.RS 4
.RE
.ie n .IP """POPp""" 4
.el .IP \f(CWPOPp\fR 4
.IX Xref "POPp"
.IX Item "POPp"
Pops a string off the stack.
.RS 4
.Sp
.Vb 1
\& char*  POPp
.Ve
.RE
.RS 4
.RE
.ie n .IP """POPpbytex""" 4
.el .IP \f(CWPOPpbytex\fR 4
.IX Xref "POPpbytex"
.IX Item "POPpbytex"
Pops a string off the stack which must consist of bytes i.e. characters < 256.
.RS 4
.Sp
.Vb 1
\& char*  POPpbytex
.Ve
.RE
.RS 4
.RE
.ie n .IP """POPpx""" 4
.el .IP \f(CWPOPpx\fR 4
.IX Xref "POPpx"
.IX Item "POPpx"
Pops a string off the stack.  Identical to POPp.  There are two names for
historical reasons.
.RS 4
.Sp
.Vb 1
\& char*  POPpx
.Ve
.RE
.RS 4
.RE
.ie n .IP """POPs""" 4
.el .IP \f(CWPOPs\fR 4
.IX Xref "POPs"
.IX Item "POPs"
Pops an SV off the stack.
.RS 4
.Sp
.Vb 1
\& SV*  POPs
.Ve
.RE
.RS 4
.RE
.ie n .IP """POPu""" 4
.el .IP \f(CWPOPu\fR 4
.IX Xref "POPu"
.IX Item "POPu"
Pops an unsigned integer off the stack.
.RS 4
.Sp
.Vb 1
\& UV  POPu
.Ve
.RE
.RS 4
.RE
.ie n .IP """POPul""" 4
.el .IP \f(CWPOPul\fR 4
.IX Xref "POPul"
.IX Item "POPul"
Pops an unsigned long off the stack.
.RS 4
.Sp
.Vb 1
\& long  POPul
.Ve
.RE
.RS 4
.RE
.ie n .IP """PUSHi""" 4
.el .IP \f(CWPUSHi\fR 4
.IX Xref "PUSHi"
.IX Item "PUSHi"
Push an integer onto the stack.  The stack must have room for this element.
Handles 'set' magic.  Uses \f(CW\*(C`TARG\*(C'\fR, so \f(CW\*(C`dTARGET\*(C'\fR or \f(CW\*(C`dXSTARG\*(C'\fR should be
called to declare it.  Do not call multiple \f(CW\*(C`TARG\*(C'\fR\-oriented macros to 
return lists from XSUB's \- see \f(CW"mPUSHi"\fR instead.  See also \f(CW"XPUSHi"\fR
and \f(CW"mXPUSHi"\fR.
.RS 4
.Sp
.Vb 1
\& void  PUSHi(IV iv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PUSHMARK""" 4
.el .IP \f(CWPUSHMARK\fR 4
.IX Xref "PUSHMARK"
.IX Item "PUSHMARK"
Opening bracket for arguments on a callback.  See \f(CW"PUTBACK"\fR and
perlcall.
.RS 4
.Sp
.Vb 1
\& void  PUSHMARK(SP)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PUSHmortal""" 4
.el .IP \f(CWPUSHmortal\fR 4
.IX Xref "PUSHmortal"
.IX Item "PUSHmortal"
Push a new mortal SV onto the stack.  The stack must have room for this
element.  Does not use \f(CW\*(C`TARG\*(C'\fR.  See also \f(CW"PUSHs"\fR, \f(CW"XPUSHmortal"\fR and
\&\f(CW"XPUSHs"\fR.
.RS 4
.Sp
.Vb 1
\& void  PUSHmortal
.Ve
.RE
.RS 4
.RE
.ie n .IP """PUSHn""" 4
.el .IP \f(CWPUSHn\fR 4
.IX Xref "PUSHn"
.IX Item "PUSHn"
Push a double onto the stack.  The stack must have room for this element.
Handles 'set' magic.  Uses \f(CW\*(C`TARG\*(C'\fR, so \f(CW\*(C`dTARGET\*(C'\fR or \f(CW\*(C`dXSTARG\*(C'\fR should be
called to declare it.  Do not call multiple \f(CW\*(C`TARG\*(C'\fR\-oriented macros to
return lists from XSUB's \- see \f(CW"mPUSHn"\fR instead.  See also \f(CW"XPUSHn"\fR
and \f(CW"mXPUSHn"\fR.
.RS 4
.Sp
.Vb 1
\& void  PUSHn(NV nv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PUSHp""" 4
.el .IP \f(CWPUSHp\fR 4
.IX Xref "PUSHp"
.IX Item "PUSHp"
Push a string onto the stack.  The stack must have room for this element.
The \f(CW\*(C`len\*(C'\fR indicates the length of the string.  Handles 'set' magic.  Uses
\&\f(CW\*(C`TARG\*(C'\fR, so \f(CW\*(C`dTARGET\*(C'\fR or \f(CW\*(C`dXSTARG\*(C'\fR should be called to declare it.  Do not
call multiple \f(CW\*(C`TARG\*(C'\fR\-oriented macros to return lists from XSUB's \- see
\&\f(CW"mPUSHp"\fR instead.  See also \f(CW"XPUSHp"\fR and \f(CW"mXPUSHp"\fR.
.RS 4
.Sp
.Vb 1
\& void  PUSHp(char* str, STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PUSHpvs""" 4
.el .IP \f(CWPUSHpvs\fR 4
.IX Xref "PUSHpvs"
.IX Item "PUSHpvs"
A variation on \f(CW\*(C`PUSHp\*(C'\fR that takes a literal string and calculates its size
directly.
.RS 4
.Sp
.Vb 1
\& void  PUSHpvs("literal string")
.Ve
.RE
.RS 4
.RE
.ie n .IP """PUSHs""" 4
.el .IP \f(CWPUSHs\fR 4
.IX Xref "PUSHs"
.IX Item "PUSHs"
Push an SV onto the stack.  The stack must have room for this element.
Does not handle 'set' magic.  Does not use \f(CW\*(C`TARG\*(C'\fR.  See also
\&\f(CW"PUSHmortal"\fR, \f(CW"XPUSHs"\fR, and \f(CW"XPUSHmortal"\fR.
.RS 4
.Sp
.Vb 1
\& void  PUSHs(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PUSHu""" 4
.el .IP \f(CWPUSHu\fR 4
.IX Xref "PUSHu"
.IX Item "PUSHu"
Push an unsigned integer onto the stack.  The stack must have room for this
element.  Handles 'set' magic.  Uses \f(CW\*(C`TARG\*(C'\fR, so \f(CW\*(C`dTARGET\*(C'\fR or \f(CW\*(C`dXSTARG\*(C'\fR
should be called to declare it.  Do not call multiple \f(CW\*(C`TARG\*(C'\fR\-oriented
macros to return lists from XSUB's \- see \f(CW"mPUSHu"\fR instead.  See also
\&\f(CW"XPUSHu"\fR and \f(CW"mXPUSHu"\fR.
.RS 4
.Sp
.Vb 1
\& void  PUSHu(UV uv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PUTBACK""" 4
.el .IP \f(CWPUTBACK\fR 4
.IX Xref "PUTBACK"
.IX Item "PUTBACK"
Closing bracket for XSUB arguments.  This is usually handled by \f(CW\*(C`xsubpp\*(C'\fR.
See \f(CW"PUSHMARK"\fR and perlcall for other uses.
.RS 4
.Sp
.Vb 1
\&   PUTBACK;
.Ve
.RE
.RS 4
.RE
.ie n .IP """SAVEt_INT""" 4
.el .IP \f(CWSAVEt_INT\fR 4
.IX Item "SAVEt_INT"
Described in perlguts.
.ie n .IP """SP""" 4
.el .IP \f(CWSP\fR 4
.IX Xref "SP"
.IX Item "SP"
Stack pointer.  This is usually handled by \f(CW\*(C`xsubpp\*(C'\fR.  See \f(CW"dSP"\fR and
\&\f(CW\*(C`SPAGAIN\*(C'\fR.
.ie n .IP """SPAGAIN""" 4
.el .IP \f(CWSPAGAIN\fR 4
.IX Xref "SPAGAIN"
.IX Item "SPAGAIN"
Refetch the stack pointer.  Used after a callback.  See perlcall.
.RS 4
.Sp
.Vb 1
\&   SPAGAIN;
.Ve
.RE
.RS 4
.RE
.ie n .IP """SSNEW""" 4
.el .IP \f(CWSSNEW\fR 4
.IX Item "SSNEW"
.PD 0
.ie n .IP """SSNEWa""" 4
.el .IP \f(CWSSNEWa\fR 4
.IX Item "SSNEWa"
.ie n .IP """SSNEWat""" 4
.el .IP \f(CWSSNEWat\fR 4
.IX Item "SSNEWat"
.ie n .IP """SSNEWt""" 4
.el .IP \f(CWSSNEWt\fR 4
.IX Xref "SSNEW SSNEWa SSNEWat SSNEWt"
.IX Item "SSNEWt"
.PD
These temporarily allocates data on the savestack, returning an SSize_t index into
the savestack, because a pointer would get broken if the savestack is moved on
reallocation.  Use "\f(CW\*(C`SSPTR\*(C'\fR" to convert the returned index into a pointer.
.Sp
The forms differ in that plain \f(CW\*(C`SSNEW\*(C'\fR allocates \f(CW\*(C`size\*(C'\fR bytes;
\&\f(CW\*(C`SSNEWt\*(C'\fR and \f(CW\*(C`SSNEWat\*(C'\fR allocate \f(CW\*(C`size\*(C'\fR objects, each of which is type
\&\f(CW\*(C`type\*(C'\fR;
and <SSNEWa> and \f(CW\*(C`SSNEWat\*(C'\fR make sure to align the new data to an \f(CW\*(C`align\*(C'\fR
boundary.  The most useful value for the alignment is likely to be
"\f(CW\*(C`MEM_ALIGNBYTES\*(C'\fR".  The alignment will be preserved through savestack
reallocation \fBonly\fR if realloc returns data aligned to a size divisible by
"align"!
.RS 4
.Sp
.Vb 4
\& SSize_t  SSNEW  (Size_t size)
\& SSize_t  SSNEWa (Size_t_size, Size_t align)
\& SSize_t  SSNEWat(Size_t_size, type, Size_t align)
\& SSize_t  SSNEWt (Size_t size, type)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SSPTR""" 4
.el .IP \f(CWSSPTR\fR 4
.IX Item "SSPTR"
.PD 0
.ie n .IP """SSPTRt""" 4
.el .IP \f(CWSSPTRt\fR 4
.IX Xref "SSPTR SSPTRt"
.IX Item "SSPTRt"
.PD
These convert the \f(CW\*(C`index\*(C'\fR returned by L/<\f(CW\*(C`SSNEW\*(C'\fR> and kin into actual pointers.
.Sp
The difference is that \f(CW\*(C`SSPTR\*(C'\fR casts the result to \f(CW\*(C`type\*(C'\fR, and \f(CW\*(C`SSPTRt\*(C'\fR
casts it to a pointer of that \f(CW\*(C`type\*(C'\fR.
.RS 4
.Sp
.Vb 2
\& type    SSPTR (SSize_t index, type)
\& type *  SSPTRt(SSize_t index, type)
.Ve
.RE
.RS 4
.RE
.ie n .IP """TARG""" 4
.el .IP \f(CWTARG\fR 4
.IX Xref "TARG"
.IX Item "TARG"
\&\f(CW\*(C`TARG\*(C'\fR is short for "target".  It is an entry in the pad that an OPs
\&\f(CW\*(C`op_targ\*(C'\fR refers to.  It is scratchpad space, often used as a return
value for the OP, but some use it for other purposes.
.RS 4
.Sp
.Vb 1
\&   TARG;
.Ve
.RE
.RS 4
.RE
.ie n .IP """TOPs""" 4
.el .IP \f(CWTOPs\fR 4
.IX Item "TOPs"
Described in perlguts.
.ie n .IP """XPUSHi""" 4
.el .IP \f(CWXPUSHi\fR 4
.IX Xref "XPUSHi"
.IX Item "XPUSHi"
Push an integer onto the stack, extending the stack if necessary.  Handles
\&'set' magic.  Uses \f(CW\*(C`TARG\*(C'\fR, so \f(CW\*(C`dTARGET\*(C'\fR or \f(CW\*(C`dXSTARG\*(C'\fR should be called to
declare it.  Do not call multiple \f(CW\*(C`TARG\*(C'\fR\-oriented macros to return lists
from XSUB's \- see \f(CW"mXPUSHi"\fR instead.  See also \f(CW"PUSHi"\fR and
\&\f(CW"mPUSHi"\fR.
.RS 4
.Sp
.Vb 1
\& void  XPUSHi(IV iv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """XPUSHmortal""" 4
.el .IP \f(CWXPUSHmortal\fR 4
.IX Xref "XPUSHmortal"
.IX Item "XPUSHmortal"
Push a new mortal SV onto the stack, extending the stack if necessary.
Does not use \f(CW\*(C`TARG\*(C'\fR.  See also \f(CW"XPUSHs"\fR, \f(CW"PUSHmortal"\fR and
\&\f(CW"PUSHs"\fR.
.RS 4
.Sp
.Vb 1
\& void  XPUSHmortal
.Ve
.RE
.RS 4
.RE
.ie n .IP """XPUSHn""" 4
.el .IP \f(CWXPUSHn\fR 4
.IX Xref "XPUSHn"
.IX Item "XPUSHn"
Push a double onto the stack, extending the stack if necessary.  Handles
\&'set' magic.  Uses \f(CW\*(C`TARG\*(C'\fR, so \f(CW\*(C`dTARGET\*(C'\fR or \f(CW\*(C`dXSTARG\*(C'\fR should be called to
declare it.  Do not call multiple \f(CW\*(C`TARG\*(C'\fR\-oriented macros to return lists
from XSUB's \- see \f(CW"mXPUSHn"\fR instead.  See also \f(CW"PUSHn"\fR and
\&\f(CW"mPUSHn"\fR.
.RS 4
.Sp
.Vb 1
\& void  XPUSHn(NV nv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """XPUSHp""" 4
.el .IP \f(CWXPUSHp\fR 4
.IX Xref "XPUSHp"
.IX Item "XPUSHp"
Push a string onto the stack, extending the stack if necessary.  The \f(CW\*(C`len\*(C'\fR
indicates the length of the string.  Handles 'set' magic.  Uses \f(CW\*(C`TARG\*(C'\fR, so
\&\f(CW\*(C`dTARGET\*(C'\fR or \f(CW\*(C`dXSTARG\*(C'\fR should be called to declare it.  Do not call
multiple \f(CW\*(C`TARG\*(C'\fR\-oriented macros to return lists from XSUB's \- see
\&\f(CW"mXPUSHp"\fR instead.  See also \f(CW"PUSHp"\fR and \f(CW"mPUSHp"\fR.
.RS 4
.Sp
.Vb 1
\& void  XPUSHp(char* str, STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """XPUSHpvs""" 4
.el .IP \f(CWXPUSHpvs\fR 4
.IX Xref "XPUSHpvs"
.IX Item "XPUSHpvs"
A variation on \f(CW\*(C`XPUSHp\*(C'\fR that takes a literal string and calculates its size
directly.
.RS 4
.Sp
.Vb 1
\& void  XPUSHpvs("literal string")
.Ve
.RE
.RS 4
.RE
.ie n .IP """XPUSHs""" 4
.el .IP \f(CWXPUSHs\fR 4
.IX Xref "XPUSHs"
.IX Item "XPUSHs"
Push an SV onto the stack, extending the stack if necessary.  Does not
handle 'set' magic.  Does not use \f(CW\*(C`TARG\*(C'\fR.  See also \f(CW"XPUSHmortal"\fR,
\&\f(CW\*(C`PUSHs\*(C'\fR and \f(CW\*(C`PUSHmortal\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& void  XPUSHs(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """XPUSHu""" 4
.el .IP \f(CWXPUSHu\fR 4
.IX Xref "XPUSHu"
.IX Item "XPUSHu"
Push an unsigned integer onto the stack, extending the stack if necessary.
Handles 'set' magic.  Uses \f(CW\*(C`TARG\*(C'\fR, so \f(CW\*(C`dTARGET\*(C'\fR or \f(CW\*(C`dXSTARG\*(C'\fR should be
called to declare it.  Do not call multiple \f(CW\*(C`TARG\*(C'\fR\-oriented macros to
return lists from XSUB's \- see \f(CW"mXPUSHu"\fR instead.  See also \f(CW"PUSHu"\fR and
\&\f(CW"mPUSHu"\fR.
.RS 4
.Sp
.Vb 1
\& void  XPUSHu(UV uv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """XS_APIVERSION_BOOTCHECK""" 4
.el .IP \f(CWXS_APIVERSION_BOOTCHECK\fR 4
.IX Xref "XS_APIVERSION_BOOTCHECK"
.IX Item "XS_APIVERSION_BOOTCHECK"
Macro to verify that the perl api version an XS module has been compiled against
matches the api version of the perl interpreter it's being loaded into.
.RS 4
.Sp
.Vb 1
\&   XS_APIVERSION_BOOTCHECK;
.Ve
.RE
.RS 4
.RE
.ie n .IP """XSRETURN""" 4
.el .IP \f(CWXSRETURN\fR 4
.IX Xref "XSRETURN"
.IX Item "XSRETURN"
Return from XSUB, indicating number of items on the stack.  This is usually
handled by \f(CW\*(C`xsubpp\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& void  XSRETURN(int nitems)
.Ve
.RE
.RS 4
.RE
.ie n .IP """XSRETURN_EMPTY""" 4
.el .IP \f(CWXSRETURN_EMPTY\fR 4
.IX Xref "XSRETURN_EMPTY"
.IX Item "XSRETURN_EMPTY"
Return an empty list from an XSUB immediately.
.RS 4
.Sp
.Vb 1
\&   XSRETURN_EMPTY;
.Ve
.RE
.RS 4
.RE
.ie n .IP """XSRETURN_IV""" 4
.el .IP \f(CWXSRETURN_IV\fR 4
.IX Xref "XSRETURN_IV"
.IX Item "XSRETURN_IV"
Return an integer from an XSUB immediately.  Uses \f(CW\*(C`XST_mIV\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& void  XSRETURN_IV(IV iv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """XSRETURN_NO""" 4
.el .IP \f(CWXSRETURN_NO\fR 4
.IX Xref "XSRETURN_NO"
.IX Item "XSRETURN_NO"
Return \f(CW&PL_sv_no\fR from an XSUB immediately.  Uses \f(CW\*(C`XST_mNO\*(C'\fR.
.RS 4
.Sp
.Vb 1
\&   XSRETURN_NO;
.Ve
.RE
.RS 4
.RE
.ie n .IP """XSRETURN_NV""" 4
.el .IP \f(CWXSRETURN_NV\fR 4
.IX Xref "XSRETURN_NV"
.IX Item "XSRETURN_NV"
Return a double from an XSUB immediately.  Uses \f(CW\*(C`XST_mNV\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& void  XSRETURN_NV(NV nv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """XSRETURN_PV""" 4
.el .IP \f(CWXSRETURN_PV\fR 4
.IX Xref "XSRETURN_PV"
.IX Item "XSRETURN_PV"
Return a copy of a string from an XSUB immediately.  Uses \f(CW\*(C`XST_mPV\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& void  XSRETURN_PV(char* str)
.Ve
.RE
.RS 4
.RE
.ie n .IP """XSRETURN_UNDEF""" 4
.el .IP \f(CWXSRETURN_UNDEF\fR 4
.IX Xref "XSRETURN_UNDEF"
.IX Item "XSRETURN_UNDEF"
Return \f(CW&PL_sv_undef\fR from an XSUB immediately.  Uses \f(CW\*(C`XST_mUNDEF\*(C'\fR.
.RS 4
.Sp
.Vb 1
\&   XSRETURN_UNDEF;
.Ve
.RE
.RS 4
.RE
.ie n .IP """XSRETURN_UV""" 4
.el .IP \f(CWXSRETURN_UV\fR 4
.IX Xref "XSRETURN_UV"
.IX Item "XSRETURN_UV"
Return an integer from an XSUB immediately.  Uses \f(CW\*(C`XST_mUV\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& void  XSRETURN_UV(IV uv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """XSRETURN_YES""" 4
.el .IP \f(CWXSRETURN_YES\fR 4
.IX Xref "XSRETURN_YES"
.IX Item "XSRETURN_YES"
Return \f(CW&PL_sv_yes\fR from an XSUB immediately.  Uses \f(CW\*(C`XST_mYES\*(C'\fR.
.RS 4
.Sp
.Vb 1
\&   XSRETURN_YES;
.Ve
.RE
.RS 4
.RE
.ie n .IP """XST_mIV""" 4
.el .IP \f(CWXST_mIV\fR 4
.IX Xref "XST_mIV"
.IX Item "XST_mIV"
Place an integer into the specified position \f(CW\*(C`pos\*(C'\fR on the stack.  The
value is stored in a new mortal SV.
.RS 4
.Sp
.Vb 1
\& void  XST_mIV(int pos, IV iv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """XST_mNO""" 4
.el .IP \f(CWXST_mNO\fR 4
.IX Xref "XST_mNO"
.IX Item "XST_mNO"
Place \f(CW&PL_sv_no\fR into the specified position \f(CW\*(C`pos\*(C'\fR on the
stack.
.RS 4
.Sp
.Vb 1
\& void  XST_mNO(int pos)
.Ve
.RE
.RS 4
.RE
.ie n .IP """XST_mNV""" 4
.el .IP \f(CWXST_mNV\fR 4
.IX Xref "XST_mNV"
.IX Item "XST_mNV"
Place a double into the specified position \f(CW\*(C`pos\*(C'\fR on the stack.  The value
is stored in a new mortal SV.
.RS 4
.Sp
.Vb 1
\& void  XST_mNV(int pos, NV nv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """XST_mPV""" 4
.el .IP \f(CWXST_mPV\fR 4
.IX Xref "XST_mPV"
.IX Item "XST_mPV"
Place a copy of a string into the specified position \f(CW\*(C`pos\*(C'\fR on the stack.
The value is stored in a new mortal SV.
.RS 4
.Sp
.Vb 1
\& void  XST_mPV(int pos, char* str)
.Ve
.RE
.RS 4
.RE
.ie n .IP """XST_mUNDEF""" 4
.el .IP \f(CWXST_mUNDEF\fR 4
.IX Xref "XST_mUNDEF"
.IX Item "XST_mUNDEF"
Place \f(CW&PL_sv_undef\fR into the specified position \f(CW\*(C`pos\*(C'\fR on the
stack.
.RS 4
.Sp
.Vb 1
\& void  XST_mUNDEF(int pos)
.Ve
.RE
.RS 4
.RE
.ie n .IP """XST_mUV""" 4
.el .IP \f(CWXST_mUV\fR 4
.IX Xref "XST_mUV"
.IX Item "XST_mUV"
Place an unsigned integer into the specified position \f(CW\*(C`pos\*(C'\fR on the stack.  The
value is stored in a new mortal SV.
.RS 4
.Sp
.Vb 1
\& void  XST_mUV(int pos, UV uv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """XST_mYES""" 4
.el .IP \f(CWXST_mYES\fR 4
.IX Xref "XST_mYES"
.IX Item "XST_mYES"
Place \f(CW&PL_sv_yes\fR into the specified position \f(CW\*(C`pos\*(C'\fR on the
stack.
.RS 4
.Sp
.Vb 1
\& void  XST_mYES(int pos)
.Ve
.RE
.RS 4
.RE
.ie n .IP """XS_VERSION""" 4
.el .IP \f(CWXS_VERSION\fR 4
.IX Xref "XS_VERSION"
.IX Item "XS_VERSION"
The version identifier for an XS module.  This is usually
handled automatically by \f(CW\*(C`ExtUtils::MakeMaker\*(C'\fR.  See
\&\f(CW"XS_VERSION_BOOTCHECK"\fR.
.ie n .IP """XS_VERSION_BOOTCHECK""" 4
.el .IP \f(CWXS_VERSION_BOOTCHECK\fR 4
.IX Xref "XS_VERSION_BOOTCHECK"
.IX Item "XS_VERSION_BOOTCHECK"
Macro to verify that a PM module's \f(CW$VERSION\fR variable matches the XS
module's \f(CW\*(C`XS_VERSION\*(C'\fR variable.  This is usually handled automatically by
\&\f(CW\*(C`xsubpp\*(C'\fR.  See "The VERSIONCHECK: Keyword" in perlxs.
.RS 4
.Sp
.Vb 1
\&   XS_VERSION_BOOTCHECK;
.Ve
.RE
.RS 4
.RE
.SH "String Handling"
.IX Header "String Handling"
See also \f(CW"Unicode Support"\fR.
.ie n .IP """CAT2""" 4
.el .IP \f(CWCAT2\fR 4
.IX Xref "CAT2"
.IX Item "CAT2"
This macro concatenates 2 tokens together.
.RS 4
.Sp
.Vb 1
\& token  CAT2(token x, token y)
.Ve
.RE
.RS 4
.RE
.ie n .IP """Copy""" 4
.el .IP \f(CWCopy\fR 4
.IX Item "Copy"
.PD 0
.ie n .IP """CopyD""" 4
.el .IP \f(CWCopyD\fR 4
.IX Xref "Copy CopyD"
.IX Item "CopyD"
.PD
The XSUB-writer's interface to the C \f(CW\*(C`memcpy\*(C'\fR function.  The \f(CW\*(C`src\*(C'\fR is the
source, \f(CW\*(C`dest\*(C'\fR is the destination, \f(CW\*(C`nitems\*(C'\fR is the number of items, and
\&\f(CW\*(C`type\*(C'\fR is the type.  May fail on overlapping copies.  See also \f(CW"Move"\fR.
.Sp
\&\f(CW\*(C`CopyD\*(C'\fR is like \f(CW\*(C`Copy\*(C'\fR but returns \f(CW\*(C`dest\*(C'\fR.  Useful
for encouraging compilers to tail-call
optimise.
.RS 4
.Sp
.Vb 2
\& void    Copy (void* src, void* dest, int nitems, type)
\& void *  CopyD(void* src, void* dest, int nitems, type)
.Ve
.RE
.RS 4
.RE
.ie n .IP """delimcpy""" 4
.el .IP \f(CWdelimcpy\fR 4
.IX Xref "delimcpy"
.IX Item "delimcpy"
Copy a source buffer to a destination buffer, stopping at (but not including)
the first occurrence in the source of an unescaped (defined below) delimiter
byte, \f(CW\*(C`delim\*(C'\fR.  The source is the bytes between \f(CW\*(C`from\*(C'\fR\ and\ \f(CW\*(C`from_end\*(C'\fR\ \-\ 1.  Similarly, the dest is \f(CW\*(C`to\*(C'\fR up to \f(CW\*(C`to_end\*(C'\fR.
.Sp
The number of bytes copied is written to \f(CW*retlen\fR.
.Sp
Returns the position of the first uncopied \f(CW\*(C`delim\*(C'\fR in the \f(CW\*(C`from\*(C'\fR buffer, but
if there is no such occurrence before \f(CW\*(C`from_end\*(C'\fR, then \f(CW\*(C`from_end\*(C'\fR is returned,
and the entire buffer \f(CW\*(C`from\*(C'\fR\ ..\ \f(CW\*(C`from_end\*(C'\fR\ \-\ 1 is copied.
.Sp
If there is room in the destination available after the copy, an extra
terminating safety \f(CW\*(C`NUL\*(C'\fR byte is appended (not included in the returned
length).
.Sp
The error case is if the destination buffer is not large enough to accommodate
everything that should be copied.  In this situation, a value larger than
\&\f(CW\*(C`to_end\*(C'\fR\ \-\ \f(CW\*(C`to\*(C'\fR is written to \f(CW*retlen\fR, and as much of the source as
fits will be written to the destination.  Not having room for the safety \f(CW\*(C`NUL\*(C'\fR
is not considered an error.
.Sp
In the following examples, let \f(CW\*(C`x\*(C'\fR be the delimiter, and \f(CW0\fR represent a \f(CW\*(C`NUL\*(C'\fR
byte (\fBNOT\fR the digit \f(CW0\fR).  Then we would have
.Sp
.Vb 2
\&  Source     Destination
\& abcxdef        abc0
.Ve
.Sp
provided the destination buffer is at least 4 bytes long.
.Sp
An escaped delimiter is one which is immediately preceded by a single
backslash.  Escaped delimiters are copied, and the copy continues past the
delimiter; the backslash is not copied:
.Sp
.Vb 2
\&  Source       Destination
\& abc\exdef       abcxdef0
.Ve
.Sp
(provided the destination buffer is at least 8 bytes long).
.Sp
It's actually somewhat more complicated than that. A sequence of any odd number
of backslashes escapes the following delimiter, and the copy continues with
exactly one of the backslashes stripped.
.Sp
.Vb 4
\&     Source         Destination
\&     abc\exdef          abcxdef0
\&   abc\e\e\exdef        abc\e\exdef0
\& abc\e\e\e\e\exdef      abc\e\e\e\exdef0
.Ve
.Sp
(as always, if the destination is large enough)
.Sp
An even number of preceding backslashes does not escape the delimiter, so that
the copy stops just before it, and includes all the backslashes (no stripping;
zero is considered even):
.Sp
.Vb 4
\&      Source         Destination
\&      abcxdef          abc0
\&    abc\e\exdef          abc\e\e0
\&  abc\e\e\e\exdef          abc\e\e\e\e0
.Ve
.RS 4
.Sp
.Vb 3
\& char *  delimcpy(char *to, const char *to_end, const char *from,
\&                  const char *from_end, const int delim,
\&                  I32 *retlen)
.Ve
.RE
.RS 4
.RE
.ie n .IP """do_join""" 4
.el .IP \f(CWdo_join\fR 4
.IX Xref "do_join"
.IX Item "do_join"
This performs a Perl \f(CW\*(C`join\*(C'\fR, placing the joined output
into \f(CW\*(C`sv\*(C'\fR.
.Sp
The elements to join are in SVs, stored in a C array of pointers to SVs, from
\&\f(CW**mark\fR to \f(CW\*(C`**sp\ \-\ 1\*(C'\fR.  Hence \f(CW*mark\fR is a reference to the first SV.
Each SV will be coerced into a PV if not one already.
.Sp
\&\f(CW\*(C`delim\*(C'\fR contains the string (or coerced into a string) that is to separate
each of the joined elements.
.Sp
If any component is in UTF\-8, the result will be as well, and all non\-UTF\-8
components will be converted to UTF\-8 as necessary.
.Sp
Magic and tainting are handled.
.RS 4
.Sp
.Vb 1
\& void  do_join(SV *sv, SV *delim, SV **mark, SV **sp)
.Ve
.RE
.RS 4
.RE
.ie n .IP """do_sprintf""" 4
.el .IP \f(CWdo_sprintf\fR 4
.IX Xref "do_sprintf"
.IX Item "do_sprintf"
This performs a Perl \f(CW\*(C`sprintf\*(C'\fR placing the string output
into \f(CW\*(C`sv\*(C'\fR.
.Sp
The elements to format are in SVs, stored in a C array of pointers to SVs of
length \f(CW\*(C`len\*(C'\fR> and beginning at \f(CW**sarg\fR.  The element referenced by \f(CW*sarg\fR
is the format.
.Sp
Magic and tainting are handled.
.RS 4
.Sp
.Vb 1
\& void  do_sprintf(SV *sv, SSize_t len, SV **sarg)
.Ve
.RE
.RS 4
.RE
.ie n .IP """fbm_compile""" 4
.el .IP \f(CWfbm_compile\fR 4
.IX Xref "fbm_compile"
.IX Item "fbm_compile"
Analyzes the string in order to make fast searches on it using \f(CWfbm_instr()\fR
\&\-\- the Boyer-Moore algorithm.
.RS 4
.Sp
.Vb 1
\& void  fbm_compile(SV *sv, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """fbm_instr""" 4
.el .IP \f(CWfbm_instr\fR 4
.IX Xref "fbm_instr"
.IX Item "fbm_instr"
Returns the location of the SV in the string delimited by \f(CW\*(C`big\*(C'\fR and
\&\f(CW\*(C`bigend\*(C'\fR (\f(CW\*(C`bigend\*(C'\fR) is the char following the last char).
It returns \f(CW\*(C`NULL\*(C'\fR if the string can't be found.  The \f(CW\*(C`sv\*(C'\fR
does not have to be \f(CW\*(C`fbm_compiled\*(C'\fR, but the search will not be as fast
then.
.RS 4
.Sp
.Vb 2
\& char *  fbm_instr(unsigned char *big, unsigned char *bigend,
\&                   SV *littlestr, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """foldEQ""" 4
.el .IP \f(CWfoldEQ\fR 4
.IX Xref "foldEQ"
.IX Item "foldEQ"
Returns true if the leading \f(CW\*(C`len\*(C'\fR bytes of the strings \f(CW\*(C`s1\*(C'\fR and \f(CW\*(C`s2\*(C'\fR are the
same
case-insensitively; false otherwise.  Uppercase and lowercase ASCII range bytes
match themselves and their opposite case counterparts.  Non-cased and non-ASCII
range bytes match only themselves.
.RS 4
.Sp
.Vb 1
\& I32  foldEQ(const char *a, const char *b, I32 len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """ibcmp""" 4
.el .IP \f(CWibcmp\fR 4
.IX Xref "ibcmp"
.IX Item "ibcmp"
This is a synonym for \f(CW\*(C`(!\ foldEQ())\*(C'\fR
.RS 4
.Sp
.Vb 1
\& I32  ibcmp(const char *a, const char *b, I32 len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """ibcmp_locale""" 4
.el .IP \f(CWibcmp_locale\fR 4
.IX Xref "ibcmp_locale"
.IX Item "ibcmp_locale"
This is a synonym for \f(CW\*(C`(!\ foldEQ_locale())\*(C'\fR
.RS 4
.Sp
.Vb 1
\& I32  ibcmp_locale(const char *a, const char *b, I32 len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """ibcmp_utf8""" 4
.el .IP \f(CWibcmp_utf8\fR 4
.IX Xref "ibcmp_utf8"
.IX Item "ibcmp_utf8"
This is a synonym for \f(CW\*(C`(!\ foldEQ_utf8())\*(C'\fR
.RS 4
.Sp
.Vb 2
\& I32  ibcmp_utf8(const char *s1, char **pe1, UV l1, bool u1,
\&                 const char *s2, char **pe2, UV l2, bool u2)
.Ve
.RE
.RS 4
.RE
.ie n .IP """instr""" 4
.el .IP \f(CWinstr\fR 4
.IX Xref "instr"
.IX Item "instr"
Same as \fBstrstr\fR\|(3), which finds and returns a pointer to the first occurrence
of the NUL-terminated substring \f(CW\*(C`little\*(C'\fR in the NUL-terminated string \f(CW\*(C`big\*(C'\fR,
returning NULL if not found.  The terminating NUL bytes are not compared.
.RS 4
.Sp
.Vb 1
\& char *  instr(const char *big, const char *little)
.Ve
.RE
.RS 4
.RE
.ie n .IP """memCHRs""" 4
.el .IP \f(CWmemCHRs\fR 4
.IX Xref "memCHRs"
.IX Item "memCHRs"
Returns the position of the first occurrence of the byte \f(CW\*(C`c\*(C'\fR in the literal
string \f(CW"list"\fR, or NULL if \f(CW\*(C`c\*(C'\fR doesn't appear in \f(CW"list"\fR.  All bytes are
treated as unsigned char.  Thus this macro can be used to determine if \f(CW\*(C`c\*(C'\fR is
in a set of particular characters.  Unlike \fBstrchr\fR\|(3), it works even if \f(CW\*(C`c\*(C'\fR
is \f(CW\*(C`NUL\*(C'\fR (and the set doesn't include \f(CW\*(C`NUL\*(C'\fR).
.RS 4
.Sp
.Vb 1
\& bool  memCHRs("list", char c)
.Ve
.RE
.RS 4
.RE
.ie n .IP """memEQ""" 4
.el .IP \f(CWmemEQ\fR 4
.IX Xref "memEQ"
.IX Item "memEQ"
Test two buffers (which may contain embedded \f(CW\*(C`NUL\*(C'\fR characters, to see if they
are equal.  The \f(CW\*(C`len\*(C'\fR parameter indicates the number of bytes to compare.
Returns true or false.  It is undefined behavior if either of the buffers
doesn't contain at least \f(CW\*(C`len\*(C'\fR bytes.
.RS 4
.Sp
.Vb 1
\& bool  memEQ(char* s1, char* s2, STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """memEQs""" 4
.el .IP \f(CWmemEQs\fR 4
.IX Xref "memEQs"
.IX Item "memEQs"
Like "memEQ", but the second string is a literal enclosed in double quotes,
\&\f(CW\*(C`l1\*(C'\fR gives the number of bytes in \f(CW\*(C`s1\*(C'\fR.
Returns true or false.
.RS 4
.Sp
.Vb 1
\& bool  memEQs(char* s1, STRLEN l1, "s2")
.Ve
.RE
.RS 4
.RE
.ie n .IP """memNE""" 4
.el .IP \f(CWmemNE\fR 4
.IX Xref "memNE"
.IX Item "memNE"
Test two buffers (which may contain embedded \f(CW\*(C`NUL\*(C'\fR characters, to see if they
are not equal.  The \f(CW\*(C`len\*(C'\fR parameter indicates the number of bytes to compare.
Returns true or false.  It is undefined behavior if either of the buffers
doesn't contain at least \f(CW\*(C`len\*(C'\fR bytes.
.RS 4
.Sp
.Vb 1
\& bool  memNE(char* s1, char* s2, STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """memNEs""" 4
.el .IP \f(CWmemNEs\fR 4
.IX Xref "memNEs"
.IX Item "memNEs"
Like "memNE", but the second string is a literal enclosed in double quotes,
\&\f(CW\*(C`l1\*(C'\fR gives the number of bytes in \f(CW\*(C`s1\*(C'\fR.
Returns true or false.
.RS 4
.Sp
.Vb 1
\& bool  memNEs(char* s1, STRLEN l1, "s2")
.Ve
.RE
.RS 4
.RE
.ie n .IP """Move""" 4
.el .IP \f(CWMove\fR 4
.IX Item "Move"
.PD 0
.ie n .IP """MoveD""" 4
.el .IP \f(CWMoveD\fR 4
.IX Xref "Move MoveD"
.IX Item "MoveD"
.PD
The XSUB-writer's interface to the C \f(CW\*(C`memmove\*(C'\fR function.  The \f(CW\*(C`src\*(C'\fR is the
source, \f(CW\*(C`dest\*(C'\fR is the destination, \f(CW\*(C`nitems\*(C'\fR is the number of items, and
\&\f(CW\*(C`type\*(C'\fR is the type.  Can do overlapping moves.  See also \f(CW"Copy"\fR.
.Sp
\&\f(CW\*(C`MoveD\*(C'\fR is like \f(CW\*(C`Move\*(C'\fR but returns \f(CW\*(C`dest\*(C'\fR.  Useful
for encouraging compilers to tail-call
optimise.
.RS 4
.Sp
.Vb 2
\& void    Move (void* src, void* dest, int nitems, type)
\& void *  MoveD(void* src, void* dest, int nitems, type)
.Ve
.RE
.RS 4
.RE
.ie n .IP """my_snprintf""" 4
.el .IP \f(CWmy_snprintf\fR 4
.IX Xref "my_snprintf"
.IX Item "my_snprintf"
The C library \f(CW\*(C`snprintf\*(C'\fR functionality, if available and
standards-compliant (uses \f(CW\*(C`vsnprintf\*(C'\fR, actually).  However, if the
\&\f(CW\*(C`vsnprintf\*(C'\fR is not available, will unfortunately use the unsafe
\&\f(CW\*(C`vsprintf\*(C'\fR which can overrun the buffer (there is an overrun check,
but that may be too late).  Consider using \f(CW\*(C`sv_vcatpvf\*(C'\fR instead, or
getting \f(CW\*(C`vsnprintf\*(C'\fR.
.RS 4
.Sp
.Vb 2
\& int  my_snprintf(char *buffer, const Size_t len,
\&                  const char *format, ...)
.Ve
.RE
.RS 4
.RE
.ie n .IP """my_sprintf""" 4
.el .IP \f(CWmy_sprintf\fR 4
.IX Xref "my_sprintf"
.IX Item "my_sprintf"
\&\f(CW\*(C`\fR\f(CBDEPRECATED!\fR\f(CW\*(C'\fR  It is planned to remove \f(CW\*(C`my_sprintf\*(C'\fR
from a future release of Perl.  Do not use it for
new code; remove it from existing code.
.Sp
Do NOT use this due to the possibility of overflowing \f(CW\*(C`buffer\*(C'\fR.  Instead use
\&\fBmy_snprintf()\fR
.RS 4
.Sp
.Vb 1
\& int  my_sprintf(NN char *buffer, NN const char *pat, ...)
.Ve
.RE
.RS 4
.RE
.ie n .IP """my_strnlen""" 4
.el .IP \f(CWmy_strnlen\fR 4
.IX Xref "my_strnlen"
.IX Item "my_strnlen"
The C library \f(CW\*(C`strnlen\*(C'\fR if available, or a Perl implementation of it.
.Sp
\&\f(CWmy_strnlen()\fR computes the length of the string, up to \f(CW\*(C`maxlen\*(C'\fR
characters.  It will never attempt to address more than \f(CW\*(C`maxlen\*(C'\fR
characters, making it suitable for use with strings that are not
guaranteed to be NUL-terminated.
.RS 4
.Sp
.Vb 1
\& Size_t  my_strnlen(const char *str, Size_t maxlen)
.Ve
.RE
.RS 4
.RE
.ie n .IP """my_vsnprintf""" 4
.el .IP \f(CWmy_vsnprintf\fR 4
.IX Xref "my_vsnprintf"
.IX Item "my_vsnprintf"
The C library \f(CW\*(C`vsnprintf\*(C'\fR if available and standards-compliant.
However, if the \f(CW\*(C`vsnprintf\*(C'\fR is not available, will unfortunately
use the unsafe \f(CW\*(C`vsprintf\*(C'\fR which can overrun the buffer (there is an
overrun check, but that may be too late).  Consider using
\&\f(CW\*(C`sv_vcatpvf\*(C'\fR instead, or getting \f(CW\*(C`vsnprintf\*(C'\fR.
.RS 4
.Sp
.Vb 2
\& int  my_vsnprintf(char *buffer, const Size_t len,
\&                   const char *format, va_list ap)
.Ve
.RE
.RS 4
.RE
.ie n .IP """NewCopy""" 4
.el .IP \f(CWNewCopy\fR 4
.IX Xref "NewCopy"
.IX Item "NewCopy"
Combines \fBNewx()\fR and \fBCopy()\fR into a single macro. Dest will be allocated
using \fBNewx()\fR and then src will be copied into it.
.RS 4
.Sp
.Vb 1
\& void  NewCopy(void* src, void* dest, int nitems, type)
.Ve
.RE
.RS 4
.RE
.ie n .IP """ninstr""" 4
.el .IP \f(CWninstr\fR 4
.IX Xref "ninstr"
.IX Item "ninstr"
Find the first (leftmost) occurrence of a sequence of bytes within another
sequence.  This is the Perl version of \f(CWstrstr()\fR, extended to handle
arbitrary sequences, potentially containing embedded \f(CW\*(C`NUL\*(C'\fR characters (\f(CW\*(C`NUL\*(C'\fR
is what the initial \f(CW\*(C`n\*(C'\fR in the function name stands for; some systems have an
equivalent, \f(CWmemmem()\fR, but with a somewhat different API).
.Sp
Another way of thinking about this function is finding a needle in a haystack.
\&\f(CW\*(C`big\*(C'\fR points to the first byte in the haystack.  \f(CW\*(C`big_end\*(C'\fR points to one byte
beyond the final byte in the haystack.  \f(CW\*(C`little\*(C'\fR points to the first byte in
the needle.  \f(CW\*(C`little_end\*(C'\fR points to one byte beyond the final byte in the
needle.  All the parameters must be non\-\f(CW\*(C`NULL\*(C'\fR.
.Sp
The function returns \f(CW\*(C`NULL\*(C'\fR if there is no occurrence of \f(CW\*(C`little\*(C'\fR within
\&\f(CW\*(C`big\*(C'\fR.  If \f(CW\*(C`little\*(C'\fR is the empty string, \f(CW\*(C`big\*(C'\fR is returned.
.Sp
Because this function operates at the byte level, and because of the inherent
characteristics of UTF\-8 (or UTF-EBCDIC), it will work properly if both the
needle and the haystack are strings with the same UTF\-8ness, but not if the
UTF\-8ness differs.
.RS 4
.Sp
.Vb 2
\& char *  ninstr(const char *big, const char *bigend,
\&                const char *little, const char *lend)
.Ve
.RE
.RS 4
.RE
.ie n .IP """Nullch""" 4
.el .IP \f(CWNullch\fR 4
.IX Xref "Nullch"
.IX Item "Nullch"
Null character pointer.  (No longer available when \f(CW\*(C`PERL_CORE\*(C'\fR is
defined.)
.ie n .IP """PL_na""" 4
.el .IP \f(CWPL_na\fR 4
.IX Xref "PL_na"
.IX Item "PL_na"
A scratch pad variable in which to store a \f(CW\*(C`STRLEN\*(C'\fR value.  If would have been
better named something like \f(CW\*(C`PL_temp_strlen\*(C'\fR.
.Sp
It is is typically used with \f(CW\*(C`SvPV\*(C'\fR when one is actually planning to discard
the returned length, (hence the length is "Not Applicable", which is how this
variable got its name).
.Sp
\&\fBBUT BEWARE\fR, if this is used in a situation where something that is using it
is in a call stack with something else that is using it, this variable would
get zapped, leading to hard-to-diagnose errors.
.Sp
It is usually more efficient to either declare a local variable and use that
instead, or to use the \f(CW\*(C`SvPV_nolen\*(C'\fR macro.
.RS 4
.Sp
.Vb 1
\& STRLEN  PL_na
.Ve
.RE
.RS 4
.RE
.ie n .IP """rninstr""" 4
.el .IP \f(CWrninstr\fR 4
.IX Xref "rninstr"
.IX Item "rninstr"
Like \f(CW"ninstr"\fR, but instead finds the final (rightmost) occurrence of a
sequence of bytes within another sequence, returning \f(CW\*(C`NULL\*(C'\fR if there is no
such occurrence.
.RS 4
.Sp
.Vb 2
\& char *  rninstr(const char *big, const char *bigend,
\&                 const char *little, const char *lend)
.Ve
.RE
.RS 4
.RE
.ie n .IP """savepv""" 4
.el .IP \f(CWsavepv\fR 4
.IX Xref "savepv"
.IX Item "savepv"
Perl's version of \f(CWstrdup()\fR.  Returns a pointer to a newly allocated
string which is a duplicate of \f(CW\*(C`pv\*(C'\fR.  The size of the string is
determined by \f(CWstrlen()\fR, which means it may not contain embedded \f(CW\*(C`NUL\*(C'\fR
characters and must have a trailing \f(CW\*(C`NUL\*(C'\fR.  To prevent memory leaks, the
memory allocated for the new string needs to be freed when no longer needed.
This can be done with the \f(CW"Safefree"\fR function, or
\&\f(CW\*(C`SAVEFREEPV\*(C'\fR.
.Sp
On some platforms, Windows for example, all allocated memory owned by a thread
is deallocated when that thread ends.  So if you need that not to happen, you
need to use the shared memory functions, such as \f(CW"savesharedpv"\fR.
.RS 4
.Sp
.Vb 1
\& char *  savepv(const char *pv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """savepvn""" 4
.el .IP \f(CWsavepvn\fR 4
.IX Xref "savepvn"
.IX Item "savepvn"
Perl's version of what \f(CWstrndup()\fR would be if it existed.  Returns a
pointer to a newly allocated string which is a duplicate of the first
\&\f(CW\*(C`len\*(C'\fR bytes from \f(CW\*(C`pv\*(C'\fR, plus a trailing
\&\f(CW\*(C`NUL\*(C'\fR byte.  The memory allocated for
the new string can be freed with the \f(CWSafefree()\fR function.
.Sp
On some platforms, Windows for example, all allocated memory owned by a thread
is deallocated when that thread ends.  So if you need that not to happen, you
need to use the shared memory functions, such as \f(CW"savesharedpvn"\fR.
.RS 4
.Sp
.Vb 1
\& char *  savepvn(const char *pv, Size_t len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """savepvs""" 4
.el .IP \f(CWsavepvs\fR 4
.IX Xref "savepvs"
.IX Item "savepvs"
Like \f(CW\*(C`savepvn\*(C'\fR, but takes a literal string instead of a
string/length pair.
.RS 4
.Sp
.Vb 1
\& char*  savepvs("literal string")
.Ve
.RE
.RS 4
.RE
.ie n .IP """savesharedpv""" 4
.el .IP \f(CWsavesharedpv\fR 4
.IX Xref "savesharedpv"
.IX Item "savesharedpv"
A version of \f(CWsavepv()\fR which allocates the duplicate string in memory
which is shared between threads.
.RS 4
.Sp
.Vb 1
\& char *  savesharedpv(const char *pv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """savesharedpvn""" 4
.el .IP \f(CWsavesharedpvn\fR 4
.IX Xref "savesharedpvn"
.IX Item "savesharedpvn"
A version of \f(CWsavepvn()\fR which allocates the duplicate string in memory
which is shared between threads.  (With the specific difference that a \f(CW\*(C`NULL\*(C'\fR
pointer is not acceptable)
.RS 4
.Sp
.Vb 1
\& char *  savesharedpvn(const char * const pv, const STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """savesharedpvs""" 4
.el .IP \f(CWsavesharedpvs\fR 4
.IX Xref "savesharedpvs"
.IX Item "savesharedpvs"
A version of \f(CWsavepvs()\fR which allocates the duplicate string in memory
which is shared between threads.
.RS 4
.Sp
.Vb 1
\& char*  savesharedpvs("literal string")
.Ve
.RE
.RS 4
.RE
.ie n .IP """savesharedsvpv""" 4
.el .IP \f(CWsavesharedsvpv\fR 4
.IX Xref "savesharedsvpv"
.IX Item "savesharedsvpv"
A version of \f(CWsavesharedpv()\fR which allocates the duplicate string in
memory which is shared between threads.
.RS 4
.Sp
.Vb 1
\& char *  savesharedsvpv(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """savesvpv""" 4
.el .IP \f(CWsavesvpv\fR 4
.IX Xref "savesvpv"
.IX Item "savesvpv"
A version of \f(CWsavepv()\fR/\f(CWsavepvn()\fR which gets the string to duplicate from
the passed in SV using \f(CWSvPV()\fR
.Sp
On some platforms, Windows for example, all allocated memory owned by a thread
is deallocated when that thread ends.  So if you need that not to happen, you
need to use the shared memory functions, such as \f(CW"savesharedsvpv"\fR.
.RS 4
.Sp
.Vb 1
\& char *  savesvpv(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """strEQ""" 4
.el .IP \f(CWstrEQ\fR 4
.IX Xref "strEQ"
.IX Item "strEQ"
Test two \f(CW\*(C`NUL\*(C'\fR\-terminated strings to see if they are equal.  Returns true or
false.
.RS 4
.Sp
.Vb 1
\& bool  strEQ(char* s1, char* s2)
.Ve
.RE
.RS 4
.RE
.ie n .IP """strGE""" 4
.el .IP \f(CWstrGE\fR 4
.IX Xref "strGE"
.IX Item "strGE"
Test two \f(CW\*(C`NUL\*(C'\fR\-terminated strings to see if the first, \f(CW\*(C`s1\*(C'\fR, is greater than
or equal to the second, \f(CW\*(C`s2\*(C'\fR.  Returns true or false.
.RS 4
.Sp
.Vb 1
\& bool  strGE(char* s1, char* s2)
.Ve
.RE
.RS 4
.RE
.ie n .IP """strGT""" 4
.el .IP \f(CWstrGT\fR 4
.IX Xref "strGT"
.IX Item "strGT"
Test two \f(CW\*(C`NUL\*(C'\fR\-terminated strings to see if the first, \f(CW\*(C`s1\*(C'\fR, is greater than
the second, \f(CW\*(C`s2\*(C'\fR.  Returns true or false.
.RS 4
.Sp
.Vb 1
\& bool  strGT(char* s1, char* s2)
.Ve
.RE
.RS 4
.RE
.ie n .IP """STRINGIFY""" 4
.el .IP \f(CWSTRINGIFY\fR 4
.IX Xref "STRINGIFY"
.IX Item "STRINGIFY"
This macro surrounds its token with double quotes.
.RS 4
.Sp
.Vb 1
\& string  STRINGIFY(token x)
.Ve
.RE
.RS 4
.RE
.ie n .IP """strLE""" 4
.el .IP \f(CWstrLE\fR 4
.IX Xref "strLE"
.IX Item "strLE"
Test two \f(CW\*(C`NUL\*(C'\fR\-terminated strings to see if the first, \f(CW\*(C`s1\*(C'\fR, is less than or
equal to the second, \f(CW\*(C`s2\*(C'\fR.  Returns true or false.
.RS 4
.Sp
.Vb 1
\& bool  strLE(char* s1, char* s2)
.Ve
.RE
.RS 4
.RE
.ie n .IP """STRLEN""" 4
.el .IP \f(CWSTRLEN\fR 4
.IX Item "STRLEN"
Described in perlguts.
.ie n .IP """strLT""" 4
.el .IP \f(CWstrLT\fR 4
.IX Xref "strLT"
.IX Item "strLT"
Test two \f(CW\*(C`NUL\*(C'\fR\-terminated strings to see if the first, \f(CW\*(C`s1\*(C'\fR, is less than the
second, \f(CW\*(C`s2\*(C'\fR.  Returns true or false.
.RS 4
.Sp
.Vb 1
\& bool  strLT(char* s1, char* s2)
.Ve
.RE
.RS 4
.RE
.ie n .IP """strNE""" 4
.el .IP \f(CWstrNE\fR 4
.IX Xref "strNE"
.IX Item "strNE"
Test two \f(CW\*(C`NUL\*(C'\fR\-terminated strings to see if they are different.  Returns true
or false.
.RS 4
.Sp
.Vb 1
\& bool  strNE(char* s1, char* s2)
.Ve
.RE
.RS 4
.RE
.ie n .IP """strnEQ""" 4
.el .IP \f(CWstrnEQ\fR 4
.IX Xref "strnEQ"
.IX Item "strnEQ"
Test two \f(CW\*(C`NUL\*(C'\fR\-terminated strings to see if they are equal.  The \f(CW\*(C`len\*(C'\fR
parameter indicates the number of bytes to compare.  Returns true or false.  (A
wrapper for \f(CW\*(C`strncmp\*(C'\fR).
.RS 4
.Sp
.Vb 1
\& bool  strnEQ(char* s1, char* s2, STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """strnNE""" 4
.el .IP \f(CWstrnNE\fR 4
.IX Xref "strnNE"
.IX Item "strnNE"
Test two \f(CW\*(C`NUL\*(C'\fR\-terminated strings to see if they are different.  The \f(CW\*(C`len\*(C'\fR
parameter indicates the number of bytes to compare.  Returns true or false.  (A
wrapper for \f(CW\*(C`strncmp\*(C'\fR).
.RS 4
.Sp
.Vb 1
\& bool  strnNE(char* s1, char* s2, STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """STR_WITH_LEN""" 4
.el .IP \f(CWSTR_WITH_LEN\fR 4
.IX Xref "STR_WITH_LEN"
.IX Item "STR_WITH_LEN"
Returns two comma separated tokens of the input literal string, and its length.
This is convenience macro which helps out in some API calls.
Note that it can't be used as an argument to macros or functions that under
some configurations might be macros, which means that it requires the full
Perl_xxx(aTHX_ ...) form for any API calls where it's used.
.RS 4
.Sp
.Vb 1
\& pair  STR_WITH_LEN("literal string")
.Ve
.RE
.RS 4
.RE
.ie n .IP """Zero""" 4
.el .IP \f(CWZero\fR 4
.IX Item "Zero"
.PD 0
.ie n .IP """ZeroD""" 4
.el .IP \f(CWZeroD\fR 4
.IX Xref "Zero ZeroD"
.IX Item "ZeroD"
.PD
The XSUB-writer's interface to the C \f(CW\*(C`memzero\*(C'\fR function.  The \f(CW\*(C`dest\*(C'\fR is the
destination, \f(CW\*(C`nitems\*(C'\fR is the number of items, and \f(CW\*(C`type\*(C'\fR is the type.
.Sp
\&\f(CW\*(C`ZeroD\*(C'\fR is like \f(CW\*(C`Zero\*(C'\fR but returns \f(CW\*(C`dest\*(C'\fR.  Useful
for encouraging compilers to tail-call
optimise.
.RS 4
.Sp
.Vb 2
\& void    Zero (void* dest, int nitems, type)
\& void *  ZeroD(void* dest, int nitems, type)
.Ve
.RE
.RS 4
.RE
.SH "SV Flags"
.IX Header "SV Flags"
.ie n .IP """SVt_IV""" 4
.el .IP \f(CWSVt_IV\fR 4
.IX Xref "SVt_IV"
.IX Item "SVt_IV"
Type flag for scalars.  See "svtype".
.ie n .IP """SVt_NULL""" 4
.el .IP \f(CWSVt_NULL\fR 4
.IX Xref "SVt_NULL"
.IX Item "SVt_NULL"
Type flag for scalars.  See "svtype".
.ie n .IP """SVt_NV""" 4
.el .IP \f(CWSVt_NV\fR 4
.IX Xref "SVt_NV"
.IX Item "SVt_NV"
Type flag for scalars.  See "svtype".
.ie n .IP """SVt_PV""" 4
.el .IP \f(CWSVt_PV\fR 4
.IX Xref "SVt_PV"
.IX Item "SVt_PV"
Type flag for scalars.  See "svtype".
.ie n .IP """SVt_PVAV""" 4
.el .IP \f(CWSVt_PVAV\fR 4
.IX Xref "SVt_PVAV"
.IX Item "SVt_PVAV"
Type flag for arrays.  See "svtype".
.ie n .IP """SVt_PVCV""" 4
.el .IP \f(CWSVt_PVCV\fR 4
.IX Xref "SVt_PVCV"
.IX Item "SVt_PVCV"
Type flag for subroutines.  See "svtype".
.ie n .IP """SVt_PVFM""" 4
.el .IP \f(CWSVt_PVFM\fR 4
.IX Xref "SVt_PVFM"
.IX Item "SVt_PVFM"
Type flag for formats.  See "svtype".
.ie n .IP """SVt_PVGV""" 4
.el .IP \f(CWSVt_PVGV\fR 4
.IX Xref "SVt_PVGV"
.IX Item "SVt_PVGV"
Type flag for typeglobs.  See "svtype".
.ie n .IP """SVt_PVHV""" 4
.el .IP \f(CWSVt_PVHV\fR 4
.IX Xref "SVt_PVHV"
.IX Item "SVt_PVHV"
Type flag for hashes.  See "svtype".
.ie n .IP """SVt_PVIO""" 4
.el .IP \f(CWSVt_PVIO\fR 4
.IX Xref "SVt_PVIO"
.IX Item "SVt_PVIO"
Type flag for I/O objects.  See "svtype".
.ie n .IP """SVt_PVIV""" 4
.el .IP \f(CWSVt_PVIV\fR 4
.IX Xref "SVt_PVIV"
.IX Item "SVt_PVIV"
Type flag for scalars.  See "svtype".
.ie n .IP """SVt_PVLV""" 4
.el .IP \f(CWSVt_PVLV\fR 4
.IX Xref "SVt_PVLV"
.IX Item "SVt_PVLV"
Type flag for scalars.  See "svtype".
.ie n .IP """SVt_PVMG""" 4
.el .IP \f(CWSVt_PVMG\fR 4
.IX Xref "SVt_PVMG"
.IX Item "SVt_PVMG"
Type flag for scalars.  See "svtype".
.ie n .IP """SVt_PVNV""" 4
.el .IP \f(CWSVt_PVNV\fR 4
.IX Xref "SVt_PVNV"
.IX Item "SVt_PVNV"
Type flag for scalars.  See "svtype".
.ie n .IP """SVt_PVOBJ""" 4
.el .IP \f(CWSVt_PVOBJ\fR 4
.IX Xref "SVt_PVOBJ"
.IX Item "SVt_PVOBJ"
NOTE: \f(CW\*(C`SVt_PVOBJ\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Type flag for object instances.  See "svtype".
.ie n .IP """SVt_REGEXP""" 4
.el .IP \f(CWSVt_REGEXP\fR 4
.IX Xref "SVt_REGEXP"
.IX Item "SVt_REGEXP"
Type flag for regular expressions.  See "svtype".
.ie n .IP """svtype""" 4
.el .IP \f(CWsvtype\fR 4
.IX Xref "svtype"
.IX Item "svtype"
An enum of flags for Perl types.  These are found in the file \fIsv.h\fR
in the \f(CW\*(C`svtype\*(C'\fR enum.  Test these flags with the \f(CW\*(C`SvTYPE\*(C'\fR macro.
.Sp
The types are:
.Sp
.Vb 10
\&    SVt_NULL
\&    SVt_IV
\&    SVt_NV
\&    SVt_RV
\&    SVt_PV
\&    SVt_PVIV
\&    SVt_PVNV
\&    SVt_PVMG
\&    SVt_INVLIST
\&    SVt_REGEXP
\&    SVt_PVGV
\&    SVt_PVLV
\&    SVt_PVAV
\&    SVt_PVHV
\&    SVt_PVCV
\&    SVt_PVFM
\&    SVt_PVIO
\&    SVt_PVOBJ
.Ve
.Sp
These are most easily explained from the bottom up.
.Sp
\&\f(CW\*(C`SVt_PVOBJ\*(C'\fR is for object instances of the new `use feature 'class'` kind.
\&\f(CW\*(C`SVt_PVIO\*(C'\fR is for I/O objects, \f(CW\*(C`SVt_PVFM\*(C'\fR for formats, \f(CW\*(C`SVt_PVCV\*(C'\fR for
subroutines, \f(CW\*(C`SVt_PVHV\*(C'\fR for hashes and \f(CW\*(C`SVt_PVAV\*(C'\fR for arrays.
.Sp
All the others are scalar types, that is, things that can be bound to a
\&\f(CW\*(C`$\*(C'\fR variable.  For these, the internal types are mostly orthogonal to
types in the Perl language.
.Sp
Hence, checking \f(CW\*(C`SvTYPE(sv) < SVt_PVAV\*(C'\fR is the best way to see whether
something is a scalar.
.Sp
\&\f(CW\*(C`SVt_PVGV\*(C'\fR represents a typeglob.  If \f(CW\*(C`!SvFAKE(sv)\*(C'\fR, then it is a real,
incoercible typeglob.  If \f(CWSvFAKE(sv)\fR, then it is a scalar to which a
typeglob has been assigned.  Assigning to it again will stop it from being
a typeglob.  \f(CW\*(C`SVt_PVLV\*(C'\fR represents a scalar that delegates to another scalar
behind the scenes.  It is used, e.g., for the return value of \f(CW\*(C`substr\*(C'\fR and
for tied hash and array elements.  It can hold any scalar value, including
a typeglob.  \f(CW\*(C`SVt_REGEXP\*(C'\fR is for regular
expressions.  \f(CW\*(C`SVt_INVLIST\*(C'\fR is for Perl
core internal use only.
.Sp
\&\f(CW\*(C`SVt_PVMG\*(C'\fR represents a "normal" scalar (not a typeglob, regular expression,
or delegate).  Since most scalars do not need all the internal fields of a
PVMG, we save memory by allocating smaller structs when possible.  All the
other types are just simpler forms of \f(CW\*(C`SVt_PVMG\*(C'\fR, with fewer internal fields.
\&\f(CW\*(C`SVt_NULL\*(C'\fR can only hold undef.  \f(CW\*(C`SVt_IV\*(C'\fR can hold undef, an integer, or a
reference.  (\f(CW\*(C`SVt_RV\*(C'\fR is an alias for \f(CW\*(C`SVt_IV\*(C'\fR, which exists for backward
compatibility.)  \f(CW\*(C`SVt_NV\*(C'\fR can hold undef or a double. (In builds that support
headless NVs, these could also hold a reference via a suitable offset, in the
same way that SVt_IV does, but this is not currently supported and seems to
be a rare use case.) \f(CW\*(C`SVt_PV\*(C'\fR can hold \f(CW\*(C`undef\*(C'\fR, a string, or a reference.
\&\f(CW\*(C`SVt_PVIV\*(C'\fR is a superset of \f(CW\*(C`SVt_PV\*(C'\fR and \f(CW\*(C`SVt_IV\*(C'\fR. \f(CW\*(C`SVt_PVNV\*(C'\fR is a
superset of \f(CW\*(C`SVt_PV\*(C'\fR and \f(CW\*(C`SVt_NV\*(C'\fR. \f(CW\*(C`SVt_PVMG\*(C'\fR can hold anything \f(CW\*(C`SVt_PVNV\*(C'\fR
can hold, but it may also be blessed or magical.
.SH "SV Handling"
.IX Xref "SV_CATBYTES SV_CATUTF8 SV_COW_DROP_PV SV_FORCE_UTF8_UPGRADE SV_GMAGIC SV_HAS_TRAILING_NUL SV_IMMEDIATE_UNREF SV_NOSTEAL SV_SMAGIC SV_UTF8_NO_ENCODING SVs_TEMP"
.IX Header "SV Handling"
.ie n .IP """AV_FROM_REF""" 4
.el .IP \f(CWAV_FROM_REF\fR 4
.IX Item "AV_FROM_REF"
.PD 0
.ie n .IP """CV_FROM_REF""" 4
.el .IP \f(CWCV_FROM_REF\fR 4
.IX Item "CV_FROM_REF"
.ie n .IP """HV_FROM_REF""" 4
.el .IP \f(CWHV_FROM_REF\fR 4
.IX Xref "AV_FROM_REF CV_FROM_REF HV_FROM_REF"
.IX Item "HV_FROM_REF"
.PD
The \f(CW\*(C`\fR\f(CI*\fR\f(CWV_FROM_REF\*(C'\fR macros extract the \f(CWSvRV()\fR from a given reference SV
and return a suitably-cast to pointer to the referenced SV. When running
under \f(CW\*(C`\-DDEBUGGING\*(C'\fR, assertions are also applied that check that \fIref\fR is
definitely a reference SV that refers to an SV of the right type.
.RS 4
.Sp
.Vb 3
\& AV *  AV_FROM_REF(SV * ref)
\& CV *  CV_FROM_REF(SV * ref)
\& HV *  HV_FROM_REF(SV * ref)
.Ve
.RE
.RS 4
.RE
.ie n .IP """BOOL_INTERNALS_sv_isbool""" 4
.el .IP \f(CWBOOL_INTERNALS_sv_isbool\fR 4
.IX Xref "BOOL_INTERNALS_sv_isbool"
.IX Item "BOOL_INTERNALS_sv_isbool"
Checks if a \f(CWSvBoolFlagsOK()\fR sv is a bool. \fBNote\fR that it is the
caller's responsibility to ensure that the sv is \f(CWSvBoolFlagsOK()\fR before
calling this. This is only useful in specialized logic like
serialization code where performance is critical and the flags have
already been checked to be correct. Almost always you should be using
\&\f(CWsv_isbool(sv)\fR instead.
.RS 4
.Sp
.Vb 1
\& bool  BOOL_INTERNALS_sv_isbool(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """BOOL_INTERNALS_sv_isbool_false""" 4
.el .IP \f(CWBOOL_INTERNALS_sv_isbool_false\fR 4
.IX Xref "BOOL_INTERNALS_sv_isbool_false"
.IX Item "BOOL_INTERNALS_sv_isbool_false"
Checks if a \f(CWSvBoolFlagsOK()\fR sv is a false bool. \fBNote\fR that it is
the caller's responsibility to ensure that the sv is \f(CWSvBoolFlagsOK()\fR
before calling this. This is only useful in specialized logic like
serialization code where performance is critical and the flags have
already been checked to be correct. This is \fBNOT\fR what you should use
to check if an SV is "false", for that you should be using
\&\f(CW\*(C`!SvTRUE(sv)\*(C'\fR instead.
.RS 4
.Sp
.Vb 1
\& bool  BOOL_INTERNALS_sv_isbool_false(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """BOOL_INTERNALS_sv_isbool_true""" 4
.el .IP \f(CWBOOL_INTERNALS_sv_isbool_true\fR 4
.IX Xref "BOOL_INTERNALS_sv_isbool_true"
.IX Item "BOOL_INTERNALS_sv_isbool_true"
Checks if a \f(CWSvBoolFlagsOK()\fR sv is a true bool. \fBNote\fR that it is
the caller's responsibility to ensure that the sv is \f(CWSvBoolFlagsOK()\fR
before calling this. This is only useful in specialized logic like
serialization code where performance is critical and the flags have
already been checked to be correct. This is \fBNOT\fR what you should use
to check if an SV is "true", for that you should be using
\&\f(CWSvTRUE(sv)\fR instead.
.RS 4
.Sp
.Vb 1
\& bool  BOOL_INTERNALS_sv_isbool_true(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """boolSV""" 4
.el .IP \f(CWboolSV\fR 4
.IX Xref "boolSV"
.IX Item "boolSV"
Returns a true SV if \f(CW\*(C`b\*(C'\fR is a true value, or a false SV if \f(CW\*(C`b\*(C'\fR is 0.
.Sp
See also \f(CW"PL_sv_yes"\fR and \f(CW"PL_sv_no"\fR.
.RS 4
.Sp
.Vb 1
\& SV *  boolSV(bool b)
.Ve
.RE
.RS 4
.RE
.ie n .IP """croak_xs_usage""" 4
.el .IP \f(CWcroak_xs_usage\fR 4
.IX Xref "croak_xs_usage"
.IX Item "croak_xs_usage"
A specialised variant of \f(CWcroak()\fR for emitting the usage message for xsubs
.Sp
.Vb 1
\&    croak_xs_usage(cv, "eee_yow");
.Ve
.Sp
works out the package name and subroutine name from \f(CW\*(C`cv\*(C'\fR, and then calls
\&\f(CWcroak()\fR.  Hence if \f(CW\*(C`cv\*(C'\fR is \f(CW&ouch::awk\fR, it would call \f(CW\*(C`croak\*(C'\fR as:
.Sp
.Vb 2
\& Perl_croak(aTHX_ "Usage: %" SVf "::%" SVf "(%s)", "ouch" "awk",
\&                                                     "eee_yow");
.Ve
.RS 4
.Sp
.Vb 2
\& void  croak_xs_usage(const CV * const cv,
\&                      const char * const params)
.Ve
.RE
.RS 4
.RE
.ie n .IP """DEFSV""" 4
.el .IP \f(CWDEFSV\fR 4
.IX Xref "DEFSV"
.IX Item "DEFSV"
Returns the SV associated with \f(CW$_\fR
.RS 4
.Sp
.Vb 1
\& SV *  DEFSV
.Ve
.RE
.RS 4
.RE
.ie n .IP """DEFSV_set""" 4
.el .IP \f(CWDEFSV_set\fR 4
.IX Xref "DEFSV_set"
.IX Item "DEFSV_set"
Associate \f(CW\*(C`sv\*(C'\fR with \f(CW$_\fR
.RS 4
.Sp
.Vb 1
\& void  DEFSV_set(SV * sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """get_sv""" 4
.el .IP \f(CWget_sv\fR 4
.IX Xref "get_sv"
.IX Item "get_sv"
Returns the SV of the specified Perl scalar.  \f(CW\*(C`flags\*(C'\fR are passed to
"\f(CW\*(C`gv_fetchpv\*(C'\fR".  If \f(CW\*(C`GV_ADD\*(C'\fR is set and the
Perl variable does not exist then it will be created.  If \f(CW\*(C`flags\*(C'\fR is zero
and the variable does not exist then NULL is returned.
.Sp
NOTE: the \f(CWperl_get_sv()\fR form is \fBdeprecated\fR.
.RS 4
.Sp
.Vb 1
\& SV *  get_sv(const char *name, I32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """isGV_with_GP""" 4
.el .IP \f(CWisGV_with_GP\fR 4
.IX Xref "isGV_with_GP"
.IX Item "isGV_with_GP"
Returns a boolean as to whether or not \f(CW\*(C`sv\*(C'\fR is a GV with a pointer to a GP
(glob pointer).
.RS 4
.Sp
.Vb 1
\& bool  isGV_with_GP(SV * sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """looks_like_number""" 4
.el .IP \f(CWlooks_like_number\fR 4
.IX Xref "looks_like_number"
.IX Item "looks_like_number"
Test if the content of an SV looks like a number (or is a number).
\&\f(CW\*(C`Inf\*(C'\fR and \f(CW\*(C`Infinity\*(C'\fR are treated as numbers (so will not issue a
non-numeric warning), even if your \f(CWatof()\fR doesn't grok them.  Get-magic is
ignored.
.RS 4
.Sp
.Vb 1
\& I32  looks_like_number(SV * const sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """MUTABLE_AV""" 4
.el .IP \f(CWMUTABLE_AV\fR 4
.IX Item "MUTABLE_AV"
.PD 0
.ie n .IP """MUTABLE_CV""" 4
.el .IP \f(CWMUTABLE_CV\fR 4
.IX Item "MUTABLE_CV"
.ie n .IP """MUTABLE_GV""" 4
.el .IP \f(CWMUTABLE_GV\fR 4
.IX Item "MUTABLE_GV"
.ie n .IP """MUTABLE_HV""" 4
.el .IP \f(CWMUTABLE_HV\fR 4
.IX Item "MUTABLE_HV"
.ie n .IP """MUTABLE_IO""" 4
.el .IP \f(CWMUTABLE_IO\fR 4
.IX Item "MUTABLE_IO"
.ie n .IP """MUTABLE_PTR""" 4
.el .IP \f(CWMUTABLE_PTR\fR 4
.IX Item "MUTABLE_PTR"
.ie n .IP """MUTABLE_SV""" 4
.el .IP \f(CWMUTABLE_SV\fR 4
.IX Xref "MUTABLE_AV MUTABLE_CV MUTABLE_GV MUTABLE_HV MUTABLE_IO MUTABLE_PTR MUTABLE_SV"
.IX Item "MUTABLE_SV"
.PD
The \f(CW\*(C`MUTABLE_\fR\f(CI*\fR\f(CW\*(C'\fR() macros cast pointers to the types shown, in such a way
(compiler permitting) that casting away const-ness will give a warning;
e.g.:
.Sp
.Vb 4
\& const SV *sv = ...;
\& AV *av1 = (AV*)sv;        <== BAD:  the const has been silently
\&                                     cast away
\& AV *av2 = MUTABLE_AV(sv); <== GOOD: it may warn
.Ve
.Sp
\&\f(CW\*(C`MUTABLE_PTR\*(C'\fR is the base macro used to derive new casts.  The other
already-built-in ones return pointers to what their names indicate.
.RS 4
.Sp
.Vb 7
\& AV *    MUTABLE_AV (AV * p)
\& CV *    MUTABLE_CV (CV * p)
\& GV *    MUTABLE_GV (GV * p)
\& HV *    MUTABLE_HV (HV * p)
\& IO *    MUTABLE_IO (IO * p)
\& void *  MUTABLE_PTR(void * p)
\& SV *    MUTABLE_SV (SV * p)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newRV""" 4
.el .IP \f(CWnewRV\fR 4
.IX Item "newRV"
.PD 0
.ie n .IP """newRV_inc""" 4
.el .IP \f(CWnewRV_inc\fR 4
.IX Xref "newRV newRV_inc"
.IX Item "newRV_inc"
.PD
These are identical.  They create an RV wrapper for an SV.  The reference count
for the original SV is incremented.
.RS 4
.Sp
.Vb 1
\& SV *  newRV(SV * const sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newRV_noinc""" 4
.el .IP \f(CWnewRV_noinc\fR 4
.IX Xref "newRV_noinc"
.IX Item "newRV_noinc"
Creates an RV wrapper for an SV.  The reference count for the original
SV is \fBnot\fR incremented.
.RS 4
.Sp
.Vb 1
\& SV *  newRV_noinc(SV * const tmpRef)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newSV""" 4
.el .IP \f(CWnewSV\fR 4
.IX Xref "newSV"
.IX Item "newSV"
Creates a new SV.  A non-zero \f(CW\*(C`len\*(C'\fR parameter indicates the number of
bytes of preallocated string space the SV should have.  An extra byte for a
trailing \f(CW\*(C`NUL\*(C'\fR is also reserved.  (\f(CW\*(C`SvPOK\*(C'\fR is not set for the SV even if string
space is allocated.)  The reference count for the new SV is set to 1.
.Sp
In 5.9.3, \f(CWnewSV()\fR replaces the older \f(CWNEWSV()\fR API, and drops the first
parameter, \fIx\fR, a debug aid which allowed callers to identify themselves.
This aid has been superseded by a new build option, \f(CW\*(C`PERL_MEM_LOG\*(C'\fR (see
"PERL_MEM_LOG" in perlhacktips).  The older API is still there for use in XS
modules supporting older perls.
.RS 4
.Sp
.Vb 1
\& SV *  newSV(const STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newSVbool""" 4
.el .IP \f(CWnewSVbool\fR 4
.IX Xref "newSVbool"
.IX Item "newSVbool"
Creates a new SV boolean.
.RS 4
.Sp
.Vb 1
\& SV *  newSVbool(const bool bool_val)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newSV_false""" 4
.el .IP \f(CWnewSV_false\fR 4
.IX Xref "newSV_false"
.IX Item "newSV_false"
Creates a new SV that is a boolean false.
.RS 4
.Sp
.Vb 1
\& SV *  newSV_false()
.Ve
.RE
.RS 4
.RE
.ie n .IP """newSVhek""" 4
.el .IP \f(CWnewSVhek\fR 4
.IX Xref "newSVhek"
.IX Item "newSVhek"
Creates a new SV from the hash key structure.  It will generate scalars that
point to the shared string table where possible.  Returns a new (undefined)
SV if \f(CW\*(C`hek\*(C'\fR is NULL.
.RS 4
.Sp
.Vb 1
\& SV *  newSVhek(const HEK * const hek)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newSVhek_mortal""" 4
.el .IP \f(CWnewSVhek_mortal\fR 4
.IX Xref "newSVhek_mortal"
.IX Item "newSVhek_mortal"
Creates a new mortal SV from the hash key structure.  It will generate
scalars that point to the shared string table where possible.  Returns
a new (undefined) SV if \f(CW\*(C`hek\*(C'\fR is NULL.
.Sp
This is more efficient than using sv_2mortal(newSVhek( ... ))
.RS 4
.Sp
.Vb 1
\& SV *  newSVhek_mortal(const HEK * const hek)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newSViv""" 4
.el .IP \f(CWnewSViv\fR 4
.IX Xref "newSViv"
.IX Item "newSViv"
Creates a new SV and copies an integer into it.  The reference count for the
SV is set to 1.
.RS 4
.Sp
.Vb 1
\& SV *  newSViv(const IV i)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newSVnv""" 4
.el .IP \f(CWnewSVnv\fR 4
.IX Xref "newSVnv"
.IX Item "newSVnv"
Creates a new SV and copies a floating point value into it.
The reference count for the SV is set to 1.
.RS 4
.Sp
.Vb 1
\& SV *  newSVnv(const NV n)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newSVpadname""" 4
.el .IP \f(CWnewSVpadname\fR 4
.IX Xref "newSVpadname"
.IX Item "newSVpadname"
NOTE: \f(CW\*(C`newSVpadname\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Creates a new SV containing the pad name.
.RS 4
.Sp
.Vb 1
\& SV*  newSVpadname(PADNAME *pn)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newSVpv""" 4
.el .IP \f(CWnewSVpv\fR 4
.IX Xref "newSVpv"
.IX Item "newSVpv"
Creates a new SV and copies a string (which may contain \f(CW\*(C`NUL\*(C'\fR (\f(CW\*(C`\e0\*(C'\fR)
characters) into it.  The reference count for the
SV is set to 1.  If \f(CW\*(C`len\*(C'\fR is zero, Perl will compute the length using
\&\f(CWstrlen()\fR, (which means if you use this option, that \f(CW\*(C`s\*(C'\fR can't have embedded
\&\f(CW\*(C`NUL\*(C'\fR characters and has to have a terminating \f(CW\*(C`NUL\*(C'\fR byte).
.Sp
This function can cause reliability issues if you are likely to pass in
empty strings that are not null terminated, because it will run
strlen on the string and potentially run past valid memory.
.Sp
Using "newSVpvn" is a safer alternative for non \f(CW\*(C`NUL\*(C'\fR terminated strings.
For string literals use "newSVpvs" instead.  This function will work fine for
\&\f(CW\*(C`NUL\*(C'\fR terminated strings, but if you want to avoid the if statement on whether
to call \f(CW\*(C`strlen\*(C'\fR use \f(CW\*(C`newSVpvn\*(C'\fR instead (calling \f(CW\*(C`strlen\*(C'\fR yourself).
.RS 4
.Sp
.Vb 1
\& SV *  newSVpv(const char * const s, const STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newSVpvf""" 4
.el .IP \f(CWnewSVpvf\fR 4
.IX Xref "newSVpvf"
.IX Item "newSVpvf"
Creates a new SV and initializes it with the string formatted like
\&\f(CW\*(C`sv_catpvf\*(C'\fR.
.Sp
NOTE: \f(CW\*(C`newSVpvf\*(C'\fR must be explicitly called as
\&\f(CW\*(C`Perl_newSVpvf\*(C'\fR
with an \f(CW\*(C`aTHX_\*(C'\fR parameter.
.RS 4
.Sp
.Vb 1
\& SV *  Perl_newSVpvf(pTHX_ const char * const pat, ...)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newSVpvf_nocontext""" 4
.el .IP \f(CWnewSVpvf_nocontext\fR 4
.IX Xref "newSVpvf_nocontext"
.IX Item "newSVpvf_nocontext"
Like \f(CW"newSVpvf"\fR but does not take a thread context (\f(CW\*(C`aTHX\*(C'\fR) parameter,
so is used in situations where the caller doesn't already have the thread
context.
.RS 4
.Sp
.Vb 1
\& SV *  newSVpvf_nocontext(const char * const pat, ...)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newSVpvn""" 4
.el .IP \f(CWnewSVpvn\fR 4
.IX Xref "newSVpvn"
.IX Item "newSVpvn"
Creates a new SV and copies a string into it, which may contain \f(CW\*(C`NUL\*(C'\fR characters
(\f(CW\*(C`\e0\*(C'\fR) and other binary data.  The reference count for the SV is set to 1.
Note that if \f(CW\*(C`len\*(C'\fR is zero, Perl will create a zero length (Perl) string.  You
are responsible for ensuring that the source buffer is at least
\&\f(CW\*(C`len\*(C'\fR bytes long.  If the \f(CW\*(C`buffer\*(C'\fR argument is NULL the new SV will be
undefined.
.RS 4
.Sp
.Vb 1
\& SV *  newSVpvn(const char * const buffer, const STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newSVpvn_flags""" 4
.el .IP \f(CWnewSVpvn_flags\fR 4
.IX Xref "newSVpvn_flags"
.IX Item "newSVpvn_flags"
Creates a new SV and copies a string (which may contain \f(CW\*(C`NUL\*(C'\fR (\f(CW\*(C`\e0\*(C'\fR)
characters) into it.  The reference count for the
SV is set to 1.  Note that if \f(CW\*(C`len\*(C'\fR is zero, Perl will create a zero length
string.  You are responsible for ensuring that the source string is at least
\&\f(CW\*(C`len\*(C'\fR bytes long.  If the \f(CW\*(C`s\*(C'\fR argument is NULL the new SV will be undefined.
Currently the only flag bits accepted are \f(CW\*(C`SVf_UTF8\*(C'\fR and \f(CW\*(C`SVs_TEMP\*(C'\fR.
If \f(CW\*(C`SVs_TEMP\*(C'\fR is set, then \f(CWsv_2mortal()\fR is called on the result before
returning.  If \f(CW\*(C`SVf_UTF8\*(C'\fR is set, \f(CW\*(C`s\*(C'\fR
is considered to be in UTF\-8 and the
\&\f(CW\*(C`SVf_UTF8\*(C'\fR flag will be set on the new SV.
\&\f(CWnewSVpvn_utf8()\fR is a convenience wrapper for this function, defined as
.Sp
.Vb 2
\&    #define newSVpvn_utf8(s, len, u)                    \e
\&        newSVpvn_flags((s), (len), (u) ? SVf_UTF8 : 0)
.Ve
.RS 4
.Sp
.Vb 2
\& SV *  newSVpvn_flags(const char * const s, const STRLEN len,
\&                      const U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newSVpvn_share""" 4
.el .IP \f(CWnewSVpvn_share\fR 4
.IX Xref "newSVpvn_share"
.IX Item "newSVpvn_share"
Creates a new SV with its \f(CW\*(C`SvPVX_const\*(C'\fR pointing to a shared string in the string
table.  If the string does not already exist in the table, it is
created first.  Turns on the \f(CW\*(C`SvIsCOW\*(C'\fR flag (or \f(CW\*(C`READONLY\*(C'\fR
and \f(CW\*(C`FAKE\*(C'\fR in 5.16 and earlier).  If the \f(CW\*(C`hash\*(C'\fR parameter
is non-zero, that value is used; otherwise the hash is computed.
The string's hash can later be retrieved from the SV
with the \f(CW"SvSHARED_HASH"\fR macro.  The idea here is
that as the string table is used for shared hash keys these strings will have
\&\f(CW\*(C`SvPVX_const == HeKEY\*(C'\fR and hash lookup will avoid string compare.
.RS 4
.Sp
.Vb 1
\& SV *  newSVpvn_share(const char *s, I32 len, U32 hash)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newSVpvn_utf8""" 4
.el .IP \f(CWnewSVpvn_utf8\fR 4
.IX Xref "newSVpvn_utf8"
.IX Item "newSVpvn_utf8"
Creates a new SV and copies a string (which may contain \f(CW\*(C`NUL\*(C'\fR (\f(CW\*(C`\e0\*(C'\fR)
characters) into it.  If \f(CW\*(C`utf8\*(C'\fR is true, calls
\&\f(CW\*(C`SvUTF8_on\*(C'\fR on the new SV.  Implemented as a wrapper around \f(CW\*(C`newSVpvn_flags\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& SV*  newSVpvn_utf8(const char* s, STRLEN len, U32 utf8)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newSVpvs""" 4
.el .IP \f(CWnewSVpvs\fR 4
.IX Xref "newSVpvs"
.IX Item "newSVpvs"
Like \f(CW\*(C`newSVpvn\*(C'\fR, but takes a literal string instead of a
string/length pair.
.RS 4
.Sp
.Vb 1
\& SV*  newSVpvs("literal string")
.Ve
.RE
.RS 4
.RE
.ie n .IP """newSVpvs_flags""" 4
.el .IP \f(CWnewSVpvs_flags\fR 4
.IX Xref "newSVpvs_flags"
.IX Item "newSVpvs_flags"
Like \f(CW\*(C`newSVpvn_flags\*(C'\fR, but takes a literal string instead of
a string/length pair.
.RS 4
.Sp
.Vb 1
\& SV*  newSVpvs_flags("literal string", U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newSVpv_share""" 4
.el .IP \f(CWnewSVpv_share\fR 4
.IX Xref "newSVpv_share"
.IX Item "newSVpv_share"
Like \f(CW\*(C`newSVpvn_share\*(C'\fR, but takes a \f(CW\*(C`NUL\*(C'\fR\-terminated string instead of a
string/length pair.
.RS 4
.Sp
.Vb 1
\& SV *  newSVpv_share(const char *s, U32 hash)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newSVpvs_share""" 4
.el .IP \f(CWnewSVpvs_share\fR 4
.IX Xref "newSVpvs_share"
.IX Item "newSVpvs_share"
Like \f(CW\*(C`newSVpvn_share\*(C'\fR, but takes a literal string instead of
a string/length pair and omits the hash parameter.
.RS 4
.Sp
.Vb 1
\& SV*  newSVpvs_share("literal string")
.Ve
.RE
.RS 4
.RE
.ie n .IP """newSVrv""" 4
.el .IP \f(CWnewSVrv\fR 4
.IX Xref "newSVrv"
.IX Item "newSVrv"
Creates a new SV for the existing RV, \f(CW\*(C`rv\*(C'\fR, to point to.  If \f(CW\*(C`rv\*(C'\fR is not an
RV then it will be upgraded to one.  If \f(CW\*(C`classname\*(C'\fR is non-null then the new
SV will be blessed in the specified package.  The new SV is returned and its
reference count is 1.  The reference count 1 is owned by \f(CW\*(C`rv\*(C'\fR. See also
\&\fBnewRV_inc()\fR and \fBnewRV_noinc()\fR for creating a new RV properly.
.RS 4
.Sp
.Vb 1
\& SV *  newSVrv(SV * const rv, const char * const classname)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newSVsv""" 4
.el .IP \f(CWnewSVsv\fR 4
.IX Item "newSVsv"
.PD 0
.ie n .IP """newSVsv_flags""" 4
.el .IP \f(CWnewSVsv_flags\fR 4
.IX Item "newSVsv_flags"
.ie n .IP """newSVsv_nomg""" 4
.el .IP \f(CWnewSVsv_nomg\fR 4
.IX Xref "newSVsv newSVsv_flags newSVsv_nomg"
.IX Item "newSVsv_nomg"
.PD
These create a new SV which is an exact duplicate of the original SV
(using \f(CW\*(C`sv_setsv\*(C'\fR.)
.Sp
They differ only in that \f(CW\*(C`newSVsv\*(C'\fR performs 'get' magic; \f(CW\*(C`newSVsv_nomg\*(C'\fR skips
any magic; and \f(CW\*(C`newSVsv_flags\*(C'\fR allows you to explicitly set a \f(CW\*(C`flags\*(C'\fR
parameter.
.RS 4
.Sp
.Vb 3
\& SV *  newSVsv      (SV * const old)
\& SV *  newSVsv_flags(SV * const old, I32 flags)
\& SV *  newSVsv_nomg (SV * const old)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newSV_true""" 4
.el .IP \f(CWnewSV_true\fR 4
.IX Xref "newSV_true"
.IX Item "newSV_true"
Creates a new SV that is a boolean true.
.RS 4
.Sp
.Vb 1
\& SV *  newSV_true()
.Ve
.RE
.RS 4
.RE
.ie n .IP """newSV_type""" 4
.el .IP \f(CWnewSV_type\fR 4
.IX Xref "newSV_type"
.IX Item "newSV_type"
Creates a new SV, of the type specified.  The reference count for the new SV
is set to 1.
.RS 4
.Sp
.Vb 1
\& SV *  newSV_type(const svtype type)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newSV_type_mortal""" 4
.el .IP \f(CWnewSV_type_mortal\fR 4
.IX Xref "newSV_type_mortal"
.IX Item "newSV_type_mortal"
Creates a new mortal SV, of the type specified.  The reference count for the
new SV is set to 1.
.Sp
This is equivalent to
    SV* sv = sv_2mortal(newSV_type(<some type>))
and
    SV* sv = \fBsv_newmortal()\fR;
    sv_upgrade(sv, <some_type>)
but should be more efficient than both of them. (Unless sv_2mortal is inlined
at some point in the future.)
.RS 4
.Sp
.Vb 1
\& SV *  newSV_type_mortal(const svtype type)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newSVuv""" 4
.el .IP \f(CWnewSVuv\fR 4
.IX Xref "newSVuv"
.IX Item "newSVuv"
Creates a new SV and copies an unsigned integer into it.
The reference count for the SV is set to 1.
.RS 4
.Sp
.Vb 1
\& SV *  newSVuv(const UV u)
.Ve
.RE
.RS 4
.RE
.ie n .IP """Nullsv""" 4
.el .IP \f(CWNullsv\fR 4
.IX Xref "Nullsv"
.IX Item "Nullsv"
Null SV pointer.  (No longer available when \f(CW\*(C`PERL_CORE\*(C'\fR is defined.)
.ie n .IP """PL_sv_no""" 4
.el .IP \f(CWPL_sv_no\fR 4
.IX Xref "PL_sv_no"
.IX Item "PL_sv_no"
This is the \f(CW\*(C`false\*(C'\fR SV.  It is readonly.  See \f(CW"PL_sv_yes"\fR.  Always refer
to this as \f(CW&PL_sv_no\fR.
.RS 4
.Sp
.Vb 1
\& SV  PL_sv_no
.Ve
.RE
.RS 4
.RE
.ie n .IP """PL_sv_undef""" 4
.el .IP \f(CWPL_sv_undef\fR 4
.IX Xref "PL_sv_undef"
.IX Item "PL_sv_undef"
This is the \f(CW\*(C`undef\*(C'\fR SV.  It is readonly.  Always refer to this as
\&\f(CW&PL_sv_undef\fR.
.RS 4
.Sp
.Vb 1
\& SV  PL_sv_undef
.Ve
.RE
.RS 4
.RE
.ie n .IP """PL_sv_yes""" 4
.el .IP \f(CWPL_sv_yes\fR 4
.IX Xref "PL_sv_yes"
.IX Item "PL_sv_yes"
This is the \f(CW\*(C`true\*(C'\fR SV.  It is readonly.  See \f(CW"PL_sv_no"\fR.  Always refer to
this as \f(CW&PL_sv_yes\fR.
.RS 4
.Sp
.Vb 1
\& SV  PL_sv_yes
.Ve
.RE
.RS 4
.RE
.ie n .IP """PL_sv_zero""" 4
.el .IP \f(CWPL_sv_zero\fR 4
.IX Xref "PL_sv_zero"
.IX Item "PL_sv_zero"
This readonly SV has a zero numeric value and a \f(CW"0"\fR string value. It's
similar to \f(CW"PL_sv_no"\fR except for its string value. Can be used as a
cheap alternative to \f(CWmXPUSHi(0)\fR for example.  Always refer to this as
\&\f(CW&PL_sv_zero\fR. Introduced in 5.28.
.RS 4
.Sp
.Vb 1
\& SV  PL_sv_zero
.Ve
.RE
.RS 4
.RE
.ie n .IP """SAVE_DEFSV""" 4
.el .IP \f(CWSAVE_DEFSV\fR 4
.IX Xref "SAVE_DEFSV"
.IX Item "SAVE_DEFSV"
Localize \f(CW$_\fR.  See "Localizing changes" in perlguts.
.RS 4
.Sp
.Vb 1
\& void  SAVE_DEFSV
.Ve
.RE
.RS 4
.RE
.ie n .IP """sortsv""" 4
.el .IP \f(CWsortsv\fR 4
.IX Xref "sortsv"
.IX Item "sortsv"
In-place sort an array of SV pointers with the given comparison routine.
.Sp
Currently this always uses mergesort.  See \f(CW"sortsv_flags"\fR for a more
flexible routine.
.RS 4
.Sp
.Vb 1
\& void  sortsv(SV **array, size_t num_elts, SVCOMPARE_t cmp)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sortsv_flags""" 4
.el .IP \f(CWsortsv_flags\fR 4
.IX Xref "sortsv_flags"
.IX Item "sortsv_flags"
In-place sort an array of SV pointers with the given comparison routine,
with various SORTf_* flag options.
.RS 4
.Sp
.Vb 2
\& void  sortsv_flags(SV **array, size_t num_elts, SVCOMPARE_t cmp,
\&                    U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SV""" 4
.el .IP \f(CWSV\fR 4
.IX Item "SV"
Described in perlguts.
.ie n .IP """SvAMAGIC""" 4
.el .IP \f(CWSvAMAGIC\fR 4
.IX Xref "SvAMAGIC"
.IX Item "SvAMAGIC"
Returns a boolean as to whether \f(CW\*(C`sv\*(C'\fR has overloading (active magic) enabled or
not.
.RS 4
.Sp
.Vb 1
\& bool  SvAMAGIC(SV * sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvAMAGIC_off""" 4
.el .IP \f(CWSvAMAGIC_off\fR 4
.IX Xref "SvAMAGIC_off"
.IX Item "SvAMAGIC_off"
Indicate that \f(CW\*(C`sv\*(C'\fR has overloading (active magic) disabled.
.RS 4
.Sp
.Vb 1
\& void  SvAMAGIC_off(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvAMAGIC_on""" 4
.el .IP \f(CWSvAMAGIC_on\fR 4
.IX Xref "SvAMAGIC_on"
.IX Item "SvAMAGIC_on"
Indicate that \f(CW\*(C`sv\*(C'\fR has overloading (active magic) enabled.
.RS 4
.Sp
.Vb 1
\& void  SvAMAGIC_on(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_backoff""" 4
.el .IP \f(CWsv_backoff\fR 4
.IX Xref "sv_backoff"
.IX Item "sv_backoff"
Remove any string offset.  You should normally use the \f(CW\*(C`SvOOK_off\*(C'\fR macro
wrapper instead.
.RS 4
.Sp
.Vb 1
\& void  sv_backoff(SV * const sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_bless""" 4
.el .IP \f(CWsv_bless\fR 4
.IX Xref "sv_bless"
.IX Item "sv_bless"
Blesses an SV into a specified package.  The SV must be an RV.  The package
must be designated by its stash (see \f(CW"gv_stashpv"\fR).  The reference count
of the SV is unaffected.
.RS 4
.Sp
.Vb 1
\& SV *  sv_bless(SV * const sv, HV * const stash)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvBoolFlagsOK""" 4
.el .IP \f(CWSvBoolFlagsOK\fR 4
.IX Xref "SvBoolFlagsOK"
.IX Item "SvBoolFlagsOK"
Returns a bool indicating whether the SV has the right flags set such
that it is safe to call \f(CWBOOL_INTERNALS_sv_isbool()\fR or
\&\f(CWBOOL_INTERNALS_sv_isbool_true()\fR or
\&\f(CWBOOL_INTERNALS_sv_isbool_false()\fR. Currently equivalent to
\&\f(CWSvIandPOK(sv)\fR or \f(CW\*(C`SvIOK(sv) && SvPOK(sv)\*(C'\fR. Serialization may want to
unroll this check. If so you are strongly recommended to add code like
\&\f(CW\*(C`assert(SvBoolFlagsOK(sv));\*(C'\fR \fBbefore\fR calling using any of the
BOOL_INTERNALS macros.
.RS 4
.Sp
.Vb 1
\& U32  SvBoolFlagsOK(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_catpv""" 4
.el .IP \f(CWsv_catpv\fR 4
.IX Item "sv_catpv"
.PD 0
.ie n .IP """sv_catpv_flags""" 4
.el .IP \f(CWsv_catpv_flags\fR 4
.IX Item "sv_catpv_flags"
.ie n .IP """sv_catpv_mg""" 4
.el .IP \f(CWsv_catpv_mg\fR 4
.IX Item "sv_catpv_mg"
.ie n .IP """sv_catpv_nomg""" 4
.el .IP \f(CWsv_catpv_nomg\fR 4
.IX Xref "sv_catpv sv_catpv_flags sv_catpv_mg sv_catpv_nomg"
.IX Item "sv_catpv_nomg"
.PD
These concatenate the \f(CW\*(C`NUL\*(C'\fR\-terminated string \f(CW\*(C`sstr\*(C'\fR onto the end of the
string which is in the SV.
If the SV has the UTF\-8 status set, then the bytes appended should be
valid UTF\-8.
.Sp
They differ only in how they handle magic:
.Sp
\&\f(CW\*(C`sv_catpv_mg\*(C'\fR performs both 'get' and 'set' magic.
.Sp
\&\f(CW\*(C`sv_catpv\*(C'\fR performs only 'get' magic.
.Sp
\&\f(CW\*(C`sv_catpv_nomg\*(C'\fR skips all magic.
.Sp
\&\f(CW\*(C`sv_catpv_flags\*(C'\fR has an extra \f(CW\*(C`flags\*(C'\fR parameter which allows you to specify
any combination of magic handling (using \f(CW\*(C`SV_GMAGIC\*(C'\fR and/or \f(CW\*(C`SV_SMAGIC\*(C'\fR), and
to also override the UTF\-8 handling.  By supplying the \f(CW\*(C`SV_CATUTF8\*(C'\fR flag, the
appended string is forced to be interpreted as UTF\-8; by supplying instead the
\&\f(CW\*(C`SV_CATBYTES\*(C'\fR flag, it will be interpreted as just bytes.  Either the SV or
the string appended will be upgraded to UTF\-8 if necessary.
.RS 4
.Sp
.Vb 4
\& void  sv_catpv      (SV * const dsv, const char *sstr)
\& void  sv_catpv_flags(SV *dsv, const char *sstr, const I32 flags)
\& void  sv_catpv_mg   (SV * const dsv, const char * const sstr)
\& void  sv_catpv_nomg (SV * const dsv, const char *sstr)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_catpvf""" 4
.el .IP \f(CWsv_catpvf\fR 4
.IX Item "sv_catpvf"
.PD 0
.ie n .IP """sv_catpvf_mg""" 4
.el .IP \f(CWsv_catpvf_mg\fR 4
.IX Item "sv_catpvf_mg"
.ie n .IP """sv_catpvf_mg_nocontext""" 4
.el .IP \f(CWsv_catpvf_mg_nocontext\fR 4
.IX Item "sv_catpvf_mg_nocontext"
.ie n .IP """sv_catpvf_nocontext""" 4
.el .IP \f(CWsv_catpvf_nocontext\fR 4
.IX Xref "sv_catpvf sv_catpvf_mg sv_catpvf_mg_nocontext sv_catpvf_nocontext"
.IX Item "sv_catpvf_nocontext"
.PD
These process their arguments like \f(CW\*(C`sprintf\*(C'\fR, and append the formatted
output to an SV.  As with \f(CW\*(C`sv_vcatpvfn\*(C'\fR, argument reordering is not supporte
when called with a non-null C\-style variable argument list.
.Sp
If the appended data contains "wide" characters
(including, but not limited to, SVs with a UTF\-8 PV formatted with \f(CW%s\fR,
and characters >255 formatted with \f(CW%c\fR), the original SV might get
upgraded to UTF\-8.
.Sp
If the original SV was UTF\-8, the pattern should be
valid UTF\-8; if the original SV was bytes, the pattern should be too.
.Sp
All perform 'get' magic, but only \f(CW\*(C`sv_catpvf_mg\*(C'\fR and \f(CW\*(C`sv_catpvf_mg_nocontext\*(C'\fR
perform 'set' magic.
.Sp
\&\f(CW\*(C`sv_catpvf_nocontext\*(C'\fR and \f(CW\*(C`sv_catpvf_mg_nocontext\*(C'\fR do not take a thread
context (\f(CW\*(C`aTHX\*(C'\fR) parameter, so are used in situations where the caller
doesn't already have the thread context.
.Sp
NOTE: \f(CW\*(C`sv_catpvf\*(C'\fR must be explicitly called as
\&\f(CW\*(C`Perl_sv_catpvf\*(C'\fR
with an \f(CW\*(C`aTHX_\*(C'\fR parameter.
.Sp
NOTE: \f(CW\*(C`sv_catpvf_mg\*(C'\fR must be explicitly called as
\&\f(CW\*(C`Perl_sv_catpvf_mg\*(C'\fR
with an \f(CW\*(C`aTHX_\*(C'\fR parameter.
.RS 4
.Sp
.Vb 8
\& void  Perl_sv_catpvf        (pTHX_ SV * const sv,
\&                              const char * const pat, ...)
\& void  Perl_sv_catpvf_mg     (pTHX_ SV * const sv,
\&                              const char * const pat, ...)
\& void  sv_catpvf_mg_nocontext(SV * const sv,
\&                              const char * const pat, ...)
\& void  sv_catpvf_nocontext   (SV * const sv,
\&                              const char * const pat, ...)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_catpvn""" 4
.el .IP \f(CWsv_catpvn\fR 4
.IX Item "sv_catpvn"
.PD 0
.ie n .IP """sv_catpvn_flags""" 4
.el .IP \f(CWsv_catpvn_flags\fR 4
.IX Item "sv_catpvn_flags"
.ie n .IP """sv_catpvn_mg""" 4
.el .IP \f(CWsv_catpvn_mg\fR 4
.IX Item "sv_catpvn_mg"
.ie n .IP """sv_catpvn_nomg""" 4
.el .IP \f(CWsv_catpvn_nomg\fR 4
.IX Xref "sv_catpvn sv_catpvn_flags sv_catpvn_mg sv_catpvn_nomg"
.IX Item "sv_catpvn_nomg"
.PD
These concatenate the \f(CW\*(C`len\*(C'\fR bytes of the string beginning at \f(CW\*(C`ptr\*(C'\fR onto the
end of the string which is in \f(CW\*(C`dsv\*(C'\fR.  The caller must make sure \f(CW\*(C`ptr\*(C'\fR
contains at least \f(CW\*(C`len\*(C'\fR bytes.
.Sp
For all but \f(CW\*(C`sv_catpvn_flags\*(C'\fR, the string appended is assumed to be valid
UTF\-8 if the SV has the UTF\-8 status set, and a string of bytes otherwise.
.Sp
They differ in that:
.Sp
\&\f(CW\*(C`sv_catpvn_mg\*(C'\fR performs both 'get' and 'set' magic on \f(CW\*(C`dsv\*(C'\fR.
.Sp
\&\f(CW\*(C`sv_catpvn\*(C'\fR performs only 'get' magic.
.Sp
\&\f(CW\*(C`sv_catpvn_nomg\*(C'\fR skips all magic.
.Sp
\&\f(CW\*(C`sv_catpvn_flags\*(C'\fR has an extra \f(CW\*(C`flags\*(C'\fR parameter which allows you to specify
any combination of magic handling (using \f(CW\*(C`SV_GMAGIC\*(C'\fR and/or \f(CW\*(C`SV_SMAGIC\*(C'\fR) and
to also override the UTF\-8 handling.  By supplying the \f(CW\*(C`SV_CATBYTES\*(C'\fR flag, the
appended string is interpreted as plain bytes; by supplying instead the
\&\f(CW\*(C`SV_CATUTF8\*(C'\fR flag, it will be interpreted as UTF\-8, and the \f(CW\*(C`dsv\*(C'\fR will be
upgraded to UTF\-8 if necessary.
.Sp
\&\f(CW\*(C`sv_catpvn\*(C'\fR, \f(CW\*(C`sv_catpvn_mg\*(C'\fR, and \f(CW\*(C`sv_catpvn_nomg\*(C'\fR are implemented
in terms of \f(CW\*(C`sv_catpvn_flags\*(C'\fR.
.RS 4
.Sp
.Vb 5
\& void  sv_catpvn      (SV *dsv, const char *sstr, STRLEN len)
\& void  sv_catpvn_flags(SV * const dsv, const char *sstr,
\&                       const STRLEN len, const I32 flags)
\& void  sv_catpvn_mg   (SV *dsv, const char *sstr, STRLEN len)
\& void  sv_catpvn_nomg (SV *dsv, const char *sstr, STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_catpvs""" 4
.el .IP \f(CWsv_catpvs\fR 4
.IX Xref "sv_catpvs"
.IX Item "sv_catpvs"
Like \f(CW\*(C`sv_catpvn\*(C'\fR, but takes a literal string instead of a
string/length pair.
.RS 4
.Sp
.Vb 1
\& void  sv_catpvs(SV* sv, "literal string")
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_catpvs_flags""" 4
.el .IP \f(CWsv_catpvs_flags\fR 4
.IX Xref "sv_catpvs_flags"
.IX Item "sv_catpvs_flags"
Like \f(CW\*(C`sv_catpvn_flags\*(C'\fR, but takes a literal string instead
of a string/length pair.
.RS 4
.Sp
.Vb 1
\& void  sv_catpvs_flags(SV* sv, "literal string", I32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_catpvs_mg""" 4
.el .IP \f(CWsv_catpvs_mg\fR 4
.IX Xref "sv_catpvs_mg"
.IX Item "sv_catpvs_mg"
Like \f(CW\*(C`sv_catpvn_mg\*(C'\fR, but takes a literal string instead of a
string/length pair.
.RS 4
.Sp
.Vb 1
\& void  sv_catpvs_mg(SV* sv, "literal string")
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_catpvs_nomg""" 4
.el .IP \f(CWsv_catpvs_nomg\fR 4
.IX Xref "sv_catpvs_nomg"
.IX Item "sv_catpvs_nomg"
Like \f(CW\*(C`sv_catpvn_nomg\*(C'\fR, but takes a literal string instead of
a string/length pair.
.RS 4
.Sp
.Vb 1
\& void  sv_catpvs_nomg(SV* sv, "literal string")
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_catsv""" 4
.el .IP \f(CWsv_catsv\fR 4
.IX Item "sv_catsv"
.PD 0
.ie n .IP """sv_catsv_flags""" 4
.el .IP \f(CWsv_catsv_flags\fR 4
.IX Item "sv_catsv_flags"
.ie n .IP """sv_catsv_mg""" 4
.el .IP \f(CWsv_catsv_mg\fR 4
.IX Item "sv_catsv_mg"
.ie n .IP """sv_catsv_nomg""" 4
.el .IP \f(CWsv_catsv_nomg\fR 4
.IX Xref "sv_catsv sv_catsv_flags sv_catsv_mg sv_catsv_nomg"
.IX Item "sv_catsv_nomg"
.PD
These concatenate the string from SV \f(CW\*(C`sstr\*(C'\fR onto the end of the string in SV
\&\f(CW\*(C`dsv\*(C'\fR.  If \f(CW\*(C`sstr\*(C'\fR is null, these are no-ops; otherwise only \f(CW\*(C`dsv\*(C'\fR is
modified.
.Sp
They differ only in what magic they perform:
.Sp
\&\f(CW\*(C`sv_catsv_mg\*(C'\fR performs 'get' magic on both SVs before the copy, and 'set' magic
on \f(CW\*(C`dsv\*(C'\fR afterwards.
.Sp
\&\f(CW\*(C`sv_catsv\*(C'\fR performs just 'get' magic, on both SVs.
.Sp
\&\f(CW\*(C`sv_catsv_nomg\*(C'\fR skips all magic.
.Sp
\&\f(CW\*(C`sv_catsv_flags\*(C'\fR has an extra \f(CW\*(C`flags\*(C'\fR parameter which allows you to use
\&\f(CW\*(C`SV_GMAGIC\*(C'\fR and/or \f(CW\*(C`SV_SMAGIC\*(C'\fR to specify any combination of magic handling
(although either both or neither SV will have 'get' magic applied to it.)
.Sp
\&\f(CW\*(C`sv_catsv\*(C'\fR, \f(CW\*(C`sv_catsv_mg\*(C'\fR, and \f(CW\*(C`sv_catsv_nomg\*(C'\fR are implemented
in terms of \f(CW\*(C`sv_catsv_flags\*(C'\fR.
.RS 4
.Sp
.Vb 5
\& void  sv_catsv      (SV *dsv, SV *sstr)
\& void  sv_catsv_flags(SV * const dsv, SV * const sstr,
\&                      const I32 flags)
\& void  sv_catsv_mg   (SV *dsv, SV *sstr)
\& void  sv_catsv_nomg (SV *dsv, SV *sstr)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SV_CHECK_THINKFIRST""" 4
.el .IP \f(CWSV_CHECK_THINKFIRST\fR 4
.IX Xref "SV_CHECK_THINKFIRST"
.IX Item "SV_CHECK_THINKFIRST"
Remove any encumbrances from \f(CW\*(C`sv\*(C'\fR, that need to be taken care of before it
is modifiable.  For example if it is Copy on Write (COW), now is the time to
make that copy.
.Sp
If you know that you are about to change the PV value of \f(CW\*(C`sv\*(C'\fR, instead use
"\f(CW\*(C`SV_CHECK_THINKFIRST_COW_DROP\*(C'\fR" to avoid the write that would be
immediately written again.
.RS 4
.Sp
.Vb 1
\& void  SV_CHECK_THINKFIRST(SV * sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SV_CHECK_THINKFIRST_COW_DROP""" 4
.el .IP \f(CWSV_CHECK_THINKFIRST_COW_DROP\fR 4
.IX Xref "SV_CHECK_THINKFIRST_COW_DROP"
.IX Item "SV_CHECK_THINKFIRST_COW_DROP"
Call this when you are about to replace the PV value in \f(CW\*(C`sv\*(C'\fR, which is
potentially copy-on-write.  It stops any sharing with other SVs, so that no
Copy on Write (COW) actually happens.  This COW would be useless, as it would
immediately get changed to something else.  This function also removes any
other encumbrances that would be problematic when changing \f(CW\*(C`sv\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& void  SV_CHECK_THINKFIRST_COW_DROP(SV * sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_chop""" 4
.el .IP \f(CWsv_chop\fR 4
.IX Xref "sv_chop"
.IX Item "sv_chop"
Efficient removal of characters from the beginning of the string buffer.
\&\f(CWSvPOK(sv)\fR, or at least \f(CWSvPOKp(sv)\fR, must be true and \f(CW\*(C`ptr\*(C'\fR must be a
pointer to somewhere inside the string buffer.  \f(CW\*(C`ptr\*(C'\fR becomes the first
character of the adjusted string.  Uses the \f(CW\*(C`OOK\*(C'\fR hack.  On return, only
\&\f(CWSvPOK(sv)\fR and \f(CWSvPOKp(sv)\fR among the \f(CW\*(C`OK\*(C'\fR flags will be true.
.Sp
Beware: after this function returns, \f(CW\*(C`ptr\*(C'\fR and SvPVX_const(sv) may no longer
refer to the same chunk of data.
.Sp
The unfortunate similarity of this function's name to that of Perl's \f(CW\*(C`chop\*(C'\fR
operator is strictly coincidental.  This function works from the left;
\&\f(CW\*(C`chop\*(C'\fR works from the right.
.RS 4
.Sp
.Vb 1
\& void  sv_chop(SV * const sv, const char * const ptr)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_clear""" 4
.el .IP \f(CWsv_clear\fR 4
.IX Xref "sv_clear"
.IX Item "sv_clear"
Clear an SV: call any destructors, free up any memory used by the body,
and free the body itself.  The SV's head is \fInot\fR freed, although
its type is set to all 1's so that it won't inadvertently be assumed
to be live during global destruction etc.
This function should only be called when \f(CW\*(C`REFCNT\*(C'\fR is zero.  Most of the time
you'll want to call \f(CW\*(C`SvREFCNT_dec\*(C'\fR instead.
.RS 4
.Sp
.Vb 1
\& void  sv_clear(SV * const orig_sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_cmp""" 4
.el .IP \f(CWsv_cmp\fR 4
.IX Xref "sv_cmp"
.IX Item "sv_cmp"
Compares the strings in two SVs.  Returns \-1, 0, or 1 indicating whether the
string in \f(CW\*(C`sv1\*(C'\fR is less than, equal to, or greater than the string in
\&\f(CW\*(C`sv2\*(C'\fR.  Is UTF\-8 and \f(CW\*(Aquse\ bytes\*(Aq\fR aware, handles get magic, and will
coerce its args to strings if necessary.  See also \f(CW"sv_cmp_locale"\fR.
.RS 4
.Sp
.Vb 1
\& I32  sv_cmp(SV * const sv1, SV * const sv2)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_cmp_flags""" 4
.el .IP \f(CWsv_cmp_flags\fR 4
.IX Xref "sv_cmp_flags"
.IX Item "sv_cmp_flags"
Compares the strings in two SVs.  Returns \-1, 0, or 1 indicating whether the
string in \f(CW\*(C`sv1\*(C'\fR is less than, equal to, or greater than the string in
\&\f(CW\*(C`sv2\*(C'\fR.  Is UTF\-8 and \f(CW\*(Aquse\ bytes\*(Aq\fR aware and will coerce its args to strings
if necessary.  If the flags has the \f(CW\*(C`SV_GMAGIC\*(C'\fR bit set, it handles get magic.  See
also \f(CW"sv_cmp_locale_flags"\fR.
.RS 4
.Sp
.Vb 1
\& I32  sv_cmp_flags(SV * const sv1, SV * const sv2, const U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_cmp_locale""" 4
.el .IP \f(CWsv_cmp_locale\fR 4
.IX Xref "sv_cmp_locale"
.IX Item "sv_cmp_locale"
Compares the strings in two SVs in a locale-aware manner.  Is UTF\-8 and
\&\f(CW\*(Aquse\ bytes\*(Aq\fR aware, handles get magic, and will coerce its args to strings
if necessary.  See also \f(CW"sv_cmp"\fR.
.RS 4
.Sp
.Vb 1
\& I32  sv_cmp_locale(SV * const sv1, SV * const sv2)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_cmp_locale_flags""" 4
.el .IP \f(CWsv_cmp_locale_flags\fR 4
.IX Xref "sv_cmp_locale_flags"
.IX Item "sv_cmp_locale_flags"
Compares the strings in two SVs in a locale-aware manner.  Is UTF\-8 and
\&\f(CW\*(Aquse\ bytes\*(Aq\fR aware and will coerce its args to strings if necessary.  If
the flags contain \f(CW\*(C`SV_GMAGIC\*(C'\fR, it handles get magic.  See also
\&\f(CW"sv_cmp_flags"\fR.
.RS 4
.Sp
.Vb 2
\& I32  sv_cmp_locale_flags(SV * const sv1, SV * const sv2,
\&                          const U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_collxfrm""" 4
.el .IP \f(CWsv_collxfrm\fR 4
.IX Xref "sv_collxfrm"
.IX Item "sv_collxfrm"
This calls \f(CW\*(C`sv_collxfrm_flags\*(C'\fR with the SV_GMAGIC flag.  See
\&\f(CW"sv_collxfrm_flags"\fR.
.RS 4
.Sp
.Vb 1
\& char *  sv_collxfrm(SV * const sv, STRLEN * const nxp)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_collxfrm_flags""" 4
.el .IP \f(CWsv_collxfrm_flags\fR 4
.IX Xref "sv_collxfrm_flags"
.IX Item "sv_collxfrm_flags"
Add Collate Transform magic to an SV if it doesn't already have it.  If the
flags contain \f(CW\*(C`SV_GMAGIC\*(C'\fR, it handles get-magic.
.Sp
Any scalar variable may carry \f(CW\*(C`PERL_MAGIC_collxfrm\*(C'\fR magic that contains the
scalar data of the variable, but transformed to such a format that a normal
memory comparison can be used to compare the data according to the locale
settings.
.RS 4
.Sp
.Vb 2
\& char *  sv_collxfrm_flags(SV * const sv, STRLEN * const nxp,
\&                           I32 const flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_copypv""" 4
.el .IP \f(CWsv_copypv\fR 4
.IX Item "sv_copypv"
.PD 0
.ie n .IP """sv_copypv_flags""" 4
.el .IP \f(CWsv_copypv_flags\fR 4
.IX Item "sv_copypv_flags"
.ie n .IP """sv_copypv_nomg""" 4
.el .IP \f(CWsv_copypv_nomg\fR 4
.IX Xref "sv_copypv sv_copypv_flags sv_copypv_nomg"
.IX Item "sv_copypv_nomg"
.PD
These copy a stringified representation of the source SV into the
destination SV.  They automatically perform coercion of numeric values into
strings.  Guaranteed to preserve the \f(CW\*(C`UTF8\*(C'\fR flag even from overloaded objects.
Similar in nature to \f(CW\*(C`sv_2pv[_flags]\*(C'\fR but they operate directly on an SV
instead of just the string.  Mostly they use "\f(CW\*(C`sv_2pv_flags\*(C'\fR" to
do the work, except when that would lose the UTF\-8'ness of the PV.
.Sp
The three forms differ only in whether or not they perform 'get magic' on
\&\f(CW\*(C`sv\*(C'\fR.  \f(CW\*(C`sv_copypv_nomg\*(C'\fR skips 'get magic'; \f(CW\*(C`sv_copypv\*(C'\fR performs it; and
\&\f(CW\*(C`sv_copypv_flags\*(C'\fR either performs it (if the \f(CW\*(C`SV_GMAGIC\*(C'\fR bit is set in
\&\f(CW\*(C`flags\*(C'\fR) or doesn't (if that bit is cleared).
.RS 4
.Sp
.Vb 4
\& void  sv_copypv      (SV * const dsv, SV * const ssv)
\& void  sv_copypv_flags(SV * const dsv, SV * const ssv,
\&                       const I32 flags)
\& void  sv_copypv_nomg (SV * const dsv, SV * const ssv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvCUR""" 4
.el .IP \f(CWSvCUR\fR 4
.IX Xref "SvCUR"
.IX Item "SvCUR"
Returns the length, in bytes, of the PV inside the SV.
Note that this may not match Perl's \f(CW\*(C`length\*(C'\fR; for that, use
\&\f(CWsv_len_utf8(sv)\fR. See \f(CW"SvLEN"\fR also.
.RS 4
.Sp
.Vb 1
\& STRLEN  SvCUR(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvCUR_set""" 4
.el .IP \f(CWSvCUR_set\fR 4
.IX Xref "SvCUR_set"
.IX Item "SvCUR_set"
Sets the current length, in bytes, of the C string which is in the SV.
See \f(CW"SvCUR"\fR and \f(CW\*(C`SvIV_set\*(C'\fR>.
.RS 4
.Sp
.Vb 1
\& void  SvCUR_set(SV* sv, STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_2cv""" 4
.el .IP \f(CWsv_2cv\fR 4
.IX Xref "sv_2cv"
.IX Item "sv_2cv"
Using various gambits, try to get a CV from an SV; in addition, try if
possible to set \f(CW*st\fR and \f(CW*gvp\fR to the stash and GV associated with it.
The flags in \f(CW\*(C`lref\*(C'\fR are passed to \f(CW\*(C`gv_fetchsv\*(C'\fR.
.RS 4
.Sp
.Vb 2
\& CV *  sv_2cv(SV *sv, HV ** const st, GV ** const gvp,
\&              const I32 lref)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_dec""" 4
.el .IP \f(CWsv_dec\fR 4
.IX Item "sv_dec"
.PD 0
.ie n .IP """sv_dec_nomg""" 4
.el .IP \f(CWsv_dec_nomg\fR 4
.IX Xref "sv_dec sv_dec_nomg"
.IX Item "sv_dec_nomg"
.PD
These auto-decrement the value in the SV, doing string to numeric conversion
if necessary.  They both handle operator overloading.
.Sp
They differ only in that:
.Sp
\&\f(CW\*(C`sv_dec\*(C'\fR handles 'get' magic; \f(CW\*(C`sv_dec_nomg\*(C'\fR skips 'get' magic.
.RS 4
.Sp
.Vb 1
\& void  sv_dec(SV * const sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_derived_from""" 4
.el .IP \f(CWsv_derived_from\fR 4
.IX Xref "sv_derived_from"
.IX Item "sv_derived_from"
Exactly like "sv_derived_from_pv", but doesn't take a \f(CW\*(C`flags\*(C'\fR parameter.
.RS 4
.Sp
.Vb 1
\& bool  sv_derived_from(SV *sv, const char * const name)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_derived_from_hv""" 4
.el .IP \f(CWsv_derived_from_hv\fR 4
.IX Xref "sv_derived_from_hv"
.IX Item "sv_derived_from_hv"
Exactly like "sv_derived_from_pvn", but takes the name string as the
\&\f(CW\*(C`HvNAME\*(C'\fR of the given HV (which would presumably represent a stash).
.RS 4
.Sp
.Vb 1
\& bool  sv_derived_from_hv(SV *sv, HV *hv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_derived_from_pv""" 4
.el .IP \f(CWsv_derived_from_pv\fR 4
.IX Xref "sv_derived_from_pv"
.IX Item "sv_derived_from_pv"
Exactly like "sv_derived_from_pvn", but takes a nul-terminated string 
instead of a string/length pair.
.RS 4
.Sp
.Vb 2
\& bool  sv_derived_from_pv(SV *sv, const char * const name,
\&                          U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_derived_from_pvn""" 4
.el .IP \f(CWsv_derived_from_pvn\fR 4
.IX Xref "sv_derived_from_pvn"
.IX Item "sv_derived_from_pvn"
Returns a boolean indicating whether the SV is derived from the specified class
\&\fIat the C level\fR.  To check derivation at the Perl level, call \f(CWisa()\fR as a
normal Perl method.
.Sp
Currently, the only significant value for \f(CW\*(C`flags\*(C'\fR is SVf_UTF8.
.RS 4
.Sp
.Vb 2
\& bool  sv_derived_from_pvn(SV *sv, const char * const name,
\&                           const STRLEN len, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_derived_from_sv""" 4
.el .IP \f(CWsv_derived_from_sv\fR 4
.IX Xref "sv_derived_from_sv"
.IX Item "sv_derived_from_sv"
Exactly like "sv_derived_from_pvn", but takes the name string in the form
of an SV instead of a string/length pair. This is the advised form.
.RS 4
.Sp
.Vb 1
\& bool  sv_derived_from_sv(SV *sv, SV *namesv, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_does""" 4
.el .IP \f(CWsv_does\fR 4
.IX Xref "sv_does"
.IX Item "sv_does"
Like "sv_does_pv", but doesn't take a \f(CW\*(C`flags\*(C'\fR parameter.
.RS 4
.Sp
.Vb 1
\& bool  sv_does(SV *sv, const char * const name)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_does_pv""" 4
.el .IP \f(CWsv_does_pv\fR 4
.IX Xref "sv_does_pv"
.IX Item "sv_does_pv"
Like "sv_does_sv", but takes a nul-terminated string instead of an SV.
.RS 4
.Sp
.Vb 1
\& bool  sv_does_pv(SV *sv, const char * const name, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_does_pvn""" 4
.el .IP \f(CWsv_does_pvn\fR 4
.IX Xref "sv_does_pvn"
.IX Item "sv_does_pvn"
Like "sv_does_sv", but takes a string/length pair instead of an SV.
.RS 4
.Sp
.Vb 2
\& bool  sv_does_pvn(SV *sv, const char * const name,
\&                   const STRLEN len, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_does_sv""" 4
.el .IP \f(CWsv_does_sv\fR 4
.IX Xref "sv_does_sv"
.IX Item "sv_does_sv"
Returns a boolean indicating whether the SV performs a specific, named role.
The SV can be a Perl object or the name of a Perl class.
.RS 4
.Sp
.Vb 1
\& bool  sv_does_sv(SV *sv, SV *namesv, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvEND""" 4
.el .IP \f(CWSvEND\fR 4
.IX Xref "SvEND"
.IX Item "SvEND"
Returns a pointer to the spot just after the last character in
the string which is in the SV, where there is usually a trailing
\&\f(CW\*(C`NUL\*(C'\fR character (even though Perl scalars do not strictly require it).
See \f(CW"SvCUR"\fR.  Access the character as \f(CW\*(C`*(SvEND(sv))\*(C'\fR.
.Sp
Warning: If \f(CW\*(C`SvCUR\*(C'\fR is equal to \f(CW\*(C`SvLEN\*(C'\fR, then \f(CW\*(C`SvEND\*(C'\fR points to
unallocated memory.
.RS 4
.Sp
.Vb 1
\& char*  SvEND(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_eq""" 4
.el .IP \f(CWsv_eq\fR 4
.IX Xref "sv_eq"
.IX Item "sv_eq"
Returns a boolean indicating whether the strings in the two SVs are
identical.  Is UTF\-8 and \f(CW\*(Aquse\ bytes\*(Aq\fR aware, handles get magic, and will
coerce its args to strings if necessary.
.Sp
This function does not handle operator overloading. For a version that does,
see instead \f(CW\*(C`sv_streq\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& I32  sv_eq(SV *sv1, SV *sv2)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_eq_flags""" 4
.el .IP \f(CWsv_eq_flags\fR 4
.IX Xref "sv_eq_flags"
.IX Item "sv_eq_flags"
Returns a boolean indicating whether the strings in the two SVs are
identical.  Is UTF\-8 and \f(CW\*(Aquse\ bytes\*(Aq\fR aware and coerces its args to strings
if necessary.  If the flags has the \f(CW\*(C`SV_GMAGIC\*(C'\fR bit set, it handles get-magic, too.
.Sp
This function does not handle operator overloading. For a version that does,
see instead \f(CW\*(C`sv_streq_flags\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& I32  sv_eq_flags(SV *sv1, SV *sv2, const U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_force_normal""" 4
.el .IP \f(CWsv_force_normal\fR 4
.IX Xref "sv_force_normal"
.IX Item "sv_force_normal"
Undo various types of fakery on an SV: if the PV is a shared string, make
a private copy; if we're a ref, stop refing; if we're a glob, downgrade to
an \f(CW\*(C`xpvmg\*(C'\fR.  See also \f(CW"sv_force_normal_flags"\fR.
.RS 4
.Sp
.Vb 1
\& void  sv_force_normal(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_force_normal_flags""" 4
.el .IP \f(CWsv_force_normal_flags\fR 4
.IX Xref "sv_force_normal_flags"
.IX Item "sv_force_normal_flags"
Undo various types of fakery on an SV, where fakery means
"more than" a string: if the PV is a shared string, make
a private copy; if we're a ref, stop refing; if we're a glob, downgrade to
an \f(CW\*(C`xpvmg\*(C'\fR; if we're a copy-on-write scalar, this is the on-write time when
we do the copy, and is also used locally; if this is a
vstring, drop the vstring magic.  If \f(CW\*(C`SV_COW_DROP_PV\*(C'\fR is set
then a copy-on-write scalar drops its PV buffer (if any) and becomes
\&\f(CW\*(C`SvPOK_off\*(C'\fR rather than making a copy.  (Used where this
scalar is about to be set to some other value.)  In addition,
the \f(CW\*(C`flags\*(C'\fR parameter gets passed to \f(CWsv_unref_flags()\fR
when unreffing.  \f(CW\*(C`sv_force_normal\*(C'\fR calls this function
with flags set to 0.
.Sp
This function is expected to be used to signal to perl that this SV is
about to be written to, and any extra book-keeping needs to be taken care
of.  Hence, it croaks on read-only values.
.RS 4
.Sp
.Vb 1
\& void  sv_force_normal_flags(SV * const sv, const U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_free""" 4
.el .IP \f(CWsv_free\fR 4
.IX Xref "sv_free"
.IX Item "sv_free"
Decrement an SV's reference count, and if it drops to zero, call
\&\f(CW\*(C`sv_clear\*(C'\fR to invoke destructors and free up any memory used by
the body; finally, deallocating the SV's head itself.
Normally called via a wrapper macro \f(CW\*(C`SvREFCNT_dec\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& void  sv_free(SV * const sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvGAMAGIC""" 4
.el .IP \f(CWSvGAMAGIC\fR 4
.IX Xref "SvGAMAGIC"
.IX Item "SvGAMAGIC"
Returns true if the SV has get magic or
overloading.  If either is true then
the scalar is active data, and has the potential to return a new value every
time it is accessed.  Hence you must be careful to
only read it once per user logical operation and work
with that returned value.  If neither is true then
the scalar's value cannot change unless written to.
.RS 4
.Sp
.Vb 1
\& U32  SvGAMAGIC(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_get_backrefs""" 4
.el .IP \f(CWsv_get_backrefs\fR 4
.IX Xref "sv_get_backrefs"
.IX Item "sv_get_backrefs"
NOTE: \f(CW\*(C`sv_get_backrefs\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
If \f(CW\*(C`sv\*(C'\fR is the target of a weak reference then it returns the back
references structure associated with the sv; otherwise return \f(CW\*(C`NULL\*(C'\fR.
.Sp
When returning a non-null result the type of the return is relevant. If it
is an AV then the elements of the AV are the weak reference RVs which
point at this item. If it is any other type then the item itself is the
weak reference.
.Sp
See also \f(CWPerl_sv_add_backref()\fR, \f(CWPerl_sv_del_backref()\fR,
\&\f(CWPerl_sv_kill_backrefs()\fR
.RS 4
.Sp
.Vb 1
\& SV *  sv_get_backrefs(SV * const sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvGETMAGIC""" 4
.el .IP \f(CWSvGETMAGIC\fR 4
.IX Xref "SvGETMAGIC"
.IX Item "SvGETMAGIC"
Invokes \f(CW"mg_get"\fR on an SV if it has 'get' magic.  For example, this
will call \f(CW\*(C`FETCH\*(C'\fR on a tied variable.  As of 5.37.1, this function is
guaranteed to evaluate its argument exactly once.
.RS 4
.Sp
.Vb 1
\& void  SvGETMAGIC(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_gets""" 4
.el .IP \f(CWsv_gets\fR 4
.IX Xref "sv_gets"
.IX Item "sv_gets"
Get a line from the filehandle and store it into the SV, optionally
appending to the currently-stored string.  If \f(CW\*(C`append\*(C'\fR is not 0, the
line is appended to the SV instead of overwriting it.  \f(CW\*(C`append\*(C'\fR should
be set to the byte offset that the appended string should start at
in the SV (typically, \f(CWSvCUR(sv)\fR is a suitable choice).
.RS 4
.Sp
.Vb 1
\& char *  sv_gets(SV * const sv, PerlIO * const fp, I32 append)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvGROW""" 4
.el .IP \f(CWSvGROW\fR 4
.IX Xref "SvGROW"
.IX Item "SvGROW"
Expands the character buffer in the SV so that it has room for the
indicated number of bytes (remember to reserve space for an extra trailing
\&\f(CW\*(C`NUL\*(C'\fR character).  Calls \f(CW\*(C`sv_grow\*(C'\fR to perform the expansion if necessary.
Returns a pointer to the character
buffer.  SV must be of type >= \f(CW\*(C`SVt_PV\*(C'\fR.  One
alternative is to call \f(CW\*(C`sv_grow\*(C'\fR if you are not sure of the type of SV.
.Sp
You might mistakenly think that \f(CW\*(C`len\*(C'\fR is the number of bytes to add to the
existing size, but instead it is the total size \f(CW\*(C`sv\*(C'\fR should be.
.RS 4
.Sp
.Vb 1
\& char *  SvGROW(SV* sv, STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvIandPOK""" 4
.el .IP \f(CWSvIandPOK\fR 4
.IX Xref "SvIandPOK"
.IX Item "SvIandPOK"
Returns a bool indicating whether the SV is both \f(CWSvPOK()\fR and
\&\f(CWSvIOK()\fR at the same time. Equivalent to \f(CW\*(C`SvIOK(sv) && SvPOK(sv)\*(C'\fR but
more efficient.
.RS 4
.Sp
.Vb 1
\& U32  SvIandPOK(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvIandPOK_off""" 4
.el .IP \f(CWSvIandPOK_off\fR 4
.IX Xref "SvIandPOK_off"
.IX Item "SvIandPOK_off"
Unsets the PV and IV status of an SV in one operation. Equivalent to
\&\f(CW\*(C`SvIOK_off(sv); SvPK_off(v);\*(C'\fR but more efficient.
.RS 4
.Sp
.Vb 1
\& void  SvIandPOK_off(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvIandPOK_on""" 4
.el .IP \f(CWSvIandPOK_on\fR 4
.IX Xref "SvIandPOK_on"
.IX Item "SvIandPOK_on"
Tells an SV that is a string and a number in one operation. Equivalent
to \f(CW\*(C`SvIOK_on(sv); SvPOK_on(sv);\*(C'\fR but more efficient.
.RS 4
.Sp
.Vb 1
\& void  SvIandPOK_on(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_inc""" 4
.el .IP \f(CWsv_inc\fR 4
.IX Item "sv_inc"
.PD 0
.ie n .IP """sv_inc_nomg""" 4
.el .IP \f(CWsv_inc_nomg\fR 4
.IX Xref "sv_inc sv_inc_nomg"
.IX Item "sv_inc_nomg"
.PD
These auto-increment the value in the SV, doing string to numeric conversion
if necessary.  They both handle operator overloading.
.Sp
They differ only in that \f(CW\*(C`sv_inc\*(C'\fR performs 'get' magic; \f(CW\*(C`sv_inc_nomg\*(C'\fR skips
any magic.
.RS 4
.Sp
.Vb 1
\& void  sv_inc(SV * const sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_insert""" 4
.el .IP \f(CWsv_insert\fR 4
.IX Xref "sv_insert"
.IX Item "sv_insert"
Inserts and/or replaces a string at the specified offset/length within the SV.
Similar to the Perl \f(CWsubstr()\fR function, with \f(CW\*(C`littlelen\*(C'\fR bytes starting at
\&\f(CW\*(C`little\*(C'\fR replacing \f(CW\*(C`len\*(C'\fR bytes of the string in \f(CW\*(C`bigstr\*(C'\fR starting at
\&\f(CW\*(C`offset\*(C'\fR.  Handles get magic.
.RS 4
.Sp
.Vb 3
\& void  sv_insert(SV * const bigstr, const STRLEN offset,
\&                 const STRLEN len, const char * const little,
\&                 const STRLEN littlelen)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_insert_flags""" 4
.el .IP \f(CWsv_insert_flags\fR 4
.IX Xref "sv_insert_flags"
.IX Item "sv_insert_flags"
Same as \f(CW\*(C`sv_insert\*(C'\fR, but the extra \f(CW\*(C`flags\*(C'\fR are passed to the
\&\f(CW\*(C`SvPV_force_flags\*(C'\fR that applies to \f(CW\*(C`bigstr\*(C'\fR.
.RS 4
.Sp
.Vb 3
\& void  sv_insert_flags(SV * const bigstr, const STRLEN offset,
\&                       const STRLEN len, const char *little,
\&                       const STRLEN littlelen, const U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_2io""" 4
.el .IP \f(CWsv_2io\fR 4
.IX Xref "sv_2io"
.IX Item "sv_2io"
Using various gambits, try to get an IO from an SV: the IO slot if its a
GV; or the recursive result if we're an RV; or the IO slot of the symbol
named after the PV if we're a string.
.Sp
\&'Get' magic is ignored on the \f(CW\*(C`sv\*(C'\fR passed in, but will be called on
\&\f(CWSvRV(sv)\fR if \f(CW\*(C`sv\*(C'\fR is an RV.
.RS 4
.Sp
.Vb 1
\& IO *  sv_2io(SV * const sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvIOK""" 4
.el .IP \f(CWSvIOK\fR 4
.IX Xref "SvIOK"
.IX Item "SvIOK"
Returns a U32 value indicating whether the SV contains an integer.
.RS 4
.Sp
.Vb 1
\& U32  SvIOK(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvIOK_notUV""" 4
.el .IP \f(CWSvIOK_notUV\fR 4
.IX Xref "SvIOK_notUV"
.IX Item "SvIOK_notUV"
Returns a boolean indicating whether the SV contains a signed integer.
.RS 4
.Sp
.Vb 1
\& bool  SvIOK_notUV(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvIOK_off""" 4
.el .IP \f(CWSvIOK_off\fR 4
.IX Xref "SvIOK_off"
.IX Item "SvIOK_off"
Unsets the IV status of an SV.
.RS 4
.Sp
.Vb 1
\& void  SvIOK_off(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvIOK_on""" 4
.el .IP \f(CWSvIOK_on\fR 4
.IX Xref "SvIOK_on"
.IX Item "SvIOK_on"
Tells an SV that it is an integer.
.RS 4
.Sp
.Vb 1
\& void  SvIOK_on(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvIOK_only""" 4
.el .IP \f(CWSvIOK_only\fR 4
.IX Xref "SvIOK_only"
.IX Item "SvIOK_only"
Tells an SV that it is an integer and disables all other \f(CW\*(C`OK\*(C'\fR bits.
.RS 4
.Sp
.Vb 1
\& void  SvIOK_only(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvIOK_only_UV""" 4
.el .IP \f(CWSvIOK_only_UV\fR 4
.IX Xref "SvIOK_only_UV"
.IX Item "SvIOK_only_UV"
Tells an SV that it is an unsigned integer and disables all other \f(CW\*(C`OK\*(C'\fR bits.
.RS 4
.Sp
.Vb 1
\& void  SvIOK_only_UV(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvIOKp""" 4
.el .IP \f(CWSvIOKp\fR 4
.IX Xref "SvIOKp"
.IX Item "SvIOKp"
Returns a U32 value indicating whether the SV contains an integer.  Checks
the \fBprivate\fR setting.  Use \f(CW\*(C`SvIOK\*(C'\fR instead.
.RS 4
.Sp
.Vb 1
\& U32  SvIOKp(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvIOK_UV""" 4
.el .IP \f(CWSvIOK_UV\fR 4
.IX Xref "SvIOK_UV"
.IX Item "SvIOK_UV"
Returns a boolean indicating whether the SV contains an integer that must be
interpreted as unsigned.  A non-negative integer whose value is within the
range of both an IV and a UV may be flagged as either \f(CW\*(C`SvUOK\*(C'\fR or \f(CW\*(C`SvIOK\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& bool  SvIOK_UV(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_isa""" 4
.el .IP \f(CWsv_isa\fR 4
.IX Xref "sv_isa"
.IX Item "sv_isa"
Returns a boolean indicating whether the SV is blessed into the specified
class.
.Sp
This does not check for subtypes or method overloading. Use \f(CW\*(C`sv_isa_sv\*(C'\fR to
verify an inheritance relationship in the same way as the \f(CW\*(C`isa\*(C'\fR operator by
respecting any \f(CWisa()\fR method overloading; or \f(CW\*(C`sv_derived_from_sv\*(C'\fR to test
directly on the actual object type.
.RS 4
.Sp
.Vb 1
\& int  sv_isa(SV *sv, const char * const name)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_isa_sv""" 4
.el .IP \f(CWsv_isa_sv\fR 4
.IX Xref "sv_isa_sv"
.IX Item "sv_isa_sv"
NOTE: \f(CW\*(C`sv_isa_sv\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Returns a boolean indicating whether the SV is an object reference and is
derived from the specified class, respecting any \f(CWisa()\fR method overloading
it may have. Returns false if \f(CW\*(C`sv\*(C'\fR is not a reference to an object, or is
not derived from the specified class.
.Sp
This is the function used to implement the behaviour of the \f(CW\*(C`isa\*(C'\fR operator.
.Sp
Does not invoke magic on \f(CW\*(C`sv\*(C'\fR.
.Sp
Not to be confused with the older \f(CW\*(C`sv_isa\*(C'\fR function, which does not use an
overloaded \f(CWisa()\fR method, nor will check subclassing.
.RS 4
.Sp
.Vb 1
\& bool  sv_isa_sv(SV *sv, SV *namesv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvIsBOOL""" 4
.el .IP \f(CWSvIsBOOL\fR 4
.IX Xref "SvIsBOOL"
.IX Item "SvIsBOOL"
Returns true if the SV is one of the special boolean constants (PL_sv_yes or
PL_sv_no), or is a regular SV whose last assignment stored a copy of one.
.RS 4
.Sp
.Vb 1
\& bool  SvIsBOOL(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvIsCOW""" 4
.el .IP \f(CWSvIsCOW\fR 4
.IX Xref "SvIsCOW"
.IX Item "SvIsCOW"
Returns a U32 value indicating whether the SV is Copy-On-Write (either shared
hash key scalars, or full Copy On Write scalars if 5.9.0 is configured for
COW).
.RS 4
.Sp
.Vb 1
\& U32  SvIsCOW(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvIsCOW_shared_hash""" 4
.el .IP \f(CWSvIsCOW_shared_hash\fR 4
.IX Xref "SvIsCOW_shared_hash"
.IX Item "SvIsCOW_shared_hash"
Returns a boolean indicating whether the SV is Copy-On-Write shared hash key
scalar.
.RS 4
.Sp
.Vb 1
\& bool  SvIsCOW_shared_hash(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_isobject""" 4
.el .IP \f(CWsv_isobject\fR 4
.IX Xref "sv_isobject"
.IX Item "sv_isobject"
Returns a boolean indicating whether the SV is an RV pointing to a blessed
object.  If the SV is not an RV, or if the object is not blessed, then this
will return false.
.RS 4
.Sp
.Vb 1
\& int  sv_isobject(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvIV""" 4
.el .IP \f(CWSvIV\fR 4
.IX Item "SvIV"
.PD 0
.ie n .IP """SvIV_nomg""" 4
.el .IP \f(CWSvIV_nomg\fR 4
.IX Item "SvIV_nomg"
.ie n .IP """SvIVx""" 4
.el .IP \f(CWSvIVx\fR 4
.IX Xref "SvIV SvIV_nomg SvIVx"
.IX Item "SvIVx"
.PD
These each coerce the given SV to IV and return it.  The returned value in many
circumstances will get stored in \f(CW\*(C`sv\*(C'\fR's IV slot, but not in all cases.  (Use
\&\f(CW"sv_setiv"\fR to make sure it does).
.Sp
As of 5.37.1, all are guaranteed to evaluate \f(CW\*(C`sv\*(C'\fR only once.
.Sp
\&\f(CW\*(C`SvIVx\*(C'\fR is now identical to \f(CW\*(C`SvIV\*(C'\fR, but prior to 5.37.1, it was the only form
guaranteed to evaluate \f(CW\*(C`sv\*(C'\fR only once.
.Sp
\&\f(CW\*(C`SvIV_nomg\*(C'\fR is the same as \f(CW\*(C`SvIV\*(C'\fR, but does not perform 'get' magic.
.RS 4
.Sp
.Vb 1
\& IV  SvIV(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_2iv_flags""" 4
.el .IP \f(CWsv_2iv_flags\fR 4
.IX Xref "sv_2iv_flags"
.IX Item "sv_2iv_flags"
Return the integer value of an SV, doing any necessary string
conversion.  If \f(CW\*(C`flags\*(C'\fR has the \f(CW\*(C`SV_GMAGIC\*(C'\fR bit set, does an \f(CWmg_get()\fR first.
Normally used via the \f(CWSvIV(sv)\fR and \f(CWSvIVx(sv)\fR macros.
.RS 4
.Sp
.Vb 1
\& IV  sv_2iv_flags(SV * const sv, const I32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvIV_set""" 4
.el .IP \f(CWSvIV_set\fR 4
.IX Xref "SvIV_set"
.IX Item "SvIV_set"
Set the value of the IV pointer in sv to val.  It is possible to perform
the same function of this macro with an lvalue assignment to \f(CW\*(C`SvIVX\*(C'\fR.
With future Perls, however, it will be more efficient to use
\&\f(CW\*(C`SvIV_set\*(C'\fR instead of the lvalue assignment to \f(CW\*(C`SvIVX\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& void  SvIV_set(SV* sv, IV val)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvIVX""" 4
.el .IP \f(CWSvIVX\fR 4
.IX Xref "SvIVX"
.IX Item "SvIVX"
Returns the raw value in the SV's IV slot, without checks or conversions.
Only use when you are sure \f(CW\*(C`SvIOK\*(C'\fR is true.  See also \f(CW"SvIV"\fR.
.RS 4
.Sp
.Vb 1
\& IV  SvIVX(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvLEN""" 4
.el .IP \f(CWSvLEN\fR 4
.IX Xref "SvLEN"
.IX Item "SvLEN"
Returns the size of the string buffer in the SV, not including any part
attributable to \f(CW\*(C`SvOOK\*(C'\fR.  See \f(CW"SvCUR"\fR.
.RS 4
.Sp
.Vb 1
\& STRLEN  SvLEN(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_len""" 4
.el .IP \f(CWsv_len\fR 4
.IX Xref "sv_len"
.IX Item "sv_len"
Returns the length of the string in the SV.  Handles magic and type
coercion and sets the UTF8 flag appropriately.  See also \f(CW"SvCUR"\fR, which
gives raw access to the \f(CW\*(C`xpv_cur\*(C'\fR slot.
.RS 4
.Sp
.Vb 1
\& STRLEN  sv_len(SV * const sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvLEN_set""" 4
.el .IP \f(CWSvLEN_set\fR 4
.IX Xref "SvLEN_set"
.IX Item "SvLEN_set"
Set the size of the string buffer for the SV. See \f(CW"SvLEN"\fR.
.RS 4
.Sp
.Vb 1
\& void  SvLEN_set(SV* sv, STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_len_utf8""" 4
.el .IP \f(CWsv_len_utf8\fR 4
.IX Item "sv_len_utf8"
.PD 0
.ie n .IP """sv_len_utf8_nomg""" 4
.el .IP \f(CWsv_len_utf8_nomg\fR 4
.IX Xref "sv_len_utf8 sv_len_utf8_nomg"
.IX Item "sv_len_utf8_nomg"
.PD
These return the number of characters in the string in an SV, counting wide
UTF\-8 bytes as a single character.  Both handle type coercion.
They differ only in that \f(CW\*(C`sv_len_utf8\*(C'\fR performs 'get' magic;
\&\f(CW\*(C`sv_len_utf8_nomg\*(C'\fR skips any magic.
.RS 4
.Sp
.Vb 1
\& STRLEN  sv_len_utf8(SV * const sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvLOCK""" 4
.el .IP \f(CWSvLOCK\fR 4
.IX Xref "SvLOCK"
.IX Item "SvLOCK"
Arranges for a mutual exclusion lock to be obtained on \f(CW\*(C`sv\*(C'\fR if a suitable module
has been loaded.
.RS 4
.Sp
.Vb 1
\& void  SvLOCK(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_magic""" 4
.el .IP \f(CWsv_magic\fR 4
.IX Xref "sv_magic"
.IX Item "sv_magic"
Adds magic to an SV.  First upgrades \f(CW\*(C`sv\*(C'\fR to type \f(CW\*(C`SVt_PVMG\*(C'\fR if
necessary, then adds a new magic item of type \f(CW\*(C`how\*(C'\fR to the head of the
magic list.
.Sp
See \f(CW"sv_magicext"\fR (which \f(CW\*(C`sv_magic\*(C'\fR now calls) for a description of the
handling of the \f(CW\*(C`name\*(C'\fR and \f(CW\*(C`namlen\*(C'\fR arguments.
.Sp
You need to use \f(CW\*(C`sv_magicext\*(C'\fR to add magic to \f(CW\*(C`SvREADONLY\*(C'\fR SVs and also
to add more than one instance of the same \f(CW\*(C`how\*(C'\fR.
.RS 4
.Sp
.Vb 2
\& void  sv_magic(SV * const sv, SV * const obj, const int how,
\&                const char * const name, const I32 namlen)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_magicext""" 4
.el .IP \f(CWsv_magicext\fR 4
.IX Xref "sv_magicext"
.IX Item "sv_magicext"
Adds magic to an SV, upgrading it if necessary.  Applies the
supplied \f(CW\*(C`vtable\*(C'\fR and returns a pointer to the magic added.
.Sp
Note that \f(CW\*(C`sv_magicext\*(C'\fR will allow things that \f(CW\*(C`sv_magic\*(C'\fR will not.
In particular, you can add magic to \f(CW\*(C`SvREADONLY\*(C'\fR SVs, and add more than
one instance of the same \f(CW\*(C`how\*(C'\fR.
.Sp
If \f(CW\*(C`namlen\*(C'\fR is greater than zero then a \f(CW\*(C`savepvn\*(C'\fR \fIcopy\fR of \f(CW\*(C`name\*(C'\fR is
stored, if \f(CW\*(C`namlen\*(C'\fR is zero then \f(CW\*(C`name\*(C'\fR is stored as-is and \- as another
special case \- if \f(CW\*(C`(name && namlen == HEf_SVKEY)\*(C'\fR then \f(CW\*(C`name\*(C'\fR is assumed
to contain an SV* and is stored as-is with its \f(CW\*(C`REFCNT\*(C'\fR incremented.
.Sp
(This is now used as a subroutine by \f(CW\*(C`sv_magic\*(C'\fR.)
.RS 4
.Sp
.Vb 3
\& MAGIC *  sv_magicext(SV * const sv, SV * const obj, const int how,
\&                      const MGVTBL * const vtbl,
\&                      const char * const name, const I32 namlen)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvMAGIC_set""" 4
.el .IP \f(CWSvMAGIC_set\fR 4
.IX Xref "SvMAGIC_set"
.IX Item "SvMAGIC_set"
Set the value of the MAGIC pointer in \f(CW\*(C`sv\*(C'\fR to val.  See \f(CW"SvIV_set"\fR.
.RS 4
.Sp
.Vb 1
\& void  SvMAGIC_set(SV* sv, MAGIC* val)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_2mortal""" 4
.el .IP \f(CWsv_2mortal\fR 4
.IX Xref "sv_2mortal"
.IX Item "sv_2mortal"
Marks an existing SV as mortal.  The SV will be destroyed "soon", either
by an explicit call to \f(CW\*(C`FREETMPS\*(C'\fR, or by an implicit call at places such as
statement boundaries.  \f(CWSvTEMP()\fR is turned on which means that the SV's
string buffer can be "stolen" if this SV is copied.  See also
\&\f(CW"sv_newmortal"\fR and \f(CW"sv_mortalcopy"\fR.
.RS 4
.Sp
.Vb 1
\& SV *  sv_2mortal(SV * const sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_mortalcopy""" 4
.el .IP \f(CWsv_mortalcopy\fR 4
.IX Xref "sv_mortalcopy"
.IX Item "sv_mortalcopy"
Creates a new SV which is a copy of the original SV (using \f(CW\*(C`sv_setsv\*(C'\fR).
The new SV is marked as mortal.  It will be destroyed "soon", either by an
explicit call to \f(CW\*(C`FREETMPS\*(C'\fR, or by an implicit call at places such as
statement boundaries.  See also \f(CW"sv_newmortal"\fR and \f(CW"sv_2mortal"\fR.
.RS 4
.Sp
.Vb 1
\& SV *  sv_mortalcopy(SV * const oldsv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_mortalcopy_flags""" 4
.el .IP \f(CWsv_mortalcopy_flags\fR 4
.IX Xref "sv_mortalcopy_flags"
.IX Item "sv_mortalcopy_flags"
Like \f(CW\*(C`sv_mortalcopy\*(C'\fR, but the extra \f(CW\*(C`flags\*(C'\fR are passed to the
\&\f(CW\*(C`sv_setsv_flags\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& SV *  sv_mortalcopy_flags(SV * const oldsv, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_newmortal""" 4
.el .IP \f(CWsv_newmortal\fR 4
.IX Xref "sv_newmortal"
.IX Item "sv_newmortal"
Creates a new null SV which is mortal.  The reference count of the SV is
set to 1.  It will be destroyed "soon", either by an explicit call to
\&\f(CW\*(C`FREETMPS\*(C'\fR, or by an implicit call at places such as statement boundaries.
See also \f(CW"sv_mortalcopy"\fR and \f(CW"sv_2mortal"\fR.
.RS 4
.Sp
.Vb 1
\& SV *  sv_newmortal()
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvNIOK""" 4
.el .IP \f(CWSvNIOK\fR 4
.IX Xref "SvNIOK"
.IX Item "SvNIOK"
Returns a U32 value indicating whether the SV contains a number, integer or
double.
.RS 4
.Sp
.Vb 1
\& U32  SvNIOK(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvNIOK_off""" 4
.el .IP \f(CWSvNIOK_off\fR 4
.IX Xref "SvNIOK_off"
.IX Item "SvNIOK_off"
Unsets the NV/IV status of an SV.
.RS 4
.Sp
.Vb 1
\& void  SvNIOK_off(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvNIOKp""" 4
.el .IP \f(CWSvNIOKp\fR 4
.IX Xref "SvNIOKp"
.IX Item "SvNIOKp"
Returns a U32 value indicating whether the SV contains a number, integer or
double.  Checks the \fBprivate\fR setting.  Use \f(CW\*(C`SvNIOK\*(C'\fR instead.
.RS 4
.Sp
.Vb 1
\& U32  SvNIOKp(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvNOK""" 4
.el .IP \f(CWSvNOK\fR 4
.IX Xref "SvNOK"
.IX Item "SvNOK"
Returns a U32 value indicating whether the SV contains a double.
.RS 4
.Sp
.Vb 1
\& U32  SvNOK(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvNOK_off""" 4
.el .IP \f(CWSvNOK_off\fR 4
.IX Xref "SvNOK_off"
.IX Item "SvNOK_off"
Unsets the NV status of an SV.
.RS 4
.Sp
.Vb 1
\& void  SvNOK_off(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvNOK_on""" 4
.el .IP \f(CWSvNOK_on\fR 4
.IX Xref "SvNOK_on"
.IX Item "SvNOK_on"
Tells an SV that it is a double.
.RS 4
.Sp
.Vb 1
\& void  SvNOK_on(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvNOK_only""" 4
.el .IP \f(CWSvNOK_only\fR 4
.IX Xref "SvNOK_only"
.IX Item "SvNOK_only"
Tells an SV that it is a double and disables all other OK bits.
.RS 4
.Sp
.Vb 1
\& void  SvNOK_only(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvNOKp""" 4
.el .IP \f(CWSvNOKp\fR 4
.IX Xref "SvNOKp"
.IX Item "SvNOKp"
Returns a U32 value indicating whether the SV contains a double.  Checks the
\&\fBprivate\fR setting.  Use \f(CW\*(C`SvNOK\*(C'\fR instead.
.RS 4
.Sp
.Vb 1
\& U32  SvNOKp(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_nolocking""" 4
.el .IP \f(CWsv_nolocking\fR 4
.IX Xref "sv_nolocking"
.IX Item "sv_nolocking"
\&\f(CW\*(C`\fR\f(CBDEPRECATED!\fR\f(CW\*(C'\fR  It is planned to remove \f(CW\*(C`sv_nolocking\*(C'\fR
from a future release of Perl.  Do not use it for
new code; remove it from existing code.
.Sp
Dummy routine which "locks" an SV when there is no locking module present.
Exists to avoid test for a \f(CW\*(C`NULL\*(C'\fR function pointer and because it could
potentially warn under some level of strict-ness.
.Sp
"Superseded" by \f(CWsv_nosharing()\fR.
.RS 4
.Sp
.Vb 1
\& void  sv_nolocking(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_nounlocking""" 4
.el .IP \f(CWsv_nounlocking\fR 4
.IX Xref "sv_nounlocking"
.IX Item "sv_nounlocking"
\&\f(CW\*(C`\fR\f(CBDEPRECATED!\fR\f(CW\*(C'\fR  It is planned to remove \f(CW\*(C`sv_nounlocking\*(C'\fR
from a future release of Perl.  Do not use it for
new code; remove it from existing code.
.Sp
Dummy routine which "unlocks" an SV when there is no locking module present.
Exists to avoid test for a \f(CW\*(C`NULL\*(C'\fR function pointer and because it could
potentially warn under some level of strict-ness.
.Sp
"Superseded" by \f(CWsv_nosharing()\fR.
.RS 4
.Sp
.Vb 1
\& void  sv_nounlocking(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_numeq""" 4
.el .IP \f(CWsv_numeq\fR 4
.IX Xref "sv_numeq"
.IX Item "sv_numeq"
A convenient shortcut for calling \f(CW\*(C`sv_numeq_flags\*(C'\fR with the \f(CW\*(C`SV_GMAGIC\*(C'\fR
flag. This function basically behaves like the Perl code \f(CW\*(C`$sv1 == $sv2\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& bool  sv_numeq(SV *sv1, SV *sv2)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_numeq_flags""" 4
.el .IP \f(CWsv_numeq_flags\fR 4
.IX Xref "sv_numeq_flags"
.IX Item "sv_numeq_flags"
Returns a boolean indicating whether the numbers in the two SVs are
identical. If the flags argument has the \f(CW\*(C`SV_GMAGIC\*(C'\fR bit set, it handles
get-magic too. Will coerce its args to numbers if necessary. Treats
\&\f(CW\*(C`NULL\*(C'\fR as undef.
.Sp
If flags does not have the \f(CW\*(C`SV_SKIP_OVERLOAD\*(C'\fR bit set, an attempt to use
\&\f(CW\*(C`==\*(C'\fR overloading will be made. If such overloading does not exist or the
flag is set, then regular numerical comparison will be used instead.
.RS 4
.Sp
.Vb 1
\& bool  sv_numeq_flags(SV *sv1, SV *sv2, const U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvNV""" 4
.el .IP \f(CWSvNV\fR 4
.IX Item "SvNV"
.PD 0
.ie n .IP """SvNV_nomg""" 4
.el .IP \f(CWSvNV_nomg\fR 4
.IX Item "SvNV_nomg"
.ie n .IP """SvNVx""" 4
.el .IP \f(CWSvNVx\fR 4
.IX Xref "SvNV SvNV_nomg SvNVx"
.IX Item "SvNVx"
.PD
These each coerce the given SV to NV and return it.  The returned value in many
circumstances will get stored in \f(CW\*(C`sv\*(C'\fR's NV slot, but not in all cases.  (Use
\&\f(CW"sv_setnv"\fR to make sure it does).
.Sp
As of 5.37.1, all are guaranteed to evaluate \f(CW\*(C`sv\*(C'\fR only once.
.Sp
\&\f(CW\*(C`SvNVx\*(C'\fR is now identical to \f(CW\*(C`SvNV\*(C'\fR, but prior to 5.37.1, it was the only form
guaranteed to evaluate \f(CW\*(C`sv\*(C'\fR only once.
.Sp
\&\f(CW\*(C`SvNV_nomg\*(C'\fR is the same as \f(CW\*(C`SvNV\*(C'\fR, but does not perform 'get' magic.
.RS 4
.Sp
.Vb 1
\& NV  SvNV(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_2nv_flags""" 4
.el .IP \f(CWsv_2nv_flags\fR 4
.IX Xref "sv_2nv_flags"
.IX Item "sv_2nv_flags"
Return the num value of an SV, doing any necessary string or integer
conversion.  If \f(CW\*(C`flags\*(C'\fR has the \f(CW\*(C`SV_GMAGIC\*(C'\fR bit set, does an \f(CWmg_get()\fR first.
Normally used via the \f(CWSvNV(sv)\fR and \f(CWSvNVx(sv)\fR macros.
.RS 4
.Sp
.Vb 1
\& NV  sv_2nv_flags(SV * const sv, const I32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvNV_set""" 4
.el .IP \f(CWSvNV_set\fR 4
.IX Xref "SvNV_set"
.IX Item "SvNV_set"
Set the value of the NV pointer in \f(CW\*(C`sv\*(C'\fR to val.  See \f(CW"SvIV_set"\fR.
.RS 4
.Sp
.Vb 1
\& void  SvNV_set(SV* sv, NV val)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvNVX""" 4
.el .IP \f(CWSvNVX\fR 4
.IX Xref "SvNVX"
.IX Item "SvNVX"
Returns the raw value in the SV's NV slot, without checks or conversions.
Only use when you are sure \f(CW\*(C`SvNOK\*(C'\fR is true.  See also \f(CW"SvNV"\fR.
.RS 4
.Sp
.Vb 1
\& NV  SvNVX(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvOK""" 4
.el .IP \f(CWSvOK\fR 4
.IX Xref "SvOK"
.IX Item "SvOK"
Returns a U32 value indicating whether the value is defined.  This is
only meaningful for scalars.
.RS 4
.Sp
.Vb 1
\& U32  SvOK(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvOOK""" 4
.el .IP \f(CWSvOOK\fR 4
.IX Xref "SvOOK"
.IX Item "SvOOK"
Returns a U32 indicating whether the pointer to the string buffer is offset.
This hack is used internally to speed up removal of characters from the
beginning of a \f(CW"SvPV"\fR.  When \f(CW\*(C`SvOOK\*(C'\fR is true, then the start of the
allocated string buffer is actually \f(CWSvOOK_offset()\fR bytes before \f(CW\*(C`SvPVX\*(C'\fR.
This offset used to be stored in \f(CW\*(C`SvIVX\*(C'\fR, but is now stored within the spare
part of the buffer.
.RS 4
.Sp
.Vb 1
\& U32  SvOOK(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvOOK_off""" 4
.el .IP \f(CWSvOOK_off\fR 4
.IX Xref "SvOOK_off"
.IX Item "SvOOK_off"
Remove any string offset.
.RS 4
.Sp
.Vb 1
\& void  SvOOK_off(SV * sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvOOK_offset""" 4
.el .IP \f(CWSvOOK_offset\fR 4
.IX Xref "SvOOK_offset"
.IX Item "SvOOK_offset"
Reads into \f(CW\*(C`len\*(C'\fR the offset from \f(CW\*(C`SvPVX\*(C'\fR back to the true start of the
allocated buffer, which will be non-zero if \f(CW\*(C`sv_chop\*(C'\fR has been used to
efficiently remove characters from start of the buffer.  Implemented as a
macro, which takes the address of \f(CW\*(C`len\*(C'\fR, which must be of type \f(CW\*(C`STRLEN\*(C'\fR.
Evaluates \f(CW\*(C`sv\*(C'\fR more than once.  Sets \f(CW\*(C`len\*(C'\fR to 0 if \f(CWSvOOK(sv)\fR is false.
.RS 4
.Sp
.Vb 1
\& void  SvOOK_offset(SV*sv, STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvPOK""" 4
.el .IP \f(CWSvPOK\fR 4
.IX Xref "SvPOK"
.IX Item "SvPOK"
Returns a U32 value indicating whether the SV contains a character
string.
.RS 4
.Sp
.Vb 1
\& U32  SvPOK(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvPOK_off""" 4
.el .IP \f(CWSvPOK_off\fR 4
.IX Xref "SvPOK_off"
.IX Item "SvPOK_off"
Unsets the PV status of an SV.
.RS 4
.Sp
.Vb 1
\& void  SvPOK_off(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvPOK_on""" 4
.el .IP \f(CWSvPOK_on\fR 4
.IX Xref "SvPOK_on"
.IX Item "SvPOK_on"
Tells an SV that it is a string.
.RS 4
.Sp
.Vb 1
\& void  SvPOK_on(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvPOK_only""" 4
.el .IP \f(CWSvPOK_only\fR 4
.IX Xref "SvPOK_only"
.IX Item "SvPOK_only"
Tells an SV that it is a string and disables all other \f(CW\*(C`OK\*(C'\fR bits.
Will also turn off the UTF\-8 status.
.RS 4
.Sp
.Vb 1
\& void  SvPOK_only(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvPOK_only_UTF8""" 4
.el .IP \f(CWSvPOK_only_UTF8\fR 4
.IX Xref "SvPOK_only_UTF8"
.IX Item "SvPOK_only_UTF8"
Tells an SV that it is a string and disables all other \f(CW\*(C`OK\*(C'\fR bits,
and leaves the UTF\-8 status as it was.
.RS 4
.Sp
.Vb 1
\& void  SvPOK_only_UTF8(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvPOKp""" 4
.el .IP \f(CWSvPOKp\fR 4
.IX Xref "SvPOKp"
.IX Item "SvPOKp"
Returns a U32 value indicating whether the SV contains a character string.
Checks the \fBprivate\fR setting.  Use \f(CW\*(C`SvPOK\*(C'\fR instead.
.RS 4
.Sp
.Vb 1
\& U32  SvPOKp(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_pos_b2u""" 4
.el .IP \f(CWsv_pos_b2u\fR 4
.IX Xref "sv_pos_b2u"
.IX Item "sv_pos_b2u"
Converts the value pointed to by \f(CW\*(C`offsetp\*(C'\fR from a count of bytes from the
start of the string, to a count of the equivalent number of UTF\-8 chars.
Handles magic and type coercion.
.Sp
Use \f(CW\*(C`sv_pos_b2u_flags\*(C'\fR in preference, which correctly handles strings
longer than 2Gb.
.RS 4
.Sp
.Vb 1
\& void  sv_pos_b2u(SV * const sv, I32 * const offsetp)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_pos_b2u_flags""" 4
.el .IP \f(CWsv_pos_b2u_flags\fR 4
.IX Xref "sv_pos_b2u_flags"
.IX Item "sv_pos_b2u_flags"
Converts \f(CW\*(C`offset\*(C'\fR from a count of bytes from the start of the string, to
a count of the equivalent number of UTF\-8 chars.  Handles type coercion.
\&\f(CW\*(C`flags\*(C'\fR is passed to \f(CW\*(C`SvPV_flags\*(C'\fR, and usually should be
\&\f(CW\*(C`SV_GMAGIC|SV_CONST_RETURN\*(C'\fR to handle magic.
.RS 4
.Sp
.Vb 2
\& STRLEN  sv_pos_b2u_flags(SV * const sv, STRLEN const offset,
\&                          U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_pos_u2b""" 4
.el .IP \f(CWsv_pos_u2b\fR 4
.IX Xref "sv_pos_u2b"
.IX Item "sv_pos_u2b"
Converts the value pointed to by \f(CW\*(C`offsetp\*(C'\fR from a count of UTF\-8 chars from
the start of the string, to a count of the equivalent number of bytes; if
\&\f(CW\*(C`lenp\*(C'\fR is non-zero, it does the same to \f(CW\*(C`lenp\*(C'\fR, but this time starting from
the offset, rather than from the start of the string.  Handles magic and
type coercion.
.Sp
Use \f(CW\*(C`sv_pos_u2b_flags\*(C'\fR in preference, which correctly handles strings longer
than 2Gb.
.RS 4
.Sp
.Vb 2
\& void  sv_pos_u2b(SV * const sv, I32 * const offsetp,
\&                  I32 * const lenp)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_pos_u2b_flags""" 4
.el .IP \f(CWsv_pos_u2b_flags\fR 4
.IX Xref "sv_pos_u2b_flags"
.IX Item "sv_pos_u2b_flags"
Converts the offset from a count of UTF\-8 chars from
the start of the string, to a count of the equivalent number of bytes; if
\&\f(CW\*(C`lenp\*(C'\fR is non-zero, it does the same to \f(CW\*(C`lenp\*(C'\fR, but this time starting from
\&\f(CW\*(C`offset\*(C'\fR, rather than from the start
of the string.  Handles type coercion.
\&\f(CW\*(C`flags\*(C'\fR is passed to \f(CW\*(C`SvPV_flags\*(C'\fR, and usually should be
\&\f(CW\*(C`SV_GMAGIC|SV_CONST_RETURN\*(C'\fR to handle magic.
.RS 4
.Sp
.Vb 2
\& STRLEN  sv_pos_u2b_flags(SV * const sv, STRLEN uoffset,
\&                          STRLEN * const lenp, U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvPV""" 4
.el .IP \f(CWSvPV\fR 4
.IX Item "SvPV"
.PD 0
.ie n .IP """SvPV_const""" 4
.el .IP \f(CWSvPV_const\fR 4
.IX Item "SvPV_const"
.ie n .IP """SvPV_flags""" 4
.el .IP \f(CWSvPV_flags\fR 4
.IX Item "SvPV_flags"
.ie n .IP """SvPV_flags_const""" 4
.el .IP \f(CWSvPV_flags_const\fR 4
.IX Item "SvPV_flags_const"
.ie n .IP """SvPV_flags_mutable""" 4
.el .IP \f(CWSvPV_flags_mutable\fR 4
.IX Item "SvPV_flags_mutable"
.ie n .IP """SvPV_mutable""" 4
.el .IP \f(CWSvPV_mutable\fR 4
.IX Item "SvPV_mutable"
.ie n .IP """SvPV_nolen""" 4
.el .IP \f(CWSvPV_nolen\fR 4
.IX Item "SvPV_nolen"
.ie n .IP """SvPV_nolen_const""" 4
.el .IP \f(CWSvPV_nolen_const\fR 4
.IX Item "SvPV_nolen_const"
.ie n .IP """SvPV_nomg""" 4
.el .IP \f(CWSvPV_nomg\fR 4
.IX Item "SvPV_nomg"
.ie n .IP """SvPV_nomg_const""" 4
.el .IP \f(CWSvPV_nomg_const\fR 4
.IX Item "SvPV_nomg_const"
.ie n .IP """SvPV_nomg_const_nolen""" 4
.el .IP \f(CWSvPV_nomg_const_nolen\fR 4
.IX Item "SvPV_nomg_const_nolen"
.ie n .IP """SvPV_nomg_nolen""" 4
.el .IP \f(CWSvPV_nomg_nolen\fR 4
.IX Item "SvPV_nomg_nolen"
.ie n .IP """SvPVbyte""" 4
.el .IP \f(CWSvPVbyte\fR 4
.IX Item "SvPVbyte"
.ie n .IP """SvPVbyte_nolen""" 4
.el .IP \f(CWSvPVbyte_nolen\fR 4
.IX Item "SvPVbyte_nolen"
.ie n .IP """SvPVbyte_nomg""" 4
.el .IP \f(CWSvPVbyte_nomg\fR 4
.IX Item "SvPVbyte_nomg"
.ie n .IP """SvPVbyte_or_null""" 4
.el .IP \f(CWSvPVbyte_or_null\fR 4
.IX Item "SvPVbyte_or_null"
.ie n .IP """SvPVbyte_or_null_nomg""" 4
.el .IP \f(CWSvPVbyte_or_null_nomg\fR 4
.IX Item "SvPVbyte_or_null_nomg"
.ie n .IP """SvPVbytex""" 4
.el .IP \f(CWSvPVbytex\fR 4
.IX Item "SvPVbytex"
.ie n .IP """SvPVbytex_nolen""" 4
.el .IP \f(CWSvPVbytex_nolen\fR 4
.IX Item "SvPVbytex_nolen"
.ie n .IP """SvPVutf8""" 4
.el .IP \f(CWSvPVutf8\fR 4
.IX Item "SvPVutf8"
.ie n .IP """SvPVutf8_nolen""" 4
.el .IP \f(CWSvPVutf8_nolen\fR 4
.IX Item "SvPVutf8_nolen"
.ie n .IP """SvPVutf8_nomg""" 4
.el .IP \f(CWSvPVutf8_nomg\fR 4
.IX Item "SvPVutf8_nomg"
.ie n .IP """SvPVutf8_or_null""" 4
.el .IP \f(CWSvPVutf8_or_null\fR 4
.IX Item "SvPVutf8_or_null"
.ie n .IP """SvPVutf8_or_null_nomg""" 4
.el .IP \f(CWSvPVutf8_or_null_nomg\fR 4
.IX Item "SvPVutf8_or_null_nomg"
.ie n .IP """SvPVutf8x""" 4
.el .IP \f(CWSvPVutf8x\fR 4
.IX Item "SvPVutf8x"
.ie n .IP """SvPVx""" 4
.el .IP \f(CWSvPVx\fR 4
.IX Item "SvPVx"
.ie n .IP """SvPVx_const""" 4
.el .IP \f(CWSvPVx_const\fR 4
.IX Item "SvPVx_const"
.ie n .IP """SvPVx_nolen""" 4
.el .IP \f(CWSvPVx_nolen\fR 4
.IX Item "SvPVx_nolen"
.ie n .IP """SvPVx_nolen_const""" 4
.el .IP \f(CWSvPVx_nolen_const\fR 4
.IX Xref "SvPV SvPV_const SvPV_flags SvPV_flags_const SvPV_flags_mutable SvPV_mutable SvPV_nolen SvPV_nolen_const SvPV_nomg SvPV_nomg_const SvPV_nomg_const_nolen SvPV_nomg_nolen SvPVbyte SvPVbyte_nolen SvPVbyte_nomg SvPVbyte_or_null SvPVbyte_or_null_nomg SvPVbytex SvPVbytex_nolen SvPVutf8 SvPVutf8_nolen SvPVutf8_nomg SvPVutf8_or_null SvPVutf8_or_null_nomg SvPVutf8x SvPVx SvPVx_const SvPVx_nolen SvPVx_nolen_const"
.IX Item "SvPVx_nolen_const"
.PD
These each return a pointer to the string in \f(CW\*(C`sv\*(C'\fR, or a stringified form of
\&\f(CW\*(C`sv\*(C'\fR if it does not contain a string.  The SV may cache the stringified
version becoming \f(CW\*(C`SvPOK\*(C'\fR.
.Sp
This is a very basic and common operation, so there are lots of slightly
different versions of it.
.Sp
Note that there is no guarantee that the return value of \f(CWSvPV(sv)\fR, for
example, is equal to \f(CWSvPVX(sv)\fR, or that \f(CWSvPVX(sv)\fR contains valid data, or
that successive calls to \f(CWSvPV(sv)\fR (or another of these forms) will return
the same pointer value each time.  This is due to the way that things like
overloading and Copy-On-Write are handled.  In these cases, the return value
may point to a temporary buffer or similar.  If you absolutely need the
\&\f(CW\*(C`SvPVX\*(C'\fR field to be valid (for example, if you intend to write to it), then
see \f(CW"SvPV_force"\fR.
.Sp
The differences between the forms are:
.Sp
The forms with neither \f(CW\*(C`byte\*(C'\fR nor \f(CW\*(C`utf8\*(C'\fR in their names (e.g., \f(CW\*(C`SvPV\*(C'\fR or
\&\f(CW\*(C`SvPV_nolen\*(C'\fR) can expose the SV's internal string buffer. If
that buffer consists entirely of bytes 0\-255 and includes any bytes above
127, then you \fBMUST\fR consult \f(CW\*(C`SvUTF8\*(C'\fR to determine the actual code points
the string is meant to contain. Generally speaking, it is probably safer to
prefer \f(CW\*(C`SvPVbyte\*(C'\fR, \f(CW\*(C`SvPVutf8\*(C'\fR, and the like. See
"How do I pass a Perl string to a C library?" in perlguts for more details.
.Sp
The forms with \f(CW\*(C`flags\*(C'\fR in their names allow you to use the \f(CW\*(C`flags\*(C'\fR parameter
to specify to process 'get' magic (by setting the \f(CW\*(C`SV_GMAGIC\*(C'\fR flag) or to skip
\&'get' magic (by clearing it).  The other forms process 'get' magic, except for
the ones with \f(CW\*(C`nomg\*(C'\fR in their names, which skip 'get' magic.
.Sp
The forms that take a \f(CW\*(C`len\*(C'\fR parameter will set that variable to the byte
length of the resultant string (these are macros, so don't use \f(CW&len\fR).
.Sp
The forms with \f(CW\*(C`nolen\*(C'\fR in their names indicate they don't have a \f(CW\*(C`len\*(C'\fR
parameter.  They should be used only when it is known that the PV is a C
string, terminated by a NUL byte, and without intermediate NUL characters; or
when you don't care about its length.
.Sp
The forms with \f(CW\*(C`const\*(C'\fR in their names return \f(CW\*(C`const\ char\ *\*(C'\fR so that the
compiler will hopefully complain if you were to try to modify the contents of
the string (unless you cast away const yourself).
.Sp
The other forms return a mutable pointer so that the string is modifiable by
the caller; this is emphasized for the ones with \f(CW\*(C`mutable\*(C'\fR in their names.
.Sp
As of 5.38, all forms are guaranteed to evaluate \f(CW\*(C`sv\*(C'\fR exactly once.  For
earlier Perls, use a form whose name ends with \f(CW\*(C`x\*(C'\fR for single evaluation.
.Sp
\&\f(CW\*(C`SvPVutf8\*(C'\fR is like \f(CW\*(C`SvPV\*(C'\fR, but converts \f(CW\*(C`sv\*(C'\fR to UTF\-8 first if not already
UTF\-8.  Similarly, the other forms with \f(CW\*(C`utf8\*(C'\fR in their names correspond to
their respective forms without.
.Sp
\&\f(CW\*(C`SvPVutf8_or_null\*(C'\fR and \f(CW\*(C`SvPVutf8_or_null_nomg\*(C'\fR don't have corresponding
non\-\f(CW\*(C`utf8\*(C'\fR forms.  Instead they are like \f(CW\*(C`SvPVutf8_nomg\*(C'\fR, but when \f(CW\*(C`sv\*(C'\fR is
undef, they return \f(CW\*(C`NULL\*(C'\fR.
.Sp
\&\f(CW\*(C`SvPVbyte\*(C'\fR is like \f(CW\*(C`SvPV\*(C'\fR, but converts \f(CW\*(C`sv\*(C'\fR to byte representation first if
currently encoded as UTF\-8.  If \f(CW\*(C`sv\*(C'\fR cannot be downgraded from UTF\-8, it
croaks.  Similarly, the other forms with \f(CW\*(C`byte\*(C'\fR in their names correspond to
their respective forms without.
.Sp
\&\f(CW\*(C`SvPVbyte_or_null\*(C'\fR doesn't have a corresponding non\-\f(CW\*(C`byte\*(C'\fR form.  Instead it
is like \f(CW\*(C`SvPVbyte\*(C'\fR, but when \f(CW\*(C`sv\*(C'\fR is undef, it returns \f(CW\*(C`NULL\*(C'\fR.
.RS 4
.Sp
.Vb 10
\& char*        SvPV                 (SV* sv, STRLEN len)
\& const char*  SvPV_const           (SV* sv, STRLEN len)
\& char*        SvPV_flags           (SV* sv, STRLEN len, U32 flags)
\& const char*  SvPV_flags_const     (SV* sv, STRLEN len, U32 flags)
\& char*        SvPV_flags_mutable   (SV* sv, STRLEN len, U32 flags)
\& char*        SvPV_mutable         (SV* sv, STRLEN len)
\& char*        SvPV_nolen           (SV* sv)
\& const char*  SvPV_nolen_const     (SV* sv)
\& char*        SvPV_nomg            (SV* sv, STRLEN len)
\& const char*  SvPV_nomg_const      (SV* sv, STRLEN len)
\& const char*  SvPV_nomg_const_nolen(SV* sv)
\& char*        SvPV_nomg_nolen      (SV* sv)
\& char*        SvPVbyte             (SV* sv, STRLEN len)
\& char*        SvPVbyte_nolen       (SV* sv)
\& char*        SvPVbyte_nomg        (SV* sv, STRLEN len)
\& char*        SvPVbyte_or_null     (SV* sv, STRLEN len)
\& char*        SvPVbyte_or_null_nomg(SV* sv, STRLEN len)
\& char*        SvPVbytex            (SV* sv, STRLEN len)
\& char*        SvPVbytex_nolen      (SV* sv)
\& char*        SvPVutf8             (SV* sv, STRLEN len)
\& char*        SvPVutf8_nolen       (SV* sv)
\& char*        SvPVutf8_nomg        (SV* sv, STRLEN len)
\& char*        SvPVutf8_or_null     (SV* sv, STRLEN len)
\& char*        SvPVutf8_or_null_nomg(SV* sv, STRLEN len)
\& char*        SvPVutf8x            (SV* sv, STRLEN len)
\& char*        SvPVx                (SV* sv, STRLEN len)
\& const char*  SvPVx_const          (SV* sv, STRLEN len)
\& char*        SvPVx_nolen          (SV* sv)
\& const char*  SvPVx_nolen_const    (SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_2pv""" 4
.el .IP \f(CWsv_2pv\fR 4
.IX Item "sv_2pv"
.PD 0
.ie n .IP """sv_2pv_flags""" 4
.el .IP \f(CWsv_2pv_flags\fR 4
.IX Xref "sv_2pv sv_2pv_flags"
.IX Item "sv_2pv_flags"
.PD
These implement the various forms of the "\f(CW\*(C`SvPV\*(C'\fR" in perlapi macros.
The macros are the preferred interface.
.Sp
These return a pointer to the string value of an SV (coercing it to a string if
necessary), and set \f(CW*lp\fR to its length in bytes.
.Sp
The forms differ in that plain \f(CW\*(C`sv_2pvbyte\*(C'\fR always processes 'get' magic; and
\&\f(CW\*(C`sv_2pvbyte_flags\*(C'\fR processes 'get' magic if and only if \f(CW\*(C`flags\*(C'\fR contains
\&\f(CW\*(C`SV_GMAGIC\*(C'\fR.
.RS 4
.Sp
.Vb 3
\& char *  sv_2pv      (SV *sv, STRLEN *lp)
\& char *  sv_2pv_flags(SV * const sv, STRLEN * const lp,
\&                      const U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_2pvbyte""" 4
.el .IP \f(CWsv_2pvbyte\fR 4
.IX Item "sv_2pvbyte"
.PD 0
.ie n .IP """sv_2pvbyte_flags""" 4
.el .IP \f(CWsv_2pvbyte_flags\fR 4
.IX Xref "sv_2pvbyte sv_2pvbyte_flags"
.IX Item "sv_2pvbyte_flags"
.PD
These implement the various forms of the "\f(CW\*(C`SvPVbyte\*(C'\fR" in perlapi macros.
The macros are the preferred interface.
.Sp
These return a pointer to the byte-encoded representation of the SV, and set
\&\f(CW*lp\fR to its length.  If the SV is marked as being encoded as UTF\-8, it will
be downgraded, if possible, to a byte string.  If the SV cannot be downgraded,
they croak.
.Sp
The forms differ in that plain \f(CW\*(C`sv_2pvbyte\*(C'\fR always processes 'get' magic; and
\&\f(CW\*(C`sv_2pvbyte_flags\*(C'\fR processes 'get' magic if and only if \f(CW\*(C`flags\*(C'\fR contains
\&\f(CW\*(C`SV_GMAGIC\*(C'\fR.
.RS 4
.Sp
.Vb 3
\& char *  sv_2pvbyte      (SV *sv, STRLEN * const lp)
\& char *  sv_2pvbyte_flags(SV *sv, STRLEN * const lp,
\&                          const U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvPVCLEAR""" 4
.el .IP \f(CWSvPVCLEAR\fR 4
.IX Xref "SvPVCLEAR"
.IX Item "SvPVCLEAR"
Ensures that sv is a SVt_PV and that its SvCUR is 0, and that it is
properly null terminated. Equivalent to sv_setpvs(""), but more efficient.
.RS 4
.Sp
.Vb 1
\& char *  SvPVCLEAR(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvPVCLEAR_FRESH""" 4
.el .IP \f(CWSvPVCLEAR_FRESH\fR 4
.IX Xref "SvPVCLEAR_FRESH"
.IX Item "SvPVCLEAR_FRESH"
Like SvPVCLEAR, but optimized for newly-minted SVt_PV/PVIV/PVNV/PVMG
that already have a PV buffer allocated, but no SvTHINKFIRST.
.RS 4
.Sp
.Vb 1
\& char *  SvPVCLEAR_FRESH(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvPV_force""" 4
.el .IP \f(CWSvPV_force\fR 4
.IX Item "SvPV_force"
.PD 0
.ie n .IP """SvPV_force_flags""" 4
.el .IP \f(CWSvPV_force_flags\fR 4
.IX Item "SvPV_force_flags"
.ie n .IP """SvPV_force_flags_mutable""" 4
.el .IP \f(CWSvPV_force_flags_mutable\fR 4
.IX Item "SvPV_force_flags_mutable"
.ie n .IP """SvPV_force_flags_nolen""" 4
.el .IP \f(CWSvPV_force_flags_nolen\fR 4
.IX Item "SvPV_force_flags_nolen"
.ie n .IP """SvPV_force_mutable""" 4
.el .IP \f(CWSvPV_force_mutable\fR 4
.IX Item "SvPV_force_mutable"
.ie n .IP """SvPV_force_nolen""" 4
.el .IP \f(CWSvPV_force_nolen\fR 4
.IX Item "SvPV_force_nolen"
.ie n .IP """SvPV_force_nomg""" 4
.el .IP \f(CWSvPV_force_nomg\fR 4
.IX Item "SvPV_force_nomg"
.ie n .IP """SvPV_force_nomg_nolen""" 4
.el .IP \f(CWSvPV_force_nomg_nolen\fR 4
.IX Item "SvPV_force_nomg_nolen"
.ie n .IP """SvPVbyte_force""" 4
.el .IP \f(CWSvPVbyte_force\fR 4
.IX Item "SvPVbyte_force"
.ie n .IP """SvPVbytex_force""" 4
.el .IP \f(CWSvPVbytex_force\fR 4
.IX Item "SvPVbytex_force"
.ie n .IP """SvPVutf8_force""" 4
.el .IP \f(CWSvPVutf8_force\fR 4
.IX Item "SvPVutf8_force"
.ie n .IP """SvPVutf8x_force""" 4
.el .IP \f(CWSvPVutf8x_force\fR 4
.IX Item "SvPVutf8x_force"
.ie n .IP """SvPVx_force""" 4
.el .IP \f(CWSvPVx_force\fR 4
.IX Xref "SvPV_force SvPV_force_flags SvPV_force_flags_mutable SvPV_force_flags_nolen SvPV_force_mutable SvPV_force_nolen SvPV_force_nomg SvPV_force_nomg_nolen SvPVbyte_force SvPVbytex_force SvPVutf8_force SvPVutf8x_force SvPVx_force"
.IX Item "SvPVx_force"
.PD
These are like \f(CW"SvPV"\fR, returning the string in the SV, but will force the
SV into containing a string (\f(CW"SvPOK"\fR), and only a string
(\f(CW"SvPOK_only"\fR), by hook or by crook.  You need to use one of these
\&\f(CW\*(C`force\*(C'\fR routines if you are going to update the \f(CW"SvPVX"\fR directly.
.Sp
Note that coercing an arbitrary scalar into a plain PV will potentially
strip useful data from it.  For example if the SV was \f(CW\*(C`SvROK\*(C'\fR, then the
referent will have its reference count decremented, and the SV itself may
be converted to an \f(CW\*(C`SvPOK\*(C'\fR scalar with a string buffer containing a value
such as \f(CW"ARRAY(0x1234)"\fR.
.Sp
The differences between the forms are:
.Sp
The forms with \f(CW\*(C`flags\*(C'\fR in their names allow you to use the \f(CW\*(C`flags\*(C'\fR parameter
to specify to perform 'get' magic (by setting the \f(CW\*(C`SV_GMAGIC\*(C'\fR flag) or to skip
\&'get' magic (by clearing it).  The other forms do perform 'get' magic, except
for the ones with \f(CW\*(C`nomg\*(C'\fR in their names, which skip 'get' magic.
.Sp
The forms that take a \f(CW\*(C`len\*(C'\fR parameter will set that variable to the byte
length of the resultant string (these are macros, so don't use \f(CW&len\fR).
.Sp
The forms with \f(CW\*(C`nolen\*(C'\fR in their names indicate they don't have a \f(CW\*(C`len\*(C'\fR
parameter.  They should be used only when it is known that the PV is a C
string, terminated by a NUL byte, and without intermediate NUL characters; or
when you don't care about its length.
.Sp
The forms with \f(CW\*(C`mutable\*(C'\fR in their names are effectively the same as those without,
but the name emphasizes that the string is modifiable by the caller, which it is
in all the forms.
.Sp
\&\f(CW\*(C`SvPVutf8_force\*(C'\fR is like \f(CW\*(C`SvPV_force\*(C'\fR, but converts \f(CW\*(C`sv\*(C'\fR to UTF\-8 first if
not already UTF\-8.
.Sp
\&\f(CW\*(C`SvPVutf8x_force\*(C'\fR is like \f(CW\*(C`SvPVutf8_force\*(C'\fR, but guarantees to evaluate \f(CW\*(C`sv\*(C'\fR
only once; use the more efficient \f(CW\*(C`SvPVutf8_force\*(C'\fR otherwise.
.Sp
\&\f(CW\*(C`SvPVbyte_force\*(C'\fR is like \f(CW\*(C`SvPV_force\*(C'\fR, but converts \f(CW\*(C`sv\*(C'\fR to byte
representation first if currently encoded as UTF\-8.  If the SV cannot be
downgraded from UTF\-8, this croaks.
.Sp
\&\f(CW\*(C`SvPVbytex_force\*(C'\fR is like \f(CW\*(C`SvPVbyte_force\*(C'\fR, but guarantees to evaluate \f(CW\*(C`sv\*(C'\fR
only once; use the more efficient \f(CW\*(C`SvPVbyte_force\*(C'\fR otherwise.
.RS 4
.Sp
.Vb 10
\& char*  SvPV_force              (SV* sv, STRLEN len)
\& char*  SvPV_force_flags        (SV * sv, STRLEN len, U32 flags)
\& char*  SvPV_force_flags_mutable(SV * sv, STRLEN len, U32 flags)
\& char*  SvPV_force_flags_nolen  (SV * sv, U32 flags)
\& char*  SvPV_force_mutable      (SV * sv, STRLEN len)
\& char*  SvPV_force_nolen        (SV* sv)
\& char*  SvPV_force_nomg         (SV* sv, STRLEN len)
\& char*  SvPV_force_nomg_nolen   (SV * sv)
\& char*  SvPVbyte_force          (SV * sv, STRLEN len)
\& char*  SvPVbytex_force         (SV * sv, STRLEN len)
\& char*  SvPVutf8_force          (SV * sv, STRLEN len)
\& char*  SvPVutf8x_force         (SV * sv, STRLEN len)
\& char*  SvPVx_force             (SV* sv, STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvPV_free""" 4
.el .IP \f(CWSvPV_free\fR 4
.IX Xref "SvPV_free"
.IX Item "SvPV_free"
Frees the PV buffer in \f(CW\*(C`sv\*(C'\fR, leaving things in a precarious state, so should
only be used as part of a larger operation
.RS 4
.Sp
.Vb 1
\& void  SvPV_free(SV * sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_pvn_force_flags""" 4
.el .IP \f(CWsv_pvn_force_flags\fR 4
.IX Xref "sv_pvn_force_flags"
.IX Item "sv_pvn_force_flags"
Get a sensible string out of the SV somehow.
If \f(CW\*(C`flags\*(C'\fR has the \f(CW\*(C`SV_GMAGIC\*(C'\fR bit set, will \f(CW"mg_get"\fR on \f(CW\*(C`sv\*(C'\fR if
appropriate, else not.  \f(CW\*(C`sv_pvn_force\*(C'\fR and \f(CW\*(C`sv_pvn_force_nomg\*(C'\fR are
implemented in terms of this function.
You normally want to use the various wrapper macros instead: see
\&\f(CW"SvPV_force"\fR and \f(CW"SvPV_force_nomg"\fR.
.RS 4
.Sp
.Vb 2
\& char *  sv_pvn_force_flags(SV * const sv, STRLEN * const lp,
\&                            const U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvPV_renew""" 4
.el .IP \f(CWSvPV_renew\fR 4
.IX Xref "SvPV_renew"
.IX Item "SvPV_renew"
Low level micro optimization of \f(CW"SvGROW"\fR.  It is generally better to use
\&\f(CW\*(C`SvGROW\*(C'\fR instead.  This is because \f(CW\*(C`SvPV_renew\*(C'\fR ignores potential issues that
\&\f(CW\*(C`SvGROW\*(C'\fR handles.  \f(CW\*(C`sv\*(C'\fR needs to have a real \f(CW\*(C`PV\*(C'\fR that is unencumbered by
things like COW.  Using \f(CW\*(C`SV_CHECK_THINKFIRST\*(C'\fR or
\&\f(CW\*(C`SV_CHECK_THINKFIRST_COW_DROP\*(C'\fR before calling this should clean it up, but
why not just use \f(CW\*(C`SvGROW\*(C'\fR if you're not sure about the provenance?
.RS 4
.Sp
.Vb 1
\& void  SvPV_renew(SV* sv, STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvPV_set""" 4
.el .IP \f(CWSvPV_set\fR 4
.IX Xref "SvPV_set"
.IX Item "SvPV_set"
This is probably not what you want to use, you probably wanted
"sv_usepvn_flags" or "sv_setpvn" or "sv_setpvs".
.Sp
Set the value of the PV pointer in \f(CW\*(C`sv\*(C'\fR to the Perl allocated
\&\f(CW\*(C`NUL\*(C'\fR\-terminated string \f(CW\*(C`val\*(C'\fR.  See also \f(CW"SvIV_set"\fR.
.Sp
Remember to free the previous PV buffer. There are many things to check.
Beware that the existing pointer may be involved in copy-on-write or other
mischief, so do \f(CWSvOOK_off(sv)\fR and use \f(CW\*(C`sv_force_normal\*(C'\fR or
\&\f(CW\*(C`SvPV_force\*(C'\fR (or check the \f(CW\*(C`SvIsCOW\*(C'\fR flag) first to make sure this
modification is safe. Then finally, if it is not a COW, call
\&\f(CW"SvPV_free"\fR to free the previous PV buffer.
.RS 4
.Sp
.Vb 1
\& void  SvPV_set(SV* sv, char* val)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvPV_shrink_to_cur""" 4
.el .IP \f(CWSvPV_shrink_to_cur\fR 4
.IX Xref "SvPV_shrink_to_cur"
.IX Item "SvPV_shrink_to_cur"
Trim any trailing unused memory in the PV of \f(CW\*(C`sv\*(C'\fR, which needs to have a real
\&\f(CW\*(C`PV\*(C'\fR that is unencumbered by things like COW.  Think first before using this
functionality.  Is the space saving really worth giving up COW?  Will the
needed size of \f(CW\*(C`sv\*(C'\fR stay the same?
.Sp
If the answers are both yes, then use "\f(CW\*(C`SV_CHECK_THINKFIRST\*(C'\fR" or
"\f(CW\*(C`SV_CHECK_THINKFIRST_COW_DROP\*(C'\fR" before calling this.
.RS 4
.Sp
.Vb 1
\& void  SvPV_shrink_to_cur(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_2pvutf8""" 4
.el .IP \f(CWsv_2pvutf8\fR 4
.IX Item "sv_2pvutf8"
.PD 0
.ie n .IP """sv_2pvutf8_flags""" 4
.el .IP \f(CWsv_2pvutf8_flags\fR 4
.IX Xref "sv_2pvutf8 sv_2pvutf8_flags"
.IX Item "sv_2pvutf8_flags"
.PD
These implement the various forms of the "\f(CW\*(C`SvPVutf8\*(C'\fR" in perlapi macros.
The macros are the preferred interface.
.Sp
These return a pointer to the UTF\-8\-encoded representation of the SV, and set
\&\f(CW*lp\fR to its length in bytes.  They may cause the SV to be upgraded to UTF\-8
as a side-effect.
.Sp
The forms differ in that plain \f(CW\*(C`sv_2pvutf8\*(C'\fR always processes 'get' magic; and
\&\f(CW\*(C`sv_2pvutf8_flags\*(C'\fR processes 'get' magic if and only if \f(CW\*(C`flags\*(C'\fR contains
\&\f(CW\*(C`SV_GMAGIC\*(C'\fR.
.RS 4
.Sp
.Vb 3
\& char *  sv_2pvutf8      (SV *sv, STRLEN * const lp)
\& char *  sv_2pvutf8_flags(SV *sv, STRLEN * const lp,
\&                          const U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvPVX""" 4
.el .IP \f(CWSvPVX\fR 4
.IX Item "SvPVX"
.PD 0
.ie n .IP """SvPVX_const""" 4
.el .IP \f(CWSvPVX_const\fR 4
.IX Item "SvPVX_const"
.ie n .IP """SvPVX_mutable""" 4
.el .IP \f(CWSvPVX_mutable\fR 4
.IX Item "SvPVX_mutable"
.ie n .IP """SvPVXx""" 4
.el .IP \f(CWSvPVXx\fR 4
.IX Xref "SvPVX SvPVX_const SvPVX_mutable SvPVXx"
.IX Item "SvPVXx"
.PD
These return a pointer to the physical string in the SV.  The SV must contain a
string.  Prior to 5.9.3 it is not safe to execute these unless the SV's
type >= \f(CW\*(C`SVt_PV\*(C'\fR.
.Sp
These are also used to store the name of an autoloaded subroutine in an XS
AUTOLOAD routine.  See "Autoloading with XSUBs" in perlguts.
.Sp
\&\f(CW\*(C`SvPVXx\*(C'\fR is identical to \f(CW\*(C`SvPVX\*(C'\fR.
.Sp
\&\f(CW\*(C`SvPVX_mutable\*(C'\fR is merely a synonym for \f(CW\*(C`SvPVX\*(C'\fR, but its name emphasizes that
the string is modifiable by the caller.
.Sp
\&\f(CW\*(C`SvPVX_const\*(C'\fR differs in that the return value has been cast so that the
compiler will complain if you were to try to modify the contents of the string,
(unless you cast away const yourself).
.RS 4
.Sp
.Vb 4
\& char*        SvPVX        (SV* sv)
\& const char*  SvPVX_const  (SV* sv)
\& char*        SvPVX_mutable(SV* sv)
\& char*        SvPVXx       (SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvPVXtrue""" 4
.el .IP \f(CWSvPVXtrue\fR 4
.IX Xref "SvPVXtrue"
.IX Item "SvPVXtrue"
Returns a boolean as to whether or not \f(CW\*(C`sv\*(C'\fR contains a PV that is considered
TRUE.  FALSE is returned if \f(CW\*(C`sv\*(C'\fR doesn't contain a PV, or if the PV it does
contain is zero length, or consists of just the single character '0'.  Every
other PV value is considered TRUE.
.Sp
As of Perl v5.37.1, \f(CW\*(C`sv\*(C'\fR is evaluated exactly once; in earlier releases, it
could be evaluated more than once.
.RS 4
.Sp
.Vb 1
\& bool  SvPVXtrue(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvREADONLY""" 4
.el .IP \f(CWSvREADONLY\fR 4
.IX Xref "SvREADONLY"
.IX Item "SvREADONLY"
Returns true if the argument is readonly, otherwise returns false.
Exposed to perl code via \fBInternals::SvREADONLY()\fR.
.RS 4
.Sp
.Vb 1
\& U32  SvREADONLY(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvREADONLY_off""" 4
.el .IP \f(CWSvREADONLY_off\fR 4
.IX Xref "SvREADONLY_off"
.IX Item "SvREADONLY_off"
Mark an object as not-readonly. Exactly what this mean depends on the
object type. Exposed to perl code via \fBInternals::SvREADONLY()\fR.
.RS 4
.Sp
.Vb 1
\& U32  SvREADONLY_off(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvREADONLY_on""" 4
.el .IP \f(CWSvREADONLY_on\fR 4
.IX Xref "SvREADONLY_on"
.IX Item "SvREADONLY_on"
Mark an object as readonly. Exactly what this means depends on the object
type. Exposed to perl code via \fBInternals::SvREADONLY()\fR.
.RS 4
.Sp
.Vb 1
\& U32  SvREADONLY_on(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_ref""" 4
.el .IP \f(CWsv_ref\fR 4
.IX Xref "sv_ref"
.IX Item "sv_ref"
Returns a SV describing what the SV passed in is a reference to.
.Sp
dst can be a SV to be set to the description or NULL, in which case a
mortal SV is returned.
.Sp
If ob is true and the SV is blessed, the description is the class
name, otherwise it is the type of the SV, "SCALAR", "ARRAY" etc.
.RS 4
.Sp
.Vb 1
\& SV *  sv_ref(SV *dst, const SV * const sv, const int ob)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvREFCNT""" 4
.el .IP \f(CWSvREFCNT\fR 4
.IX Xref "SvREFCNT"
.IX Item "SvREFCNT"
Returns the value of the object's reference count. Exposed
to perl code via \fBInternals::SvREFCNT()\fR.
.RS 4
.Sp
.Vb 1
\& U32  SvREFCNT(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvREFCNT_dec""" 4
.el .IP \f(CWSvREFCNT_dec\fR 4
.IX Item "SvREFCNT_dec"
.PD 0
.ie n .IP """SvREFCNT_dec_set_NULL""" 4
.el .IP \f(CWSvREFCNT_dec_set_NULL\fR 4
.IX Item "SvREFCNT_dec_set_NULL"
.ie n .IP """SvREFCNT_dec_ret_NULL""" 4
.el .IP \f(CWSvREFCNT_dec_ret_NULL\fR 4
.IX Item "SvREFCNT_dec_ret_NULL"
.ie n .IP """SvREFCNT_dec_NN""" 4
.el .IP \f(CWSvREFCNT_dec_NN\fR 4
.IX Xref "SvREFCNT_dec SvREFCNT_dec_set_NULL SvREFCNT_dec_ret_NULL SvREFCNT_dec_NN"
.IX Item "SvREFCNT_dec_NN"
.PD
These decrement the reference count of the given SV.
.Sp
\&\f(CW\*(C`SvREFCNT_dec_NN\*(C'\fR may only be used when \f(CW\*(C`sv\*(C'\fR is known to not be \f(CW\*(C`NULL\*(C'\fR.
.Sp
The function \f(CWSvREFCNT_dec_ret_NULL()\fR is identical to the
\&\f(CWSvREFCNT_dec()\fR except it returns a NULL \f(CW\*(C`SV *\*(C'\fR.  It is used by
\&\f(CWSvREFCNT_dec_set_NULL()\fR which is a macro which will, when passed a
non-NULL argument, decrement the reference count of its argument and
then set it to NULL. You can replace code of the following form:
.Sp
.Vb 4
\&    if (sv) {
\&       SvREFCNT_dec_NN(sv);
\&       sv = NULL;
\&    }
.Ve
.Sp
with
.Sp
.Vb 1
\&    SvREFCNT_dec_set_NULL(sv);
.Ve
.RS 4
.Sp
.Vb 4
\& void  SvREFCNT_dec         (SV *sv)
\& void  SvREFCNT_dec_set_NULL(SV *sv)
\& SV *  SvREFCNT_dec_ret_NULL(SV *sv)
\& void  SvREFCNT_dec_NN      (SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvREFCNT_inc""" 4
.el .IP \f(CWSvREFCNT_inc\fR 4
.IX Item "SvREFCNT_inc"
.PD 0
.ie n .IP """SvREFCNT_inc_NN""" 4
.el .IP \f(CWSvREFCNT_inc_NN\fR 4
.IX Item "SvREFCNT_inc_NN"
.ie n .IP """SvREFCNT_inc_simple""" 4
.el .IP \f(CWSvREFCNT_inc_simple\fR 4
.IX Item "SvREFCNT_inc_simple"
.ie n .IP """SvREFCNT_inc_simple_NN""" 4
.el .IP \f(CWSvREFCNT_inc_simple_NN\fR 4
.IX Item "SvREFCNT_inc_simple_NN"
.ie n .IP """SvREFCNT_inc_simple_void""" 4
.el .IP \f(CWSvREFCNT_inc_simple_void\fR 4
.IX Item "SvREFCNT_inc_simple_void"
.ie n .IP """SvREFCNT_inc_simple_void_NN""" 4
.el .IP \f(CWSvREFCNT_inc_simple_void_NN\fR 4
.IX Item "SvREFCNT_inc_simple_void_NN"
.ie n .IP """SvREFCNT_inc_void""" 4
.el .IP \f(CWSvREFCNT_inc_void\fR 4
.IX Item "SvREFCNT_inc_void"
.ie n .IP """SvREFCNT_inc_void_NN""" 4
.el .IP \f(CWSvREFCNT_inc_void_NN\fR 4
.IX Xref "SvREFCNT_inc SvREFCNT_inc_NN SvREFCNT_inc_simple SvREFCNT_inc_simple_NN SvREFCNT_inc_simple_void SvREFCNT_inc_simple_void_NN SvREFCNT_inc_void SvREFCNT_inc_void_NN"
.IX Item "SvREFCNT_inc_void_NN"
.PD
These all increment the reference count of the given SV.
The ones without \f(CW\*(C`void\*(C'\fR in their names return the SV.
.Sp
\&\f(CW\*(C`SvREFCNT_inc\*(C'\fR is the base operation; the rest are optimizations if various
input constraints are known to be true; hence, all can be replaced with
\&\f(CW\*(C`SvREFCNT_inc\*(C'\fR.
.Sp
\&\f(CW\*(C`SvREFCNT_inc_NN\*(C'\fR can only be used if you know \f(CW\*(C`sv\*(C'\fR is not \f(CW\*(C`NULL\*(C'\fR.  Since we
don't have to check the NULLness, it's faster and smaller.
.Sp
\&\f(CW\*(C`SvREFCNT_inc_void\*(C'\fR can only be used if you don't need the
return value.  The macro doesn't need to return a meaningful value.
.Sp
\&\f(CW\*(C`SvREFCNT_inc_void_NN\*(C'\fR can only be used if you both don't need the return
value, and you know that \f(CW\*(C`sv\*(C'\fR is not \f(CW\*(C`NULL\*(C'\fR.  The macro doesn't need to
return a meaningful value, or check for NULLness, so it's smaller and faster.
.Sp
\&\f(CW\*(C`SvREFCNT_inc_simple\*(C'\fR can only be used with expressions without side
effects.  Since we don't have to store a temporary value, it's faster.
.Sp
\&\f(CW\*(C`SvREFCNT_inc_simple_NN\*(C'\fR can only be used with expressions without side
effects and you know \f(CW\*(C`sv\*(C'\fR is not \f(CW\*(C`NULL\*(C'\fR.  Since we don't have to store a
temporary value, nor check for NULLness, it's faster and smaller.
.Sp
\&\f(CW\*(C`SvREFCNT_inc_simple_void\*(C'\fR can only be used with expressions without side
effects and you don't need the return value.
.Sp
\&\f(CW\*(C`SvREFCNT_inc_simple_void_NN\*(C'\fR can only be used with expressions without side
effects, you don't need the return value, and you know \f(CW\*(C`sv\*(C'\fR is not \f(CW\*(C`NULL\*(C'\fR.
.RS 4
.Sp
.Vb 8
\& SV *  SvREFCNT_inc               (SV *sv)
\& SV *  SvREFCNT_inc_NN            (SV *sv)
\& SV*   SvREFCNT_inc_simple        (SV* sv)
\& SV*   SvREFCNT_inc_simple_NN     (SV* sv)
\& void  SvREFCNT_inc_simple_void   (SV* sv)
\& void  SvREFCNT_inc_simple_void_NN(SV* sv)
\& void  SvREFCNT_inc_void          (SV *sv)
\& void  SvREFCNT_inc_void_NN       (SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_reftype""" 4
.el .IP \f(CWsv_reftype\fR 4
.IX Xref "sv_reftype"
.IX Item "sv_reftype"
Returns a string describing what the SV is a reference to.
.Sp
If ob is true and the SV is blessed, the string is the class name,
otherwise it is the type of the SV, "SCALAR", "ARRAY" etc.
.RS 4
.Sp
.Vb 1
\& const char *  sv_reftype(const SV * const sv, const int ob)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_replace""" 4
.el .IP \f(CWsv_replace\fR 4
.IX Xref "sv_replace"
.IX Item "sv_replace"
Make the first argument a copy of the second, then delete the original.
The target SV physically takes over ownership of the body of the source SV
and inherits its flags; however, the target keeps any magic it owns,
and any magic in the source is discarded.
Note that this is a rather specialist SV copying operation; most of the
time you'll want to use \f(CW\*(C`sv_setsv\*(C'\fR or one of its many macro front-ends.
.RS 4
.Sp
.Vb 1
\& void  sv_replace(SV * const sv, SV * const nsv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_report_used""" 4
.el .IP \f(CWsv_report_used\fR 4
.IX Xref "sv_report_used"
.IX Item "sv_report_used"
Dump the contents of all SVs not yet freed (debugging aid).
.RS 4
.Sp
.Vb 1
\& void  sv_report_used()
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_reset""" 4
.el .IP \f(CWsv_reset\fR 4
.IX Xref "sv_reset"
.IX Item "sv_reset"
Underlying implementation for the \f(CW\*(C`reset\*(C'\fR Perl function.
Note that the perl-level function is vaguely deprecated.
.RS 4
.Sp
.Vb 1
\& void  sv_reset(const char *s, HV * const stash)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvROK""" 4
.el .IP \f(CWSvROK\fR 4
.IX Xref "SvROK"
.IX Item "SvROK"
Tests if the SV is an RV.
.RS 4
.Sp
.Vb 1
\& U32  SvROK(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvROK_off""" 4
.el .IP \f(CWSvROK_off\fR 4
.IX Xref "SvROK_off"
.IX Item "SvROK_off"
Unsets the RV status of an SV.
.RS 4
.Sp
.Vb 1
\& void  SvROK_off(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvROK_on""" 4
.el .IP \f(CWSvROK_on\fR 4
.IX Xref "SvROK_on"
.IX Item "SvROK_on"
Tells an SV that it is an RV.
.RS 4
.Sp
.Vb 1
\& void  SvROK_on(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvRV""" 4
.el .IP \f(CWSvRV\fR 4
.IX Xref "SvRV"
.IX Item "SvRV"
Dereferences an RV to return the SV.
.RS 4
.Sp
.Vb 1
\& SV*  SvRV(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvRV_set""" 4
.el .IP \f(CWSvRV_set\fR 4
.IX Xref "SvRV_set"
.IX Item "SvRV_set"
Set the value of the RV pointer in \f(CW\*(C`sv\*(C'\fR to val.  See \f(CW"SvIV_set"\fR.
.RS 4
.Sp
.Vb 1
\& void  SvRV_set(SV* sv, SV* val)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_rvunweaken""" 4
.el .IP \f(CWsv_rvunweaken\fR 4
.IX Xref "sv_rvunweaken"
.IX Item "sv_rvunweaken"
Unweaken a reference: Clear the \f(CW\*(C`SvWEAKREF\*(C'\fR flag on this RV; remove
the backreference to this RV from the array of backreferences
associated with the target SV, increment the refcount of the target.
Silently ignores \f(CW\*(C`undef\*(C'\fR and warns on non-weak references.
.RS 4
.Sp
.Vb 1
\& SV *  sv_rvunweaken(SV * const sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_rvweaken""" 4
.el .IP \f(CWsv_rvweaken\fR 4
.IX Xref "sv_rvweaken"
.IX Item "sv_rvweaken"
Weaken a reference: set the \f(CW\*(C`SvWEAKREF\*(C'\fR flag on this RV; give the
referred-to SV \f(CW\*(C`PERL_MAGIC_backref\*(C'\fR magic if it hasn't already; and
push a back-reference to this RV onto the array of backreferences
associated with that magic.  If the RV is magical, set magic will be
called after the RV is cleared.  Silently ignores \f(CW\*(C`undef\*(C'\fR and warns
on already-weak references.
.RS 4
.Sp
.Vb 1
\& SV *  sv_rvweaken(SV * const sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_setbool""" 4
.el .IP \f(CWsv_setbool\fR 4
.IX Item "sv_setbool"
.PD 0
.ie n .IP """sv_setbool_mg""" 4
.el .IP \f(CWsv_setbool_mg\fR 4
.IX Xref "sv_setbool sv_setbool_mg"
.IX Item "sv_setbool_mg"
.PD
These set an SV to a true or false boolean value, upgrading first if necessary.
.Sp
They differ only in that \f(CW\*(C`sv_setbool_mg\*(C'\fR handles 'set' magic; \f(CW\*(C`sv_setbool\*(C'\fR
does not.
.RS 4
.Sp
.Vb 1
\& void  sv_setbool(SV *sv, bool b)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_set_bool""" 4
.el .IP \f(CWsv_set_bool\fR 4
.IX Xref "sv_set_bool"
.IX Item "sv_set_bool"
Equivalent to \f(CW\*(C`sv_setsv(sv, bool_val ? &Pl_sv_yes : &PL_sv_no)\*(C'\fR, but
may be made more efficient in the future. Doesn't handle set magic.
.Sp
The perl equivalent is \f(CW\*(C`$sv = !!$expr;\*(C'\fR.
.Sp
Introduced in perl 5.35.11.
.RS 4
.Sp
.Vb 1
\& void  sv_set_bool(SV *sv, const bool bool_val)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_set_false""" 4
.el .IP \f(CWsv_set_false\fR 4
.IX Xref "sv_set_false"
.IX Item "sv_set_false"
Equivalent to \f(CW\*(C`sv_setsv(sv, &PL_sv_no)\*(C'\fR, but may be made more
efficient in the future. Doesn't handle set magic.
.Sp
The perl equivalent is \f(CW\*(C`$sv = !1;\*(C'\fR.
.Sp
Introduced in perl 5.35.11.
.RS 4
.Sp
.Vb 1
\& void  sv_set_false(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_setiv""" 4
.el .IP \f(CWsv_setiv\fR 4
.IX Item "sv_setiv"
.PD 0
.ie n .IP """sv_setiv_mg""" 4
.el .IP \f(CWsv_setiv_mg\fR 4
.IX Xref "sv_setiv sv_setiv_mg"
.IX Item "sv_setiv_mg"
.PD
These copy an integer into the given SV, upgrading first if necessary.
.Sp
They differ only in that \f(CW\*(C`sv_setiv_mg\*(C'\fR handles 'set' magic; \f(CW\*(C`sv_setiv\*(C'\fR does
not.
.RS 4
.Sp
.Vb 2
\& void  sv_setiv   (SV * const sv, const IV num)
\& void  sv_setiv_mg(SV * const sv, const IV i)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvSETMAGIC""" 4
.el .IP \f(CWSvSETMAGIC\fR 4
.IX Xref "SvSETMAGIC"
.IX Item "SvSETMAGIC"
Invokes \f(CW"mg_set"\fR on an SV if it has 'set' magic.  This is necessary
after modifying a scalar, in case it is a magical variable like \f(CW$|\fR
or a tied variable (it calls \f(CW\*(C`STORE\*(C'\fR).  This macro evaluates its
argument more than once.
.RS 4
.Sp
.Vb 1
\& void  SvSETMAGIC(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvSetMagicSV""" 4
.el .IP \f(CWSvSetMagicSV\fR 4
.IX Item "SvSetMagicSV"
.PD 0
.ie n .IP """SvSetMagicSV_nosteal""" 4
.el .IP \f(CWSvSetMagicSV_nosteal\fR 4
.IX Item "SvSetMagicSV_nosteal"
.ie n .IP """SvSetSV""" 4
.el .IP \f(CWSvSetSV\fR 4
.IX Item "SvSetSV"
.ie n .IP """SvSetSV_nosteal""" 4
.el .IP \f(CWSvSetSV_nosteal\fR 4
.IX Xref "SvSetMagicSV SvSetMagicSV_nosteal SvSetSV SvSetSV_nosteal"
.IX Item "SvSetSV_nosteal"
.PD
if \f(CW\*(C`dsv\*(C'\fR is the same as \f(CW\*(C`ssv\*(C'\fR, these do nothing.  Otherwise they all call
some form of \f(CW"sv_setsv"\fR.  They may evaluate their arguments more than
once.
.Sp
The only differences are:
.Sp
\&\f(CW\*(C`SvSetMagicSV\*(C'\fR and \f(CW\*(C`SvSetMagicSV_nosteal\*(C'\fR perform any required 'set' magic
afterwards on the destination SV; \f(CW\*(C`SvSetSV\*(C'\fR and \f(CW\*(C`SvSetSV_nosteal\*(C'\fR do not.
.Sp
\&\f(CW\*(C`SvSetSV_nosteal\*(C'\fR \f(CW\*(C`SvSetMagicSV_nosteal\*(C'\fR call a non-destructive version of
\&\f(CW\*(C`sv_setsv\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& void  SvSetMagicSV(SV* dsv, SV* ssv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_setnv""" 4
.el .IP \f(CWsv_setnv\fR 4
.IX Item "sv_setnv"
.PD 0
.ie n .IP """sv_setnv_mg""" 4
.el .IP \f(CWsv_setnv_mg\fR 4
.IX Xref "sv_setnv sv_setnv_mg"
.IX Item "sv_setnv_mg"
.PD
These copy a double into the given SV, upgrading first if necessary.
.Sp
They differ only in that \f(CW\*(C`sv_setnv_mg\*(C'\fR handles 'set' magic; \f(CW\*(C`sv_setnv\*(C'\fR does
not.
.RS 4
.Sp
.Vb 1
\& void  sv_setnv(SV * const sv, const NV num)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_setpv""" 4
.el .IP \f(CWsv_setpv\fR 4
.IX Item "sv_setpv"
.PD 0
.ie n .IP """sv_setpv_mg""" 4
.el .IP \f(CWsv_setpv_mg\fR 4
.IX Item "sv_setpv_mg"
.ie n .IP """sv_setpvn""" 4
.el .IP \f(CWsv_setpvn\fR 4
.IX Item "sv_setpvn"
.ie n .IP """sv_setpvn_fresh""" 4
.el .IP \f(CWsv_setpvn_fresh\fR 4
.IX Item "sv_setpvn_fresh"
.ie n .IP """sv_setpvn_mg""" 4
.el .IP \f(CWsv_setpvn_mg\fR 4
.IX Item "sv_setpvn_mg"
.ie n .IP """sv_setpvs""" 4
.el .IP \f(CWsv_setpvs\fR 4
.IX Item "sv_setpvs"
.ie n .IP """sv_setpvs_mg""" 4
.el .IP \f(CWsv_setpvs_mg\fR 4
.IX Xref "sv_setpv sv_setpv_mg sv_setpvn sv_setpvn_fresh sv_setpvn_mg sv_setpvs sv_setpvs_mg"
.IX Item "sv_setpvs_mg"
.PD
These copy a string into the SV \f(CW\*(C`sv\*(C'\fR, making sure it is \f(CW"SvPOK_only"\fR.
.Sp
In the \f(CW\*(C`pvs\*(C'\fR forms, the string must be a C literal string, enclosed in double
quotes.
.Sp
In the \f(CW\*(C`pvn\*(C'\fR forms, the first byte of the string is pointed to by \f(CW\*(C`ptr\*(C'\fR, and
\&\f(CW\*(C`len\*(C'\fR indicates the number of bytes to be copied, potentially including
embedded \f(CW\*(C`NUL\*(C'\fR characters.
.Sp
In the plain \f(CW\*(C`pv\*(C'\fR forms, \f(CW\*(C`ptr\*(C'\fR points to a NUL-terminated C string.  That is,
it points to the first byte of the string, and the copy proceeds up through the
first encountered \f(CW\*(C`NUL\*(C'\fR byte.
.Sp
In the forms that take a \f(CW\*(C`ptr\*(C'\fR argument, if it is NULL, the SV will become
undefined.
.Sp
The UTF\-8 flag is not changed by these functions.  A terminating NUL byte is
guaranteed in the result.
.Sp
The \f(CW\*(C`_mg\*(C'\fR forms handle 'set' magic; the other forms skip all magic.
.Sp
\&\f(CW\*(C`sv_setpvn_fresh\*(C'\fR is a cut-down alternative to \f(CW\*(C`sv_setpvn\*(C'\fR, intended ONLY
to be used with a fresh sv that has been upgraded to a SVt_PV, SVt_PVIV,
SVt_PVNV, or SVt_PVMG.
.RS 4
.Sp
.Vb 10
\& void  sv_setpv       (SV * const sv, const char * const ptr)
\& void  sv_setpv_mg    (SV * const sv, const char * const ptr)
\& void  sv_setpvn      (SV * const sv, const char * const ptr,
\&                       const STRLEN len)
\& void  sv_setpvn_fresh(SV * const sv, const char * const ptr,
\&                       const STRLEN len)
\& void  sv_setpvn_mg   (SV * const sv, const char * const ptr,
\&                       const STRLEN len)
\& void  sv_setpvs      (SV* sv, "literal string")
\& void  sv_setpvs_mg   (SV* sv, "literal string")
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_setpv_bufsize""" 4
.el .IP \f(CWsv_setpv_bufsize\fR 4
.IX Xref "sv_setpv_bufsize"
.IX Item "sv_setpv_bufsize"
Sets the SV to be a string of cur bytes length, with at least
len bytes available. Ensures that there is a null byte at SvEND.
Returns a char * pointer to the SvPV buffer.
.RS 4
.Sp
.Vb 2
\& char  *  sv_setpv_bufsize(SV * const sv, const STRLEN cur,
\&                           const STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_setpvf""" 4
.el .IP \f(CWsv_setpvf\fR 4
.IX Item "sv_setpvf"
.PD 0
.ie n .IP """sv_setpvf_mg""" 4
.el .IP \f(CWsv_setpvf_mg\fR 4
.IX Item "sv_setpvf_mg"
.ie n .IP """sv_setpvf_mg_nocontext""" 4
.el .IP \f(CWsv_setpvf_mg_nocontext\fR 4
.IX Item "sv_setpvf_mg_nocontext"
.ie n .IP """sv_setpvf_nocontext""" 4
.el .IP \f(CWsv_setpvf_nocontext\fR 4
.IX Xref "sv_setpvf sv_setpvf_mg sv_setpvf_mg_nocontext sv_setpvf_nocontext"
.IX Item "sv_setpvf_nocontext"
.PD
These work like \f(CW"sv_catpvf"\fR but copy the text into the SV instead of
appending it.
.Sp
The differences between these are:
.Sp
\&\f(CW\*(C`sv_setpvf_mg\*(C'\fR and \f(CW\*(C`sv_setpvf_mg_nocontext\*(C'\fR perform 'set' magic; \f(CW\*(C`sv_setpvf\*(C'\fR
and \f(CW\*(C`sv_setpvf_nocontext\*(C'\fR skip all magic.
.Sp
\&\f(CW\*(C`sv_setpvf_nocontext\*(C'\fR and \f(CW\*(C`sv_setpvf_mg_nocontext\*(C'\fR do not take a thread
context (\f(CW\*(C`aTHX\*(C'\fR) parameter, so are used in situations where the caller
doesn't already have the thread context.
.Sp
NOTE: \f(CW\*(C`sv_setpvf\*(C'\fR must be explicitly called as
\&\f(CW\*(C`Perl_sv_setpvf\*(C'\fR
with an \f(CW\*(C`aTHX_\*(C'\fR parameter.
.Sp
NOTE: \f(CW\*(C`sv_setpvf_mg\*(C'\fR must be explicitly called as
\&\f(CW\*(C`Perl_sv_setpvf_mg\*(C'\fR
with an \f(CW\*(C`aTHX_\*(C'\fR parameter.
.RS 4
.Sp
.Vb 8
\& void  Perl_sv_setpvf        (pTHX_ SV * const sv,
\&                              const char * const pat, ...)
\& void  Perl_sv_setpvf_mg     (pTHX_ SV * const sv,
\&                              const char * const pat, ...)
\& void  sv_setpvf_mg_nocontext(SV * const sv,
\&                              const char * const pat, ...)
\& void  sv_setpvf_nocontext   (SV * const sv,
\&                              const char * const pat, ...)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_setref_iv""" 4
.el .IP \f(CWsv_setref_iv\fR 4
.IX Xref "sv_setref_iv"
.IX Item "sv_setref_iv"
Copies an integer into a new SV, optionally blessing the SV.  The \f(CW\*(C`rv\*(C'\fR
argument will be upgraded to an RV.  That RV will be modified to point to
the new SV.  The \f(CW\*(C`classname\*(C'\fR argument indicates the package for the
blessing.  Set \f(CW\*(C`classname\*(C'\fR to \f(CW\*(C`NULL\*(C'\fR to avoid the blessing.  The new SV
will have a reference count of 1, and the RV will be returned.
.RS 4
.Sp
.Vb 2
\& SV *  sv_setref_iv(SV * const rv, const char * const classname,
\&                    const IV iv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_setref_nv""" 4
.el .IP \f(CWsv_setref_nv\fR 4
.IX Xref "sv_setref_nv"
.IX Item "sv_setref_nv"
Copies a double into a new SV, optionally blessing the SV.  The \f(CW\*(C`rv\*(C'\fR
argument will be upgraded to an RV.  That RV will be modified to point to
the new SV.  The \f(CW\*(C`classname\*(C'\fR argument indicates the package for the
blessing.  Set \f(CW\*(C`classname\*(C'\fR to \f(CW\*(C`NULL\*(C'\fR to avoid the blessing.  The new SV
will have a reference count of 1, and the RV will be returned.
.RS 4
.Sp
.Vb 2
\& SV *  sv_setref_nv(SV * const rv, const char * const classname,
\&                    const NV nv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_setref_pv""" 4
.el .IP \f(CWsv_setref_pv\fR 4
.IX Xref "sv_setref_pv"
.IX Item "sv_setref_pv"
Copies a pointer into a new SV, optionally blessing the SV.  The \f(CW\*(C`rv\*(C'\fR
argument will be upgraded to an RV.  That RV will be modified to point to
the new SV.  If the \f(CW\*(C`pv\*(C'\fR argument is \f(CW\*(C`NULL\*(C'\fR, then \f(CW\*(C`PL_sv_undef\*(C'\fR will be placed
into the SV.  The \f(CW\*(C`classname\*(C'\fR argument indicates the package for the
blessing.  Set \f(CW\*(C`classname\*(C'\fR to \f(CW\*(C`NULL\*(C'\fR to avoid the blessing.  The new SV
will have a reference count of 1, and the RV will be returned.
.Sp
Do not use with other Perl types such as HV, AV, SV, CV, because those
objects will become corrupted by the pointer copy process.
.Sp
Note that \f(CW\*(C`sv_setref_pvn\*(C'\fR copies the string while this copies the pointer.
.RS 4
.Sp
.Vb 2
\& SV *  sv_setref_pv(SV * const rv, const char * const classname,
\&                    void * const pv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_setref_pvn""" 4
.el .IP \f(CWsv_setref_pvn\fR 4
.IX Xref "sv_setref_pvn"
.IX Item "sv_setref_pvn"
Copies a string into a new SV, optionally blessing the SV.  The length of the
string must be specified with \f(CW\*(C`n\*(C'\fR.  The \f(CW\*(C`rv\*(C'\fR argument will be upgraded to
an RV.  That RV will be modified to point to the new SV.  The \f(CW\*(C`classname\*(C'\fR
argument indicates the package for the blessing.  Set \f(CW\*(C`classname\*(C'\fR to
\&\f(CW\*(C`NULL\*(C'\fR to avoid the blessing.  The new SV will have a reference count
of 1, and the RV will be returned.
.Sp
Note that \f(CW\*(C`sv_setref_pv\*(C'\fR copies the pointer while this copies the string.
.RS 4
.Sp
.Vb 2
\& SV *  sv_setref_pvn(SV * const rv, const char * const classname,
\&                     const char * const pv, const STRLEN n)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_setref_pvs""" 4
.el .IP \f(CWsv_setref_pvs\fR 4
.IX Xref "sv_setref_pvs"
.IX Item "sv_setref_pvs"
Like \f(CW\*(C`sv_setref_pvn\*(C'\fR, but takes a literal string instead of
a string/length pair.
.RS 4
.Sp
.Vb 2
\& SV *  sv_setref_pvs(SV *const rv, const char *const classname,
\&                     "literal string")
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_setref_uv""" 4
.el .IP \f(CWsv_setref_uv\fR 4
.IX Xref "sv_setref_uv"
.IX Item "sv_setref_uv"
Copies an unsigned integer into a new SV, optionally blessing the SV.  The \f(CW\*(C`rv\*(C'\fR
argument will be upgraded to an RV.  That RV will be modified to point to
the new SV.  The \f(CW\*(C`classname\*(C'\fR argument indicates the package for the
blessing.  Set \f(CW\*(C`classname\*(C'\fR to \f(CW\*(C`NULL\*(C'\fR to avoid the blessing.  The new SV
will have a reference count of 1, and the RV will be returned.
.RS 4
.Sp
.Vb 2
\& SV *  sv_setref_uv(SV * const rv, const char * const classname,
\&                    const UV uv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_setrv_inc""" 4
.el .IP \f(CWsv_setrv_inc\fR 4
.IX Item "sv_setrv_inc"
.PD 0
.ie n .IP """sv_setrv_inc_mg""" 4
.el .IP \f(CWsv_setrv_inc_mg\fR 4
.IX Xref "sv_setrv_inc sv_setrv_inc_mg"
.IX Item "sv_setrv_inc_mg"
.PD
As \f(CW\*(C`sv_setrv_noinc\*(C'\fR but increments the reference count of \fIref\fR.
.Sp
\&\f(CW\*(C`sv_setrv_inc_mg\*(C'\fR will invoke 'set' magic on the SV; \f(CW\*(C`sv_setrv_inc\*(C'\fR will
not.
.RS 4
.Sp
.Vb 1
\& void  sv_setrv_inc(SV * const sv, SV * const ref)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_setrv_noinc""" 4
.el .IP \f(CWsv_setrv_noinc\fR 4
.IX Item "sv_setrv_noinc"
.PD 0
.ie n .IP """sv_setrv_noinc_mg""" 4
.el .IP \f(CWsv_setrv_noinc_mg\fR 4
.IX Xref "sv_setrv_noinc sv_setrv_noinc_mg"
.IX Item "sv_setrv_noinc_mg"
.PD
Copies an SV pointer into the given SV as an SV reference, upgrading it if
necessary. After this, \f(CWSvRV(sv)\fR is equal to \fIref\fR. This does not adjust
the reference count of \fIref\fR. The reference \fIref\fR must not be NULL.
.Sp
\&\f(CW\*(C`sv_setrv_noinc_mg\*(C'\fR will invoke 'set' magic on the SV; \f(CW\*(C`sv_setrv_noinc\*(C'\fR will
not.
.RS 4
.Sp
.Vb 1
\& void  sv_setrv_noinc(SV * const sv, SV * const ref)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_setsv""" 4
.el .IP \f(CWsv_setsv\fR 4
.IX Item "sv_setsv"
.PD 0
.ie n .IP """sv_setsv_flags""" 4
.el .IP \f(CWsv_setsv_flags\fR 4
.IX Item "sv_setsv_flags"
.ie n .IP """sv_setsv_mg""" 4
.el .IP \f(CWsv_setsv_mg\fR 4
.IX Item "sv_setsv_mg"
.ie n .IP """sv_setsv_nomg""" 4
.el .IP \f(CWsv_setsv_nomg\fR 4
.IX Xref "sv_setsv sv_setsv_flags sv_setsv_mg sv_setsv_nomg"
.IX Item "sv_setsv_nomg"
.PD
These copy the contents of the source SV \f(CW\*(C`ssv\*(C'\fR into the destination SV \f(CW\*(C`dsv\*(C'\fR.
\&\f(CW\*(C`ssv\*(C'\fR may be destroyed if it is mortal, so don't use these functions if
the source SV needs to be reused.
Loosely speaking, they perform a copy-by-value, obliterating any previous
content of the destination.
.Sp
They differ only in that:
.Sp
\&\f(CW\*(C`sv_setsv\*(C'\fR calls 'get' magic on \f(CW\*(C`ssv\*(C'\fR, but skips 'set' magic on \f(CW\*(C`dsv\*(C'\fR.
.Sp
\&\f(CW\*(C`sv_setsv_mg\*(C'\fR calls both 'get' magic on \f(CW\*(C`ssv\*(C'\fR and 'set' magic on \f(CW\*(C`dsv\*(C'\fR.
.Sp
\&\f(CW\*(C`sv_setsv_nomg\*(C'\fR skips all magic.
.Sp
\&\f(CW\*(C`sv_setsv_flags\*(C'\fR has a \f(CW\*(C`flags\*(C'\fR parameter which you can use to specify any
combination of magic handling, and also you can specify \f(CW\*(C`SV_NOSTEAL\*(C'\fR so that
the buffers of temps will not be stolen.
.Sp
You probably want to instead use one of the assortment of wrappers, such as
\&\f(CW"SvSetSV"\fR, \f(CW"SvSetSV_nosteal"\fR, \f(CW"SvSetMagicSV"\fR and
\&\f(CW"SvSetMagicSV_nosteal"\fR.
.Sp
\&\f(CW\*(C`sv_setsv_flags\*(C'\fR is the primary function for copying scalars, and most other
copy-ish functions and macros use it underneath.
.RS 4
.Sp
.Vb 4
\& void  sv_setsv      (SV *dsv, SV *ssv)
\& void  sv_setsv_flags(SV *dsv, SV *ssv, const I32 flags)
\& void  sv_setsv_mg   (SV * const dsv, SV * const ssv)
\& void  sv_setsv_nomg (SV *dsv, SV *ssv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_set_true""" 4
.el .IP \f(CWsv_set_true\fR 4
.IX Xref "sv_set_true"
.IX Item "sv_set_true"
Equivalent to \f(CW\*(C`sv_setsv(sv, &PL_sv_yes)\*(C'\fR, but may be made more
efficient in the future. Doesn't handle set magic.
.Sp
The perl equivalent is \f(CW\*(C`$sv = !0;\*(C'\fR.
.Sp
Introduced in perl 5.35.11.
.RS 4
.Sp
.Vb 1
\& void  sv_set_true(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_set_undef""" 4
.el .IP \f(CWsv_set_undef\fR 4
.IX Xref "sv_set_undef"
.IX Item "sv_set_undef"
Equivalent to \f(CW\*(C`sv_setsv(sv, &PL_sv_undef)\*(C'\fR, but more efficient.
Doesn't handle set magic.
.Sp
The perl equivalent is \f(CW\*(C`$sv = undef;\*(C'\fR. Note that it doesn't free any string
buffer, unlike \f(CW\*(C`undef $sv\*(C'\fR.
.Sp
Introduced in perl 5.25.12.
.RS 4
.Sp
.Vb 1
\& void  sv_set_undef(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_setuv""" 4
.el .IP \f(CWsv_setuv\fR 4
.IX Item "sv_setuv"
.PD 0
.ie n .IP """sv_setuv_mg""" 4
.el .IP \f(CWsv_setuv_mg\fR 4
.IX Xref "sv_setuv sv_setuv_mg"
.IX Item "sv_setuv_mg"
.PD
These copy an unsigned integer into the given SV, upgrading first if necessary.
.Sp
They differ only in that \f(CW\*(C`sv_setuv_mg\*(C'\fR handles 'set' magic; \f(CW\*(C`sv_setuv\*(C'\fR does
not.
.RS 4
.Sp
.Vb 2
\& void  sv_setuv   (SV * const sv, const UV num)
\& void  sv_setuv_mg(SV * const sv, const UV u)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvSHARE""" 4
.el .IP \f(CWSvSHARE\fR 4
.IX Xref "SvSHARE"
.IX Item "SvSHARE"
Arranges for \f(CW\*(C`sv\*(C'\fR to be shared between threads if a suitable module
has been loaded.
.RS 4
.Sp
.Vb 1
\& void  SvSHARE(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvSHARED_HASH""" 4
.el .IP \f(CWSvSHARED_HASH\fR 4
.IX Xref "SvSHARED_HASH"
.IX Item "SvSHARED_HASH"
Returns the hash for \f(CW\*(C`sv\*(C'\fR created by \f(CW"newSVpvn_share"\fR.
.RS 4
.Sp
.Vb 1
\& struct hek*  SvSHARED_HASH(SV * sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvSTASH""" 4
.el .IP \f(CWSvSTASH\fR 4
.IX Xref "SvSTASH"
.IX Item "SvSTASH"
Returns the stash of the SV.
.RS 4
.Sp
.Vb 1
\& HV*  SvSTASH(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvSTASH_set""" 4
.el .IP \f(CWSvSTASH_set\fR 4
.IX Xref "SvSTASH_set"
.IX Item "SvSTASH_set"
Set the value of the STASH pointer in \f(CW\*(C`sv\*(C'\fR to val.  See \f(CW"SvIV_set"\fR.
.RS 4
.Sp
.Vb 1
\& void  SvSTASH_set(SV* sv, HV* val)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_streq""" 4
.el .IP \f(CWsv_streq\fR 4
.IX Xref "sv_streq"
.IX Item "sv_streq"
A convenient shortcut for calling \f(CW\*(C`sv_streq_flags\*(C'\fR with the \f(CW\*(C`SV_GMAGIC\*(C'\fR
flag. This function basically behaves like the Perl code \f(CW\*(C`$sv1 eq $sv2\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& bool  sv_streq(SV *sv1, SV *sv2)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_streq_flags""" 4
.el .IP \f(CWsv_streq_flags\fR 4
.IX Xref "sv_streq_flags"
.IX Item "sv_streq_flags"
Returns a boolean indicating whether the strings in the two SVs are
identical. If the flags argument has the \f(CW\*(C`SV_GMAGIC\*(C'\fR bit set, it handles
get-magic too. Will coerce its args to strings if necessary. Treats
\&\f(CW\*(C`NULL\*(C'\fR as undef. Correctly handles the UTF8 flag.
.Sp
If flags does not have the \f(CW\*(C`SV_SKIP_OVERLOAD\*(C'\fR bit set, an attempt to use
\&\f(CW\*(C`eq\*(C'\fR overloading will be made. If such overloading does not exist or the
flag is set, then regular string comparison will be used instead.
.RS 4
.Sp
.Vb 1
\& bool  sv_streq_flags(SV *sv1, SV *sv2, const U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvTRUE""" 4
.el .IP \f(CWSvTRUE\fR 4
.IX Item "SvTRUE"
.PD 0
.ie n .IP """SvTRUE_NN""" 4
.el .IP \f(CWSvTRUE_NN\fR 4
.IX Item "SvTRUE_NN"
.ie n .IP """SvTRUE_nomg""" 4
.el .IP \f(CWSvTRUE_nomg\fR 4
.IX Item "SvTRUE_nomg"
.ie n .IP """SvTRUE_nomg_NN""" 4
.el .IP \f(CWSvTRUE_nomg_NN\fR 4
.IX Item "SvTRUE_nomg_NN"
.ie n .IP """SvTRUEx""" 4
.el .IP \f(CWSvTRUEx\fR 4
.IX Xref "SvTRUE SvTRUE_NN SvTRUE_nomg SvTRUE_nomg_NN SvTRUEx"
.IX Item "SvTRUEx"
.PD
These return a boolean indicating whether Perl would evaluate the SV as true or
false.  See \f(CW"SvOK"\fR for a defined/undefined test.
.Sp
As of Perl 5.32, all are guaranteed to evaluate \f(CW\*(C`sv\*(C'\fR only once.  Prior to that
release, only \f(CW\*(C`SvTRUEx\*(C'\fR guaranteed single evaluation; now \f(CW\*(C`SvTRUEx\*(C'\fR is
identical to \f(CW\*(C`SvTRUE\*(C'\fR.
.Sp
\&\f(CW\*(C`SvTRUE_nomg\*(C'\fR and \f(CW\*(C`TRUE_nomg_NN\*(C'\fR do not perform 'get' magic; the others do
unless the scalar is already \f(CW\*(C`SvPOK\*(C'\fR, \f(CW\*(C`SvIOK\*(C'\fR, or \f(CW\*(C`SvNOK\*(C'\fR (the public, not
the private flags).
.Sp
\&\f(CW\*(C`SvTRUE_NN\*(C'\fR is like \f(CW"SvTRUE"\fR, but \f(CW\*(C`sv\*(C'\fR is assumed to be
non-null (NN).  If there is a possibility that it is NULL, use plain
\&\f(CW\*(C`SvTRUE\*(C'\fR.
.Sp
\&\f(CW\*(C`SvTRUE_nomg_NN\*(C'\fR is like \f(CW"SvTRUE_nomg"\fR, but \f(CW\*(C`sv\*(C'\fR is assumed to be
non-null (NN).  If there is a possibility that it is NULL, use plain
\&\f(CW\*(C`SvTRUE_nomg\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& bool  SvTRUE(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvTYPE""" 4
.el .IP \f(CWSvTYPE\fR 4
.IX Xref "SvTYPE"
.IX Item "SvTYPE"
Returns the type of the SV.  See \f(CW"svtype"\fR.
.RS 4
.Sp
.Vb 1
\& svtype  SvTYPE(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvUNLOCK""" 4
.el .IP \f(CWSvUNLOCK\fR 4
.IX Xref "SvUNLOCK"
.IX Item "SvUNLOCK"
Releases a mutual exclusion lock on \f(CW\*(C`sv\*(C'\fR if a suitable module
has been loaded.
.RS 4
.Sp
.Vb 1
\& void  SvUNLOCK(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_unmagic""" 4
.el .IP \f(CWsv_unmagic\fR 4
.IX Xref "sv_unmagic"
.IX Item "sv_unmagic"
Removes all magic of type \f(CW\*(C`type\*(C'\fR from an SV.
.RS 4
.Sp
.Vb 1
\& int  sv_unmagic(SV * const sv, const int type)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_unmagicext""" 4
.el .IP \f(CWsv_unmagicext\fR 4
.IX Xref "sv_unmagicext"
.IX Item "sv_unmagicext"
Removes all magic of type \f(CW\*(C`type\*(C'\fR with the specified \f(CW\*(C`vtbl\*(C'\fR from an SV.
.RS 4
.Sp
.Vb 2
\& int  sv_unmagicext(SV * const sv, const int type,
\&                    const MGVTBL *vtbl)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_unref""" 4
.el .IP \f(CWsv_unref\fR 4
.IX Xref "sv_unref"
.IX Item "sv_unref"
Unsets the RV status of the SV, and decrements the reference count of
whatever was being referenced by the RV.  This can almost be thought of
as a reversal of \f(CW\*(C`newSVrv\*(C'\fR.  This is \f(CW\*(C`sv_unref_flags\*(C'\fR with the \f(CW\*(C`flag\*(C'\fR
being zero.  See \f(CW"SvROK_off"\fR.
.RS 4
.Sp
.Vb 1
\& void  sv_unref(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_unref_flags""" 4
.el .IP \f(CWsv_unref_flags\fR 4
.IX Xref "sv_unref_flags"
.IX Item "sv_unref_flags"
Unsets the RV status of the SV, and decrements the reference count of
whatever was being referenced by the RV.  This can almost be thought of
as a reversal of \f(CW\*(C`newSVrv\*(C'\fR.  The \f(CW\*(C`cflags\*(C'\fR argument can contain
\&\f(CW\*(C`SV_IMMEDIATE_UNREF\*(C'\fR to force the reference count to be decremented
(otherwise the decrementing is conditional on the reference count being
different from one or the reference being a readonly SV).
See \f(CW"SvROK_off"\fR.
.RS 4
.Sp
.Vb 1
\& void  sv_unref_flags(SV * const ref, const U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvUOK""" 4
.el .IP \f(CWSvUOK\fR 4
.IX Xref "SvUOK"
.IX Item "SvUOK"
Returns a boolean indicating whether the SV contains an integer that must be
interpreted as unsigned.  A non-negative integer whose value is within the
range of both an IV and a UV may be flagged as either \f(CW\*(C`SvUOK\*(C'\fR or \f(CW\*(C`SvIOK\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& bool  SvUOK(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvUPGRADE""" 4
.el .IP \f(CWSvUPGRADE\fR 4
.IX Xref "SvUPGRADE"
.IX Item "SvUPGRADE"
Used to upgrade an SV to a more complex form.  Uses \f(CW\*(C`sv_upgrade\*(C'\fR to
perform the upgrade if necessary.  See \f(CW"svtype"\fR.
.RS 4
.Sp
.Vb 1
\& void  SvUPGRADE(SV* sv, svtype type)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_upgrade""" 4
.el .IP \f(CWsv_upgrade\fR 4
.IX Xref "sv_upgrade"
.IX Item "sv_upgrade"
Upgrade an SV to a more complex form.  Generally adds a new body type to the
SV, then copies across as much information as possible from the old body.
It croaks if the SV is already in a more complex form than requested.  You
generally want to use the \f(CW\*(C`SvUPGRADE\*(C'\fR macro wrapper, which checks the type
before calling \f(CW\*(C`sv_upgrade\*(C'\fR, and hence does not croak.  See also
\&\f(CW"svtype"\fR.
.RS 4
.Sp
.Vb 1
\& void  sv_upgrade(SV * const sv, svtype new_type)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_usepvn""" 4
.el .IP \f(CWsv_usepvn\fR 4
.IX Item "sv_usepvn"
.PD 0
.ie n .IP """sv_usepvn_flags""" 4
.el .IP \f(CWsv_usepvn_flags\fR 4
.IX Item "sv_usepvn_flags"
.ie n .IP """sv_usepvn_mg""" 4
.el .IP \f(CWsv_usepvn_mg\fR 4
.IX Xref "sv_usepvn sv_usepvn_flags sv_usepvn_mg"
.IX Item "sv_usepvn_mg"
.PD
These tell an SV to use \f(CW\*(C`ptr\*(C'\fR for its string value.  Normally SVs have
their string stored inside the SV, but these tell the SV to use an
external string instead.
.Sp
\&\f(CW\*(C`ptr\*(C'\fR should point to memory that was allocated
by "\f(CW\*(C`Newx\*(C'\fR".  It must be
the start of a \f(CW\*(C`Newx\*(C'\fR\-ed block of memory, and not a pointer to the
middle of it (beware of \f(CW\*(C`OOK\*(C'\fR and copy-on-write),
and not be from a non\-\f(CW\*(C`Newx\*(C'\fR memory allocator like \f(CW\*(C`malloc\*(C'\fR.  The
string length, \f(CW\*(C`len\*(C'\fR, must be supplied.  By default this function
will "\f(CW\*(C`Renew\*(C'\fR" (i.e. realloc, move) the memory pointed to by \f(CW\*(C`ptr\*(C'\fR,
so that the pointer should not be freed or used by the programmer after giving
it to \f(CW\*(C`sv_usepvn\*(C'\fR, and neither should any pointers from "behind" that pointer
(\fIe.g.\fR, \f(CW\*(C`ptr\*(C'\fR\ +\ 1) be used.
.Sp
In the \f(CW\*(C`sv_usepvn_flags\*(C'\fR form, if \f(CW\*(C`flags\ &\ SV_SMAGIC\*(C'\fR is true,
\&\f(CW\*(C`SvSETMAGIC\*(C'\fR is called before returning.
And if \f(CW\*(C`flags\ &\ SV_HAS_TRAILING_NUL\*(C'\fR is true, then \f(CW\*(C`ptr[len]\*(C'\fR must be
\&\f(CW\*(C`NUL\*(C'\fR, and the realloc will be skipped (\fIi.e.\fR, the buffer is actually at
least 1 byte longer than \f(CW\*(C`len\*(C'\fR, and already meets the requirements for storing
in \f(CW\*(C`SvPVX\*(C'\fR).
.Sp
\&\f(CW\*(C`sv_usepvn\*(C'\fR is merely \f(CW\*(C`sv_usepvn_flags\*(C'\fR with \f(CW\*(C`flags\*(C'\fR set to 0, so 'set'
magic is skipped.
.Sp
\&\f(CW\*(C`sv_usepvn_mg\*(C'\fR is merely \f(CW\*(C`sv_usepvn_flags\*(C'\fR with \f(CW\*(C`flags\*(C'\fR set to \f(CW\*(C`SV_SMAGIC\*(C'\fR,
so 'set' magic is performed.
.RS 4
.Sp
.Vb 4
\& void  sv_usepvn      (SV *sv, char *ptr, STRLEN len)
\& void  sv_usepvn_flags(SV * const sv, char *ptr, const STRLEN len,
\&                       const U32 flags)
\& void  sv_usepvn_mg   (SV *sv, char *ptr, STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_utf8_decode""" 4
.el .IP \f(CWsv_utf8_decode\fR 4
.IX Xref "sv_utf8_decode"
.IX Item "sv_utf8_decode"
If the PV of the SV is an octet sequence in Perl's extended UTF\-8
and contains a multiple-byte character, the \f(CW\*(C`SvUTF8\*(C'\fR flag is turned on
so that it looks like a character.  If the PV contains only single-byte
characters, the \f(CW\*(C`SvUTF8\*(C'\fR flag stays off.
Scans PV for validity and returns FALSE if the PV is invalid UTF\-8.
.RS 4
.Sp
.Vb 1
\& bool  sv_utf8_decode(SV * const sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_utf8_downgrade""" 4
.el .IP \f(CWsv_utf8_downgrade\fR 4
.IX Item "sv_utf8_downgrade"
.PD 0
.ie n .IP """sv_utf8_downgrade_flags""" 4
.el .IP \f(CWsv_utf8_downgrade_flags\fR 4
.IX Item "sv_utf8_downgrade_flags"
.ie n .IP """sv_utf8_downgrade_nomg""" 4
.el .IP \f(CWsv_utf8_downgrade_nomg\fR 4
.IX Xref "sv_utf8_downgrade sv_utf8_downgrade_flags sv_utf8_downgrade_nomg"
.IX Item "sv_utf8_downgrade_nomg"
.PD
These attempt to convert the PV of an SV from characters to bytes.  If the PV
contains a character that cannot fit in a byte, this conversion will fail; in
this case, \f(CW\*(C`FALSE\*(C'\fR is returned if \f(CW\*(C`fail_ok\*(C'\fR is true; otherwise they croak.
.Sp
They are not a general purpose Unicode to byte encoding interface:
use the \f(CW\*(C`Encode\*(C'\fR extension for that.
.Sp
They differ only in that:
.Sp
\&\f(CW\*(C`sv_utf8_downgrade\*(C'\fR processes 'get' magic on \f(CW\*(C`sv\*(C'\fR.
.Sp
\&\f(CW\*(C`sv_utf8_downgrade_nomg\*(C'\fR does not.
.Sp
\&\f(CW\*(C`sv_utf8_downgrade_flags\*(C'\fR has an additional \f(CW\*(C`flags\*(C'\fR parameter in which you can specify
\&\f(CW\*(C`SV_GMAGIC\*(C'\fR to process 'get' magic, or leave it cleared to not process 'get' magic.
.RS 4
.Sp
.Vb 4
\& bool  sv_utf8_downgrade      (SV * const sv, const bool fail_ok)
\& bool  sv_utf8_downgrade_flags(SV * const sv, const bool fail_ok,
\&                               const U32 flags)
\& bool  sv_utf8_downgrade_nomg (SV * const sv, const bool fail_ok)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_utf8_encode""" 4
.el .IP \f(CWsv_utf8_encode\fR 4
.IX Xref "sv_utf8_encode"
.IX Item "sv_utf8_encode"
Converts the PV of an SV to UTF\-8, but then turns the \f(CW\*(C`SvUTF8\*(C'\fR
flag off so that it looks like octets again.
.RS 4
.Sp
.Vb 1
\& void  sv_utf8_encode(SV * const sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvUTF8_off""" 4
.el .IP \f(CWSvUTF8_off\fR 4
.IX Xref "SvUTF8_off"
.IX Item "SvUTF8_off"
Unsets the UTF\-8 status of an SV (the data is not changed, just the flag).
Do not use frivolously.
.RS 4
.Sp
.Vb 1
\& void  SvUTF8_off(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvUTF8_on""" 4
.el .IP \f(CWSvUTF8_on\fR 4
.IX Xref "SvUTF8_on"
.IX Item "SvUTF8_on"
Turn on the UTF\-8 status of an SV (the data is not changed, just the flag).
Do not use frivolously.
.RS 4
.Sp
.Vb 1
\& void  SvUTF8_on(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_utf8_upgrade""" 4
.el .IP \f(CWsv_utf8_upgrade\fR 4
.IX Item "sv_utf8_upgrade"
.PD 0
.ie n .IP """sv_utf8_upgrade_flags""" 4
.el .IP \f(CWsv_utf8_upgrade_flags\fR 4
.IX Item "sv_utf8_upgrade_flags"
.ie n .IP """sv_utf8_upgrade_flags_grow""" 4
.el .IP \f(CWsv_utf8_upgrade_flags_grow\fR 4
.IX Item "sv_utf8_upgrade_flags_grow"
.ie n .IP """sv_utf8_upgrade_nomg""" 4
.el .IP \f(CWsv_utf8_upgrade_nomg\fR 4
.IX Xref "sv_utf8_upgrade sv_utf8_upgrade_flags sv_utf8_upgrade_flags_grow sv_utf8_upgrade_nomg"
.IX Item "sv_utf8_upgrade_nomg"
.PD
These convert the PV of an SV to its UTF\-8\-encoded form.
The SV is forced to string form if it is not already.
They always set the \f(CW\*(C`SvUTF8\*(C'\fR flag to avoid future validity checks even if the
whole string is the same in UTF\-8 as not.
They return the number of bytes in the converted string
.Sp
The forms differ in just two ways.  The main difference is whether or not they
perform 'get magic' on \f(CW\*(C`sv\*(C'\fR.  \f(CW\*(C`sv_utf8_upgrade_nomg\*(C'\fR skips 'get magic';
\&\f(CW\*(C`sv_utf8_upgrade\*(C'\fR performs it; and \f(CW\*(C`sv_utf8_upgrade_flags\*(C'\fR and
\&\f(CW\*(C`sv_utf8_upgrade_flags_grow\*(C'\fR either perform it (if the \f(CW\*(C`SV_GMAGIC\*(C'\fR bit is set
in \f(CW\*(C`flags\*(C'\fR) or don't (if that bit is cleared).
.Sp
The other difference is that \f(CW\*(C`sv_utf8_upgrade_flags_grow\*(C'\fR has an additional
parameter, \f(CW\*(C`extra\*(C'\fR, which allows the caller to specify an amount of space to
be reserved as spare beyond what is needed for the actual conversion.  This is
used when the caller knows it will soon be needing yet more space, and it is
more efficient to request space from the system in a single call.
This form is otherwise identical to \f(CW\*(C`sv_utf8_upgrade_flags\*(C'\fR.
.Sp
These are not a general purpose byte encoding to Unicode interface: use the
Encode extension for that.
.Sp
The \f(CW\*(C`SV_FORCE_UTF8_UPGRADE\*(C'\fR flag is now ignored.
.RS 4
.Sp
.Vb 5
\& STRLEN  sv_utf8_upgrade           (SV *sv)
\& STRLEN  sv_utf8_upgrade_flags     (SV * const sv, const I32 flags)
\& STRLEN  sv_utf8_upgrade_flags_grow(SV * const sv, const I32 flags,
\&                                    STRLEN extra)
\& STRLEN  sv_utf8_upgrade_nomg      (SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvUTF8""" 4
.el .IP \f(CWSvUTF8\fR 4
.IX Xref "SvUTF8"
.IX Item "SvUTF8"
Returns a U32 value indicating the UTF\-8 status of an SV.  If things are set-up
properly, this indicates whether or not the SV contains UTF\-8 encoded data.
You should use this \fIafter\fR a call to \f(CW"SvPV"\fR or one of its variants, in
case any call to string overloading updates the internal flag.
.Sp
If you want to take into account the bytes pragma, use \f(CW"DO_UTF8"\fR
instead.
.RS 4
.Sp
.Vb 1
\& U32  SvUTF8(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvUV""" 4
.el .IP \f(CWSvUV\fR 4
.IX Item "SvUV"
.PD 0
.ie n .IP """SvUV_nomg""" 4
.el .IP \f(CWSvUV_nomg\fR 4
.IX Item "SvUV_nomg"
.ie n .IP """SvUVx""" 4
.el .IP \f(CWSvUVx\fR 4
.IX Xref "SvUV SvUV_nomg SvUVx"
.IX Item "SvUVx"
.PD
These each coerce the given SV to UV and return it.  The returned value in many
circumstances will get stored in \f(CW\*(C`sv\*(C'\fR's UV slot, but not in all cases.  (Use
\&\f(CW"sv_setuv"\fR to make sure it does).
.Sp
As of 5.37.1, all are guaranteed to evaluate \f(CW\*(C`sv\*(C'\fR only once.
.Sp
\&\f(CW\*(C`SvUVx\*(C'\fR is now identical to \f(CW\*(C`SvUV\*(C'\fR, but prior to 5.37.1, it was the only form
guaranteed to evaluate \f(CW\*(C`sv\*(C'\fR only once.
.RS 4
.Sp
.Vb 1
\& UV  SvUV(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_2uv_flags""" 4
.el .IP \f(CWsv_2uv_flags\fR 4
.IX Xref "sv_2uv_flags"
.IX Item "sv_2uv_flags"
Return the unsigned integer value of an SV, doing any necessary string
conversion.  If \f(CW\*(C`flags\*(C'\fR has the \f(CW\*(C`SV_GMAGIC\*(C'\fR bit set, does an \f(CWmg_get()\fR first.
Normally used via the \f(CWSvUV(sv)\fR and \f(CWSvUVx(sv)\fR macros.
.RS 4
.Sp
.Vb 1
\& UV  sv_2uv_flags(SV * const sv, const I32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvUV_set""" 4
.el .IP \f(CWSvUV_set\fR 4
.IX Xref "SvUV_set"
.IX Item "SvUV_set"
Set the value of the UV pointer in \f(CW\*(C`sv\*(C'\fR to val.  See \f(CW"SvIV_set"\fR.
.RS 4
.Sp
.Vb 1
\& void  SvUV_set(SV* sv, UV val)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvUVX""" 4
.el .IP \f(CWSvUVX\fR 4
.IX Xref "SvUVX"
.IX Item "SvUVX"
Returns the raw value in the SV's UV slot, without checks or conversions.
Only use when you are sure \f(CW\*(C`SvIOK\*(C'\fR is true.  See also \f(CW"SvUV"\fR.
.RS 4
.Sp
.Vb 1
\& UV  SvUVX(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvUVXx""" 4
.el .IP \f(CWSvUVXx\fR 4
.IX Xref "SvUVXx"
.IX Item "SvUVXx"
\&\f(CW\*(C`\fR\f(CBDEPRECATED!\fR\f(CW\*(C'\fR  It is planned to remove \f(CW\*(C`SvUVXx\*(C'\fR
from a future release of Perl.  Do not use it for
new code; remove it from existing code.
.Sp
This is an unnecessary synonym for "SvUVX"
.RS 4
.Sp
.Vb 1
\& UV  SvUVXx(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_vcatpvf""" 4
.el .IP \f(CWsv_vcatpvf\fR 4
.IX Item "sv_vcatpvf"
.PD 0
.ie n .IP """sv_vcatpvf_mg""" 4
.el .IP \f(CWsv_vcatpvf_mg\fR 4
.IX Xref "sv_vcatpvf sv_vcatpvf_mg"
.IX Item "sv_vcatpvf_mg"
.PD
These process their arguments like \f(CW\*(C`sv_vcatpvfn\*(C'\fR called with a non-null
C\-style variable argument list, and append the formatted output to \f(CW\*(C`sv\*(C'\fR.
.Sp
They differ only in that \f(CW\*(C`sv_vcatpvf_mg\*(C'\fR performs 'set' magic;
\&\f(CW\*(C`sv_vcatpvf\*(C'\fR skips 'set' magic.
.Sp
Both perform 'get' magic.
.Sp
They are usually accessed via their frontends \f(CW"sv_catpvf"\fR and
\&\f(CW"sv_catpvf_mg"\fR.
.RS 4
.Sp
.Vb 2
\& void  sv_vcatpvf(SV * const sv, const char * const pat,
\&                  va_list * const args)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_vcatpvfn""" 4
.el .IP \f(CWsv_vcatpvfn\fR 4
.IX Item "sv_vcatpvfn"
.PD 0
.ie n .IP """sv_vcatpvfn_flags""" 4
.el .IP \f(CWsv_vcatpvfn_flags\fR 4
.IX Xref "sv_vcatpvfn sv_vcatpvfn_flags"
.IX Item "sv_vcatpvfn_flags"
.PD
These process their arguments like \f(CWvsprintf(3)\fR and append the formatted output
to an SV.  They use an array of SVs if the C\-style variable argument list is
missing (\f(CW\*(C`NULL\*(C'\fR). Argument reordering (using format specifiers like \f(CW\*(C`%2$d\*(C'\fR or
\&\f(CW\*(C`%*2$d\*(C'\fR) is supported only when using an array of SVs; using a C\-style
\&\f(CW\*(C`va_list\*(C'\fR argument list with a format string that uses argument reordering
will yield an exception.
.Sp
When running with taint checks enabled, they indicate via \f(CW\*(C`maybe_tainted\*(C'\fR if
results are untrustworthy (often due to the use of locales).
.Sp
They assume that \f(CW\*(C`pat\*(C'\fR has the same utf8\-ness as \f(CW\*(C`sv\*(C'\fR.  It's the caller's
responsibility to ensure that this is so.
.Sp
They differ in that \f(CW\*(C`sv_vcatpvfn_flags\*(C'\fR has a \f(CW\*(C`flags\*(C'\fR parameter in which you
can set or clear the \f(CW\*(C`SV_GMAGIC\*(C'\fR and/or SV_SMAGIC flags, to specify which
magic to handle or not handle; whereas plain \f(CW\*(C`sv_vcatpvfn\*(C'\fR always specifies
both 'get' and 'set' magic.
.Sp
They are usually used via one of the frontends "\f(CW\*(C`sv_vcatpvf\*(C'\fR" and
"\f(CW\*(C`sv_vcatpvf_mg\*(C'\fR".
.RS 4
.Sp
.Vb 9
\& void  sv_vcatpvfn      (SV * const sv, const char * const pat,
\&                         const STRLEN patlen, va_list * const args,
\&                         SV ** const svargs, const Size_t sv_count,
\&                         bool * const maybe_tainted)
\& void  sv_vcatpvfn_flags(SV * const sv, const char * const pat,
\&                         const STRLEN patlen, va_list * const args,
\&                         SV ** const svargs, const Size_t sv_count,
\&                         bool * const maybe_tainted,
\&                         const U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvVOK""" 4
.el .IP \f(CWSvVOK\fR 4
.IX Xref "SvVOK"
.IX Item "SvVOK"
Returns a boolean indicating whether the SV contains a v\-string.
.RS 4
.Sp
.Vb 1
\& bool  SvVOK(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_vsetpvf""" 4
.el .IP \f(CWsv_vsetpvf\fR 4
.IX Item "sv_vsetpvf"
.PD 0
.ie n .IP """sv_vsetpvf_mg""" 4
.el .IP \f(CWsv_vsetpvf_mg\fR 4
.IX Xref "sv_vsetpvf sv_vsetpvf_mg"
.IX Item "sv_vsetpvf_mg"
.PD
These work like \f(CW"sv_vcatpvf"\fR but copy the text into the SV instead of
appending it.
.Sp
They differ only in that \f(CW\*(C`sv_vsetpvf_mg\*(C'\fR performs 'set' magic;
\&\f(CW\*(C`sv_vsetpvf\*(C'\fR skips all magic.
.Sp
They are usually used via their frontends, \f(CW"sv_setpvf"\fR and
\&\f(CW"sv_setpvf_mg"\fR.
.RS 4
.Sp
.Vb 2
\& void  sv_vsetpvf(SV * const sv, const char * const pat,
\&                  va_list * const args)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_vsetpvfn""" 4
.el .IP \f(CWsv_vsetpvfn\fR 4
.IX Xref "sv_vsetpvfn"
.IX Item "sv_vsetpvfn"
Works like \f(CW\*(C`sv_vcatpvfn\*(C'\fR but copies the text into the SV instead of
appending it.
.Sp
Usually used via one of its frontends "\f(CW\*(C`sv_vsetpvf\*(C'\fR" and
"\f(CW\*(C`sv_vsetpvf_mg\*(C'\fR".
.RS 4
.Sp
.Vb 4
\& void  sv_vsetpvfn(SV * const sv, const char * const pat,
\&                   const STRLEN patlen, va_list * const args,
\&                   SV ** const svargs, const Size_t sv_count,
\&                   bool * const maybe_tainted)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvVSTRING_mg""" 4
.el .IP \f(CWSvVSTRING_mg\fR 4
.IX Xref "SvVSTRING_mg"
.IX Item "SvVSTRING_mg"
Returns the vstring magic, or NULL if none
.RS 4
.Sp
.Vb 1
\& MAGIC*  SvVSTRING_mg(SV * sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """vnewSVpvf""" 4
.el .IP \f(CWvnewSVpvf\fR 4
.IX Xref "vnewSVpvf"
.IX Item "vnewSVpvf"
Like \f(CW"newSVpvf"\fR but the arguments are an encapsulated argument list.
.RS 4
.Sp
.Vb 1
\& SV *  vnewSVpvf(const char * const pat, va_list * const args)
.Ve
.RE
.RS 4
.RE
.SH Tainting
.IX Header "Tainting"
.ie n .IP """SvTAINT""" 4
.el .IP \f(CWSvTAINT\fR 4
.IX Xref "SvTAINT"
.IX Item "SvTAINT"
Taints an SV if tainting is enabled, and if some input to the current
expression is tainted\-\-usually a variable, but possibly also implicit
inputs such as locale settings.  \f(CW\*(C`SvTAINT\*(C'\fR propagates that taintedness to
the outputs of an expression in a pessimistic fashion; i.e., without paying
attention to precisely which outputs are influenced by which inputs.
.RS 4
.Sp
.Vb 1
\& void  SvTAINT(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvTAINTED""" 4
.el .IP \f(CWSvTAINTED\fR 4
.IX Xref "SvTAINTED"
.IX Item "SvTAINTED"
Checks to see if an SV is tainted.  Returns TRUE if it is, FALSE if
not.
.RS 4
.Sp
.Vb 1
\& bool  SvTAINTED(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvTAINTED_off""" 4
.el .IP \f(CWSvTAINTED_off\fR 4
.IX Xref "SvTAINTED_off"
.IX Item "SvTAINTED_off"
Untaints an SV.  Be \fIvery\fR careful with this routine, as it short-circuits
some of Perl's fundamental security features.  XS module authors should not
use this function unless they fully understand all the implications of
unconditionally untainting the value.  Untainting should be done in the
standard perl fashion, via a carefully crafted regexp, rather than directly
untainting variables.
.RS 4
.Sp
.Vb 1
\& void  SvTAINTED_off(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SvTAINTED_on""" 4
.el .IP \f(CWSvTAINTED_on\fR 4
.IX Xref "SvTAINTED_on"
.IX Item "SvTAINTED_on"
Marks an SV as tainted if tainting is enabled.
.RS 4
.Sp
.Vb 1
\& void  SvTAINTED_on(SV* sv)
.Ve
.RE
.RS 4
.RE
.SH Time
.IX Header "Time"
.ie n .IP """ASCTIME_R_PROTO""" 4
.el .IP \f(CWASCTIME_R_PROTO\fR 4
.IX Xref "ASCTIME_R_PROTO"
.IX Item "ASCTIME_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`asctime_r\*(C'\fR.
It is zero if \f(CW\*(C`d_asctime_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_asctime_r\*(C'\fR
is defined.
.ie n .IP """CTIME_R_PROTO""" 4
.el .IP \f(CWCTIME_R_PROTO\fR 4
.IX Xref "CTIME_R_PROTO"
.IX Item "CTIME_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`ctime_r\*(C'\fR.
It is zero if \f(CW\*(C`d_ctime_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_ctime_r\*(C'\fR
is defined.
.ie n .IP """GMTIME_MAX""" 4
.el .IP \f(CWGMTIME_MAX\fR 4
.IX Xref "GMTIME_MAX"
.IX Item "GMTIME_MAX"
This symbol contains the maximum value for the \f(CW\*(C`time_t\*(C'\fR offset that
the system function gmtime () accepts, and defaults to 0
.ie n .IP """GMTIME_MIN""" 4
.el .IP \f(CWGMTIME_MIN\fR 4
.IX Xref "GMTIME_MIN"
.IX Item "GMTIME_MIN"
This symbol contains the minimum value for the \f(CW\*(C`time_t\*(C'\fR offset that
the system function gmtime () accepts, and defaults to 0
.ie n .IP """GMTIME_R_PROTO""" 4
.el .IP \f(CWGMTIME_R_PROTO\fR 4
.IX Xref "GMTIME_R_PROTO"
.IX Item "GMTIME_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`gmtime_r\*(C'\fR.
It is zero if \f(CW\*(C`d_gmtime_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_gmtime_r\*(C'\fR
is defined.
.ie n .IP """HAS_ASCTIME_R""" 4
.el .IP \f(CWHAS_ASCTIME_R\fR 4
.IX Xref "HAS_ASCTIME_R"
.IX Item "HAS_ASCTIME_R"
This symbol, if defined, indicates that the \f(CW\*(C`asctime_r\*(C'\fR routine
is available to asctime re-entrantly.
.ie n .IP """HAS_ASCTIME64""" 4
.el .IP \f(CWHAS_ASCTIME64\fR 4
.IX Xref "HAS_ASCTIME64"
.IX Item "HAS_ASCTIME64"
This symbol, if defined, indicates that the \f(CW\*(C`asctime64\*(C'\fR () routine is
available to do the 64bit variant of asctime ()
.ie n .IP """HAS_CTIME_R""" 4
.el .IP \f(CWHAS_CTIME_R\fR 4
.IX Xref "HAS_CTIME_R"
.IX Item "HAS_CTIME_R"
This symbol, if defined, indicates that the \f(CW\*(C`ctime_r\*(C'\fR routine
is available to ctime re-entrantly.
.ie n .IP """HAS_CTIME64""" 4
.el .IP \f(CWHAS_CTIME64\fR 4
.IX Xref "HAS_CTIME64"
.IX Item "HAS_CTIME64"
This symbol, if defined, indicates that the \f(CW\*(C`ctime64\*(C'\fR () routine is
available to do the 64bit variant of ctime ()
.ie n .IP """HAS_DIFFTIME""" 4
.el .IP \f(CWHAS_DIFFTIME\fR 4
.IX Xref "HAS_DIFFTIME"
.IX Item "HAS_DIFFTIME"
This symbol, if defined, indicates that the \f(CW\*(C`difftime\*(C'\fR routine is
available.
.ie n .IP """HAS_DIFFTIME64""" 4
.el .IP \f(CWHAS_DIFFTIME64\fR 4
.IX Xref "HAS_DIFFTIME64"
.IX Item "HAS_DIFFTIME64"
This symbol, if defined, indicates that the \f(CW\*(C`difftime64\*(C'\fR () routine is
available to do the 64bit variant of difftime ()
.ie n .IP """HAS_FUTIMES""" 4
.el .IP \f(CWHAS_FUTIMES\fR 4
.IX Xref "HAS_FUTIMES"
.IX Item "HAS_FUTIMES"
This symbol, if defined, indicates that the \f(CW\*(C`futimes\*(C'\fR routine is
available to change file descriptor time stamps with \f(CW\*(C`struct timevals\*(C'\fR.
.ie n .IP """HAS_GETITIMER""" 4
.el .IP \f(CWHAS_GETITIMER\fR 4
.IX Xref "HAS_GETITIMER"
.IX Item "HAS_GETITIMER"
This symbol, if defined, indicates that the \f(CW\*(C`getitimer\*(C'\fR routine is
available to return interval timers.
.ie n .IP """HAS_GETTIMEOFDAY""" 4
.el .IP \f(CWHAS_GETTIMEOFDAY\fR 4
.IX Xref "HAS_GETTIMEOFDAY"
.IX Item "HAS_GETTIMEOFDAY"
This symbol, if defined, indicates that the \f(CWgettimeofday()\fR system
call is available for a sub-second accuracy clock. Usually, the file
\&\fIsys/resource.h\fR needs to be included (see \f(CW"I_SYS_RESOURCE"\fR).
The type "Timeval" should be used to refer to "\f(CW\*(C`struct timeval\*(C'\fR".
.ie n .IP """HAS_GMTIME_R""" 4
.el .IP \f(CWHAS_GMTIME_R\fR 4
.IX Xref "HAS_GMTIME_R"
.IX Item "HAS_GMTIME_R"
This symbol, if defined, indicates that the \f(CW\*(C`gmtime_r\*(C'\fR routine
is available to gmtime re-entrantly.
.ie n .IP """HAS_GMTIME64""" 4
.el .IP \f(CWHAS_GMTIME64\fR 4
.IX Xref "HAS_GMTIME64"
.IX Item "HAS_GMTIME64"
This symbol, if defined, indicates that the \f(CW\*(C`gmtime64\*(C'\fR () routine is
available to do the 64bit variant of gmtime ()
.ie n .IP """HAS_LOCALTIME_R""" 4
.el .IP \f(CWHAS_LOCALTIME_R\fR 4
.IX Xref "HAS_LOCALTIME_R"
.IX Item "HAS_LOCALTIME_R"
This symbol, if defined, indicates that the \f(CW\*(C`localtime_r\*(C'\fR routine
is available to localtime re-entrantly.
.ie n .IP """HAS_LOCALTIME64""" 4
.el .IP \f(CWHAS_LOCALTIME64\fR 4
.IX Xref "HAS_LOCALTIME64"
.IX Item "HAS_LOCALTIME64"
This symbol, if defined, indicates that the \f(CW\*(C`localtime64\*(C'\fR () routine is
available to do the 64bit variant of localtime ()
.ie n .IP """HAS_MKTIME""" 4
.el .IP \f(CWHAS_MKTIME\fR 4
.IX Xref "HAS_MKTIME"
.IX Item "HAS_MKTIME"
This symbol, if defined, indicates that the \f(CW\*(C`mktime\*(C'\fR routine is
available.
.ie n .IP """HAS_MKTIME64""" 4
.el .IP \f(CWHAS_MKTIME64\fR 4
.IX Xref "HAS_MKTIME64"
.IX Item "HAS_MKTIME64"
This symbol, if defined, indicates that the \f(CW\*(C`mktime64\*(C'\fR () routine is
available to do the 64bit variant of mktime ()
.ie n .IP """HAS_NANOSLEEP""" 4
.el .IP \f(CWHAS_NANOSLEEP\fR 4
.IX Xref "HAS_NANOSLEEP"
.IX Item "HAS_NANOSLEEP"
This symbol, if defined, indicates that the \f(CW\*(C`nanosleep\*(C'\fR
system call is available to sleep with 1E\-9 sec accuracy.
.ie n .IP """HAS_SETITIMER""" 4
.el .IP \f(CWHAS_SETITIMER\fR 4
.IX Xref "HAS_SETITIMER"
.IX Item "HAS_SETITIMER"
This symbol, if defined, indicates that the \f(CW\*(C`setitimer\*(C'\fR routine is
available to set interval timers.
.ie n .IP """HAS_STRFTIME""" 4
.el .IP \f(CWHAS_STRFTIME\fR 4
.IX Xref "HAS_STRFTIME"
.IX Item "HAS_STRFTIME"
This symbol, if defined, indicates that the \f(CW\*(C`strftime\*(C'\fR routine is
available to do time formatting.
.ie n .IP """HAS_TIME""" 4
.el .IP \f(CWHAS_TIME\fR 4
.IX Xref "HAS_TIME"
.IX Item "HAS_TIME"
This symbol, if defined, indicates that the \f(CWtime()\fR routine exists.
.ie n .IP """HAS_TIMEGM""" 4
.el .IP \f(CWHAS_TIMEGM\fR 4
.IX Xref "HAS_TIMEGM"
.IX Item "HAS_TIMEGM"
This symbol, if defined, indicates that the \f(CW\*(C`timegm\*(C'\fR routine is
available to do the opposite of gmtime ()
.ie n .IP """HAS_TIMES""" 4
.el .IP \f(CWHAS_TIMES\fR 4
.IX Xref "HAS_TIMES"
.IX Item "HAS_TIMES"
This symbol, if defined, indicates that the \f(CWtimes()\fR routine exists.
Note that this became obsolete on some systems (\f(CW\*(C`SUNOS\*(C'\fR), which now
use \f(CWgetrusage()\fR. It may be necessary to include \fIsys/times.h\fR.
.ie n .IP """HAS_TM_TM_GMTOFF""" 4
.el .IP \f(CWHAS_TM_TM_GMTOFF\fR 4
.IX Xref "HAS_TM_TM_GMTOFF"
.IX Item "HAS_TM_TM_GMTOFF"
This symbol, if defined, indicates to the C program that
the \f(CW\*(C`struct tm\*(C'\fR has a \f(CW\*(C`tm_gmtoff\*(C'\fR field.
.ie n .IP """HAS_TM_TM_ZONE""" 4
.el .IP \f(CWHAS_TM_TM_ZONE\fR 4
.IX Xref "HAS_TM_TM_ZONE"
.IX Item "HAS_TM_TM_ZONE"
This symbol, if defined, indicates to the C program that
the \f(CW\*(C`struct tm\*(C'\fR has a \f(CW\*(C`tm_zone\*(C'\fR field.
.ie n .IP """HAS_TZNAME""" 4
.el .IP \f(CWHAS_TZNAME\fR 4
.IX Xref "HAS_TZNAME"
.IX Item "HAS_TZNAME"
This symbol, if defined, indicates that the \f(CW\*(C`tzname[]\*(C'\fR array is
available to access timezone names.
.ie n .IP """HAS_USLEEP""" 4
.el .IP \f(CWHAS_USLEEP\fR 4
.IX Xref "HAS_USLEEP"
.IX Item "HAS_USLEEP"
This symbol, if defined, indicates that the \f(CW\*(C`usleep\*(C'\fR routine is
available to let the process sleep on a sub-second accuracy.
.ie n .IP """HAS_USLEEP_PROTO""" 4
.el .IP \f(CWHAS_USLEEP_PROTO\fR 4
.IX Xref "HAS_USLEEP_PROTO"
.IX Item "HAS_USLEEP_PROTO"
This symbol, if defined, indicates that the system provides
a prototype for the \f(CWusleep()\fR function.  Otherwise, it is up
to the program to supply one.  A good guess is
.Sp
.Vb 1
\& extern int usleep(useconds_t);
.Ve
.ie n .IP """I_TIME""" 4
.el .IP \f(CWI_TIME\fR 4
.IX Xref "I_TIME"
.IX Item "I_TIME"
This symbol is always defined, and indicates to the C program that
it should include \fItime.h\fR.
.RS 4
.Sp
.Vb 3
\& #ifdef I_TIME
\&     #include <time.h>
\& #endif
.Ve
.RE
.RS 4
.RE
.ie n .IP """I_UTIME""" 4
.el .IP \f(CWI_UTIME\fR 4
.IX Xref "I_UTIME"
.IX Item "I_UTIME"
This symbol, if defined, indicates to the C program that it should
include \fIutime.h\fR.
.RS 4
.Sp
.Vb 3
\& #ifdef I_UTIME
\&     #include <utime.h>
\& #endif
.Ve
.RE
.RS 4
.RE
.ie n .IP """LOCALTIME_MAX""" 4
.el .IP \f(CWLOCALTIME_MAX\fR 4
.IX Xref "LOCALTIME_MAX"
.IX Item "LOCALTIME_MAX"
This symbol contains the maximum value for the \f(CW\*(C`time_t\*(C'\fR offset that
the system function localtime () accepts, and defaults to 0
.ie n .IP """LOCALTIME_MIN""" 4
.el .IP \f(CWLOCALTIME_MIN\fR 4
.IX Xref "LOCALTIME_MIN"
.IX Item "LOCALTIME_MIN"
This symbol contains the minimum value for the \f(CW\*(C`time_t\*(C'\fR offset that
the system function localtime () accepts, and defaults to 0
.ie n .IP """LOCALTIME_R_NEEDS_TZSET""" 4
.el .IP \f(CWLOCALTIME_R_NEEDS_TZSET\fR 4
.IX Xref "LOCALTIME_R_NEEDS_TZSET"
.IX Item "LOCALTIME_R_NEEDS_TZSET"
Many libc's \f(CW\*(C`localtime_r\*(C'\fR implementations do not call tzset,
making them differ from \f(CWlocaltime()\fR, and making timezone
changes using $\f(CW\*(C`ENV\*(C'\fR{TZ} without explicitly calling tzset
impossible. This symbol makes us call tzset before \f(CW\*(C`localtime_r\*(C'\fR
.ie n .IP """LOCALTIME_R_PROTO""" 4
.el .IP \f(CWLOCALTIME_R_PROTO\fR 4
.IX Xref "LOCALTIME_R_PROTO"
.IX Item "LOCALTIME_R_PROTO"
This symbol encodes the prototype of \f(CW\*(C`localtime_r\*(C'\fR.
It is zero if \f(CW\*(C`d_localtime_r\*(C'\fR is undef, and one of the
\&\f(CW\*(C`REENTRANT_PROTO_T_ABC\*(C'\fR macros of \fIreentr.h\fR if \f(CW\*(C`d_localtime_r\*(C'\fR
is defined.
.ie n .IP """L_R_TZSET""" 4
.el .IP \f(CWL_R_TZSET\fR 4
.IX Xref "L_R_TZSET"
.IX Item "L_R_TZSET"
If \f(CWlocaltime_r()\fR needs tzset, it is defined in this define
.ie n .IP """mini_mktime""" 4
.el .IP \f(CWmini_mktime\fR 4
.IX Xref "mini_mktime"
.IX Item "mini_mktime"
normalise \f(CW\*(C`struct\ tm\*(C'\fR values without the \fBlocaltime()\fR semantics (and
overhead) of \fBmktime()\fR.
.RS 4
.Sp
.Vb 1
\& void  mini_mktime(struct tm *ptm)
.Ve
.RE
.RS 4
.RE
.ie n .IP """my_strftime""" 4
.el .IP \f(CWmy_strftime\fR 4
.IX Xref "my_strftime"
.IX Item "my_strftime"
\&\fBstrftime()\fR, but with a different API so that the return value is a pointer
to the formatted result (which MUST be arranged to be FREED BY THE
CALLER).  This allows this function to increase the buffer size as needed,
so that the caller doesn't have to worry about that.
.Sp
On failure it returns NULL.
.Sp
Note that yday and wday effectively are ignored by this function, as
\&\fBmini_mktime()\fR overwrites them.
.Sp
Also note that it is always executed in the underlying \f(CW\*(C`LC_TIME\*(C'\fR locale of
the program, giving results based on that locale.
.RS 4
.Sp
.Vb 3
\& char *  my_strftime(const char *fmt, int sec, int min, int hour,
\&                     int mday, int mon, int year, int wday,
\&                     int yday, int isdst)
.Ve
.RE
.RS 4
.RE
.ie n .IP """switch_to_global_locale""" 4
.el .IP \f(CWswitch_to_global_locale\fR 4
.IX Xref "switch_to_global_locale"
.IX Item "switch_to_global_locale"
This function copies the locale state of the calling thread into the program's
global locale, and converts the thread to use that global locale.
.Sp
It is intended so that Perl can safely be used with C libraries that access the
global locale and which can't be converted to not access it.  Effectively, this
means libraries that call \f(CWsetlocale(3)\fR on non-Windows systems.  (For
portability, it is a good idea to use it on Windows as well.)
.Sp
A downside of using it is that it disables the services that Perl provides to
hide locale gotchas from your code.  The service you most likely will miss
regards the radix character (decimal point) in floating point numbers.  Code
executed after this function is called can no longer just assume that this
character is correct for the current circumstances.
.Sp
To return to Perl control, and restart the gotcha prevention services, call
\&\f(CW"sync_locale"\fR.  Behavior is undefined for any pure Perl code that executes
while the switch is in effect.
.Sp
The global locale and the per-thread locales are independent.  As long as just
one thread converts to the global locale, everything works smoothly.  But if
more than one does, they can easily interfere with each other, and races are
likely.  On Windows systems prior to Visual Studio 15 (at which point Microsoft
fixed a bug), races can occur (even if only one thread has been converted to
the global locale), but only if you use the following operations:
.RS 4
.IP POSIX::localeconv 4
.IX Item "POSIX::localeconv"
.PD 0
.ie n .IP "I18N::Langinfo, items ""CRNCYSTR"" and ""THOUSEP""" 4
.el .IP "I18N::Langinfo, items \f(CWCRNCYSTR\fR and \f(CWTHOUSEP\fR" 4
.IX Item "I18N::Langinfo, items CRNCYSTR and THOUSEP"
.ie n .IP """Perl_langinfo"" in perlapi, items ""CRNCYSTR"" and ""THOUSEP""" 4
.el .IP """Perl_langinfo"" in perlapi, items \f(CWCRNCYSTR\fR and \f(CWTHOUSEP\fR" 4
.IX Item """Perl_langinfo"" in perlapi, items CRNCYSTR and THOUSEP"
.RE
.RS 4
.PD
.Sp
The first item is not fixable (except by upgrading to a later Visual Studio
release), but it would be possible to work around the latter two items by
having Perl change its algorithm for calculating these to use Windows API
functions (likely \f(CW\*(C`GetNumberFormat\*(C'\fR and \f(CW\*(C`GetCurrencyFormat\*(C'\fR); patches
welcome.
.Sp
XS code should never call plain \f(CW\*(C`setlocale\*(C'\fR, but should instead be converted
to either call \f(CW\*(C`Perl_setlocale\*(C'\fR (which is a drop-in
for the system \f(CW\*(C`setlocale\*(C'\fR) or use the methods given in perlcall to call
\&\f(CW\*(C`POSIX::setlocale\*(C'\fR.  Either one will transparently properly
handle all cases of single\- vs multi-thread, POSIX 2008\-supported or not.
.Sp
.Vb 1
\& void  switch_to_global_locale()
.Ve
.RE
.RS 4
.RE
.ie n .IP """sync_locale""" 4
.el .IP \f(CWsync_locale\fR 4
.IX Xref "sync_locale"
.IX Item "sync_locale"
This function copies the state of the program global locale into the calling
thread, and converts that thread to using per-thread locales, if it wasn't
already, and the platform supports them.  The LC_NUMERIC locale is toggled into
the standard state (using the C locale's conventions), if not within the
lexical scope of \f(CW\*(C`use\ locale\*(C'\fR.
.Sp
Perl will now consider itself to have control of the locale.
.Sp
Since unthreaded perls have only a global locale, this function is a no-op
without threads.
.Sp
This function is intended for use with C libraries that do locale manipulation.
It allows Perl to accommodate the use of them.  Call this function before
transferring back to Perl space so that it knows what state the C code has left
things in.
.Sp
XS code should not manipulate the locale on its own.  Instead,
\&\f(CW\*(C`Perl_setlocale\*(C'\fR can be used at any time to query or
change the locale (though changing the locale is antisocial and dangerous on
multi-threaded systems that don't have multi-thread safe locale operations.
(See "Multi-threaded operation" in perllocale).
.Sp
Using the libc \f(CWsetlocale(3)\fR function should be avoided.  Nevertheless,
certain non-Perl libraries called from XS, do call it, and their behavior may
not be able to be changed.  This function, along with
\&\f(CW"switch_to_global_locale"\fR, can be used to get seamless behavior in these
circumstances, as long as only one thread is involved.
.Sp
If the library has an option to turn off its locale manipulation, doing that is
preferable to using this mechanism.  \f(CW\*(C`Gtk\*(C'\fR is such a library.
.Sp
The return value is a boolean: TRUE if the global locale at the time of call
was in effect for the caller; and FALSE if a per-thread locale was in effect.
.RS 4
.Sp
.Vb 1
\& bool  sync_locale()
.Ve
.RE
.RS 4
.RE
.SH "Typedef names"
.IX Header "Typedef names"
.ie n .IP """DB_Hash_t""" 4
.el .IP \f(CWDB_Hash_t\fR 4
.IX Xref "DB_Hash_t"
.IX Item "DB_Hash_t"
This symbol contains the type of the prefix structure element
in the \fIdb.h\fR header file.  In older versions of DB, it was
int, while in newer ones it is \f(CW\*(C`size_t\*(C'\fR.
.ie n .IP """DB_Prefix_t""" 4
.el .IP \f(CWDB_Prefix_t\fR 4
.IX Xref "DB_Prefix_t"
.IX Item "DB_Prefix_t"
This symbol contains the type of the prefix structure element
in the \fIdb.h\fR header file.  In older versions of DB, it was
int, while in newer ones it is \f(CW\*(C`u_int32_t\*(C'\fR.
.ie n .IP """Direntry_t""" 4
.el .IP \f(CWDirentry_t\fR 4
.IX Xref "Direntry_t"
.IX Item "Direntry_t"
This symbol is set to '\f(CW\*(C`struct direct\*(C'\fR' or '\f(CW\*(C`struct dirent\*(C'\fR' depending on
whether dirent is available or not. You should use this pseudo type to
portably declare your directory entries.
.ie n .IP """Fpos_t""" 4
.el .IP \f(CWFpos_t\fR 4
.IX Xref "Fpos_t"
.IX Item "Fpos_t"
This symbol holds the type used to declare file positions in libc.
It can be \f(CW\*(C`fpos_t\*(C'\fR, long, uint, etc... It may be necessary to include
\&\fIsys/types.h\fR to get any typedef'ed information.
.ie n .IP """Free_t""" 4
.el .IP \f(CWFree_t\fR 4
.IX Xref "Free_t"
.IX Item "Free_t"
This variable contains the return type of \f(CWfree()\fR.  It is usually
void, but occasionally int.
.ie n .IP """Gid_t""" 4
.el .IP \f(CWGid_t\fR 4
.IX Xref "Gid_t"
.IX Item "Gid_t"
This symbol holds the return type of \f(CWgetgid()\fR and the type of
argument to \f(CWsetrgid()\fR and related functions.  Typically,
it is the type of group ids in the kernel. It can be int, ushort,
\&\f(CW\*(C`gid_t\*(C'\fR, etc... It may be necessary to include \fIsys/types.h\fR to get
any typedef'ed information.
.ie n .IP """Gid_t_f""" 4
.el .IP \f(CWGid_t_f\fR 4
.IX Xref "Gid_t_f"
.IX Item "Gid_t_f"
This symbol defines the format string used for printing a \f(CW\*(C`Gid_t\*(C'\fR.
.ie n .IP """Gid_t_sign""" 4
.el .IP \f(CWGid_t_sign\fR 4
.IX Xref "Gid_t_sign"
.IX Item "Gid_t_sign"
This symbol holds the signedness of a \f(CW\*(C`Gid_t\*(C'\fR.
1 for unsigned, \-1 for signed.
.ie n .IP """Gid_t_size""" 4
.el .IP \f(CWGid_t_size\fR 4
.IX Xref "Gid_t_size"
.IX Item "Gid_t_size"
This symbol holds the size of a \f(CW\*(C`Gid_t\*(C'\fR in bytes.
.ie n .IP """Groups_t""" 4
.el .IP \f(CWGroups_t\fR 4
.IX Xref "Groups_t"
.IX Item "Groups_t"
This symbol holds the type used for the second argument to
\&\f(CWgetgroups()\fR and \f(CWsetgroups()\fR.  Usually, this is the same as
gidtype (\f(CW\*(C`gid_t\*(C'\fR) , but sometimes it isn't.
It can be int, ushort, \f(CW\*(C`gid_t\*(C'\fR, etc...
It may be necessary to include \fIsys/types.h\fR to get any
typedef'ed information.  This is only required if you have
\&\f(CWgetgroups()\fR or \f(CWsetgroups()\fR..
.ie n .IP """Malloc_t""" 4
.el .IP \f(CWMalloc_t\fR 4
.IX Xref "Malloc_t"
.IX Item "Malloc_t"
This symbol is the type of pointer returned by malloc and realloc.
.ie n .IP """Mmap_t""" 4
.el .IP \f(CWMmap_t\fR 4
.IX Xref "Mmap_t"
.IX Item "Mmap_t"
This symbol holds the return type of the \f(CWmmap()\fR system call
(and simultaneously the type of the first argument).
Usually set to 'void *' or '\f(CW\*(C`caddr_t\*(C'\fR'.
.ie n .IP """Mode_t""" 4
.el .IP \f(CWMode_t\fR 4
.IX Xref "Mode_t"
.IX Item "Mode_t"
This symbol holds the type used to declare file modes
for systems calls.  It is usually \f(CW\*(C`mode_t\*(C'\fR, but may be
int or unsigned short.  It may be necessary to include \fIsys/types.h\fR
to get any typedef'ed information.
.ie n .IP """Netdb_hlen_t""" 4
.el .IP \f(CWNetdb_hlen_t\fR 4
.IX Xref "Netdb_hlen_t"
.IX Item "Netdb_hlen_t"
This symbol holds the type used for the 2nd argument
to \f(CWgethostbyaddr()\fR.
.ie n .IP """Netdb_host_t""" 4
.el .IP \f(CWNetdb_host_t\fR 4
.IX Xref "Netdb_host_t"
.IX Item "Netdb_host_t"
This symbol holds the type used for the 1st argument
to \f(CWgethostbyaddr()\fR.
.ie n .IP """Netdb_name_t""" 4
.el .IP \f(CWNetdb_name_t\fR 4
.IX Xref "Netdb_name_t"
.IX Item "Netdb_name_t"
This symbol holds the type used for the argument to
\&\f(CWgethostbyname()\fR.
.ie n .IP """Netdb_net_t""" 4
.el .IP \f(CWNetdb_net_t\fR 4
.IX Xref "Netdb_net_t"
.IX Item "Netdb_net_t"
This symbol holds the type used for the 1st argument to
\&\f(CWgetnetbyaddr()\fR.
.ie n .IP """Off_t""" 4
.el .IP \f(CWOff_t\fR 4
.IX Xref "Off_t"
.IX Item "Off_t"
This symbol holds the type used to declare offsets in the kernel.
It can be int, long, \f(CW\*(C`off_t\*(C'\fR, etc... It may be necessary to include
\&\fIsys/types.h\fR to get any typedef'ed information.
.ie n .IP """Off_t_size""" 4
.el .IP \f(CWOff_t_size\fR 4
.IX Xref "Off_t_size"
.IX Item "Off_t_size"
This symbol holds the number of bytes used by the \f(CW\*(C`Off_t\*(C'\fR.
.ie n .IP """Pid_t""" 4
.el .IP \f(CWPid_t\fR 4
.IX Xref "Pid_t"
.IX Item "Pid_t"
This symbol holds the type used to declare process ids in the kernel.
It can be int, uint, \f(CW\*(C`pid_t\*(C'\fR, etc... It may be necessary to include
\&\fIsys/types.h\fR to get any typedef'ed information.
.ie n .IP """Rand_seed_t""" 4
.el .IP \f(CWRand_seed_t\fR 4
.IX Xref "Rand_seed_t"
.IX Item "Rand_seed_t"
This symbol defines the type of the argument of the
random seed function.
.ie n .IP """Select_fd_set_t""" 4
.el .IP \f(CWSelect_fd_set_t\fR 4
.IX Xref "Select_fd_set_t"
.IX Item "Select_fd_set_t"
This symbol holds the type used for the 2nd, 3rd, and 4th
arguments to select.  Usually, this is '\f(CW\*(C`fd_set\*(C'\fR *', if \f(CW\*(C`HAS_FD_SET\*(C'\fR
is defined, and 'int *' otherwise.  This is only useful if you
have \f(CWselect()\fR, of course.
.ie n .IP """Shmat_t""" 4
.el .IP \f(CWShmat_t\fR 4
.IX Xref "Shmat_t"
.IX Item "Shmat_t"
This symbol holds the return type of the \f(CWshmat()\fR system call.
Usually set to 'void *' or 'char *'.
.ie n .IP """Signal_t""" 4
.el .IP \f(CWSignal_t\fR 4
.IX Xref "Signal_t"
.IX Item "Signal_t"
This symbol's value is either "void" or "int", corresponding to the
appropriate return type of a signal handler.  Thus, you can declare
a signal handler using "\f(CW\*(C`Signal_t\*(C'\fR (*handler)()", and define the
handler using "\f(CW\*(C`Signal_t\*(C'\fR \f(CWhandler(sig)\fR".
.ie n .IP """Size_t""" 4
.el .IP \f(CWSize_t\fR 4
.IX Xref "Size_t"
.IX Item "Size_t"
This symbol holds the type used to declare length parameters
for string functions.  It is usually \f(CW\*(C`size_t\*(C'\fR, but may be
unsigned long, int, etc.  It may be necessary to include
\&\fIsys/types.h\fR to get any typedef'ed information.
.ie n .IP """Size_t_size""" 4
.el .IP \f(CWSize_t_size\fR 4
.IX Xref "Size_t_size"
.IX Item "Size_t_size"
This symbol holds the size of a \f(CW\*(C`Size_t\*(C'\fR in bytes.
.ie n .IP """Sock_size_t""" 4
.el .IP \f(CWSock_size_t\fR 4
.IX Xref "Sock_size_t"
.IX Item "Sock_size_t"
This symbol holds the type used for the size argument of
various socket calls (just the base type, not the pointer-to).
.ie n .IP """SSize_t""" 4
.el .IP \f(CWSSize_t\fR 4
.IX Xref "SSize_t"
.IX Item "SSize_t"
This symbol holds the type used by functions that return
a count of bytes or an error condition.  It must be a signed type.
It is usually \f(CW\*(C`ssize_t\*(C'\fR, but may be long or int, etc.
It may be necessary to include \fIsys/types.h\fR or \fIunistd.h\fR
to get any typedef'ed information.
We will pick a type such that \f(CWsizeof(SSize_t)\fR == \f(CWsizeof(Size_t)\fR.
.ie n .IP """Time_t""" 4
.el .IP \f(CWTime_t\fR 4
.IX Xref "Time_t"
.IX Item "Time_t"
This symbol holds the type returned by \f(CWtime()\fR. It can be long,
or \f(CW\*(C`time_t\*(C'\fR on \f(CW\*(C`BSD\*(C'\fR sites (in which case \fIsys/types.h\fR should be
included).
.ie n .IP """Uid_t""" 4
.el .IP \f(CWUid_t\fR 4
.IX Xref "Uid_t"
.IX Item "Uid_t"
This symbol holds the type used to declare user ids in the kernel.
It can be int, ushort, \f(CW\*(C`uid_t\*(C'\fR, etc... It may be necessary to include
\&\fIsys/types.h\fR to get any typedef'ed information.
.ie n .IP """Uid_t_f""" 4
.el .IP \f(CWUid_t_f\fR 4
.IX Xref "Uid_t_f"
.IX Item "Uid_t_f"
This symbol defines the format string used for printing a \f(CW\*(C`Uid_t\*(C'\fR.
.ie n .IP """Uid_t_sign""" 4
.el .IP \f(CWUid_t_sign\fR 4
.IX Xref "Uid_t_sign"
.IX Item "Uid_t_sign"
This symbol holds the signedness of a \f(CW\*(C`Uid_t\*(C'\fR.
1 for unsigned, \-1 for signed.
.ie n .IP """Uid_t_size""" 4
.el .IP \f(CWUid_t_size\fR 4
.IX Xref "Uid_t_size"
.IX Item "Uid_t_size"
This symbol holds the size of a \f(CW\*(C`Uid_t\*(C'\fR in bytes.
.SH "Unicode Support"
.IX Xref "UNICODE_DISALLOW_ABOVE_31_BIT UNICODE_DISALLOW_ILLEGAL_C9_INTERCHANGE UNICODE_DISALLOW_ILLEGAL_INTERCHANGE UNICODE_DISALLOW_NONCHAR UNICODE_DISALLOW_PERL_EXTENDED UNICODE_DISALLOW_SUPER UNICODE_DISALLOW_SURROGATE UNICODE_WARN_ABOVE_31_BIT UNICODE_WARN_ILLEGAL_C9_INTERCHANGE UNICODE_WARN_ILLEGAL_INTERCHANGE UNICODE_WARN_NONCHAR UNICODE_WARN_PERL_EXTENDED UNICODE_WARN_SUPER UNICODE_WARN_SURROGATE UNI_DISPLAY_BACKSLASH UNI_DISPLAY_BACKSPACE UNI_DISPLAY_ISPRINT UNI_DISPLAY_QQ UNI_DISPLAY_REGEX UTF8_CHECK_ONLY UTF8_DISALLOW_ILLEGAL_C9_INTERCHANGE UTF8_DISALLOW_ILLEGAL_INTERCHANGE UTF8_DISALLOW_NONCHAR UTF8_DISALLOW_PERL_EXTENDED UTF8_DISALLOW_SUPER UTF8_DISALLOW_SURROGATE UTF8_GOT_CONTINUATION UTF8_GOT_EMPTY UTF8_GOT_LONG UTF8_GOT_NONCHAR UTF8_GOT_NON_CONTINUATION UTF8_GOT_OVERFLOW UTF8_GOT_PERL_EXTENDED UTF8_GOT_SHORT UTF8_GOT_SUPER UTF8_GOT_SURROGATE UTF8_WARN_ILLEGAL_C9_INTERCHANGE UTF8_WARN_ILLEGAL_INTERCHANGE UTF8_WARN_NONCHAR UTF8_WARN_PERL_EXTENDED UTF8_WARN_SUPER UTF8_WARN_SURROGATE"
.IX Header "Unicode Support"
"Unicode Support" in perlguts has an introduction to this API.
.PP
See also \f(CW"Character classification"\fR,
\&\f(CW"Character case changing"\fR,
and \f(CW"String Handling"\fR.
Various functions outside this section also work specially with
Unicode.  Search for the string "utf8" in this document.
.ie n .IP """BOM_UTF8""" 4
.el .IP \f(CWBOM_UTF8\fR 4
.IX Xref "BOM_UTF8"
.IX Item "BOM_UTF8"
This is a macro that evaluates to a string constant of the  UTF\-8 bytes that
define the Unicode BYTE ORDER MARK (U+FEFF) for the platform that perl
is compiled on.  This allows code to use a mnemonic for this character that
works on both ASCII and EBCDIC platforms.
\&\f(CW\*(C`sizeof(BOM_UTF8)\ \-\ 1\*(C'\fR can be used to get its length in
bytes.
.ie n .IP """bytes_cmp_utf8""" 4
.el .IP \f(CWbytes_cmp_utf8\fR 4
.IX Xref "bytes_cmp_utf8"
.IX Item "bytes_cmp_utf8"
Compares the sequence of characters (stored as octets) in \f(CW\*(C`b\*(C'\fR, \f(CW\*(C`blen\*(C'\fR with the
sequence of characters (stored as UTF\-8)
in \f(CW\*(C`u\*(C'\fR, \f(CW\*(C`ulen\*(C'\fR.  Returns 0 if they are
equal, \-1 or \-2 if the first string is less than the second string, +1 or +2
if the first string is greater than the second string.
.Sp
\&\-1 or +1 is returned if the shorter string was identical to the start of the
longer string.  \-2 or +2 is returned if
there was a difference between characters
within the strings.
.RS 4
.Sp
.Vb 2
\& int  bytes_cmp_utf8(const U8 *b, STRLEN blen, const U8 *u,
\&                     STRLEN ulen)
.Ve
.RE
.RS 4
.RE
.ie n .IP """bytes_from_utf8""" 4
.el .IP \f(CWbytes_from_utf8\fR 4
.IX Xref "bytes_from_utf8"
.IX Item "bytes_from_utf8"
NOTE: \f(CW\*(C`bytes_from_utf8\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Converts a potentially UTF\-8 encoded string \f(CW\*(C`s\*(C'\fR of length \f(CW*lenp\fR into native
byte encoding.  On input, the boolean \f(CW*is_utf8p\fR gives whether or not \f(CW\*(C`s\*(C'\fR is
actually encoded in UTF\-8.
.Sp
Unlike "utf8_to_bytes" but like "bytes_to_utf8", this is non-destructive of
the input string.
.Sp
Do nothing if \f(CW*is_utf8p\fR is 0, or if there are code points in the string
not expressible in native byte encoding.  In these cases, \f(CW*is_utf8p\fR and
\&\f(CW*lenp\fR are unchanged, and the return value is the original \f(CW\*(C`s\*(C'\fR.
.Sp
Otherwise, \f(CW*is_utf8p\fR is set to 0, and the return value is a pointer to a
newly created string containing a downgraded copy of \f(CW\*(C`s\*(C'\fR, and whose length is
returned in \f(CW*lenp\fR, updated.  The new string is \f(CW\*(C`NUL\*(C'\fR\-terminated.  The
caller is responsible for arranging for the memory used by this string to get
freed.
.Sp
Upon successful return, the number of variants in the string can be computed by
having saved the value of \f(CW*lenp\fR before the call, and subtracting the
after-call value of \f(CW*lenp\fR from it.
.RS 4
.Sp
.Vb 1
\& U8 *  bytes_from_utf8(const U8 *s, STRLEN *lenp, bool *is_utf8p)
.Ve
.RE
.RS 4
.RE
.ie n .IP """bytes_to_utf8""" 4
.el .IP \f(CWbytes_to_utf8\fR 4
.IX Xref "bytes_to_utf8"
.IX Item "bytes_to_utf8"
NOTE: \f(CW\*(C`bytes_to_utf8\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Converts a string \f(CW\*(C`s\*(C'\fR of length \f(CW*lenp\fR bytes from the native encoding into
UTF\-8.
Returns a pointer to the newly-created string, and sets \f(CW*lenp\fR to
reflect the new length in bytes.  The caller is responsible for arranging for
the memory used by this string to get freed.
.Sp
Upon successful return, the number of variants in the string can be computed by
having saved the value of \f(CW*lenp\fR before the call, and subtracting it from the
after-call value of \f(CW*lenp\fR.
.Sp
A \f(CW\*(C`NUL\*(C'\fR character will be written after the end of the string.
.Sp
If you want to convert to UTF\-8 from encodings other than
the native (Latin1 or EBCDIC),
see "sv_recode_to_utf8"().
.RS 4
.Sp
.Vb 1
\& U8 *  bytes_to_utf8(const U8 *s, STRLEN *lenp)
.Ve
.RE
.RS 4
.RE
.ie n .IP """DO_UTF8""" 4
.el .IP \f(CWDO_UTF8\fR 4
.IX Xref "DO_UTF8"
.IX Item "DO_UTF8"
Returns a bool giving whether or not the PV in \f(CW\*(C`sv\*(C'\fR is to be treated as being
encoded in UTF\-8.
.Sp
You should use this \fIafter\fR a call to \f(CWSvPV()\fR or one of its variants, in
case any call to string overloading updates the internal UTF\-8 encoding flag.
.RS 4
.Sp
.Vb 1
\& bool  DO_UTF8(SV* sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """foldEQ_utf8""" 4
.el .IP \f(CWfoldEQ_utf8\fR 4
.IX Xref "foldEQ_utf8"
.IX Item "foldEQ_utf8"
Returns true if the leading portions of the strings \f(CW\*(C`s1\*(C'\fR and \f(CW\*(C`s2\*(C'\fR (either or
both of which may be in UTF\-8) are the same case-insensitively; false
otherwise.  How far into the strings to compare is determined by other input
parameters.
.Sp
If \f(CW\*(C`u1\*(C'\fR is true, the string \f(CW\*(C`s1\*(C'\fR is assumed to be in UTF\-8\-encoded Unicode;
otherwise it is assumed to be in native 8\-bit encoding.  Correspondingly for
\&\f(CW\*(C`u2\*(C'\fR with respect to \f(CW\*(C`s2\*(C'\fR.
.Sp
If the byte length \f(CW\*(C`l1\*(C'\fR is non-zero, it says how far into \f(CW\*(C`s1\*(C'\fR to check for
fold equality.  In other words, \f(CW\*(C`s1\*(C'\fR+\f(CW\*(C`l1\*(C'\fR will be used as a goal to reach.
The scan will not be considered to be a match unless the goal is reached, and
scanning won't continue past that goal.  Correspondingly for \f(CW\*(C`l2\*(C'\fR with respect
to \f(CW\*(C`s2\*(C'\fR.
.Sp
If \f(CW\*(C`pe1\*(C'\fR is non\-\f(CW\*(C`NULL\*(C'\fR and the pointer it points to is not \f(CW\*(C`NULL\*(C'\fR, that
pointer is considered an end pointer to the position 1 byte past the maximum
point in \f(CW\*(C`s1\*(C'\fR beyond which scanning will not continue under any circumstances.
(This routine assumes that UTF\-8 encoded input strings are not malformed;
malformed input can cause it to read past \f(CW\*(C`pe1\*(C'\fR).  This means that if both
\&\f(CW\*(C`l1\*(C'\fR and \f(CW\*(C`pe1\*(C'\fR are specified, and \f(CW\*(C`pe1\*(C'\fR is less than \f(CW\*(C`s1\*(C'\fR+\f(CW\*(C`l1\*(C'\fR, the match
will never be successful because it can never
get as far as its goal (and in fact is asserted against).  Correspondingly for
\&\f(CW\*(C`pe2\*(C'\fR with respect to \f(CW\*(C`s2\*(C'\fR.
.Sp
At least one of \f(CW\*(C`s1\*(C'\fR and \f(CW\*(C`s2\*(C'\fR must have a goal (at least one of \f(CW\*(C`l1\*(C'\fR and
\&\f(CW\*(C`l2\*(C'\fR must be non-zero), and if both do, both have to be
reached for a successful match.   Also, if the fold of a character is multiple
characters, all of them must be matched (see tr21 reference below for
\&'folding').
.Sp
Upon a successful match, if \f(CW\*(C`pe1\*(C'\fR is non\-\f(CW\*(C`NULL\*(C'\fR,
it will be set to point to the beginning of the \fInext\fR character of \f(CW\*(C`s1\*(C'\fR
beyond what was matched.  Correspondingly for \f(CW\*(C`pe2\*(C'\fR and \f(CW\*(C`s2\*(C'\fR.
.Sp
For case-insensitiveness, the "casefolding" of Unicode is used
instead of upper/lowercasing both the characters, see
<https://www.unicode.org/reports/tr21/> (Case Mappings).
.RS 4
.Sp
.Vb 2
\& I32  foldEQ_utf8(const char *s1, char **pe1, UV l1, bool u1,
\&                  const char *s2, char **pe2, UV l2, bool u2)
.Ve
.RE
.RS 4
.RE
.ie n .IP """is_ascii_string""" 4
.el .IP \f(CWis_ascii_string\fR 4
.IX Xref "is_ascii_string"
.IX Item "is_ascii_string"
This is a misleadingly-named synonym for "is_utf8_invariant_string".
On ASCII-ish platforms, the name isn't misleading: the ASCII-range characters
are exactly the UTF\-8 invariants.  But EBCDIC machines have more invariants
than just the ASCII characters, so \f(CW\*(C`is_utf8_invariant_string\*(C'\fR is preferred.
.RS 4
.Sp
.Vb 1
\& bool  is_ascii_string(const U8 * const s, STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """isC9_STRICT_UTF8_CHAR""" 4
.el .IP \f(CWisC9_STRICT_UTF8_CHAR\fR 4
.IX Xref "isC9_STRICT_UTF8_CHAR"
.IX Item "isC9_STRICT_UTF8_CHAR"
Evaluates to non-zero if the first few bytes of the string starting at \f(CW\*(C`s\*(C'\fR and
looking no further than \f(CW\*(C`e\ \-\ 1\*(C'\fR are well-formed UTF\-8 that represents some
Unicode non-surrogate code point; otherwise it evaluates to 0.  If non-zero,
the value gives how many bytes starting at \f(CW\*(C`s\*(C'\fR comprise the code point's
representation.  Any bytes remaining before \f(CW\*(C`e\*(C'\fR, but beyond the ones needed to
form the first code point in \f(CW\*(C`s\*(C'\fR, are not examined.
.Sp
The largest acceptable code point is the Unicode maximum 0x10FFFF.  This
differs from \f(CW"isSTRICT_UTF8_CHAR"\fR only in that it accepts non-character
code points.  This corresponds to
Unicode Corrigendum #9 <http://www.unicode.org/versions/corrigendum9.html>.
which said that non-character code points are merely discouraged rather than
completely forbidden in open interchange.  See
"Noncharacter code points" in perlunicode.
.Sp
Use \f(CW"isUTF8_CHAR"\fR to check for Perl's extended UTF\-8; and
\&\f(CW"isUTF8_CHAR_flags"\fR for a more customized definition.
.Sp
Use \f(CW"is_c9strict_utf8_string"\fR, \f(CW"is_c9strict_utf8_string_loc"\fR, and
\&\f(CW"is_c9strict_utf8_string_loclen"\fR to check entire strings.
.RS 4
.Sp
.Vb 2
\& Size_t  isC9_STRICT_UTF8_CHAR(const U8 * const s0,
\&                               const U8 * const e)
.Ve
.RE
.RS 4
.RE
.ie n .IP """is_c9strict_utf8_string""" 4
.el .IP \f(CWis_c9strict_utf8_string\fR 4
.IX Xref "is_c9strict_utf8_string"
.IX Item "is_c9strict_utf8_string"
Returns TRUE if the first \f(CW\*(C`len\*(C'\fR bytes of string \f(CW\*(C`s\*(C'\fR form a valid
UTF\-8\-encoded string that conforms to
Unicode Corrigendum #9 <http://www.unicode.org/versions/corrigendum9.html>;
otherwise it returns FALSE.  If \f(CW\*(C`len\*(C'\fR is 0, it will be calculated using
\&\f(CWstrlen(s)\fR (which means if you use this option, that \f(CW\*(C`s\*(C'\fR can't have embedded
\&\f(CW\*(C`NUL\*(C'\fR characters and has to have a terminating \f(CW\*(C`NUL\*(C'\fR byte).  Note that all
characters being ASCII constitute 'a valid UTF\-8 string'.
.Sp
This function returns FALSE for strings containing any code points above the
Unicode max of 0x10FFFF or surrogate code points, but accepts non-character
code points per
Corrigendum #9 <http://www.unicode.org/versions/corrigendum9.html>.
.Sp
See also
\&\f(CW"is_utf8_invariant_string"\fR,
\&\f(CW"is_utf8_invariant_string_loc"\fR,
\&\f(CW"is_utf8_string"\fR,
\&\f(CW"is_utf8_string_flags"\fR,
\&\f(CW"is_utf8_string_loc"\fR,
\&\f(CW"is_utf8_string_loc_flags"\fR,
\&\f(CW"is_utf8_string_loclen"\fR,
\&\f(CW"is_utf8_string_loclen_flags"\fR,
\&\f(CW"is_utf8_fixed_width_buf_flags"\fR,
\&\f(CW"is_utf8_fixed_width_buf_loc_flags"\fR,
\&\f(CW"is_utf8_fixed_width_buf_loclen_flags"\fR,
\&\f(CW"is_strict_utf8_string"\fR,
\&\f(CW"is_strict_utf8_string_loc"\fR,
\&\f(CW"is_strict_utf8_string_loclen"\fR,
\&\f(CW"is_c9strict_utf8_string_loc"\fR,
and
\&\f(CW"is_c9strict_utf8_string_loclen"\fR.
.RS 4
.Sp
.Vb 1
\& bool  is_c9strict_utf8_string(const U8 *s, STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """is_c9strict_utf8_string_loc""" 4
.el .IP \f(CWis_c9strict_utf8_string_loc\fR 4
.IX Xref "is_c9strict_utf8_string_loc"
.IX Item "is_c9strict_utf8_string_loc"
Like \f(CW"is_c9strict_utf8_string"\fR but stores the location of the failure (in
the case of "utf8ness failure") or the location \f(CW\*(C`s\*(C'\fR+\f(CW\*(C`len\*(C'\fR (in the case of
"utf8ness success") in the \f(CW\*(C`ep\*(C'\fR pointer.
.Sp
See also \f(CW"is_c9strict_utf8_string_loclen"\fR.
.RS 4
.Sp
.Vb 2
\& bool  is_c9strict_utf8_string_loc(const U8 *s, STRLEN len,
\&                                   const U8 **ep)
.Ve
.RE
.RS 4
.RE
.ie n .IP """is_c9strict_utf8_string_loclen""" 4
.el .IP \f(CWis_c9strict_utf8_string_loclen\fR 4
.IX Xref "is_c9strict_utf8_string_loclen"
.IX Item "is_c9strict_utf8_string_loclen"
Like \f(CW"is_c9strict_utf8_string"\fR but stores the location of the failure (in
the case of "utf8ness failure") or the location \f(CW\*(C`s\*(C'\fR+\f(CW\*(C`len\*(C'\fR (in the case of
"utf8ness success") in the \f(CW\*(C`ep\*(C'\fR pointer, and the number of UTF\-8 encoded
characters in the \f(CW\*(C`el\*(C'\fR pointer.
.Sp
See also \f(CW"is_c9strict_utf8_string_loc"\fR.
.RS 4
.Sp
.Vb 2
\& bool  is_c9strict_utf8_string_loclen(const U8 *s, STRLEN len,
\&                                      const U8 **ep, STRLEN *el)
.Ve
.RE
.RS 4
.RE
.ie n .IP """is_invariant_string""" 4
.el .IP \f(CWis_invariant_string\fR 4
.IX Xref "is_invariant_string"
.IX Item "is_invariant_string"
This is a somewhat misleadingly-named synonym for "is_utf8_invariant_string".
\&\f(CW\*(C`is_utf8_invariant_string\*(C'\fR is preferred, as it indicates under what conditions
the string is invariant.
.RS 4
.Sp
.Vb 1
\& bool  is_invariant_string(const U8 * const s, STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """isSTRICT_UTF8_CHAR""" 4
.el .IP \f(CWisSTRICT_UTF8_CHAR\fR 4
.IX Xref "isSTRICT_UTF8_CHAR"
.IX Item "isSTRICT_UTF8_CHAR"
Evaluates to non-zero if the first few bytes of the string starting at \f(CW\*(C`s\*(C'\fR and
looking no further than \f(CW\*(C`e\ \-\ 1\*(C'\fR are well-formed UTF\-8 that represents some
Unicode code point completely acceptable for open interchange between all
applications; otherwise it evaluates to 0.  If non-zero, the value gives how
many bytes starting at \f(CW\*(C`s\*(C'\fR comprise the code point's representation.  Any
bytes remaining before \f(CW\*(C`e\*(C'\fR, but beyond the ones needed to form the first code
point in \f(CW\*(C`s\*(C'\fR, are not examined.
.Sp
The largest acceptable code point is the Unicode maximum 0x10FFFF, and must not
be a surrogate nor a non-character code point.  Thus this excludes any code
point from Perl's extended UTF\-8.
.Sp
This is used to efficiently decide if the next few bytes in \f(CW\*(C`s\*(C'\fR is
legal Unicode-acceptable UTF\-8 for a single character.
.Sp
Use \f(CW"isC9_STRICT_UTF8_CHAR"\fR to use the Unicode Corrigendum
#9 <http://www.unicode.org/versions/corrigendum9.html> definition of allowable
code points; \f(CW"isUTF8_CHAR"\fR to check for Perl's extended UTF\-8;
and \f(CW"isUTF8_CHAR_flags"\fR for a more customized definition.
.Sp
Use \f(CW"is_strict_utf8_string"\fR, \f(CW"is_strict_utf8_string_loc"\fR, and
\&\f(CW"is_strict_utf8_string_loclen"\fR to check entire strings.
.RS 4
.Sp
.Vb 2
\& Size_t  isSTRICT_UTF8_CHAR(const U8 * const s0,
\&                            const U8 * const e)
.Ve
.RE
.RS 4
.RE
.ie n .IP """is_strict_utf8_string""" 4
.el .IP \f(CWis_strict_utf8_string\fR 4
.IX Xref "is_strict_utf8_string"
.IX Item "is_strict_utf8_string"
Returns TRUE if the first \f(CW\*(C`len\*(C'\fR bytes of string \f(CW\*(C`s\*(C'\fR form a valid
UTF\-8\-encoded string that is fully interchangeable by any application using
Unicode rules; otherwise it returns FALSE.  If \f(CW\*(C`len\*(C'\fR is 0, it will be
calculated using \f(CWstrlen(s)\fR (which means if you use this option, that \f(CW\*(C`s\*(C'\fR
can't have embedded \f(CW\*(C`NUL\*(C'\fR characters and has to have a terminating \f(CW\*(C`NUL\*(C'\fR
byte).  Note that all characters being ASCII constitute 'a valid UTF\-8 string'.
.Sp
This function returns FALSE for strings containing any
code points above the Unicode max of 0x10FFFF, surrogate code points, or
non-character code points.
.Sp
See also
\&\f(CW"is_utf8_invariant_string"\fR,
\&\f(CW"is_utf8_invariant_string_loc"\fR,
\&\f(CW"is_utf8_string"\fR,
\&\f(CW"is_utf8_string_flags"\fR,
\&\f(CW"is_utf8_string_loc"\fR,
\&\f(CW"is_utf8_string_loc_flags"\fR,
\&\f(CW"is_utf8_string_loclen"\fR,
\&\f(CW"is_utf8_string_loclen_flags"\fR,
\&\f(CW"is_utf8_fixed_width_buf_flags"\fR,
\&\f(CW"is_utf8_fixed_width_buf_loc_flags"\fR,
\&\f(CW"is_utf8_fixed_width_buf_loclen_flags"\fR,
\&\f(CW"is_strict_utf8_string_loc"\fR,
\&\f(CW"is_strict_utf8_string_loclen"\fR,
\&\f(CW"is_c9strict_utf8_string"\fR,
\&\f(CW"is_c9strict_utf8_string_loc"\fR,
and
\&\f(CW"is_c9strict_utf8_string_loclen"\fR.
.RS 4
.Sp
.Vb 1
\& bool  is_strict_utf8_string(const U8 *s, STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """is_strict_utf8_string_loc""" 4
.el .IP \f(CWis_strict_utf8_string_loc\fR 4
.IX Xref "is_strict_utf8_string_loc"
.IX Item "is_strict_utf8_string_loc"
Like \f(CW"is_strict_utf8_string"\fR but stores the location of the failure (in the
case of "utf8ness failure") or the location \f(CW\*(C`s\*(C'\fR+\f(CW\*(C`len\*(C'\fR (in the case of
"utf8ness success") in the \f(CW\*(C`ep\*(C'\fR pointer.
.Sp
See also \f(CW"is_strict_utf8_string_loclen"\fR.
.RS 4
.Sp
.Vb 2
\& bool  is_strict_utf8_string_loc(const U8 *s, STRLEN len,
\&                                 const U8 **ep)
.Ve
.RE
.RS 4
.RE
.ie n .IP """is_strict_utf8_string_loclen""" 4
.el .IP \f(CWis_strict_utf8_string_loclen\fR 4
.IX Xref "is_strict_utf8_string_loclen"
.IX Item "is_strict_utf8_string_loclen"
Like \f(CW"is_strict_utf8_string"\fR but stores the location of the failure (in the
case of "utf8ness failure") or the location \f(CW\*(C`s\*(C'\fR+\f(CW\*(C`len\*(C'\fR (in the case of
"utf8ness success") in the \f(CW\*(C`ep\*(C'\fR pointer, and the number of UTF\-8
encoded characters in the \f(CW\*(C`el\*(C'\fR pointer.
.Sp
See also \f(CW"is_strict_utf8_string_loc"\fR.
.RS 4
.Sp
.Vb 2
\& bool  is_strict_utf8_string_loclen(const U8 *s, STRLEN len,
\&                                    const U8 **ep, STRLEN *el)
.Ve
.RE
.RS 4
.RE
.ie n .IP """isUTF8_CHAR""" 4
.el .IP \f(CWisUTF8_CHAR\fR 4
.IX Xref "isUTF8_CHAR"
.IX Item "isUTF8_CHAR"
Evaluates to non-zero if the first few bytes of the string starting at \f(CW\*(C`s\*(C'\fR and
looking no further than \f(CW\*(C`e\ \-\ 1\*(C'\fR are well-formed UTF\-8, as extended by Perl,
that represents some code point; otherwise it evaluates to 0.  If non-zero, the
value gives how many bytes starting at \f(CW\*(C`s\*(C'\fR comprise the code point's
representation.  Any bytes remaining before \f(CW\*(C`e\*(C'\fR, but beyond the ones needed to
form the first code point in \f(CW\*(C`s\*(C'\fR, are not examined.
.Sp
The code point can be any that will fit in an IV on this machine, using Perl's
extension to official UTF\-8 to represent those higher than the Unicode maximum
of 0x10FFFF.  That means that this macro is used to efficiently decide if the
next few bytes in \f(CW\*(C`s\*(C'\fR is legal UTF\-8 for a single character.
.Sp
Use \f(CW"isSTRICT_UTF8_CHAR"\fR to restrict the acceptable code points to those
defined by Unicode to be fully interchangeable across applications;
\&\f(CW"isC9_STRICT_UTF8_CHAR"\fR to use the Unicode Corrigendum
#9 <http://www.unicode.org/versions/corrigendum9.html> definition of allowable
code points; and \f(CW"isUTF8_CHAR_flags"\fR for a more customized definition.
.Sp
Use \f(CW"is_utf8_string"\fR, \f(CW"is_utf8_string_loc"\fR, and
\&\f(CW"is_utf8_string_loclen"\fR to check entire strings.
.Sp
Note also that a UTF\-8 "invariant" character (i.e. ASCII on non-EBCDIC
machines) is a valid UTF\-8 character.
.RS 4
.Sp
.Vb 1
\& Size_t  isUTF8_CHAR(const U8 * const s0, const U8 * const e)
.Ve
.RE
.RS 4
.RE
.ie n .IP """is_utf8_char_buf""" 4
.el .IP \f(CWis_utf8_char_buf\fR 4
.IX Xref "is_utf8_char_buf"
.IX Item "is_utf8_char_buf"
This is identical to the macro "isUTF8_CHAR" in perlapi.
.RS 4
.Sp
.Vb 1
\& STRLEN  is_utf8_char_buf(const U8 *buf, const U8 *buf_end)
.Ve
.RE
.RS 4
.RE
.ie n .IP """isUTF8_CHAR_flags""" 4
.el .IP \f(CWisUTF8_CHAR_flags\fR 4
.IX Xref "isUTF8_CHAR_flags"
.IX Item "isUTF8_CHAR_flags"
Evaluates to non-zero if the first few bytes of the string starting at \f(CW\*(C`s\*(C'\fR and
looking no further than \f(CW\*(C`e\ \-\ 1\*(C'\fR are well-formed UTF\-8, as extended by Perl,
that represents some code point, subject to the restrictions given by \f(CW\*(C`flags\*(C'\fR;
otherwise it evaluates to 0.  If non-zero, the value gives how many bytes
starting at \f(CW\*(C`s\*(C'\fR comprise the code point's representation.  Any bytes remaining
before \f(CW\*(C`e\*(C'\fR, but beyond the ones needed to form the first code point in \f(CW\*(C`s\*(C'\fR,
are not examined.
.Sp
If \f(CW\*(C`flags\*(C'\fR is 0, this gives the same results as \f(CW"isUTF8_CHAR"\fR;
if \f(CW\*(C`flags\*(C'\fR is \f(CW\*(C`UTF8_DISALLOW_ILLEGAL_INTERCHANGE\*(C'\fR, this gives the same results
as \f(CW"isSTRICT_UTF8_CHAR"\fR;
and if \f(CW\*(C`flags\*(C'\fR is \f(CW\*(C`UTF8_DISALLOW_ILLEGAL_C9_INTERCHANGE\*(C'\fR, this gives
the same results as \f(CW"isC9_STRICT_UTF8_CHAR"\fR.
Otherwise \f(CW\*(C`flags\*(C'\fR may be any combination of the \f(CW\*(C`UTF8_DISALLOW_\fR\f(CIfoo\fR\f(CW\*(C'\fR flags
understood by \f(CW"utf8n_to_uvchr"\fR, with the same meanings.
.Sp
The three alternative macros are for the most commonly needed validations; they
are likely to run somewhat faster than this more general one, as they can be
inlined into your code.
.Sp
Use "is_utf8_string_flags", "is_utf8_string_loc_flags", and
"is_utf8_string_loclen_flags" to check entire strings.
.RS 4
.Sp
.Vb 2
\& Size_t  isUTF8_CHAR_flags(const U8 * const s0, const U8 * const e,
\&                           const U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """is_utf8_fixed_width_buf_flags""" 4
.el .IP \f(CWis_utf8_fixed_width_buf_flags\fR 4
.IX Xref "is_utf8_fixed_width_buf_flags"
.IX Item "is_utf8_fixed_width_buf_flags"
Returns TRUE if the fixed-width buffer starting at \f(CW\*(C`s\*(C'\fR with length \f(CW\*(C`len\*(C'\fR
is entirely valid UTF\-8, subject to the restrictions given by \f(CW\*(C`flags\*(C'\fR;
otherwise it returns FALSE.
.Sp
If \f(CW\*(C`flags\*(C'\fR is 0, any well-formed UTF\-8, as extended by Perl, is accepted
without restriction.  If the final few bytes of the buffer do not form a
complete code point, this will return TRUE anyway, provided that
\&\f(CW"is_utf8_valid_partial_char_flags"\fR returns TRUE for them.
.Sp
If \f(CW\*(C`flags\*(C'\fR in non-zero, it can be any combination of the
\&\f(CW\*(C`UTF8_DISALLOW_\fR\f(CIfoo\fR\f(CW\*(C'\fR flags accepted by \f(CW"utf8n_to_uvchr"\fR, and with the
same meanings.
.Sp
This function differs from \f(CW"is_utf8_string_flags"\fR only in that the latter
returns FALSE if the final few bytes of the string don't form a complete code
point.
.RS 4
.Sp
.Vb 2
\& bool  is_utf8_fixed_width_buf_flags(const U8 * const s,
\&                                     STRLEN len, const U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """is_utf8_fixed_width_buf_loc_flags""" 4
.el .IP \f(CWis_utf8_fixed_width_buf_loc_flags\fR 4
.IX Xref "is_utf8_fixed_width_buf_loc_flags"
.IX Item "is_utf8_fixed_width_buf_loc_flags"
Like \f(CW"is_utf8_fixed_width_buf_flags"\fR but stores the location of the
failure in the \f(CW\*(C`ep\*(C'\fR pointer.  If the function returns TRUE, \f(CW*ep\fR will point
to the beginning of any partial character at the end of the buffer; if there is
no partial character \f(CW*ep\fR will contain \f(CW\*(C`s\*(C'\fR+\f(CW\*(C`len\*(C'\fR.
.Sp
See also \f(CW"is_utf8_fixed_width_buf_loclen_flags"\fR.
.RS 4
.Sp
.Vb 3
\& bool  is_utf8_fixed_width_buf_loc_flags(const U8 * const s,
\&                                         STRLEN len, const U8 **ep,
\&                                         const U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """is_utf8_fixed_width_buf_loclen_flags""" 4
.el .IP \f(CWis_utf8_fixed_width_buf_loclen_flags\fR 4
.IX Xref "is_utf8_fixed_width_buf_loclen_flags"
.IX Item "is_utf8_fixed_width_buf_loclen_flags"
Like \f(CW"is_utf8_fixed_width_buf_loc_flags"\fR but stores the number of
complete, valid characters found in the \f(CW\*(C`el\*(C'\fR pointer.
.RS 4
.Sp
.Vb 5
\& bool  is_utf8_fixed_width_buf_loclen_flags(const U8 * const s,
\&                                            STRLEN len,
\&                                            const U8 **ep,
\&                                            STRLEN *el,
\&                                            const U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """is_utf8_invariant_string""" 4
.el .IP \f(CWis_utf8_invariant_string\fR 4
.IX Xref "is_utf8_invariant_string"
.IX Item "is_utf8_invariant_string"
Returns TRUE if the first \f(CW\*(C`len\*(C'\fR bytes of the string \f(CW\*(C`s\*(C'\fR are the same
regardless of the UTF\-8 encoding of the string (or UTF-EBCDIC encoding on
EBCDIC machines); otherwise it returns FALSE.  That is, it returns TRUE if they
are UTF\-8 invariant.  On ASCII-ish machines, all the ASCII characters and only
the ASCII characters fit this definition.  On EBCDIC machines, the ASCII-range
characters are invariant, but so also are the C1 controls.
.Sp
If \f(CW\*(C`len\*(C'\fR is 0, it will be calculated using \f(CWstrlen(s)\fR, (which means if you
use this option, that \f(CW\*(C`s\*(C'\fR can't have embedded \f(CW\*(C`NUL\*(C'\fR characters and has to
have a terminating \f(CW\*(C`NUL\*(C'\fR byte).
.Sp
See also
\&\f(CW"is_utf8_string"\fR,
\&\f(CW"is_utf8_string_flags"\fR,
\&\f(CW"is_utf8_string_loc"\fR,
\&\f(CW"is_utf8_string_loc_flags"\fR,
\&\f(CW"is_utf8_string_loclen"\fR,
\&\f(CW"is_utf8_string_loclen_flags"\fR,
\&\f(CW"is_utf8_fixed_width_buf_flags"\fR,
\&\f(CW"is_utf8_fixed_width_buf_loc_flags"\fR,
\&\f(CW"is_utf8_fixed_width_buf_loclen_flags"\fR,
\&\f(CW"is_strict_utf8_string"\fR,
\&\f(CW"is_strict_utf8_string_loc"\fR,
\&\f(CW"is_strict_utf8_string_loclen"\fR,
\&\f(CW"is_c9strict_utf8_string"\fR,
\&\f(CW"is_c9strict_utf8_string_loc"\fR,
and
\&\f(CW"is_c9strict_utf8_string_loclen"\fR.
.RS 4
.Sp
.Vb 1
\& bool  is_utf8_invariant_string(const U8 * const s, STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """is_utf8_invariant_string_loc""" 4
.el .IP \f(CWis_utf8_invariant_string_loc\fR 4
.IX Xref "is_utf8_invariant_string_loc"
.IX Item "is_utf8_invariant_string_loc"
Like \f(CW"is_utf8_invariant_string"\fR but upon failure, stores the location of
the first UTF\-8 variant character in the \f(CW\*(C`ep\*(C'\fR pointer; if all characters are
UTF\-8 invariant, this function does not change the contents of \f(CW*ep\fR.
.RS 4
.Sp
.Vb 2
\& bool  is_utf8_invariant_string_loc(const U8 * const s, STRLEN len,
\&                                    const U8 **ep)
.Ve
.RE
.RS 4
.RE
.ie n .IP """is_utf8_string""" 4
.el .IP \f(CWis_utf8_string\fR 4
.IX Xref "is_utf8_string"
.IX Item "is_utf8_string"
Returns TRUE if the first \f(CW\*(C`len\*(C'\fR bytes of string \f(CW\*(C`s\*(C'\fR form a valid
Perl\-extended\-UTF\-8 string; returns FALSE otherwise.  If \f(CW\*(C`len\*(C'\fR is 0, it will
be calculated using \f(CWstrlen(s)\fR (which means if you use this option, that \f(CW\*(C`s\*(C'\fR
can't have embedded \f(CW\*(C`NUL\*(C'\fR characters and has to have a terminating \f(CW\*(C`NUL\*(C'\fR
byte).  Note that all characters being ASCII constitute 'a valid UTF\-8 string'.
.Sp
This function considers Perl's extended UTF\-8 to be valid.  That means that
code points above Unicode, surrogates, and non-character code points are
considered valid by this function.  Use \f(CW"is_strict_utf8_string"\fR,
\&\f(CW"is_c9strict_utf8_string"\fR, or \f(CW"is_utf8_string_flags"\fR to restrict what
code points are considered valid.
.Sp
See also
\&\f(CW"is_utf8_invariant_string"\fR,
\&\f(CW"is_utf8_invariant_string_loc"\fR,
\&\f(CW"is_utf8_string_loc"\fR,
\&\f(CW"is_utf8_string_loclen"\fR,
\&\f(CW"is_utf8_fixed_width_buf_flags"\fR,
\&\f(CW"is_utf8_fixed_width_buf_loc_flags"\fR,
\&\f(CW"is_utf8_fixed_width_buf_loclen_flags"\fR,
.RS 4
.Sp
.Vb 1
\& bool  is_utf8_string(const U8 *s, STRLEN len)
.Ve
.RE
.RS 4
.RE
.ie n .IP """is_utf8_string_flags""" 4
.el .IP \f(CWis_utf8_string_flags\fR 4
.IX Xref "is_utf8_string_flags"
.IX Item "is_utf8_string_flags"
Returns TRUE if the first \f(CW\*(C`len\*(C'\fR bytes of string \f(CW\*(C`s\*(C'\fR form a valid
UTF\-8 string, subject to the restrictions imposed by \f(CW\*(C`flags\*(C'\fR;
returns FALSE otherwise.  If \f(CW\*(C`len\*(C'\fR is 0, it will be calculated
using \f(CWstrlen(s)\fR (which means if you use this option, that \f(CW\*(C`s\*(C'\fR can't have
embedded \f(CW\*(C`NUL\*(C'\fR characters and has to have a terminating \f(CW\*(C`NUL\*(C'\fR byte).  Note
that all characters being ASCII constitute 'a valid UTF\-8 string'.
.Sp
If \f(CW\*(C`flags\*(C'\fR is 0, this gives the same results as \f(CW"is_utf8_string"\fR; if
\&\f(CW\*(C`flags\*(C'\fR is \f(CW\*(C`UTF8_DISALLOW_ILLEGAL_INTERCHANGE\*(C'\fR, this gives the same results
as \f(CW"is_strict_utf8_string"\fR; and if \f(CW\*(C`flags\*(C'\fR is
\&\f(CW\*(C`UTF8_DISALLOW_ILLEGAL_C9_INTERCHANGE\*(C'\fR, this gives the same results as
\&\f(CW"is_c9strict_utf8_string"\fR.  Otherwise \f(CW\*(C`flags\*(C'\fR may be any
combination of the \f(CW\*(C`UTF8_DISALLOW_\fR\f(CIfoo\fR\f(CW\*(C'\fR flags understood by
\&\f(CW"utf8n_to_uvchr"\fR, with the same meanings.
.Sp
See also
\&\f(CW"is_utf8_invariant_string"\fR,
\&\f(CW"is_utf8_invariant_string_loc"\fR,
\&\f(CW"is_utf8_string"\fR,
\&\f(CW"is_utf8_string_loc"\fR,
\&\f(CW"is_utf8_string_loc_flags"\fR,
\&\f(CW"is_utf8_string_loclen"\fR,
\&\f(CW"is_utf8_string_loclen_flags"\fR,
\&\f(CW"is_utf8_fixed_width_buf_flags"\fR,
\&\f(CW"is_utf8_fixed_width_buf_loc_flags"\fR,
\&\f(CW"is_utf8_fixed_width_buf_loclen_flags"\fR,
\&\f(CW"is_strict_utf8_string"\fR,
\&\f(CW"is_strict_utf8_string_loc"\fR,
\&\f(CW"is_strict_utf8_string_loclen"\fR,
\&\f(CW"is_c9strict_utf8_string"\fR,
\&\f(CW"is_c9strict_utf8_string_loc"\fR,
and
\&\f(CW"is_c9strict_utf8_string_loclen"\fR.
.RS 4
.Sp
.Vb 2
\& bool  is_utf8_string_flags(const U8 *s, STRLEN len,
\&                            const U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """is_utf8_string_loc""" 4
.el .IP \f(CWis_utf8_string_loc\fR 4
.IX Xref "is_utf8_string_loc"
.IX Item "is_utf8_string_loc"
Like \f(CW"is_utf8_string"\fR but stores the location of the failure (in the
case of "utf8ness failure") or the location \f(CW\*(C`s\*(C'\fR+\f(CW\*(C`len\*(C'\fR (in the case of
"utf8ness success") in the \f(CW\*(C`ep\*(C'\fR pointer.
.Sp
See also \f(CW"is_utf8_string_loclen"\fR.
.RS 4
.Sp
.Vb 2
\& bool  is_utf8_string_loc(const U8 *s, const STRLEN len,
\&                          const U8 **ep)
.Ve
.RE
.RS 4
.RE
.ie n .IP """is_utf8_string_loc_flags""" 4
.el .IP \f(CWis_utf8_string_loc_flags\fR 4
.IX Xref "is_utf8_string_loc_flags"
.IX Item "is_utf8_string_loc_flags"
Like \f(CW"is_utf8_string_flags"\fR but stores the location of the failure (in the
case of "utf8ness failure") or the location \f(CW\*(C`s\*(C'\fR+\f(CW\*(C`len\*(C'\fR (in the case of
"utf8ness success") in the \f(CW\*(C`ep\*(C'\fR pointer.
.Sp
See also \f(CW"is_utf8_string_loclen_flags"\fR.
.RS 4
.Sp
.Vb 2
\& bool  is_utf8_string_loc_flags(const U8 *s, STRLEN len,
\&                                const U8 **ep, const U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """is_utf8_string_loclen""" 4
.el .IP \f(CWis_utf8_string_loclen\fR 4
.IX Xref "is_utf8_string_loclen"
.IX Item "is_utf8_string_loclen"
Like \f(CW"is_utf8_string"\fR but stores the location of the failure (in the
case of "utf8ness failure") or the location \f(CW\*(C`s\*(C'\fR+\f(CW\*(C`len\*(C'\fR (in the case of
"utf8ness success") in the \f(CW\*(C`ep\*(C'\fR pointer, and the number of UTF\-8
encoded characters in the \f(CW\*(C`el\*(C'\fR pointer.
.Sp
See also \f(CW"is_utf8_string_loc"\fR.
.RS 4
.Sp
.Vb 2
\& bool  is_utf8_string_loclen(const U8 *s, STRLEN len,
\&                             const U8 **ep, STRLEN *el)
.Ve
.RE
.RS 4
.RE
.ie n .IP """is_utf8_string_loclen_flags""" 4
.el .IP \f(CWis_utf8_string_loclen_flags\fR 4
.IX Xref "is_utf8_string_loclen_flags"
.IX Item "is_utf8_string_loclen_flags"
Like \f(CW"is_utf8_string_flags"\fR but stores the location of the failure (in the
case of "utf8ness failure") or the location \f(CW\*(C`s\*(C'\fR+\f(CW\*(C`len\*(C'\fR (in the case of
"utf8ness success") in the \f(CW\*(C`ep\*(C'\fR pointer, and the number of UTF\-8
encoded characters in the \f(CW\*(C`el\*(C'\fR pointer.
.Sp
See also \f(CW"is_utf8_string_loc_flags"\fR.
.RS 4
.Sp
.Vb 3
\& bool  is_utf8_string_loclen_flags(const U8 *s, STRLEN len,
\&                                   const U8 **ep, STRLEN *el,
\&                                   const U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """is_utf8_valid_partial_char""" 4
.el .IP \f(CWis_utf8_valid_partial_char\fR 4
.IX Xref "is_utf8_valid_partial_char"
.IX Item "is_utf8_valid_partial_char"
Returns 0 if the sequence of bytes starting at \f(CW\*(C`s\*(C'\fR and looking no further than
\&\f(CW\*(C`e\ \-\ 1\*(C'\fR is the UTF\-8 encoding, as extended by Perl, for one or more code
points.  Otherwise, it returns 1 if there exists at least one non-empty
sequence of bytes that when appended to sequence \f(CW\*(C`s\*(C'\fR, starting at position
\&\f(CW\*(C`e\*(C'\fR causes the entire sequence to be the well-formed UTF\-8 of some code point;
otherwise returns 0.
.Sp
In other words this returns TRUE if \f(CW\*(C`s\*(C'\fR points to a partial UTF\-8\-encoded code
point.
.Sp
This is useful when a fixed-length buffer is being tested for being well-formed
UTF\-8, but the final few bytes in it don't comprise a full character; that is,
it is split somewhere in the middle of the final code point's UTF\-8
representation.  (Presumably when the buffer is refreshed with the next chunk
of data, the new first bytes will complete the partial code point.)   This
function is used to verify that the final bytes in the current buffer are in
fact the legal beginning of some code point, so that if they aren't, the
failure can be signalled without having to wait for the next read.
.RS 4
.Sp
.Vb 2
\& bool  is_utf8_valid_partial_char(const U8 * const s0,
\&                                  const U8 * const e)
.Ve
.RE
.RS 4
.RE
.ie n .IP """is_utf8_valid_partial_char_flags""" 4
.el .IP \f(CWis_utf8_valid_partial_char_flags\fR 4
.IX Xref "is_utf8_valid_partial_char_flags"
.IX Item "is_utf8_valid_partial_char_flags"
Like \f(CW"is_utf8_valid_partial_char"\fR, it returns a boolean giving whether
or not the input is a valid UTF\-8 encoded partial character, but it takes an
extra parameter, \f(CW\*(C`flags\*(C'\fR, which can further restrict which code points are
considered valid.
.Sp
If \f(CW\*(C`flags\*(C'\fR is 0, this behaves identically to
\&\f(CW"is_utf8_valid_partial_char"\fR.  Otherwise \f(CW\*(C`flags\*(C'\fR can be any combination
of the \f(CW\*(C`UTF8_DISALLOW_\fR\f(CIfoo\fR\f(CW\*(C'\fR flags accepted by \f(CW"utf8n_to_uvchr"\fR.  If
there is any sequence of bytes that can complete the input partial character in
such a way that a non-prohibited character is formed, the function returns
TRUE; otherwise FALSE.  Non character code points cannot be determined based on
partial character input.  But many  of the other possible excluded types can be
determined from just the first one or two bytes.
.RS 4
.Sp
.Vb 3
\& bool  is_utf8_valid_partial_char_flags(const U8 * const s0,
\&                                        const U8 * const e,
\&                                        const U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """LATIN1_TO_NATIVE""" 4
.el .IP \f(CWLATIN1_TO_NATIVE\fR 4
.IX Xref "LATIN1_TO_NATIVE"
.IX Item "LATIN1_TO_NATIVE"
Returns the native  equivalent of the input Latin\-1 code point (including ASCII
and control characters) given by \f(CW\*(C`ch\*(C'\fR.  Thus, \f(CWLATIN1_TO_NATIVE(66)\fR on
EBCDIC platforms returns 194.  These each represent the character \f(CW"B"\fR on
their respective platforms.  On ASCII platforms no conversion is needed, so
this macro expands to just its input, adding no time nor space requirements to
the implementation.
.Sp
For conversion of code points potentially larger than will fit in a character,
use "UNI_TO_NATIVE".
.RS 4
.Sp
.Vb 1
\& U8  LATIN1_TO_NATIVE(U8 ch)
.Ve
.RE
.RS 4
.RE
.ie n .IP """NATIVE_TO_LATIN1""" 4
.el .IP \f(CWNATIVE_TO_LATIN1\fR 4
.IX Xref "NATIVE_TO_LATIN1"
.IX Item "NATIVE_TO_LATIN1"
Returns the Latin\-1 (including ASCII and control characters) equivalent of the
input native code point given by \f(CW\*(C`ch\*(C'\fR.  Thus, \f(CWNATIVE_TO_LATIN1(193)\fR on
EBCDIC platforms returns 65.  These each represent the character \f(CW"A"\fR on
their respective platforms.  On ASCII platforms no conversion is needed, so
this macro expands to just its input, adding no time nor space requirements to
the implementation.
.Sp
For conversion of code points potentially larger than will fit in a character,
use "NATIVE_TO_UNI".
.RS 4
.Sp
.Vb 1
\& U8  NATIVE_TO_LATIN1(U8 ch)
.Ve
.RE
.RS 4
.RE
.ie n .IP """NATIVE_TO_UNI""" 4
.el .IP \f(CWNATIVE_TO_UNI\fR 4
.IX Xref "NATIVE_TO_UNI"
.IX Item "NATIVE_TO_UNI"
Returns the Unicode  equivalent of the input native code point given by \f(CW\*(C`ch\*(C'\fR.
Thus, \f(CWNATIVE_TO_UNI(195)\fR on EBCDIC platforms returns 67.  These each
represent the character \f(CW"C"\fR on their respective platforms.  On ASCII
platforms no conversion is needed, so this macro expands to just its input,
adding no time nor space requirements to the implementation.
.RS 4
.Sp
.Vb 1
\& UV  NATIVE_TO_UNI(UV ch)
.Ve
.RE
.RS 4
.RE
.ie n .IP """pv_uni_display""" 4
.el .IP \f(CWpv_uni_display\fR 4
.IX Xref "pv_uni_display"
.IX Item "pv_uni_display"
Build to the scalar \f(CW\*(C`dsv\*(C'\fR a displayable version of the UTF\-8 encoded string
\&\f(CW\*(C`spv\*(C'\fR, length \f(CW\*(C`len\*(C'\fR, the displayable version being at most \f(CW\*(C`pvlim\*(C'\fR bytes
long (if longer, the rest is truncated and \f(CW"..."\fR will be appended).
.Sp
The \f(CW\*(C`flags\*(C'\fR argument can have \f(CW\*(C`UNI_DISPLAY_ISPRINT\*(C'\fR set to display
\&\f(CWisPRINT()\fRable characters as themselves, \f(CW\*(C`UNI_DISPLAY_BACKSLASH\*(C'\fR
to display the \f(CW\*(C`\e\e[nrfta\e\e]\*(C'\fR as the backslashed versions (like \f(CW"\en"\fR)
(\f(CW\*(C`UNI_DISPLAY_BACKSLASH\*(C'\fR is preferred over \f(CW\*(C`UNI_DISPLAY_ISPRINT\*(C'\fR for \f(CW"\e\e"\fR).
\&\f(CW\*(C`UNI_DISPLAY_QQ\*(C'\fR (and its alias \f(CW\*(C`UNI_DISPLAY_REGEX\*(C'\fR) have both
\&\f(CW\*(C`UNI_DISPLAY_BACKSLASH\*(C'\fR and \f(CW\*(C`UNI_DISPLAY_ISPRINT\*(C'\fR turned on.
.Sp
Additionally, there is now \f(CW\*(C`UNI_DISPLAY_BACKSPACE\*(C'\fR which allows \f(CW\*(C`\eb\*(C'\fR for a
backspace, but only when \f(CW\*(C`UNI_DISPLAY_BACKSLASH\*(C'\fR also is set.
.Sp
The pointer to the PV of the \f(CW\*(C`dsv\*(C'\fR is returned.
.Sp
See also "sv_uni_display".
.RS 4
.Sp
.Vb 2
\& char *  pv_uni_display(SV *dsv, const U8 *spv, STRLEN len,
\&                        STRLEN pvlim, UV flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """REPLACEMENT_CHARACTER_UTF8""" 4
.el .IP \f(CWREPLACEMENT_CHARACTER_UTF8\fR 4
.IX Xref "REPLACEMENT_CHARACTER_UTF8"
.IX Item "REPLACEMENT_CHARACTER_UTF8"
This is a macro that evaluates to a string constant of the  UTF\-8 bytes that
define the Unicode REPLACEMENT CHARACTER (U+FFFD) for the platform that perl
is compiled on.  This allows code to use a mnemonic for this character that
works on both ASCII and EBCDIC platforms.
\&\f(CW\*(C`sizeof(REPLACEMENT_CHARACTER_UTF8)\ \-\ 1\*(C'\fR can be used to get its length in
bytes.
.ie n .IP """sv_cat_decode""" 4
.el .IP \f(CWsv_cat_decode\fR 4
.IX Xref "sv_cat_decode"
.IX Item "sv_cat_decode"
\&\f(CW\*(C`encoding\*(C'\fR is assumed to be an \f(CW\*(C`Encode\*(C'\fR object, the PV of \f(CW\*(C`ssv\*(C'\fR is
assumed to be octets in that encoding and decoding the input starts
from the position which \f(CW\*(C`(PV\ +\ *offset)\*(C'\fR pointed to.  \f(CW\*(C`dsv\*(C'\fR will be
concatenated with the decoded UTF\-8 string from \f(CW\*(C`ssv\*(C'\fR.  Decoding will terminate
when the string \f(CW\*(C`tstr\*(C'\fR appears in decoding output or the input ends on
the PV of \f(CW\*(C`ssv\*(C'\fR.  The value which \f(CW\*(C`offset\*(C'\fR points will be modified
to the last input position on \f(CW\*(C`ssv\*(C'\fR.
.Sp
Returns TRUE if the terminator was found, else returns FALSE.
.RS 4
.Sp
.Vb 2
\& bool  sv_cat_decode(SV *dsv, SV *encoding, SV *ssv, int *offset,
\&                     char *tstr, int tlen)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_recode_to_utf8""" 4
.el .IP \f(CWsv_recode_to_utf8\fR 4
.IX Xref "sv_recode_to_utf8"
.IX Item "sv_recode_to_utf8"
\&\f(CW\*(C`encoding\*(C'\fR is assumed to be an \f(CW\*(C`Encode\*(C'\fR object, on entry the PV
of \f(CW\*(C`sv\*(C'\fR is assumed to be octets in that encoding, and \f(CW\*(C`sv\*(C'\fR
will be converted into Unicode (and UTF\-8).
.Sp
If \f(CW\*(C`sv\*(C'\fR already is UTF\-8 (or if it is not \f(CW\*(C`POK\*(C'\fR), or if \f(CW\*(C`encoding\*(C'\fR
is not a reference, nothing is done to \f(CW\*(C`sv\*(C'\fR.  If \f(CW\*(C`encoding\*(C'\fR is not
an \f(CW\*(C`Encode::XS\*(C'\fR Encoding object, bad things will happen.
(See encoding and Encode.)
.Sp
The PV of \f(CW\*(C`sv\*(C'\fR is returned.
.RS 4
.Sp
.Vb 1
\& char *  sv_recode_to_utf8(SV *sv, SV *encoding)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_uni_display""" 4
.el .IP \f(CWsv_uni_display\fR 4
.IX Xref "sv_uni_display"
.IX Item "sv_uni_display"
Build to the scalar \f(CW\*(C`dsv\*(C'\fR a displayable version of the scalar \f(CW\*(C`sv\*(C'\fR,
the displayable version being at most \f(CW\*(C`pvlim\*(C'\fR bytes long
(if longer, the rest is truncated and "..." will be appended).
.Sp
The \f(CW\*(C`flags\*(C'\fR argument is as in "pv_uni_display"().
.Sp
The pointer to the PV of the \f(CW\*(C`dsv\*(C'\fR is returned.
.RS 4
.Sp
.Vb 1
\& char *  sv_uni_display(SV *dsv, SV *ssv, STRLEN pvlim, UV flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """UNICODE_IS_NONCHAR""" 4
.el .IP \f(CWUNICODE_IS_NONCHAR\fR 4
.IX Xref "UNICODE_IS_NONCHAR"
.IX Item "UNICODE_IS_NONCHAR"
Returns a boolean as to whether or not \f(CW\*(C`uv\*(C'\fR is one of the Unicode
non-character code points
.RS 4
.Sp
.Vb 1
\& bool  UNICODE_IS_NONCHAR(const UV uv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """UNICODE_IS_REPLACEMENT""" 4
.el .IP \f(CWUNICODE_IS_REPLACEMENT\fR 4
.IX Xref "UNICODE_IS_REPLACEMENT"
.IX Item "UNICODE_IS_REPLACEMENT"
Returns a boolean as to whether or not \f(CW\*(C`uv\*(C'\fR is the Unicode REPLACEMENT
CHARACTER
.RS 4
.Sp
.Vb 1
\& bool  UNICODE_IS_REPLACEMENT(const UV uv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """UNICODE_IS_SUPER""" 4
.el .IP \f(CWUNICODE_IS_SUPER\fR 4
.IX Xref "UNICODE_IS_SUPER"
.IX Item "UNICODE_IS_SUPER"
Returns a boolean as to whether or not \f(CW\*(C`uv\*(C'\fR is above the maximum legal Unicode
code point of U+10FFFF.
.RS 4
.Sp
.Vb 1
\& bool  UNICODE_IS_SUPER(const UV uv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """UNICODE_IS_SURROGATE""" 4
.el .IP \f(CWUNICODE_IS_SURROGATE\fR 4
.IX Xref "UNICODE_IS_SURROGATE"
.IX Item "UNICODE_IS_SURROGATE"
Returns a boolean as to whether or not \f(CW\*(C`uv\*(C'\fR is one of the Unicode surrogate
code points
.RS 4
.Sp
.Vb 1
\& bool  UNICODE_IS_SURROGATE(const UV uv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """UNICODE_REPLACEMENT""" 4
.el .IP \f(CWUNICODE_REPLACEMENT\fR 4
.IX Xref "UNICODE_REPLACEMENT"
.IX Item "UNICODE_REPLACEMENT"
Evaluates to 0xFFFD, the code point of the Unicode REPLACEMENT CHARACTER
.ie n .IP """UNI_TO_NATIVE""" 4
.el .IP \f(CWUNI_TO_NATIVE\fR 4
.IX Xref "UNI_TO_NATIVE"
.IX Item "UNI_TO_NATIVE"
Returns the native  equivalent of the input Unicode code point  given by \f(CW\*(C`ch\*(C'\fR.
Thus, \f(CWUNI_TO_NATIVE(68)\fR on EBCDIC platforms returns 196.  These each
represent the character \f(CW"D"\fR on their respective platforms.  On ASCII
platforms no conversion is needed, so this macro expands to just its input,
adding no time nor space requirements to the implementation.
.RS 4
.Sp
.Vb 1
\& UV  UNI_TO_NATIVE(UV ch)
.Ve
.RE
.RS 4
.RE
.ie n .IP """UTF8_CHK_SKIP""" 4
.el .IP \f(CWUTF8_CHK_SKIP\fR 4
.IX Xref "UTF8_CHK_SKIP"
.IX Item "UTF8_CHK_SKIP"
This is a safer version of \f(CW"UTF8SKIP"\fR, but still not as safe as
\&\f(CW"UTF8_SAFE_SKIP"\fR.  This version doesn't blindly assume that the input
string pointed to by \f(CW\*(C`s\*(C'\fR is well-formed, but verifies that there isn't a NUL
terminating character before the expected end of the next character in \f(CW\*(C`s\*(C'\fR.
The length \f(CW\*(C`UTF8_CHK_SKIP\*(C'\fR returns stops just before any such NUL.
.Sp
Perl tends to add NULs, as an insurance policy, after the end of strings in
SV's, so it is likely that using this macro will prevent inadvertent reading
beyond the end of the input buffer, even if it is malformed UTF\-8.
.Sp
This macro is intended to be used by XS modules where the inputs could be
malformed, and it isn't feasible to restructure to use the safer
\&\f(CW"UTF8_SAFE_SKIP"\fR, for example when interfacing with a C library.
.RS 4
.Sp
.Vb 1
\& STRLEN  UTF8_CHK_SKIP(char* s)
.Ve
.RE
.RS 4
.RE
.ie n .IP """utf8_distance""" 4
.el .IP \f(CWutf8_distance\fR 4
.IX Xref "utf8_distance"
.IX Item "utf8_distance"
Returns the number of UTF\-8 characters between the UTF\-8 pointers \f(CW\*(C`a\*(C'\fR
and \f(CW\*(C`b\*(C'\fR.
.Sp
WARNING: use only if you *know* that the pointers point inside the
same UTF\-8 buffer.
.RS 4
.Sp
.Vb 1
\& IV  utf8_distance(const U8 *a, const U8 *b)
.Ve
.RE
.RS 4
.RE
.ie n .IP """utf8_hop""" 4
.el .IP \f(CWutf8_hop\fR 4
.IX Xref "utf8_hop"
.IX Item "utf8_hop"
Return the UTF\-8 pointer \f(CW\*(C`s\*(C'\fR displaced by \f(CW\*(C`off\*(C'\fR characters, either
forward (if \f(CW\*(C`off\*(C'\fR is positive) or backward (if negative).  \f(CW\*(C`s\*(C'\fR does not need
to be pointing to the starting byte of a character.  If it isn't, one count of
\&\f(CW\*(C`off\*(C'\fR will be used up to get to the start of the next character for forward
hops, and to the start of the current character for negative ones.
.Sp
WARNING: Prefer "utf8_hop_safe" to this one.
.Sp
Do NOT use this function unless you \fBknow\fR \f(CW\*(C`off\*(C'\fR is within
the UTF\-8 data pointed to by \f(CW\*(C`s\*(C'\fR \fBand\fR that on entry \f(CW\*(C`s\*(C'\fR is aligned
on the first byte of a character or just after the last byte of a character.
.RS 4
.Sp
.Vb 1
\& U8 *  utf8_hop(const U8 *s, SSize_t off)
.Ve
.RE
.RS 4
.RE
.ie n .IP """utf8_hop_back""" 4
.el .IP \f(CWutf8_hop_back\fR 4
.IX Xref "utf8_hop_back"
.IX Item "utf8_hop_back"
Return the UTF\-8 pointer \f(CW\*(C`s\*(C'\fR displaced by up to \f(CW\*(C`off\*(C'\fR characters,
backward.  \f(CW\*(C`s\*(C'\fR does not need to be pointing to the starting byte of a
character.  If it isn't, one count of \f(CW\*(C`off\*(C'\fR will be used up to get to that
start.
.Sp
\&\f(CW\*(C`off\*(C'\fR must be non-positive.
.Sp
\&\f(CW\*(C`s\*(C'\fR must be after or equal to \f(CW\*(C`start\*(C'\fR.
.Sp
When moving backward it will not move before \f(CW\*(C`start\*(C'\fR.
.Sp
Will not exceed this limit even if the string is not valid "UTF\-8".
.RS 4
.Sp
.Vb 1
\& U8 *  utf8_hop_back(const U8 *s, SSize_t off, const U8 *start)
.Ve
.RE
.RS 4
.RE
.ie n .IP """utf8_hop_forward""" 4
.el .IP \f(CWutf8_hop_forward\fR 4
.IX Xref "utf8_hop_forward"
.IX Item "utf8_hop_forward"
Return the UTF\-8 pointer \f(CW\*(C`s\*(C'\fR displaced by up to \f(CW\*(C`off\*(C'\fR characters,
forward.  \f(CW\*(C`s\*(C'\fR does not need to be pointing to the starting byte of a
character.  If it isn't, one count of \f(CW\*(C`off\*(C'\fR will be used up to get to the
start of the next character.
.Sp
\&\f(CW\*(C`off\*(C'\fR must be non-negative.
.Sp
\&\f(CW\*(C`s\*(C'\fR must be before or equal to \f(CW\*(C`end\*(C'\fR.
.Sp
When moving forward it will not move beyond \f(CW\*(C`end\*(C'\fR.
.Sp
Will not exceed this limit even if the string is not valid "UTF\-8".
.RS 4
.Sp
.Vb 1
\& U8 *  utf8_hop_forward(const U8 *s, SSize_t off, const U8 *end)
.Ve
.RE
.RS 4
.RE
.ie n .IP """utf8_hop_safe""" 4
.el .IP \f(CWutf8_hop_safe\fR 4
.IX Xref "utf8_hop_safe"
.IX Item "utf8_hop_safe"
Return the UTF\-8 pointer \f(CW\*(C`s\*(C'\fR displaced by up to \f(CW\*(C`off\*(C'\fR characters,
either forward or backward.  \f(CW\*(C`s\*(C'\fR does not need to be pointing to the starting
byte of a character.  If it isn't, one count of \f(CW\*(C`off\*(C'\fR will be used up to get
to the start of the next character for forward hops, and to the start of the
current character for negative ones.
.Sp
When moving backward it will not move before \f(CW\*(C`start\*(C'\fR.
.Sp
When moving forward it will not move beyond \f(CW\*(C`end\*(C'\fR.
.Sp
Will not exceed those limits even if the string is not valid "UTF\-8".
.RS 4
.Sp
.Vb 2
\& U8 *  utf8_hop_safe(const U8 *s, SSize_t off, const U8 *start,
\&                     const U8 *end)
.Ve
.RE
.RS 4
.RE
.ie n .IP """UTF8_IS_INVARIANT""" 4
.el .IP \f(CWUTF8_IS_INVARIANT\fR 4
.IX Xref "UTF8_IS_INVARIANT"
.IX Item "UTF8_IS_INVARIANT"
Evaluates to 1 if the byte \f(CW\*(C`c\*(C'\fR represents the same character when encoded in
UTF\-8 as when not; otherwise evaluates to 0.  UTF\-8 invariant characters can be
copied as-is when converting to/from UTF\-8, saving time.
.Sp
In spite of the name, this macro gives the correct result if the input string
from which \f(CW\*(C`c\*(C'\fR comes is not encoded in UTF\-8.
.Sp
See \f(CW"UVCHR_IS_INVARIANT"\fR for checking if a UV is invariant.
.RS 4
.Sp
.Vb 1
\& bool  UTF8_IS_INVARIANT(char c)
.Ve
.RE
.RS 4
.RE
.ie n .IP """UTF8_IS_NONCHAR""" 4
.el .IP \f(CWUTF8_IS_NONCHAR\fR 4
.IX Xref "UTF8_IS_NONCHAR"
.IX Item "UTF8_IS_NONCHAR"
Evaluates to non-zero if the first few bytes of the string starting at \f(CW\*(C`s\*(C'\fR and
looking no further than \f(CW\*(C`e\ \-\ 1\*(C'\fR are well-formed UTF\-8 that represents one
of the Unicode non-character code points; otherwise it evaluates to 0.  If
non-zero, the value gives how many bytes starting at \f(CW\*(C`s\*(C'\fR comprise the code
point's representation.
.RS 4
.Sp
.Vb 1
\& bool  UTF8_IS_NONCHAR(const U8 *s, const U8 *e)
.Ve
.RE
.RS 4
.RE
.ie n .IP """UTF8_IS_REPLACEMENT""" 4
.el .IP \f(CWUTF8_IS_REPLACEMENT\fR 4
.IX Xref "UTF8_IS_REPLACEMENT"
.IX Item "UTF8_IS_REPLACEMENT"
Evaluates to non-zero if the first few bytes of the string starting at \f(CW\*(C`s\*(C'\fR and
looking no further than \f(CW\*(C`e\ \-\ 1\*(C'\fR are well-formed UTF\-8 that represents the
Unicode REPLACEMENT CHARACTER; otherwise it evaluates to 0.  If non-zero, the
value gives how many bytes starting at \f(CW\*(C`s\*(C'\fR comprise the code point's
representation.
.RS 4
.Sp
.Vb 1
\& bool  UTF8_IS_REPLACEMENT(const U8 *s, const U8 *e)
.Ve
.RE
.RS 4
.RE
.ie n .IP """UTF8_IS_SUPER""" 4
.el .IP \f(CWUTF8_IS_SUPER\fR 4
.IX Xref "UTF8_IS_SUPER"
.IX Item "UTF8_IS_SUPER"
Recall that Perl recognizes an extension to UTF\-8 that can encode code
points larger than the ones defined by Unicode, which are 0..0x10FFFF.
.Sp
This macro evaluates to non-zero if the first few bytes of the string starting
at \f(CW\*(C`s\*(C'\fR and looking no further than \f(CW\*(C`e\ \-\ 1\*(C'\fR are from this UTF\-8 extension;
otherwise it evaluates to 0.  If non-zero, the return is how many bytes
starting at \f(CW\*(C`s\*(C'\fR comprise the code point's representation.
.Sp
0 is returned if the bytes are not well-formed extended UTF\-8, or if they
represent a code point that cannot fit in a UV on the current platform.  Hence
this macro can give different results when run on a 64\-bit word machine than on
one with a 32\-bit word size.
.Sp
Note that it is illegal in Perl to have code points that are larger than what can
fit in an IV on the current machine; and illegal in Unicode to have any that
this macro matches
.RS 4
.Sp
.Vb 1
\& bool  UTF8_IS_SUPER(const U8 *s, const U8 *e)
.Ve
.RE
.RS 4
.RE
.ie n .IP """UTF8_IS_SURROGATE""" 4
.el .IP \f(CWUTF8_IS_SURROGATE\fR 4
.IX Xref "UTF8_IS_SURROGATE"
.IX Item "UTF8_IS_SURROGATE"
Evaluates to non-zero if the first few bytes of the string starting at \f(CW\*(C`s\*(C'\fR and
looking no further than \f(CW\*(C`e\ \-\ 1\*(C'\fR are well-formed UTF\-8 that represents one
of the Unicode surrogate code points; otherwise it evaluates to 0.  If
non-zero, the value gives how many bytes starting at \f(CW\*(C`s\*(C'\fR comprise the code
point's representation.
.RS 4
.Sp
.Vb 1
\& bool  UTF8_IS_SURROGATE(const U8 *s, const U8 *e)
.Ve
.RE
.RS 4
.RE
.ie n .IP """utf8_length""" 4
.el .IP \f(CWutf8_length\fR 4
.IX Xref "utf8_length"
.IX Item "utf8_length"
Returns the number of characters in the sequence of UTF\-8\-encoded bytes starting
at \f(CW\*(C`s\*(C'\fR and ending at the byte just before \f(CW\*(C`e\*(C'\fR.  If <s> and <e> point to the
same place, it returns 0 with no warning raised.
.Sp
If \f(CW\*(C`e < s\*(C'\fR or if the scan would end up past \f(CW\*(C`e\*(C'\fR, it raises a UTF8 warning
and returns the number of valid characters.
.RS 4
.Sp
.Vb 1
\& STRLEN  utf8_length(const U8 *s0, const U8 *e)
.Ve
.RE
.RS 4
.RE
.ie n .IP """UTF8_MAXBYTES""" 4
.el .IP \f(CWUTF8_MAXBYTES\fR 4
.IX Xref "UTF8_MAXBYTES"
.IX Item "UTF8_MAXBYTES"
The maximum width of a single UTF\-8 encoded character, in bytes.
.Sp
NOTE: Strictly speaking Perl's UTF\-8 should not be called UTF\-8 since UTF\-8
is an encoding of Unicode, and Unicode's upper limit, 0x10FFFF, can be
expressed with 4 bytes.  However, Perl thinks of UTF\-8 as a way to encode
non-negative integers in a binary format, even those above Unicode.
.ie n .IP """UTF8_MAXBYTES_CASE""" 4
.el .IP \f(CWUTF8_MAXBYTES_CASE\fR 4
.IX Xref "UTF8_MAXBYTES_CASE"
.IX Item "UTF8_MAXBYTES_CASE"
The maximum number of UTF\-8 bytes a single Unicode character can
uppercase/lowercase/titlecase/fold into.
.ie n .IP """utf8ness_t""" 4
.el .IP \f(CWutf8ness_t\fR 4
.IX Xref "utf8ness_t"
.IX Item "utf8ness_t"
This typedef is used by several core functions that return PV strings, to
indicate the UTF\-8ness of those strings.
.Sp
(If you write a new function, you probably should instead return the PV in an
SV with the UTF\-8 flag of the SV properly set, rather than use this mechanism.)
.Sp
The possible values this can be are:
.RS 4
.ie n .IP """UTF8NESS_YES""" 4
.el .IP \f(CWUTF8NESS_YES\fR 4
.IX Item "UTF8NESS_YES"
This means the string definitely should be treated as a sequence of
UTF\-8\-encoded characters.
.Sp
Most code that needs to handle this typedef should be of the form:
.Sp
.Vb 3
\& if (utf8ness_flag == UTF8NESS_YES) {
\&     treat as utf8;  // like turning on an SV UTF\-8 flag
\& }
.Ve
.ie n .IP """UTF8NESS_NO""" 4
.el .IP \f(CWUTF8NESS_NO\fR 4
.IX Item "UTF8NESS_NO"
This means the string definitely should be treated as a sequence of bytes, not
encoded as UTF\-8.
.ie n .IP """UTF8NESS_IMMATERIAL""" 4
.el .IP \f(CWUTF8NESS_IMMATERIAL\fR 4
.IX Item "UTF8NESS_IMMATERIAL"
This means it is equally valid to treat the string as bytes, or as UTF\-8
characters; use whichever way you want.  This happens when the string consists
entirely of characters which have the same representation whether encoded in
UTF\-8 or not.
.ie n .IP """UTF8NESS_UNKNOWN""" 4
.el .IP \f(CWUTF8NESS_UNKNOWN\fR 4
.IX Item "UTF8NESS_UNKNOWN"
This means it is unknown how the string should be treated.  No core function
will ever return this value to a non-core caller.  Instead, it is used by the
caller to initialize a variable to a non-legal value.  A typical call will look like:
.Sp
.Vb 5
\& utf8ness_t string_is_utf8 = UTF8NESS_UNKNOWN
\& const char * string = foo(arg1, arg2, ..., &string_is_utf8);
\& if (string_is_utf8 == UTF8NESS_YES) {
\&    do something for UTF\-8;
\& }
.Ve
.RE
.RS 4
.Sp
The following relationships hold between the enum values:
.ie n .IP """0\ <=\ \fIenum\ value\fR\ <=\ UTF8NESS_IMMATERIAL""" 4
.el .IP "\f(CW0\ <=\ \fR\f(CIenum\ value\fR\f(CW\ <=\ UTF8NESS_IMMATERIAL\fR" 4
.IX Item "0 <= enum value <= UTF8NESS_IMMATERIAL"
the string may be treated in code as non\-UTF8
.ie n .IP """UTF8NESS_IMMATERIAL\ <=\ <\fIenum\ value\fR""" 4
.el .IP "\f(CWUTF8NESS_IMMATERIAL\ <=\ <\fR\f(CIenum\ value\fR\f(CW\fR" 4
.IX Item "UTF8NESS_IMMATERIAL <= <enum value"
the string may be treated in code as encoded in UTF\-8
.RE
.RS 4
.RE
.ie n .IP """utf8n_to_uvchr""" 4
.el .IP \f(CWutf8n_to_uvchr\fR 4
.IX Xref "utf8n_to_uvchr"
.IX Item "utf8n_to_uvchr"
THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
Most code should use "utf8_to_uvchr_buf"() rather than call this
directly.
.Sp
Bottom level UTF\-8 decode routine.
Returns the native code point value of the first character in the string \f(CW\*(C`s\*(C'\fR,
which is assumed to be in UTF\-8 (or UTF-EBCDIC) encoding, and no longer than
\&\f(CW\*(C`curlen\*(C'\fR bytes; \f(CW*retlen\fR (if \f(CW\*(C`retlen\*(C'\fR isn't NULL) will be set to
the length, in bytes, of that character.
.Sp
The value of \f(CW\*(C`flags\*(C'\fR determines the behavior when \f(CW\*(C`s\*(C'\fR does not point to a
well-formed UTF\-8 character.  If \f(CW\*(C`flags\*(C'\fR is 0, encountering a malformation
causes zero to be returned and \f(CW*retlen\fR is set so that (\f(CW\*(C`s\*(C'\fR\ +\ \f(CW*retlen\fR)
is the next possible position in \f(CW\*(C`s\*(C'\fR that could begin a non-malformed
character.  Also, if UTF\-8 warnings haven't been lexically disabled, a warning
is raised.  Some UTF\-8 input sequences may contain multiple malformations.
This function tries to find every possible one in each call, so multiple
warnings can be raised for the same sequence.
.Sp
Various ALLOW flags can be set in \f(CW\*(C`flags\*(C'\fR to allow (and not warn on)
individual types of malformations, such as the sequence being overlong (that
is, when there is a shorter sequence that can express the same code point;
overlong sequences are expressly forbidden in the UTF\-8 standard due to
potential security issues).  Another malformation example is the first byte of
a character not being a legal first byte.  See \fIutf8.h\fR for the list of such
flags.  Even if allowed, this function generally returns the Unicode
REPLACEMENT CHARACTER when it encounters a malformation.  There are flags in
\&\fIutf8.h\fR to override this behavior for the overlong malformations, but don't
do that except for very specialized purposes.
.Sp
The \f(CW\*(C`UTF8_CHECK_ONLY\*(C'\fR flag overrides the behavior when a non-allowed (by other
flags) malformation is found.  If this flag is set, the routine assumes that
the caller will raise a warning, and this function will silently just set
\&\f(CW\*(C`retlen\*(C'\fR to \f(CW\-1\fR (cast to \f(CW\*(C`STRLEN\*(C'\fR) and return zero.
.Sp
Note that this API requires disambiguation between successful decoding a \f(CW\*(C`NUL\*(C'\fR
character, and an error return (unless the \f(CW\*(C`UTF8_CHECK_ONLY\*(C'\fR flag is set), as
in both cases, 0 is returned, and, depending on the malformation, \f(CW\*(C`retlen\*(C'\fR may
be set to 1.  To disambiguate, upon a zero return, see if the first byte of
\&\f(CW\*(C`s\*(C'\fR is 0 as well.  If so, the input was a \f(CW\*(C`NUL\*(C'\fR; if not, the input had an
error.  Or you can use \f(CW"utf8n_to_uvchr_error"\fR.
.Sp
Certain code points are considered problematic.  These are Unicode surrogates,
Unicode non-characters, and code points above the Unicode maximum of 0x10FFFF.
By default these are considered regular code points, but certain situations
warrant special handling for them, which can be specified using the \f(CW\*(C`flags\*(C'\fR
parameter.  If \f(CW\*(C`flags\*(C'\fR contains \f(CW\*(C`UTF8_DISALLOW_ILLEGAL_INTERCHANGE\*(C'\fR, all
three classes are treated as malformations and handled as such.  The flags
\&\f(CW\*(C`UTF8_DISALLOW_SURROGATE\*(C'\fR, \f(CW\*(C`UTF8_DISALLOW_NONCHAR\*(C'\fR, and
\&\f(CW\*(C`UTF8_DISALLOW_SUPER\*(C'\fR (meaning above the legal Unicode maximum) can be set to
disallow these categories individually.  \f(CW\*(C`UTF8_DISALLOW_ILLEGAL_INTERCHANGE\*(C'\fR
restricts the allowed inputs to the strict UTF\-8 traditionally defined by
Unicode.  Use \f(CW\*(C`UTF8_DISALLOW_ILLEGAL_C9_INTERCHANGE\*(C'\fR to use the strictness
definition given by
Unicode Corrigendum #9 <https://www.unicode.org/versions/corrigendum9.html>.
The difference between traditional strictness and C9 strictness is that the
latter does not forbid non-character code points.  (They are still discouraged,
however.)  For more discussion see "Noncharacter code points" in perlunicode.
.Sp
The flags \f(CW\*(C`UTF8_WARN_ILLEGAL_INTERCHANGE\*(C'\fR,
\&\f(CW\*(C`UTF8_WARN_ILLEGAL_C9_INTERCHANGE\*(C'\fR, \f(CW\*(C`UTF8_WARN_SURROGATE\*(C'\fR,
\&\f(CW\*(C`UTF8_WARN_NONCHAR\*(C'\fR, and \f(CW\*(C`UTF8_WARN_SUPER\*(C'\fR will cause warning messages to be
raised for their respective categories, but otherwise the code points are
considered valid (not malformations).  To get a category to both be treated as
a malformation and raise a warning, specify both the WARN and DISALLOW flags.
(But note that warnings are not raised if lexically disabled nor if
\&\f(CW\*(C`UTF8_CHECK_ONLY\*(C'\fR is also specified.)
.Sp
Extremely high code points were never specified in any standard, and require an
extension to UTF\-8 to express, which Perl does.  It is likely that programs
written in something other than Perl would not be able to read files that
contain these; nor would Perl understand files written by something that uses a
different extension.  For these reasons, there is a separate set of flags that
can warn and/or disallow these extremely high code points, even if other
above-Unicode ones are accepted.  They are the \f(CW\*(C`UTF8_WARN_PERL_EXTENDED\*(C'\fR and
\&\f(CW\*(C`UTF8_DISALLOW_PERL_EXTENDED\*(C'\fR flags.  For more information see
\&\f(CW"UTF8_GOT_PERL_EXTENDED"\fR.  Of course \f(CW\*(C`UTF8_DISALLOW_SUPER\*(C'\fR will treat all
above-Unicode code points, including these, as malformations.
(Note that the Unicode standard considers anything above 0x10FFFF to be
illegal, but there are standards predating it that allow up to 0x7FFF_FFFF
(2**31 \-1))
.Sp
A somewhat misleadingly named synonym for \f(CW\*(C`UTF8_WARN_PERL_EXTENDED\*(C'\fR is
retained for backward compatibility: \f(CW\*(C`UTF8_WARN_ABOVE_31_BIT\*(C'\fR.  Similarly,
\&\f(CW\*(C`UTF8_DISALLOW_ABOVE_31_BIT\*(C'\fR is usable instead of the more accurately named
\&\f(CW\*(C`UTF8_DISALLOW_PERL_EXTENDED\*(C'\fR.  The names are misleading because these flags
can apply to code points that actually do fit in 31 bits.  This happens on
EBCDIC platforms, and sometimes when the overlong
malformation is also present.  The new names accurately
describe the situation in all cases.
.Sp
All other code points corresponding to Unicode characters, including private
use and those yet to be assigned, are never considered malformed and never
warn.
.RS 4
.Sp
.Vb 2
\& UV  utf8n_to_uvchr(const U8 *s, STRLEN curlen, STRLEN *retlen,
\&                    const U32 flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """utf8n_to_uvchr_error""" 4
.el .IP \f(CWutf8n_to_uvchr_error\fR 4
.IX Xref "utf8n_to_uvchr_error"
.IX Item "utf8n_to_uvchr_error"
THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
Most code should use "utf8_to_uvchr_buf"() rather than call this
directly.
.Sp
This function is for code that needs to know what the precise malformation(s)
are when an error is found.  If you also need to know the generated warning
messages, use "utf8n_to_uvchr_msgs"() instead.
.Sp
It is like \f(CW"utf8n_to_uvchr"\fR but it takes an extra parameter placed after
all the others, \f(CW\*(C`errors\*(C'\fR.  If this parameter is 0, this function behaves
identically to \f(CW"utf8n_to_uvchr"\fR.  Otherwise, \f(CW\*(C`errors\*(C'\fR should be a pointer
to a \f(CW\*(C`U32\*(C'\fR variable, which this function sets to indicate any errors found.
Upon return, if \f(CW*errors\fR is 0, there were no errors found.  Otherwise,
\&\f(CW*errors\fR is the bit-wise \f(CW\*(C`OR\*(C'\fR of the bits described in the list below.  Some
of these bits will be set if a malformation is found, even if the input
\&\f(CW\*(C`flags\*(C'\fR parameter indicates that the given malformation is allowed; those
exceptions are noted:
.RS 4
.ie n .IP """UTF8_GOT_PERL_EXTENDED""" 4
.el .IP \f(CWUTF8_GOT_PERL_EXTENDED\fR 4
.IX Item "UTF8_GOT_PERL_EXTENDED"
The input sequence is not standard UTF\-8, but a Perl extension.  This bit is
set only if the input \f(CW\*(C`flags\*(C'\fR parameter contains either the
\&\f(CW\*(C`UTF8_DISALLOW_PERL_EXTENDED\*(C'\fR or the \f(CW\*(C`UTF8_WARN_PERL_EXTENDED\*(C'\fR flags.
.Sp
Code points above 0x7FFF_FFFF (2**31 \- 1) were never specified in any standard,
and so some extension must be used to express them.  Perl uses a natural
extension to UTF\-8 to represent the ones up to 2**36\-1, and invented a further
extension to represent even higher ones, so that any code point that fits in a
64\-bit word can be represented.  Text using these extensions is not likely to
be portable to non-Perl code.  We lump both of these extensions together and
refer to them as Perl extended UTF\-8.  There exist other extensions that people
have invented, incompatible with Perl's.
.Sp
On EBCDIC platforms starting in Perl v5.24, the Perl extension for representing
extremely high code points kicks in at 0x3FFF_FFFF (2**30 \-1), which is lower
than on ASCII.  Prior to that, code points 2**31 and higher were simply
unrepresentable, and a different, incompatible method was used to represent
code points between 2**30 and 2**31 \- 1.
.Sp
On both platforms, ASCII and EBCDIC, \f(CW\*(C`UTF8_GOT_PERL_EXTENDED\*(C'\fR is set if
Perl extended UTF\-8 is used.
.Sp
In earlier Perls, this bit was named \f(CW\*(C`UTF8_GOT_ABOVE_31_BIT\*(C'\fR, which you still
may use for backward compatibility.  That name is misleading, as this flag may
be set when the code point actually does fit in 31 bits.  This happens on
EBCDIC platforms, and sometimes when the overlong
malformation is also present.  The new name accurately
describes the situation in all cases.
.ie n .IP """UTF8_GOT_CONTINUATION""" 4
.el .IP \f(CWUTF8_GOT_CONTINUATION\fR 4
.IX Item "UTF8_GOT_CONTINUATION"
The input sequence was malformed in that the first byte was a UTF\-8
continuation byte.
.ie n .IP """UTF8_GOT_EMPTY""" 4
.el .IP \f(CWUTF8_GOT_EMPTY\fR 4
.IX Item "UTF8_GOT_EMPTY"
The input \f(CW\*(C`curlen\*(C'\fR parameter was 0.
.ie n .IP """UTF8_GOT_LONG""" 4
.el .IP \f(CWUTF8_GOT_LONG\fR 4
.IX Item "UTF8_GOT_LONG"
The input sequence was malformed in that there is some other sequence that
evaluates to the same code point, but that sequence is shorter than this one.
.Sp
Until Unicode 3.1, it was legal for programs to accept this malformation, but
it was discovered that this created security issues.
.ie n .IP """UTF8_GOT_NONCHAR""" 4
.el .IP \f(CWUTF8_GOT_NONCHAR\fR 4
.IX Item "UTF8_GOT_NONCHAR"
The code point represented by the input UTF\-8 sequence is for a Unicode
non-character code point.
This bit is set only if the input \f(CW\*(C`flags\*(C'\fR parameter contains either the
\&\f(CW\*(C`UTF8_DISALLOW_NONCHAR\*(C'\fR or the \f(CW\*(C`UTF8_WARN_NONCHAR\*(C'\fR flags.
.ie n .IP """UTF8_GOT_NON_CONTINUATION""" 4
.el .IP \f(CWUTF8_GOT_NON_CONTINUATION\fR 4
.IX Item "UTF8_GOT_NON_CONTINUATION"
The input sequence was malformed in that a non-continuation type byte was found
in a position where only a continuation type one should be.  See also
\&\f(CW"UTF8_GOT_SHORT"\fR.
.ie n .IP """UTF8_GOT_OVERFLOW""" 4
.el .IP \f(CWUTF8_GOT_OVERFLOW\fR 4
.IX Item "UTF8_GOT_OVERFLOW"
The input sequence was malformed in that it is for a code point that is not
representable in the number of bits available in an IV on the current platform.
.ie n .IP """UTF8_GOT_SHORT""" 4
.el .IP \f(CWUTF8_GOT_SHORT\fR 4
.IX Item "UTF8_GOT_SHORT"
The input sequence was malformed in that \f(CW\*(C`curlen\*(C'\fR is smaller than required for
a complete sequence.  In other words, the input is for a partial character
sequence.
.Sp
\&\f(CW\*(C`UTF8_GOT_SHORT\*(C'\fR and \f(CW\*(C`UTF8_GOT_NON_CONTINUATION\*(C'\fR both indicate a too short
sequence.  The difference is that \f(CW\*(C`UTF8_GOT_NON_CONTINUATION\*(C'\fR indicates always
that there is an error, while \f(CW\*(C`UTF8_GOT_SHORT\*(C'\fR means that an incomplete
sequence was looked at.   If no other flags are present, it means that the
sequence was valid as far as it went.  Depending on the application, this could
mean one of three things:
.RS 4
.IP \(bu 4
The \f(CW\*(C`curlen\*(C'\fR length parameter passed in was too small, and the function was
prevented from examining all the necessary bytes.
.IP \(bu 4
The buffer being looked at is based on reading data, and the data received so
far stopped in the middle of a character, so that the next read will
read the remainder of this character.  (It is up to the caller to deal with the
split bytes somehow.)
.IP \(bu 4
This is a real error, and the partial sequence is all we're going to get.
.RE
.RS 4
.RE
.ie n .IP """UTF8_GOT_SUPER""" 4
.el .IP \f(CWUTF8_GOT_SUPER\fR 4
.IX Item "UTF8_GOT_SUPER"
The input sequence was malformed in that it is for a non-Unicode code point;
that is, one above the legal Unicode maximum.
This bit is set only if the input \f(CW\*(C`flags\*(C'\fR parameter contains either the
\&\f(CW\*(C`UTF8_DISALLOW_SUPER\*(C'\fR or the \f(CW\*(C`UTF8_WARN_SUPER\*(C'\fR flags.
.ie n .IP """UTF8_GOT_SURROGATE""" 4
.el .IP \f(CWUTF8_GOT_SURROGATE\fR 4
.IX Item "UTF8_GOT_SURROGATE"
The input sequence was malformed in that it is for a \-Unicode UTF\-16 surrogate
code point.
This bit is set only if the input \f(CW\*(C`flags\*(C'\fR parameter contains either the
\&\f(CW\*(C`UTF8_DISALLOW_SURROGATE\*(C'\fR or the \f(CW\*(C`UTF8_WARN_SURROGATE\*(C'\fR flags.
.RE
.RS 4
.Sp
To do your own error handling, call this function with the \f(CW\*(C`UTF8_CHECK_ONLY\*(C'\fR
flag to suppress any warnings, and then examine the \f(CW*errors\fR return.
.Sp
.Vb 3
\& UV  utf8n_to_uvchr_error(const U8 *s, STRLEN curlen,
\&                          STRLEN *retlen, const U32 flags,
\&                          U32 *errors)
.Ve
.RE
.RS 4
.RE
.ie n .IP """utf8n_to_uvchr_msgs""" 4
.el .IP \f(CWutf8n_to_uvchr_msgs\fR 4
.IX Xref "utf8n_to_uvchr_msgs"
.IX Item "utf8n_to_uvchr_msgs"
THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
Most code should use "utf8_to_uvchr_buf"() rather than call this
directly.
.Sp
This function is for code that needs to know what the precise malformation(s)
are when an error is found, and wants the corresponding warning and/or error
messages to be returned to the caller rather than be displayed.  All messages
that would have been displayed if all lexical warnings are enabled will be
returned.
.Sp
It is just like \f(CW"utf8n_to_uvchr_error"\fR but it takes an extra parameter
placed after all the others, \f(CW\*(C`msgs\*(C'\fR.  If this parameter is 0, this function
behaves identically to \f(CW"utf8n_to_uvchr_error"\fR.  Otherwise, \f(CW\*(C`msgs\*(C'\fR should
be a pointer to an \f(CW\*(C`AV *\*(C'\fR variable, in which this function creates a new AV to
contain any appropriate messages.  The elements of the array are ordered so
that the first message that would have been displayed is in the 0th element,
and so on.  Each element is a hash with three key-value pairs, as follows:
.RS 4
.ie n .IP """text""" 4
.el .IP \f(CWtext\fR 4
.IX Item "text"
The text of the message as a \f(CW\*(C`SVpv\*(C'\fR.
.ie n .IP """warn_categories""" 4
.el .IP \f(CWwarn_categories\fR 4
.IX Item "warn_categories"
The warning category (or categories) packed into a \f(CW\*(C`SVuv\*(C'\fR.
.ie n .IP """flag""" 4
.el .IP \f(CWflag\fR 4
.IX Item "flag"
A single flag bit associated with this message, in a \f(CW\*(C`SVuv\*(C'\fR.
The bit corresponds to some bit in the \f(CW*errors\fR return value,
such as \f(CW\*(C`UTF8_GOT_LONG\*(C'\fR.
.RE
.RS 4
.Sp
It's important to note that specifying this parameter as non-null will cause
any warnings this function would otherwise generate to be suppressed, and
instead be placed in \f(CW*msgs\fR.  The caller can check the lexical warnings state
(or not) when choosing what to do with the returned messages.
.Sp
If the flag \f(CW\*(C`UTF8_CHECK_ONLY\*(C'\fR is passed, no warnings are generated, and hence
no AV is created.
.Sp
The caller, of course, is responsible for freeing any returned AV.
.Sp
.Vb 3
\& UV  utf8n_to_uvchr_msgs(const U8 *s, STRLEN curlen,
\&                         STRLEN *retlen, const U32 flags,
\&                         U32 *errors, AV **msgs)
.Ve
.RE
.RS 4
.RE
.ie n .IP """UTF8_SAFE_SKIP""" 4
.el .IP \f(CWUTF8_SAFE_SKIP\fR 4
.IX Xref "UTF8_SAFE_SKIP"
.IX Item "UTF8_SAFE_SKIP"
returns 0 if \f(CW\*(C`s\ >=\ e\*(C'\fR; otherwise returns the number of bytes in the
UTF\-8 encoded character whose first  byte is pointed to by \f(CW\*(C`s\*(C'\fR.  But it never
returns beyond \f(CW\*(C`e\*(C'\fR.  On DEBUGGING builds, it asserts that \f(CW\*(C`s\ <=\ e\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& STRLEN  UTF8_SAFE_SKIP(char* s, char* e)
.Ve
.RE
.RS 4
.RE
.ie n .IP """UTF8SKIP""" 4
.el .IP \f(CWUTF8SKIP\fR 4
.IX Xref "UTF8SKIP"
.IX Item "UTF8SKIP"
returns the number of bytes a non-malformed UTF\-8 encoded character whose first
(perhaps only) byte is pointed to by \f(CW\*(C`s\*(C'\fR.
.Sp
If there is a possibility of malformed input, use instead:
.RS 4
.ie n .IP """UTF8_SAFE_SKIP"" if you know the maximum ending pointer in the buffer pointed to by ""s""; or" 4
.el .IP "\f(CW""UTF8_SAFE_SKIP""\fR if you know the maximum ending pointer in the buffer pointed to by \f(CWs\fR; or" 4
.IX Item """UTF8_SAFE_SKIP"" if you know the maximum ending pointer in the buffer pointed to by s; or"
.PD 0
.ie n .IP """UTF8_CHK_SKIP"" if you don't know it." 4
.el .IP "\f(CW""UTF8_CHK_SKIP""\fR if you don't know it." 4
.IX Item """UTF8_CHK_SKIP"" if you don't know it."
.RE
.RS 4
.PD
.Sp
It is better to restructure your code so the end pointer is passed down so that
you know what it actually is at the point of this call, but if that isn't
possible, \f(CW"UTF8_CHK_SKIP"\fR can minimize the chance of accessing beyond the end
of the input buffer.
.Sp
.Vb 1
\& STRLEN  UTF8SKIP(char* s)
.Ve
.RE
.RS 4
.RE
.ie n .IP """UTF8_SKIP""" 4
.el .IP \f(CWUTF8_SKIP\fR 4
.IX Xref "UTF8_SKIP"
.IX Item "UTF8_SKIP"
This is a synonym for \f(CW"UTF8SKIP"\fR
.RS 4
.Sp
.Vb 1
\& STRLEN  UTF8_SKIP(char* s)
.Ve
.RE
.RS 4
.RE
.ie n .IP """utf8_to_bytes""" 4
.el .IP \f(CWutf8_to_bytes\fR 4
.IX Xref "utf8_to_bytes"
.IX Item "utf8_to_bytes"
NOTE: \f(CW\*(C`utf8_to_bytes\*(C'\fR is \fBexperimental\fR and may change or be
removed without notice.
.Sp
Converts a string \f(CW"s"\fR of length \f(CW*lenp\fR from UTF\-8 into native byte encoding.
Unlike "bytes_to_utf8", this over-writes the original string, and
updates \f(CW*lenp\fR to contain the new length.
Returns zero on failure (leaving \f(CW"s"\fR unchanged) setting \f(CW*lenp\fR to \-1.
.Sp
Upon successful return, the number of variants in the string can be computed by
having saved the value of \f(CW*lenp\fR before the call, and subtracting the
after-call value of \f(CW*lenp\fR from it.
.Sp
If you need a copy of the string, see "bytes_from_utf8".
.RS 4
.Sp
.Vb 1
\& U8 *  utf8_to_bytes(U8 *s, STRLEN *lenp)
.Ve
.RE
.RS 4
.RE
.ie n .IP """utf8_to_uvchr""" 4
.el .IP \f(CWutf8_to_uvchr\fR 4
.IX Xref "utf8_to_uvchr"
.IX Item "utf8_to_uvchr"
\&\f(CW\*(C`\fR\f(CBDEPRECATED!\fR\f(CW\*(C'\fR  It is planned to remove \f(CW\*(C`utf8_to_uvchr\*(C'\fR
from a future release of Perl.  Do not use it for
new code; remove it from existing code.
.Sp
Returns the native code point of the first character in the string \f(CW\*(C`s\*(C'\fR
which is assumed to be in UTF\-8 encoding; \f(CW\*(C`retlen\*(C'\fR will be set to the
length, in bytes, of that character.
.Sp
Some, but not all, UTF\-8 malformations are detected, and in fact, some
malformed input could cause reading beyond the end of the input buffer, which
is why this function is deprecated.  Use "utf8_to_uvchr_buf" instead.
.Sp
If \f(CW\*(C`s\*(C'\fR points to one of the detected malformations, and UTF8 warnings are
enabled, zero is returned and \f(CW*retlen\fR is set (if \f(CW\*(C`retlen\*(C'\fR isn't
\&\f(CW\*(C`NULL\*(C'\fR) to \-1.  If those warnings are off, the computed value if well-defined (or
the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and \f(CW*retlen\fR
is set (if \f(CW\*(C`retlen\*(C'\fR isn't NULL) so that (\f(CW\*(C`s\*(C'\fR\ +\ \f(CW*retlen\fR) is the
next possible position in \f(CW\*(C`s\*(C'\fR that could begin a non-malformed character.
See "utf8n_to_uvchr" for details on when the REPLACEMENT CHARACTER is returned.
.RS 4
.Sp
.Vb 1
\& UV  utf8_to_uvchr(const U8 *s, STRLEN *retlen)
.Ve
.RE
.RS 4
.RE
.ie n .IP """utf8_to_uvchr_buf""" 4
.el .IP \f(CWutf8_to_uvchr_buf\fR 4
.IX Xref "utf8_to_uvchr_buf"
.IX Item "utf8_to_uvchr_buf"
Returns the native code point of the first character in the string \f(CW\*(C`s\*(C'\fR which
is assumed to be in UTF\-8 encoding; \f(CW\*(C`send\*(C'\fR points to 1 beyond the end of \f(CW\*(C`s\*(C'\fR.
\&\f(CW*retlen\fR will be set to the length, in bytes, of that character.
.Sp
If \f(CW\*(C`s\*(C'\fR does not point to a well-formed UTF\-8 character and UTF8 warnings are
enabled, zero is returned and \f(CW*retlen\fR is set (if \f(CW\*(C`retlen\*(C'\fR isn't
\&\f(CW\*(C`NULL\*(C'\fR) to \-1.  If those warnings are off, the computed value, if well-defined
(or the Unicode REPLACEMENT CHARACTER if not), is silently returned, and
\&\f(CW*retlen\fR is set (if \f(CW\*(C`retlen\*(C'\fR isn't \f(CW\*(C`NULL\*(C'\fR) so that (\f(CW\*(C`s\*(C'\fR\ +\ \f(CW*retlen\fR) is
the next possible position in \f(CW\*(C`s\*(C'\fR that could begin a non-malformed character.
See "utf8n_to_uvchr" for details on when the REPLACEMENT CHARACTER is
returned.
.RS 4
.Sp
.Vb 1
\& UV  utf8_to_uvchr_buf(const U8 *s, const U8 *send, STRLEN *retlen)
.Ve
.RE
.RS 4
.RE
.ie n .IP """UVCHR_IS_INVARIANT""" 4
.el .IP \f(CWUVCHR_IS_INVARIANT\fR 4
.IX Xref "UVCHR_IS_INVARIANT"
.IX Item "UVCHR_IS_INVARIANT"
Evaluates to 1 if the representation of code point \f(CW\*(C`cp\*(C'\fR is the same whether or
not it is encoded in UTF\-8; otherwise evaluates to 0.  UTF\-8 invariant
characters can be copied as-is when converting to/from UTF\-8, saving time.
\&\f(CW\*(C`cp\*(C'\fR is Unicode if above 255; otherwise is platform-native.
.RS 4
.Sp
.Vb 1
\& bool  UVCHR_IS_INVARIANT(UV cp)
.Ve
.RE
.RS 4
.RE
.ie n .IP """UVCHR_SKIP""" 4
.el .IP \f(CWUVCHR_SKIP\fR 4
.IX Xref "UVCHR_SKIP"
.IX Item "UVCHR_SKIP"
returns the number of bytes required to represent the code point \f(CW\*(C`cp\*(C'\fR when
encoded as UTF\-8.  \f(CW\*(C`cp\*(C'\fR is a native (ASCII or EBCDIC) code point if less than
255; a Unicode code point otherwise.
.RS 4
.Sp
.Vb 1
\& STRLEN  UVCHR_SKIP(UV cp)
.Ve
.RE
.RS 4
.RE
.ie n .IP """uvchr_to_utf8_flags""" 4
.el .IP \f(CWuvchr_to_utf8_flags\fR 4
.IX Xref "uvchr_to_utf8_flags"
.IX Item "uvchr_to_utf8_flags"
Adds the UTF\-8 representation of the native code point \f(CW\*(C`uv\*(C'\fR to the end
of the string \f(CW\*(C`d\*(C'\fR; \f(CW\*(C`d\*(C'\fR should have at least \f(CW\*(C`UVCHR_SKIP(uv)+1\*(C'\fR (up to
\&\f(CW\*(C`UTF8_MAXBYTES+1\*(C'\fR) free bytes available.  The return value is the pointer to
the byte after the end of the new character.  In other words,
.Sp
.Vb 1
\&    d = uvchr_to_utf8_flags(d, uv, flags);
.Ve
.Sp
or, in most cases,
.Sp
.Vb 1
\&    d = uvchr_to_utf8_flags(d, uv, 0);
.Ve
.Sp
This is the Unicode-aware way of saying
.Sp
.Vb 1
\&    *(d++) = uv;
.Ve
.Sp
If \f(CW\*(C`flags\*(C'\fR is 0, this function accepts any code point from 0..\f(CW\*(C`IV_MAX\*(C'\fR as
input.  \f(CW\*(C`IV_MAX\*(C'\fR is typically 0x7FFF_FFFF in a 32\-bit word.
.Sp
Specifying \f(CW\*(C`flags\*(C'\fR can further restrict what is allowed and not warned on, as
follows:
.Sp
If \f(CW\*(C`uv\*(C'\fR is a Unicode surrogate code point and \f(CW\*(C`UNICODE_WARN_SURROGATE\*(C'\fR is set,
the function will raise a warning, provided UTF8 warnings are enabled.  If
instead \f(CW\*(C`UNICODE_DISALLOW_SURROGATE\*(C'\fR is set, the function will fail and return
NULL.  If both flags are set, the function will both warn and return NULL.
.Sp
Similarly, the \f(CW\*(C`UNICODE_WARN_NONCHAR\*(C'\fR and \f(CW\*(C`UNICODE_DISALLOW_NONCHAR\*(C'\fR flags
affect how the function handles a Unicode non-character.
.Sp
And likewise, the \f(CW\*(C`UNICODE_WARN_SUPER\*(C'\fR and \f(CW\*(C`UNICODE_DISALLOW_SUPER\*(C'\fR flags
affect the handling of code points that are above the Unicode maximum of
0x10FFFF.  Languages other than Perl may not be able to accept files that
contain these.
.Sp
The flag \f(CW\*(C`UNICODE_WARN_ILLEGAL_INTERCHANGE\*(C'\fR selects all three of
the above WARN flags; and \f(CW\*(C`UNICODE_DISALLOW_ILLEGAL_INTERCHANGE\*(C'\fR selects all
three DISALLOW flags.  \f(CW\*(C`UNICODE_DISALLOW_ILLEGAL_INTERCHANGE\*(C'\fR restricts the
allowed inputs to the strict UTF\-8 traditionally defined by Unicode.
Similarly, \f(CW\*(C`UNICODE_WARN_ILLEGAL_C9_INTERCHANGE\*(C'\fR and
\&\f(CW\*(C`UNICODE_DISALLOW_ILLEGAL_C9_INTERCHANGE\*(C'\fR are shortcuts to select the
above-Unicode and surrogate flags, but not the non-character ones, as
defined in
Unicode Corrigendum #9 <https://www.unicode.org/versions/corrigendum9.html>.
See "Noncharacter code points" in perlunicode.
.Sp
Extremely high code points were never specified in any standard, and require an
extension to UTF\-8 to express, which Perl does.  It is likely that programs
written in something other than Perl would not be able to read files that
contain these; nor would Perl understand files written by something that uses a
different extension.  For these reasons, there is a separate set of flags that
can warn and/or disallow these extremely high code points, even if other
above-Unicode ones are accepted.  They are the \f(CW\*(C`UNICODE_WARN_PERL_EXTENDED\*(C'\fR
and \f(CW\*(C`UNICODE_DISALLOW_PERL_EXTENDED\*(C'\fR flags.  For more information see
\&\f(CW"UTF8_GOT_PERL_EXTENDED"\fR.  Of course \f(CW\*(C`UNICODE_DISALLOW_SUPER\*(C'\fR will
treat all above-Unicode code points, including these, as malformations.  (Note
that the Unicode standard considers anything above 0x10FFFF to be illegal, but
there are standards predating it that allow up to 0x7FFF_FFFF (2**31 \-1))
.Sp
A somewhat misleadingly named synonym for \f(CW\*(C`UNICODE_WARN_PERL_EXTENDED\*(C'\fR is
retained for backward compatibility: \f(CW\*(C`UNICODE_WARN_ABOVE_31_BIT\*(C'\fR.  Similarly,
\&\f(CW\*(C`UNICODE_DISALLOW_ABOVE_31_BIT\*(C'\fR is usable instead of the more accurately named
\&\f(CW\*(C`UNICODE_DISALLOW_PERL_EXTENDED\*(C'\fR.  The names are misleading because on EBCDIC
platforms,these flags can apply to code points that actually do fit in 31 bits.
The new names accurately describe the situation in all cases.
.RS 4
.Sp
.Vb 1
\& U8 *  uvchr_to_utf8_flags(U8 *d, UV uv, UV flags)
.Ve
.RE
.RS 4
.RE
.ie n .IP """uvchr_to_utf8_flags_msgs""" 4
.el .IP \f(CWuvchr_to_utf8_flags_msgs\fR 4
.IX Xref "uvchr_to_utf8_flags_msgs"
.IX Item "uvchr_to_utf8_flags_msgs"
THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
.Sp
Most code should use \f(CW\*(C`"uvchr_to_utf8_flags"()\*(C'\fR rather than call this directly.
.Sp
This function is for code that wants any warning and/or error messages to be
returned to the caller rather than be displayed.  All messages that would have
been displayed if all lexical warnings are enabled will be returned.
.Sp
It is just like \f(CW"uvchr_to_utf8_flags"\fR but it takes an extra parameter
placed after all the others, \f(CW\*(C`msgs\*(C'\fR.  If this parameter is 0, this function
behaves identically to \f(CW"uvchr_to_utf8_flags"\fR.  Otherwise, \f(CW\*(C`msgs\*(C'\fR should
be a pointer to an \f(CW\*(C`HV *\*(C'\fR variable, in which this function creates a new HV to
contain any appropriate messages.  The hash has three key-value pairs, as
follows:
.RS 4
.ie n .IP """text""" 4
.el .IP \f(CWtext\fR 4
.IX Item "text"
The text of the message as a \f(CW\*(C`SVpv\*(C'\fR.
.ie n .IP """warn_categories""" 4
.el .IP \f(CWwarn_categories\fR 4
.IX Item "warn_categories"
The warning category (or categories) packed into a \f(CW\*(C`SVuv\*(C'\fR.
.ie n .IP """flag""" 4
.el .IP \f(CWflag\fR 4
.IX Item "flag"
A single flag bit associated with this message, in a \f(CW\*(C`SVuv\*(C'\fR.
The bit corresponds to some bit in the \f(CW*errors\fR return value,
such as \f(CW\*(C`UNICODE_GOT_SURROGATE\*(C'\fR.
.RE
.RS 4
.Sp
It's important to note that specifying this parameter as non-null will cause
any warnings this function would otherwise generate to be suppressed, and
instead be placed in \f(CW*msgs\fR.  The caller can check the lexical warnings state
(or not) when choosing what to do with the returned messages.
.Sp
The caller, of course, is responsible for freeing any returned HV.
.Sp
.Vb 1
\& U8 *  uvchr_to_utf8_flags_msgs(U8 *d, UV uv, UV flags, HV **msgs)
.Ve
.RE
.RS 4
.RE
.ie n .IP """uvchr_to_utf8""" 4
.el .IP \f(CWuvchr_to_utf8\fR 4
.IX Xref "uvchr_to_utf8"
.IX Item "uvchr_to_utf8"
Adds the UTF\-8 representation of the native code point \f(CW\*(C`uv\*(C'\fR to the end
of the string \f(CW\*(C`d\*(C'\fR; \f(CW\*(C`d\*(C'\fR should have at least \f(CW\*(C`UVCHR_SKIP(uv)+1\*(C'\fR (up to
\&\f(CW\*(C`UTF8_MAXBYTES+1\*(C'\fR) free bytes available.  The return value is the pointer to
the byte after the end of the new character.  In other words,
.Sp
.Vb 1
\&    d = uvchr_to_utf8(d, uv);
.Ve
.Sp
is the recommended wide native character-aware way of saying
.Sp
.Vb 1
\&    *(d++) = uv;
.Ve
.Sp
This function accepts any code point from 0..\f(CW\*(C`IV_MAX\*(C'\fR as input.
\&\f(CW\*(C`IV_MAX\*(C'\fR is typically 0x7FFF_FFFF in a 32\-bit word.
.Sp
It is possible to forbid or warn on non-Unicode code points, or those that may
be problematic by using "uvchr_to_utf8_flags".
.RS 4
.Sp
.Vb 1
\& U8 *  uvchr_to_utf8(U8 *d, UV uv)
.Ve
.RE
.RS 4
.RE
.SH "Utility Functions"
.IX Header "Utility Functions"
.ie n .IP """C_ARRAY_END""" 4
.el .IP \f(CWC_ARRAY_END\fR 4
.IX Xref "C_ARRAY_END"
.IX Item "C_ARRAY_END"
Returns a pointer to one element past the final element of the input C array.
.RS 4
.Sp
.Vb 1
\& void *  C_ARRAY_END(void *a)
.Ve
.RE
.RS 4
.RE
.ie n .IP """C_ARRAY_LENGTH""" 4
.el .IP \f(CWC_ARRAY_LENGTH\fR 4
.IX Xref "C_ARRAY_LENGTH"
.IX Item "C_ARRAY_LENGTH"
Returns the number of elements in the input C array (so you want your
zero-based indices to be less than but not equal to).
.RS 4
.Sp
.Vb 1
\& STRLEN  C_ARRAY_LENGTH(void *a)
.Ve
.RE
.RS 4
.RE
.ie n .IP """getcwd_sv""" 4
.el .IP \f(CWgetcwd_sv\fR 4
.IX Xref "getcwd_sv"
.IX Item "getcwd_sv"
Fill \f(CW\*(C`sv\*(C'\fR with current working directory
.RS 4
.Sp
.Vb 1
\& int  getcwd_sv(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """IN_PERL_COMPILETIME""" 4
.el .IP \f(CWIN_PERL_COMPILETIME\fR 4
.IX Xref "IN_PERL_COMPILETIME"
.IX Item "IN_PERL_COMPILETIME"
Returns 1 if this macro is being called during the compilation phase of the
program; otherwise 0;
.RS 4
.Sp
.Vb 1
\& bool  IN_PERL_COMPILETIME
.Ve
.RE
.RS 4
.RE
.ie n .IP """IN_PERL_RUNTIME""" 4
.el .IP \f(CWIN_PERL_RUNTIME\fR 4
.IX Xref "IN_PERL_RUNTIME"
.IX Item "IN_PERL_RUNTIME"
Returns 1 if this macro is being called during the execution phase of the
program; otherwise 0;
.RS 4
.Sp
.Vb 1
\& bool  IN_PERL_RUNTIME
.Ve
.RE
.RS 4
.RE
.ie n .IP """IS_SAFE_SYSCALL""" 4
.el .IP \f(CWIS_SAFE_SYSCALL\fR 4
.IX Xref "IS_SAFE_SYSCALL"
.IX Item "IS_SAFE_SYSCALL"
Same as "is_safe_syscall".
.RS 4
.Sp
.Vb 2
\& bool  IS_SAFE_SYSCALL(NN const char *pv, STRLEN len,
\&                       NN const char *what, NN const char *op_name)
.Ve
.RE
.RS 4
.RE
.ie n .IP """is_safe_syscall""" 4
.el .IP \f(CWis_safe_syscall\fR 4
.IX Xref "is_safe_syscall"
.IX Item "is_safe_syscall"
Test that the given \f(CW\*(C`pv\*(C'\fR (with length \f(CW\*(C`len\*(C'\fR) doesn't contain any internal
\&\f(CW\*(C`NUL\*(C'\fR characters.
If it does, set \f(CW\*(C`errno\*(C'\fR to \f(CW\*(C`ENOENT\*(C'\fR, optionally warn using the \f(CW\*(C`syscalls\*(C'\fR
category, and return FALSE.
.Sp
Return TRUE if the name is safe.
.Sp
\&\f(CW\*(C`what\*(C'\fR and \f(CW\*(C`op_name\*(C'\fR are used in any warning.
.Sp
Used by the \f(CWIS_SAFE_SYSCALL()\fR macro.
.RS 4
.Sp
.Vb 2
\& bool  is_safe_syscall(const char *pv, STRLEN len,
\&                       const char *what, const char *op_name)
.Ve
.RE
.RS 4
.RE
.ie n .IP """my_setenv""" 4
.el .IP \f(CWmy_setenv\fR 4
.IX Xref "my_setenv"
.IX Item "my_setenv"
A wrapper for the C library \fBsetenv\fR\|(3).  Don't use the latter, as the perl
version has desirable safeguards
.RS 4
.Sp
.Vb 1
\& void  my_setenv(const char *nam, const char *val)
.Ve
.RE
.RS 4
.RE
.ie n .IP """newPADxVOP""" 4
.el .IP \f(CWnewPADxVOP\fR 4
.IX Xref "newPADxVOP"
.IX Item "newPADxVOP"
Constructs, checks and returns an op containing a pad offset.  \f(CW\*(C`type\*(C'\fR is
the opcode, which should be one of \f(CW\*(C`OP_PADSV\*(C'\fR, \f(CW\*(C`OP_PADAV\*(C'\fR, \f(CW\*(C`OP_PADHV\*(C'\fR
or \f(CW\*(C`OP_PADCV\*(C'\fR.  The returned op will have the \f(CW\*(C`op_targ\*(C'\fR field set by
the \f(CW\*(C`padix\*(C'\fR argument.
.Sp
This is convenient when constructing a large optree in nested function
calls, as it avoids needing to store the pad op directly to set the
\&\f(CW\*(C`op_targ\*(C'\fR field as a side-effect. For example
.Sp
.Vb 2
\&    o = op_append_elem(OP_LINESEQ, o,
\&        newPADxVOP(OP_PADSV, 0, padix));
.Ve
.RS 4
.Sp
.Vb 1
\& OP *  newPADxVOP(I32 type, I32 flags, PADOFFSET padix)
.Ve
.RE
.RS 4
.RE
.ie n .IP """phase_name""" 4
.el .IP \f(CWphase_name\fR 4
.IX Xref "phase_name"
.IX Item "phase_name"
Returns the given phase's name as a NUL-terminated string.
.Sp
For example, to print a stack trace that includes the current
interpreter phase you might do:
.Sp
.Vb 2
\&    const char* phase_name = phase_name(PL_phase);
\&    mess("This is weird. (Perl phase: %s)", phase_name);
.Ve
.RS 4
.Sp
.Vb 1
\& const char * const  phase_name(enum perl_phase)
.Ve
.RE
.RS 4
.RE
.ie n .IP """Poison""" 4
.el .IP \f(CWPoison\fR 4
.IX Xref "Poison"
.IX Item "Poison"
PoisonWith(0xEF) for catching access to freed memory.
.RS 4
.Sp
.Vb 1
\& void  Poison(void* dest, int nitems, type)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PoisonFree""" 4
.el .IP \f(CWPoisonFree\fR 4
.IX Xref "PoisonFree"
.IX Item "PoisonFree"
PoisonWith(0xEF) for catching access to freed memory.
.RS 4
.Sp
.Vb 1
\& void  PoisonFree(void* dest, int nitems, type)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PoisonNew""" 4
.el .IP \f(CWPoisonNew\fR 4
.IX Xref "PoisonNew"
.IX Item "PoisonNew"
PoisonWith(0xAB) for catching access to allocated but uninitialized memory.
.RS 4
.Sp
.Vb 1
\& void  PoisonNew(void* dest, int nitems, type)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PoisonWith""" 4
.el .IP \f(CWPoisonWith\fR 4
.IX Xref "PoisonWith"
.IX Item "PoisonWith"
Fill up memory with a byte pattern (a byte repeated over and over
again) that hopefully catches attempts to access uninitialized memory.
.RS 4
.Sp
.Vb 1
\& void  PoisonWith(void* dest, int nitems, type, U8 byte)
.Ve
.RE
.RS 4
.RE
.ie n .IP """StructCopy""" 4
.el .IP \f(CWStructCopy\fR 4
.IX Xref "StructCopy"
.IX Item "StructCopy"
This is an architecture-independent macro to copy one structure to another.
.RS 4
.Sp
.Vb 1
\& void  StructCopy(type *src, type *dest, type)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_destroyable""" 4
.el .IP \f(CWsv_destroyable\fR 4
.IX Xref "sv_destroyable"
.IX Item "sv_destroyable"
Dummy routine which reports that object can be destroyed when there is no
sharing module present.  It ignores its single SV argument, and returns
\&'true'.  Exists to avoid test for a \f(CW\*(C`NULL\*(C'\fR function pointer and because it
could potentially warn under some level of strict-ness.
.RS 4
.Sp
.Vb 1
\& bool  sv_destroyable(SV *sv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """sv_nosharing""" 4
.el .IP \f(CWsv_nosharing\fR 4
.IX Xref "sv_nosharing"
.IX Item "sv_nosharing"
Dummy routine which "shares" an SV when there is no sharing module present.
Or "locks" it.  Or "unlocks" it.  In other
words, ignores its single SV argument.
Exists to avoid test for a \f(CW\*(C`NULL\*(C'\fR function pointer and because it could
potentially warn under some level of strict-ness.
.RS 4
.Sp
.Vb 1
\& void  sv_nosharing(SV *sv)
.Ve
.RE
.RS 4
.RE
.SH Versioning
.IX Header "Versioning"
.ie n .IP """new_version""" 4
.el .IP \f(CWnew_version\fR 4
.IX Xref "new_version"
.IX Item "new_version"
Returns a new version object based on the passed in SV:
.Sp
.Vb 1
\&    SV *sv = new_version(SV *ver);
.Ve
.Sp
Does not alter the passed in ver SV.  See "upg_version" if you
want to upgrade the SV.
.RS 4
.Sp
.Vb 1
\& SV *  new_version(SV *ver)
.Ve
.RE
.RS 4
.RE
.ie n .IP """PERL_REVISION""" 4
.el .IP \f(CWPERL_REVISION\fR 4
.IX Xref "PERL_REVISION"
.IX Item "PERL_REVISION"
\&\f(CW\*(C`\fR\f(CBDEPRECATED!\fR\f(CW\*(C'\fR  It is planned to remove \f(CW\*(C`PERL_REVISION\*(C'\fR
from a future release of Perl.  Do not use it for
new code; remove it from existing code.
.Sp
The major number component of the perl interpreter currently being compiled or
executing.  This has been \f(CW5\fR from 1993 into 2020.
.Sp
Instead use one of the version comparison macros.  See \f(CW"PERL_VERSION_EQ"\fR.
.ie n .IP """PERL_SUBVERSION""" 4
.el .IP \f(CWPERL_SUBVERSION\fR 4
.IX Xref "PERL_SUBVERSION"
.IX Item "PERL_SUBVERSION"
\&\f(CW\*(C`\fR\f(CBDEPRECATED!\fR\f(CW\*(C'\fR  It is planned to remove \f(CW\*(C`PERL_SUBVERSION\*(C'\fR
from a future release of Perl.  Do not use it for
new code; remove it from existing code.
.Sp
The micro number component of the perl interpreter currently being compiled or
executing.  In stable releases this gives the dot release number for
maintenance updates.  In development releases this gives a tag for a snapshot
of the status at various points in the development cycle.
.Sp
Instead use one of the version comparison macros.  See \f(CW"PERL_VERSION_EQ"\fR.
.ie n .IP """PERL_VERSION""" 4
.el .IP \f(CWPERL_VERSION\fR 4
.IX Xref "PERL_VERSION"
.IX Item "PERL_VERSION"
\&\f(CW\*(C`\fR\f(CBDEPRECATED!\fR\f(CW\*(C'\fR  It is planned to remove \f(CW\*(C`PERL_VERSION\*(C'\fR
from a future release of Perl.  Do not use it for
new code; remove it from existing code.
.Sp
The minor number component of the perl interpreter currently being compiled or
executing.  Between 1993 into 2020, this has ranged from 0 to 33.
.Sp
Instead use one of the version comparison macros.  See \f(CW"PERL_VERSION_EQ"\fR.
.ie n .IP """PERL_VERSION_EQ""" 4
.el .IP \f(CWPERL_VERSION_EQ\fR 4
.IX Item "PERL_VERSION_EQ"
.PD 0
.ie n .IP """PERL_VERSION_GE""" 4
.el .IP \f(CWPERL_VERSION_GE\fR 4
.IX Item "PERL_VERSION_GE"
.ie n .IP """PERL_VERSION_GT""" 4
.el .IP \f(CWPERL_VERSION_GT\fR 4
.IX Item "PERL_VERSION_GT"
.ie n .IP """PERL_VERSION_LE""" 4
.el .IP \f(CWPERL_VERSION_LE\fR 4
.IX Item "PERL_VERSION_LE"
.ie n .IP """PERL_VERSION_LT""" 4
.el .IP \f(CWPERL_VERSION_LT\fR 4
.IX Item "PERL_VERSION_LT"
.ie n .IP """PERL_VERSION_NE""" 4
.el .IP \f(CWPERL_VERSION_NE\fR 4
.IX Xref "PERL_VERSION_EQ PERL_VERSION_GE PERL_VERSION_GT PERL_VERSION_LE PERL_VERSION_LT PERL_VERSION_NE"
.IX Item "PERL_VERSION_NE"
.PD
Returns whether or not the perl currently being compiled has the specified
relationship to the perl given by the parameters.  For example,
.Sp
.Vb 5
\& #if PERL_VERSION_GT(5,24,2)
\&   code that will only be compiled on perls after v5.24.2
\& #else
\&   fallback code
\& #endif
.Ve
.Sp
Note that this is usable in making compile-time decisions
.Sp
You may use the special value '*' for the final number to mean ALL possible
values for it.  Thus,
.Sp
.Vb 1
\& #if PERL_VERSION_EQ(5,31,\*(Aq*\*(Aq)
.Ve
.Sp
means all perls in the 5.31 series.  And
.Sp
.Vb 1
\& #if PERL_VERSION_NE(5,24,\*(Aq*\*(Aq)
.Ve
.Sp
means all perls EXCEPT 5.24 ones.  And
.Sp
.Vb 1
\& #if PERL_VERSION_LE(5,9,\*(Aq*\*(Aq)
.Ve
.Sp
is effectively
.Sp
.Vb 1
\& #if PERL_VERSION_LT(5,10,0)
.Ve
.Sp
This means you don't have to think so much when converting from the existing
deprecated \f(CW\*(C`PERL_VERSION\*(C'\fR to using this macro:
.Sp
.Vb 1
\& #if PERL_VERSION <= 9
.Ve
.Sp
becomes
.Sp
.Vb 1
\& #if PERL_VERSION_LE(5,9,\*(Aq*\*(Aq)
.Ve
.RS 4
.Sp
.Vb 2
\& bool  PERL_VERSION_EQ(const U8 major, const U8 minor,
\&                       const U8 patch)
.Ve
.RE
.RS 4
.RE
.ie n .IP """prescan_version""" 4
.el .IP \f(CWprescan_version\fR 4
.IX Xref "prescan_version"
.IX Item "prescan_version"
Validate that a given string can be parsed as a version object, but doesn't
actually perform the parsing.  Can use either strict or lax validation rules.
Can optionally set a number of hint variables to save the parsing code
some time when tokenizing.
.RS 4
.Sp
.Vb 4
\& const char *  prescan_version(const char *s, bool strict,
\&                               const char **errstr, bool *sqv,
\&                               int *ssaw_decimal, int *swidth,
\&                               bool *salpha)
.Ve
.RE
.RS 4
.RE
.ie n .IP """scan_version""" 4
.el .IP \f(CWscan_version\fR 4
.IX Xref "scan_version"
.IX Item "scan_version"
Returns a pointer to the next character after the parsed
version string, as well as upgrading the passed in SV to
an RV.
.Sp
Function must be called with an already existing SV like
.Sp
.Vb 2
\&    sv = newSV(0);
\&    s = scan_version(s, SV *sv, bool qv);
.Ve
.Sp
Performs some preprocessing to the string to ensure that
it has the correct characteristics of a version.  Flags the
object if it contains an underscore (which denotes this
is an alpha version).  The boolean qv denotes that the version
should be interpreted as if it had multiple decimals, even if
it doesn't.
.RS 4
.Sp
.Vb 1
\& const char *  scan_version(const char *s, SV *rv, bool qv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """upg_version""" 4
.el .IP \f(CWupg_version\fR 4
.IX Xref "upg_version"
.IX Item "upg_version"
In-place upgrade of the supplied SV to a version object.
.Sp
.Vb 1
\&    SV *sv = upg_version(SV *sv, bool qv);
.Ve
.Sp
Returns a pointer to the upgraded SV.  Set the boolean qv if you want
to force this SV to be interpreted as an "extended" version.
.RS 4
.Sp
.Vb 1
\& SV *  upg_version(SV *ver, bool qv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """vcmp""" 4
.el .IP \f(CWvcmp\fR 4
.IX Xref "vcmp"
.IX Item "vcmp"
Version object aware cmp.  Both operands must already have been 
converted into version objects.
.RS 4
.Sp
.Vb 1
\& int  vcmp(SV *lhv, SV *rhv)
.Ve
.RE
.RS 4
.RE
.ie n .IP """vnormal""" 4
.el .IP \f(CWvnormal\fR 4
.IX Xref "vnormal"
.IX Item "vnormal"
Accepts a version object and returns the normalized string
representation.  Call like:
.Sp
.Vb 1
\&    sv = vnormal(rv);
.Ve
.Sp
NOTE: you can pass either the object directly or the SV
contained within the RV.
.Sp
The SV returned has a refcount of 1.
.RS 4
.Sp
.Vb 1
\& SV *  vnormal(SV *vs)
.Ve
.RE
.RS 4
.RE
.ie n .IP """vnumify""" 4
.el .IP \f(CWvnumify\fR 4
.IX Xref "vnumify"
.IX Item "vnumify"
Accepts a version object and returns the normalized floating
point representation.  Call like:
.Sp
.Vb 1
\&    sv = vnumify(rv);
.Ve
.Sp
NOTE: you can pass either the object directly or the SV
contained within the RV.
.Sp
The SV returned has a refcount of 1.
.RS 4
.Sp
.Vb 1
\& SV *  vnumify(SV *vs)
.Ve
.RE
.RS 4
.RE
.ie n .IP """vstringify""" 4
.el .IP \f(CWvstringify\fR 4
.IX Xref "vstringify"
.IX Item "vstringify"
In order to maintain maximum compatibility with earlier versions
of Perl, this function will return either the floating point
notation or the multiple dotted notation, depending on whether
the original version contained 1 or more dots, respectively.
.Sp
The SV returned has a refcount of 1.
.RS 4
.Sp
.Vb 1
\& SV *  vstringify(SV *vs)
.Ve
.RE
.RS 4
.RE
.ie n .IP """vverify""" 4
.el .IP \f(CWvverify\fR 4
.IX Xref "vverify"
.IX Item "vverify"
Validates that the SV contains valid internal structure for a version object.
It may be passed either the version object (RV) or the hash itself (HV).  If
the structure is valid, it returns the HV.  If the structure is invalid,
it returns NULL.
.Sp
.Vb 1
\&    SV *hv = vverify(sv);
.Ve
.Sp
Note that it only confirms the bare minimum structure (so as not to get
confused by derived classes which may contain additional hash entries):
.RS 4
.IP \(bu 4
The SV is an HV or a reference to an HV
.IP \(bu 4
The hash contains a "version" key
.IP \(bu 4
The "version" key has a reference to an AV as its value
.RE
.RS 4
.Sp
.Vb 1
\& SV *  vverify(SV *vs)
.Ve
.RE
.RS 4
.RE
.SH "Warning and Dieing"
.IX Xref "WARN_ALL WARN_AMBIGUOUS WARN_BAREWORD WARN_CLOSED WARN_CLOSURE WARN_DEBUGGING WARN_DEPRECATED WARN_DEPRECATED__APOSTROPHE_AS_PACKAGE_SEPARATOR WARN_DEPRECATED__DELIMITER_WILL_BE_PAIRED WARN_DEPRECATED__DOT_IN_INC WARN_DEPRECATED__GOTO_CONSTRUCT WARN_DEPRECATED__SMARTMATCH WARN_DEPRECATED__UNICODE_PROPERTY_NAME WARN_DEPRECATED__VERSION_DOWNGRADE WARN_DIGIT WARN_EXEC WARN_EXITING WARN_EXPERIMENTAL WARN_EXPERIMENTAL__ARGS_ARRAY_WITH_SIGNATURES WARN_EXPERIMENTAL__BUILTIN WARN_EXPERIMENTAL__CLASS WARN_EXPERIMENTAL__CONST_ATTR WARN_EXPERIMENTAL__DECLARED_REFS WARN_EXPERIMENTAL__DEFER WARN_EXPERIMENTAL__EXTRA_PAIRED_DELIMITERS WARN_EXPERIMENTAL__FOR_LIST WARN_EXPERIMENTAL__PRIVATE_USE WARN_EXPERIMENTAL__REFALIASING WARN_EXPERIMENTAL__REGEX_SETS WARN_EXPERIMENTAL__RE_STRICT WARN_EXPERIMENTAL__TRY WARN_EXPERIMENTAL__UNIPROP_WILDCARDS WARN_EXPERIMENTAL__VLB WARN_GLOB WARN_ILLEGALPROTO WARN_IMPRECISION WARN_INPLACE WARN_INTERNAL WARN_IO WARN_LAYER WARN_LOCALE WARN_MALLOC WARN_MISC WARN_MISSING WARN_NEWLINE WARN_NONCHAR WARN_NON_UNICODE WARN_NUMERIC WARN_ONCE WARN_OVERFLOW WARN_PACK WARN_PARENTHESIS WARN_PIPE WARN_PORTABLE WARN_PRECEDENCE WARN_PRINTF WARN_PROTOTYPE WARN_QW WARN_RECURSION WARN_REDEFINE WARN_REDUNDANT WARN_REGEXP WARN_RESERVED WARN_SCALAR WARN_SEMICOLON WARN_SEVERE WARN_SHADOW WARN_SIGNAL WARN_SUBSTR WARN_SURROGATE WARN_SYNTAX WARN_SYSCALLS WARN_TAINT WARN_THREADS WARN_UNINITIALIZED WARN_UNOPENED WARN_UNPACK WARN_UNTIE WARN_UTF8 WARN_VOID"
.IX Header "Warning and Dieing"
In all these calls, the \f(CW\*(C`U32 w\fR\f(CIn\fR\f(CW\*(C'\fR parameters are warning category
constants.  You can see the ones currently available in
"Category Hierarchy" in warnings, just capitalize all letters in the names
and prefix them by \f(CW\*(C`WARN_\*(C'\fR.  So, for example, the category \f(CW\*(C`void\*(C'\fR used in a
perl program becomes \f(CW\*(C`WARN_VOID\*(C'\fR when used in XS code and passed to one of
the calls below.
.ie n .IP """ckWARN""" 4
.el .IP \f(CWckWARN\fR 4
.IX Item "ckWARN"
.PD 0
.ie n .IP """ckWARN2""" 4
.el .IP \f(CWckWARN2\fR 4
.IX Item "ckWARN2"
.ie n .IP """ckWARN3""" 4
.el .IP \f(CWckWARN3\fR 4
.IX Item "ckWARN3"
.ie n .IP """ckWARN4""" 4
.el .IP \f(CWckWARN4\fR 4
.IX Xref "ckWARN ckWARN2 ckWARN3 ckWARN4"
.IX Item "ckWARN4"
.PD
These return a boolean as to whether or not warnings are enabled for any of
the warning category(ies) parameters:  \f(CW\*(C`w\*(C'\fR, \f(CW\*(C`w1\*(C'\fR, ....
.Sp
Should any of the categories by default be enabled even if not within the
scope of \f(CW\*(C`use\ warnings\*(C'\fR, instead use the \f(CW"ckWARN_d"\fR macros.
.Sp
The categories must be completely independent, one may not be subclassed from
the other.
.RS 4
.Sp
.Vb 4
\& bool  ckWARN (U32 w)
\& bool  ckWARN2(U32 w1, U32 w2)
\& bool  ckWARN3(U32 w1, U32 w2, U32 w3)
\& bool  ckWARN4(U32 w1, U32 w2, U32 w3, U32 w4)
.Ve
.RE
.RS 4
.RE
.ie n .IP """ckWARN_d""" 4
.el .IP \f(CWckWARN_d\fR 4
.IX Item "ckWARN_d"
.PD 0
.ie n .IP """ckWARN2_d""" 4
.el .IP \f(CWckWARN2_d\fR 4
.IX Item "ckWARN2_d"
.ie n .IP """ckWARN3_d""" 4
.el .IP \f(CWckWARN3_d\fR 4
.IX Item "ckWARN3_d"
.ie n .IP """ckWARN4_d""" 4
.el .IP \f(CWckWARN4_d\fR 4
.IX Xref "ckWARN_d ckWARN2_d ckWARN3_d ckWARN4_d"
.IX Item "ckWARN4_d"
.PD
Like \f(CW"ckWARN"\fR, but for use if and only if the warning category(ies) is by
default enabled even if not within the scope of \f(CW\*(C`use\ warnings\*(C'\fR.
.RS 4
.Sp
.Vb 4
\& bool  ckWARN_d (U32 w)
\& bool  ckWARN2_d(U32 w1, U32 w2)
\& bool  ckWARN3_d(U32 w1, U32 w2, U32 w3)
\& bool  ckWARN4_d(U32 w1, U32 w2, U32 w3, U32 w4)
.Ve
.RE
.RS 4
.RE
.ie n .IP """ck_warner""" 4
.el .IP \f(CWck_warner\fR 4
.IX Item "ck_warner"
.PD 0
.ie n .IP """ck_warner_d""" 4
.el .IP \f(CWck_warner_d\fR 4
.IX Xref "ck_warner ck_warner_d"
.IX Item "ck_warner_d"
.PD
If none of the warning categories given by \f(CW\*(C`err\*(C'\fR are enabled, do nothing;
otherwise call \f(CW"warner"\fR  or \f(CW"warner_nocontext"\fR with the passed-in
parameters;.
.Sp
\&\f(CW\*(C`err\*(C'\fR must be one of the \f(CW"packWARN"\fR, \f(CW\*(C`packWARN2\*(C'\fR, \f(CW\*(C`packWARN3\*(C'\fR,
\&\f(CW\*(C`packWARN4\*(C'\fR macros populated with the appropriate number of warning
categories.
.Sp
The two forms differ only in that \f(CW\*(C`ck_warner_d\*(C'\fR should be used if warnings for
any of the categories are by default enabled.
.Sp
NOTE: \f(CW\*(C`ck_warner\*(C'\fR must be explicitly called as
\&\f(CW\*(C`Perl_ck_warner\*(C'\fR
with an \f(CW\*(C`aTHX_\*(C'\fR parameter.
.Sp
NOTE: \f(CW\*(C`ck_warner_d\*(C'\fR must be explicitly called as
\&\f(CW\*(C`Perl_ck_warner_d\*(C'\fR
with an \f(CW\*(C`aTHX_\*(C'\fR parameter.
.RS 4
.Sp
.Vb 1
\& void  Perl_ck_warner(pTHX_ U32 err, const char *pat, ...)
.Ve
.RE
.RS 4
.RE
.ie n .IP """CLEAR_ERRSV""" 4
.el .IP \f(CWCLEAR_ERRSV\fR 4
.IX Xref "CLEAR_ERRSV"
.IX Item "CLEAR_ERRSV"
Clear the contents of \f(CW$@\fR, setting it to the empty string.
.Sp
This replaces any read-only SV with a fresh SV and removes any magic.
.RS 4
.Sp
.Vb 1
\& void  CLEAR_ERRSV()
.Ve
.RE
.RS 4
.RE
.ie n .IP """croak""" 4
.el .IP \f(CWcroak\fR 4
.IX Item "croak"
.PD 0
.ie n .IP """croak_nocontext""" 4
.el .IP \f(CWcroak_nocontext\fR 4
.IX Xref "croak croak_nocontext"
.IX Item "croak_nocontext"
.PD
These are XS interfaces to Perl's \f(CW\*(C`die\*(C'\fR function.
.Sp
They take a sprintf-style format pattern and argument list, which are used to
generate a string message.  If the message does not end with a newline, then it
will be extended with some indication of the current location in the code, as
described for \f(CW"mess_sv"\fR.
.Sp
The error message will be used as an exception, by default
returning control to the nearest enclosing \f(CW\*(C`eval\*(C'\fR, but subject to
modification by a \f(CW$SIG{_\|_DIE_\|_}\fR handler.  In any case, these croak
functions never return normally.
.Sp
For historical reasons, if \f(CW\*(C`pat\*(C'\fR is null then the contents of \f(CW\*(C`ERRSV\*(C'\fR
(\f(CW$@\fR) will be used as an error message or object instead of building an
error message from arguments.  If you want to throw a non-string object,
or build an error message in an SV yourself, it is preferable to use
the \f(CW"croak_sv"\fR function, which does not involve clobbering \f(CW\*(C`ERRSV\*(C'\fR.
.Sp
The two forms differ only in that \f(CW\*(C`croak_nocontext\*(C'\fR does not take a thread
context (\f(CW\*(C`aTHX\*(C'\fR) parameter.  It is usually preferred as it takes up fewer
bytes of code than plain \f(CW\*(C`Perl_croak\*(C'\fR, and time is rarely a critical resource
when you are about to throw an exception.
.Sp
NOTE: \f(CW\*(C`croak\*(C'\fR must be explicitly called as
\&\f(CW\*(C`Perl_croak\*(C'\fR
with an \f(CW\*(C`aTHX_\*(C'\fR parameter.
.RS 4
.Sp
.Vb 2
\& void  Perl_croak     (pTHX_ const char *pat, ...)
\& void  croak_nocontext(const char *pat, ...)
.Ve
.RE
.RS 4
.RE
.ie n .IP """croak_no_modify""" 4
.el .IP \f(CWcroak_no_modify\fR 4
.IX Xref "croak_no_modify"
.IX Item "croak_no_modify"
This encapsulates a common reason for dying, generating terser object code than
using the generic \f(CW\*(C`Perl_croak\*(C'\fR.  It is exactly equivalent to
\&\f(CW\*(C`Perl_croak(aTHX_ "%s", PL_no_modify)\*(C'\fR (which expands to something like
"Modification of a read-only value attempted").
.Sp
Less code used on exception code paths reduces CPU cache pressure.
.RS 4
.Sp
.Vb 1
\& void  croak_no_modify()
.Ve
.RE
.RS 4
.RE
.ie n .IP """croak_sv""" 4
.el .IP \f(CWcroak_sv\fR 4
.IX Xref "croak_sv"
.IX Item "croak_sv"
This is an XS interface to Perl's \f(CW\*(C`die\*(C'\fR function.
.Sp
\&\f(CW\*(C`baseex\*(C'\fR is the error message or object.  If it is a reference, it
will be used as-is.  Otherwise it is used as a string, and if it does
not end with a newline then it will be extended with some indication of
the current location in the code, as described for "mess_sv".
.Sp
The error message or object will be used as an exception, by default
returning control to the nearest enclosing \f(CW\*(C`eval\*(C'\fR, but subject to
modification by a \f(CW$SIG{_\|_DIE_\|_}\fR handler.  In any case, the \f(CW\*(C`croak_sv\*(C'\fR
function never returns normally.
.Sp
To die with a simple string message, the "croak" function may be
more convenient.
.RS 4
.Sp
.Vb 1
\& void  croak_sv(SV *baseex)
.Ve
.RE
.RS 4
.RE
.ie n .IP """die""" 4
.el .IP \f(CWdie\fR 4
.IX Item "die"
.PD 0
.ie n .IP """die_nocontext""" 4
.el .IP \f(CWdie_nocontext\fR 4
.IX Xref "die die_nocontext"
.IX Item "die_nocontext"
.PD
These behave the same as "croak", except for the return type.
They should be used only where the \f(CW\*(C`OP *\*(C'\fR return type is required.
They never actually return.
.Sp
The two forms differ only in that \f(CW\*(C`die_nocontext\*(C'\fR does not take a thread
context (\f(CW\*(C`aTHX\*(C'\fR) parameter, so is used in situations where the caller doesn't
already have the thread context.
.Sp
NOTE: \f(CW\*(C`die\*(C'\fR must be explicitly called as
\&\f(CW\*(C`Perl_die\*(C'\fR
with an \f(CW\*(C`aTHX_\*(C'\fR parameter.
.RS 4
.Sp
.Vb 2
\& OP *  Perl_die     (pTHX_ const char *pat, ...)
\& OP *  die_nocontext(const char *pat, ...)
.Ve
.RE
.RS 4
.RE
.ie n .IP """die_sv""" 4
.el .IP \f(CWdie_sv\fR 4
.IX Xref "die_sv"
.IX Item "die_sv"
This behaves the same as "croak_sv", except for the return type.
It should be used only where the \f(CW\*(C`OP *\*(C'\fR return type is required.
The function never actually returns.
.RS 4
.Sp
.Vb 1
\& OP *  die_sv(SV *baseex)
.Ve
.RE
.RS 4
.RE
.ie n .IP """ERRSV""" 4
.el .IP \f(CWERRSV\fR 4
.IX Xref "ERRSV"
.IX Item "ERRSV"
Returns the SV for \f(CW$@\fR, creating it if needed.
.RS 4
.Sp
.Vb 1
\& SV *  ERRSV
.Ve
.RE
.RS 4
.RE
.ie n .IP """packWARN""" 4
.el .IP \f(CWpackWARN\fR 4
.IX Item "packWARN"
.PD 0
.ie n .IP """packWARN2""" 4
.el .IP \f(CWpackWARN2\fR 4
.IX Item "packWARN2"
.ie n .IP """packWARN3""" 4
.el .IP \f(CWpackWARN3\fR 4
.IX Item "packWARN3"
.ie n .IP """packWARN4""" 4
.el .IP \f(CWpackWARN4\fR 4
.IX Xref "packWARN packWARN2 packWARN3 packWARN4"
.IX Item "packWARN4"
.PD
These macros are used to pack warning categories into a single U32 to pass to
macros and functions that take a warning category parameter.  The number of
categories to pack is given by the name, with a corresponding number of
category parameters passed.
.RS 4
.Sp
.Vb 4
\& U32  packWARN (U32 w1)
\& U32  packWARN2(U32 w1, U32 w2)
\& U32  packWARN3(U32 w1, U32 w2, U32 w3)
\& U32  packWARN4(U32 w1, U32 w2, U32 w3, U32 w4)
.Ve
.RE
.RS 4
.RE
.ie n .IP """SANE_ERRSV""" 4
.el .IP \f(CWSANE_ERRSV\fR 4
.IX Xref "SANE_ERRSV"
.IX Item "SANE_ERRSV"
Clean up ERRSV so we can safely set it.
.Sp
This replaces any read-only SV with a fresh writable copy and removes
any magic.
.RS 4
.Sp
.Vb 1
\& void  SANE_ERRSV()
.Ve
.RE
.RS 4
.RE
.ie n .IP """vcroak""" 4
.el .IP \f(CWvcroak\fR 4
.IX Xref "vcroak"
.IX Item "vcroak"
This is an XS interface to Perl's \f(CW\*(C`die\*(C'\fR function.
.Sp
\&\f(CW\*(C`pat\*(C'\fR and \f(CW\*(C`args\*(C'\fR are a sprintf-style format pattern and encapsulated
argument list.  These are used to generate a string message.  If the
message does not end with a newline, then it will be extended with
some indication of the current location in the code, as described for
"mess_sv".
.Sp
The error message will be used as an exception, by default
returning control to the nearest enclosing \f(CW\*(C`eval\*(C'\fR, but subject to
modification by a \f(CW$SIG{_\|_DIE_\|_}\fR handler.  In any case, the \f(CW\*(C`croak\*(C'\fR
function never returns normally.
.Sp
For historical reasons, if \f(CW\*(C`pat\*(C'\fR is null then the contents of \f(CW\*(C`ERRSV\*(C'\fR
(\f(CW$@\fR) will be used as an error message or object instead of building an
error message from arguments.  If you want to throw a non-string object,
or build an error message in an SV yourself, it is preferable to use
the "croak_sv" function, which does not involve clobbering \f(CW\*(C`ERRSV\*(C'\fR.
.RS 4
.Sp
.Vb 1
\& void  vcroak(const char *pat, va_list *args)
.Ve
.RE
.RS 4
.RE
.ie n .IP """vwarn""" 4
.el .IP \f(CWvwarn\fR 4
.IX Xref "vwarn"
.IX Item "vwarn"
This is an XS interface to Perl's \f(CW\*(C`warn\*(C'\fR function.
.Sp
This is like \f(CW"warn"\fR, but \f(CW\*(C`args\*(C'\fR are an encapsulated
argument list.
.Sp
Unlike with "vcroak", \f(CW\*(C`pat\*(C'\fR is not permitted to be null.
.RS 4
.Sp
.Vb 1
\& void  vwarn(const char *pat, va_list *args)
.Ve
.RE
.RS 4
.RE
.ie n .IP """vwarner""" 4
.el .IP \f(CWvwarner\fR 4
.IX Xref "vwarner"
.IX Item "vwarner"
This is like \f(CW"warner"\fR, but \f(CW\*(C`args\*(C'\fR are an encapsulated argument list.
.RS 4
.Sp
.Vb 1
\& void  vwarner(U32 err, const char *pat, va_list *args)
.Ve
.RE
.RS 4
.RE
.ie n .IP """warn""" 4
.el .IP \f(CWwarn\fR 4
.IX Item "warn"
.PD 0
.ie n .IP """warn_nocontext""" 4
.el .IP \f(CWwarn_nocontext\fR 4
.IX Xref "warn warn_nocontext"
.IX Item "warn_nocontext"
.PD
These are XS interfaces to Perl's \f(CW\*(C`warn\*(C'\fR function.
.Sp
They take a sprintf-style format pattern and argument list, which  are used to
generate a string message.  If the message does not end with a newline, then it
will be extended with some indication of the current location in the code, as
described for \f(CW"mess_sv"\fR.
.Sp
The error message or object will by default be written to standard error,
but this is subject to modification by a \f(CW$SIG{_\|_WARN_\|_}\fR handler.
.Sp
Unlike with \f(CW"croak"\fR, \f(CW\*(C`pat\*(C'\fR is not permitted to be null.
.Sp
The two forms differ only in that \f(CW\*(C`warn_nocontext\*(C'\fR does not take a thread
context (\f(CW\*(C`aTHX\*(C'\fR) parameter, so is used in situations where the caller doesn't
already have the thread context.
.Sp
NOTE: \f(CW\*(C`warn\*(C'\fR must be explicitly called as
\&\f(CW\*(C`Perl_warn\*(C'\fR
with an \f(CW\*(C`aTHX_\*(C'\fR parameter.
.RS 4
.Sp
.Vb 2
\& void  Perl_warn     (pTHX_ const char *pat, ...)
\& void  warn_nocontext(const char *pat, ...)
.Ve
.RE
.RS 4
.RE
.ie n .IP """warner""" 4
.el .IP \f(CWwarner\fR 4
.IX Item "warner"
.PD 0
.ie n .IP """warner_nocontext""" 4
.el .IP \f(CWwarner_nocontext\fR 4
.IX Xref "warner warner_nocontext"
.IX Item "warner_nocontext"
.PD
These output a warning of the specified category (or categories) given by
\&\f(CW\*(C`err\*(C'\fR, using the sprintf-style format pattern \f(CW\*(C`pat\*(C'\fR, and argument list.
.Sp
\&\f(CW\*(C`err\*(C'\fR must be one of the \f(CW"packWARN"\fR, \f(CW\*(C`packWARN2\*(C'\fR, \f(CW\*(C`packWARN3\*(C'\fR,
\&\f(CW\*(C`packWARN4\*(C'\fR macros populated with the appropriate number of warning
categories.  If any of the warning categories they specify is fatal, a fatal
exception is thrown.
.Sp
In any event a message is generated by the pattern and arguments.  If the
message does not end with a newline, then it will be extended with some
indication of the current location in the code, as described for "mess_sv".
.Sp
The error message or object will by default be written to standard error,
but this is subject to modification by a \f(CW$SIG{_\|_WARN_\|_}\fR handler.
.Sp
\&\f(CW\*(C`pat\*(C'\fR is not permitted to be null.
.Sp
The two forms differ only in that \f(CW\*(C`warner_nocontext\*(C'\fR does not take a thread
context (\f(CW\*(C`aTHX\*(C'\fR) parameter, so is used in situations where the caller doesn't
already have the thread context.
.Sp
These functions differ from the similarly named \f(CW"warn"\fR functions, in that
the latter are for XS code to unconditionally display a warning, whereas these
are for code that may be compiling a perl program, and does extra checking to
see if the warning should be fatal.
.Sp
NOTE: \f(CW\*(C`warner\*(C'\fR must be explicitly called as
\&\f(CW\*(C`Perl_warner\*(C'\fR
with an \f(CW\*(C`aTHX_\*(C'\fR parameter.
.RS 4
.Sp
.Vb 2
\& void  Perl_warner     (pTHX_ U32 err, const char *pat, ...)
\& void  warner_nocontext(U32 err, const char *pat, ...)
.Ve
.RE
.RS 4
.RE
.ie n .IP """warn_sv""" 4
.el .IP \f(CWwarn_sv\fR 4
.IX Xref "warn_sv"
.IX Item "warn_sv"
This is an XS interface to Perl's \f(CW\*(C`warn\*(C'\fR function.
.Sp
\&\f(CW\*(C`baseex\*(C'\fR is the error message or object.  If it is a reference, it
will be used as-is.  Otherwise it is used as a string, and if it does
not end with a newline then it will be extended with some indication of
the current location in the code, as described for "mess_sv".
.Sp
The error message or object will by default be written to standard error,
but this is subject to modification by a \f(CW$SIG{_\|_WARN_\|_}\fR handler.
.Sp
To warn with a simple string message, the "warn" function may be
more convenient.
.RS 4
.Sp
.Vb 1
\& void  warn_sv(SV *baseex)
.Ve
.RE
.RS 4
.RE
.SH XS
.IX Header "XS"
\&\fIxsubpp\fR compiles XS code into C.  See "xsubpp" in perlutil.
.ie n .IP """aMY_CXT""" 4
.el .IP \f(CWaMY_CXT\fR 4
.IX Item "aMY_CXT"
Described in perlxs.
.ie n .IP """_aMY_CXT""" 4
.el .IP \f(CW_aMY_CXT\fR 4
.IX Item "_aMY_CXT"
Described in perlxs.
.ie n .IP """aMY_CXT_""" 4
.el .IP \f(CWaMY_CXT_\fR 4
.IX Item "aMY_CXT_"
Described in perlxs.
.ie n .IP """ax""" 4
.el .IP \f(CWax\fR 4
.IX Xref "ax"
.IX Item "ax"
Variable which is setup by \f(CW\*(C`xsubpp\*(C'\fR to indicate the stack base offset,
used by the \f(CW\*(C`ST\*(C'\fR, \f(CW\*(C`XSprePUSH\*(C'\fR and \f(CW\*(C`XSRETURN\*(C'\fR macros.  The \f(CW\*(C`dMARK\*(C'\fR macro
must be called prior to setup the \f(CW\*(C`MARK\*(C'\fR variable.
.RS 4
.Sp
.Vb 1
\& I32  ax
.Ve
.RE
.RS 4
.RE
.ie n .IP """CLASS""" 4
.el .IP \f(CWCLASS\fR 4
.IX Xref "CLASS"
.IX Item "CLASS"
Variable which is setup by \f(CW\*(C`xsubpp\*(C'\fR to indicate the
class name for a C++ XS constructor.  This is always a \f(CW\*(C`char*\*(C'\fR.  See
\&\f(CW"THIS"\fR.
.RS 4
.Sp
.Vb 1
\& char*  CLASS
.Ve
.RE
.RS 4
.RE
.ie n .IP """dAX""" 4
.el .IP \f(CWdAX\fR 4
.IX Xref "dAX"
.IX Item "dAX"
Sets up the \f(CW\*(C`ax\*(C'\fR variable.
This is usually handled automatically by \f(CW\*(C`xsubpp\*(C'\fR by calling \f(CW\*(C`dXSARGS\*(C'\fR.
.RS 4
.Sp
.Vb 1
\&   dAX;
.Ve
.RE
.RS 4
.RE
.ie n .IP """dAXMARK""" 4
.el .IP \f(CWdAXMARK\fR 4
.IX Xref "dAXMARK"
.IX Item "dAXMARK"
Sets up the \f(CW\*(C`ax\*(C'\fR variable and stack marker variable \f(CW\*(C`mark\*(C'\fR.
This is usually handled automatically by \f(CW\*(C`xsubpp\*(C'\fR by calling \f(CW\*(C`dXSARGS\*(C'\fR.
.RS 4
.Sp
.Vb 1
\&   dAXMARK;
.Ve
.RE
.RS 4
.RE
.ie n .IP """dITEMS""" 4
.el .IP \f(CWdITEMS\fR 4
.IX Xref "dITEMS"
.IX Item "dITEMS"
Sets up the \f(CW\*(C`items\*(C'\fR variable.
This is usually handled automatically by \f(CW\*(C`xsubpp\*(C'\fR by calling \f(CW\*(C`dXSARGS\*(C'\fR.
.RS 4
.Sp
.Vb 1
\&   dITEMS;
.Ve
.RE
.RS 4
.RE
.ie n .IP """dMY_CXT""" 4
.el .IP \f(CWdMY_CXT\fR 4
.IX Item "dMY_CXT"
Described in perlxs.
.ie n .IP """dMY_CXT_SV""" 4
.el .IP \f(CWdMY_CXT_SV\fR 4
.IX Xref "dMY_CXT_SV"
.IX Item "dMY_CXT_SV"
Now a placeholder that declares nothing
.RS 4
.Sp
.Vb 1
\&   dMY_CXT_SV;
.Ve
.RE
.RS 4
.RE
.ie n .IP """dUNDERBAR""" 4
.el .IP \f(CWdUNDERBAR\fR 4
.IX Xref "dUNDERBAR"
.IX Item "dUNDERBAR"
Sets up any variable needed by the \f(CW\*(C`UNDERBAR\*(C'\fR macro.  It used to define
\&\f(CW\*(C`padoff_du\*(C'\fR, but it is currently a noop.  However, it is strongly advised
to still use it for ensuring past and future compatibility.
.RS 4
.Sp
.Vb 1
\&   dUNDERBAR;
.Ve
.RE
.RS 4
.RE
.ie n .IP """dXSARGS""" 4
.el .IP \f(CWdXSARGS\fR 4
.IX Xref "dXSARGS"
.IX Item "dXSARGS"
Sets up stack and mark pointers for an XSUB, calling \f(CW\*(C`dSP\*(C'\fR and \f(CW\*(C`dMARK\*(C'\fR.
Sets up the \f(CW\*(C`ax\*(C'\fR and \f(CW\*(C`items\*(C'\fR variables by calling \f(CW\*(C`dAX\*(C'\fR and \f(CW\*(C`dITEMS\*(C'\fR.
This is usually handled automatically by \f(CW\*(C`xsubpp\*(C'\fR.
.RS 4
.Sp
.Vb 1
\&   dXSARGS;
.Ve
.RE
.RS 4
.RE
.ie n .IP """dXSI32""" 4
.el .IP \f(CWdXSI32\fR 4
.IX Xref "dXSI32"
.IX Item "dXSI32"
Sets up the \f(CW\*(C`ix\*(C'\fR variable for an XSUB which has aliases.  This is usually
handled automatically by \f(CW\*(C`xsubpp\*(C'\fR.
.RS 4
.Sp
.Vb 1
\&   dXSI32;
.Ve
.RE
.RS 4
.RE
.ie n .IP """items""" 4
.el .IP \f(CWitems\fR 4
.IX Xref "items"
.IX Item "items"
Variable which is setup by \f(CW\*(C`xsubpp\*(C'\fR to indicate the number of
items on the stack.  See "Variable-length Parameter Lists" in perlxs.
.RS 4
.Sp
.Vb 1
\& I32  items
.Ve
.RE
.RS 4
.RE
.ie n .IP """ix""" 4
.el .IP \f(CWix\fR 4
.IX Xref "ix"
.IX Item "ix"
Variable which is setup by \f(CW\*(C`xsubpp\*(C'\fR to indicate which of an
XSUB's aliases was used to invoke it.  See "The ALIAS: Keyword" in perlxs.
.RS 4
.Sp
.Vb 1
\& I32  ix
.Ve
.RE
.RS 4
.RE
.ie n .IP """MY_CXT""" 4
.el .IP \f(CWMY_CXT\fR 4
.IX Item "MY_CXT"
Described in perlxs.
.ie n .IP """MY_CXT_CLONE""" 4
.el .IP \f(CWMY_CXT_CLONE\fR 4
.IX Item "MY_CXT_CLONE"
Described in perlxs.
.ie n .IP """MY_CXT_INIT""" 4
.el .IP \f(CWMY_CXT_INIT\fR 4
.IX Item "MY_CXT_INIT"
Described in perlxs.
.ie n .IP """pMY_CXT""" 4
.el .IP \f(CWpMY_CXT\fR 4
.IX Item "pMY_CXT"
Described in perlxs.
.ie n .IP """_pMY_CXT""" 4
.el .IP \f(CW_pMY_CXT\fR 4
.IX Item "_pMY_CXT"
Described in perlxs.
.ie n .IP """pMY_CXT_""" 4
.el .IP \f(CWpMY_CXT_\fR 4
.IX Item "pMY_CXT_"
Described in perlxs.
.ie n .IP """RETVAL""" 4
.el .IP \f(CWRETVAL\fR 4
.IX Xref "RETVAL"
.IX Item "RETVAL"
Variable which is setup by \f(CW\*(C`xsubpp\*(C'\fR to hold the return value for an
XSUB.  This is always the proper type for the XSUB.  See
"The RETVAL Variable" in perlxs.
.RS 4
.Sp
.Vb 1
\& type  RETVAL
.Ve
.RE
.RS 4
.RE
.ie n .IP """ST""" 4
.el .IP \f(CWST\fR 4
.IX Xref "ST"
.IX Item "ST"
Used to access elements on the XSUB's stack.
.RS 4
.Sp
.Vb 1
\& SV*  ST(int ix)
.Ve
.RE
.RS 4
.RE
.ie n .IP """START_MY_CXT""" 4
.el .IP \f(CWSTART_MY_CXT\fR 4
.IX Item "START_MY_CXT"
Described in perlxs.
.ie n .IP """THIS""" 4
.el .IP \f(CWTHIS\fR 4
.IX Xref "THIS"
.IX Item "THIS"
Variable which is setup by \f(CW\*(C`xsubpp\*(C'\fR to designate the object in a C++
XSUB.  This is always the proper type for the C++ object.  See \f(CW"CLASS"\fR and
"Using XS With C++" in perlxs.
.RS 4
.Sp
.Vb 1
\& type  THIS
.Ve
.RE
.RS 4
.RE
.ie n .IP """UNDERBAR""" 4
.el .IP \f(CWUNDERBAR\fR 4
.IX Xref "UNDERBAR"
.IX Item "UNDERBAR"
The SV* corresponding to the \f(CW$_\fR variable.  Works even if there
is a lexical \f(CW$_\fR in scope.
.ie n .IP """XS""" 4
.el .IP \f(CWXS\fR 4
.IX Xref "XS"
.IX Item "XS"
Macro to declare an XSUB and its C parameter list.  This is handled by
\&\f(CW\*(C`xsubpp\*(C'\fR.  It is the same as using the more explicit \f(CW\*(C`XS_EXTERNAL\*(C'\fR macro; the
latter is preferred.
.ie n .IP """XS_EXTERNAL""" 4
.el .IP \f(CWXS_EXTERNAL\fR 4
.IX Xref "XS_EXTERNAL"
.IX Item "XS_EXTERNAL"
Macro to declare an XSUB and its C parameter list explicitly exporting the symbols.
.ie n .IP """XS_INTERNAL""" 4
.el .IP \f(CWXS_INTERNAL\fR 4
.IX Xref "XS_INTERNAL"
.IX Item "XS_INTERNAL"
Macro to declare an XSUB and its C parameter list without exporting the symbols.
This is handled by \f(CW\*(C`xsubpp\*(C'\fR and generally preferable over exporting the XSUB
symbols unnecessarily.
.ie n .IP """XSPROTO""" 4
.el .IP \f(CWXSPROTO\fR 4
.IX Xref "XSPROTO"
.IX Item "XSPROTO"
Macro used by \f(CW"XS_INTERNAL"\fR and \f(CW"XS_EXTERNAL"\fR to declare a function
prototype.  You probably shouldn't be using this directly yourself.
.SH "Undocumented elements"
.IX Header "Undocumented elements"
The following functions have been flagged as part of the public
API, but are currently undocumented.  Use them at your own risk,
as the interfaces are subject to change.  Functions that are not
listed in this document are not intended for public use, and
should NOT be used under any circumstances.
.PP
If you feel you need to use one of these functions, first send
email to perl5\-porters@perl.org <mailto:perl5-porters@perl.org>.
It may be that there is a good reason for the function not being
documented, and it should be removed from this list; or it may
just be that no one has gotten around to documenting it.  In the
latter case, you will be asked to submit a patch to document the
function.  Once your patch is accepted, it will indicate that the
interface is stable (unless it is explicitly marked otherwise) and
usable by you.
.PP

.IX Xref "clone_params_del clone_params_new do_open do_openn newANONATTRSUB newANONHASH newANONLIST newANONSUB newAVREF newCVREF newGVREF newHVREF newSVREF resume_compcv sv_dup sv_dup_inc"
.PP
.Vb 4
\& clone_params_del  newANONATTRSUB  newAVREF  newSVREF       
\& clone_params_new  newANONHASH     newCVREF  resume_compcv  
\& do_open           newANONLIST     newGVREF  sv_dup         
\& do_openn          newANONSUB      newHVREF  sv_dup_inc
.Ve
.PP
Next are the API-flagged elements that are considered experimental.  Using one
of these is even more risky than plain undocumented ones.  They are listed
here because they should be listed somewhere (so their existence doesn't get
lost) and this is the best place for them.
.PP

.IX Xref "apply_attrs_string gv_fetchmethod_pv_flags gv_fetchmethod_pvn_flags gv_fetchmethod_sv_flags hv_store_flags leave_adjust_stacks newXS_flags savetmps thread_locale_init thread_locale_term"
.PP
.Vb 4
\& apply_attrs_string        hv_store_flags       thread_locale_init
\& gv_fetchmethod_pv_flags   leave_adjust_stacks  thread_locale_term
\& gv_fetchmethod_pvn_flags  newXS_flags          
\& gv_fetchmethod_sv_flags   savetmps
.Ve
.PP
Finally are deprecated undocumented API elements.
Do not use any for new code; remove all occurrences of all of these from
existing code.
.PP
There are currently no items of this type
.SH AUTHORS
.IX Header "AUTHORS"
Until May 1997, this document was maintained by Jeff Okamoto
<okamoto@corp.hp.com>.  It is now maintained as part of Perl itself.
.PP
With lots of help and suggestions from Dean Roehrich, Malcolm Beattie,
Andreas Koenig, Paul Hudson, Ilya Zakharevich, Paul Marquess, Neil
Bowers, Matthew Green, Tim Bunce, Spider Boardman, Ulrich Pfeifer,
Stephen McCamant, and Gurusamy Sarathy.
.PP
API Listing originally by Dean Roehrich <roehrich@cray.com>.
.PP
Updated to be autogenerated from comments in the source by Benjamin Stuhl.
.SH "SEE ALSO"
.IX Header "SEE ALSO"
\&\fIconfig.h\fR, perlapio, perlcall, perlclib, perlembed, perlfilter, perlguts, perlhacktips, perlintern, perlinterp, perliol, perlmroapi, perlreapi, perlreguts, perlxs