1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
|
.\" -*- mode: troff; coding: utf-8 -*-
.\" Automatically generated by Pod::Man 5.01 (Pod::Simple 3.43)
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" \*(C` and \*(C' are quotes in nroff, nothing in troff, for use with C<>.
.ie n \{\
. ds C` ""
. ds C' ""
'br\}
.el\{\
. ds C`
. ds C'
'br\}
.\"
.\" Escape single quotes in literal strings from groff's Unicode transform.
.ie \n(.g .ds Aq \(aq
.el .ds Aq '
.\"
.\" If the F register is >0, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
.\" entries marked with X<> in POD. Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.\"
.\" Avoid warning from groff about undefined register 'F'.
.de IX
..
.nr rF 0
.if \n(.g .if rF .nr rF 1
.if (\n(rF:(\n(.g==0)) \{\
. if \nF \{\
. de IX
. tm Index:\\$1\t\\n%\t"\\$2"
..
. if !\nF==2 \{\
. nr % 0
. nr F 2
. \}
. \}
.\}
.rr rF
.\" ========================================================================
.\"
.IX Title "List::Util 3pm"
.TH List::Util 3pm 2023-11-28 "perl v5.38.2" "Perl Programmers Reference Guide"
.\" For nroff, turn off justification. Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.if n .ad l
.nh
.SH NAME
List::Util \- A selection of general\-utility list subroutines
.SH SYNOPSIS
.IX Header "SYNOPSIS"
.Vb 2
\& use List::Util qw(
\& reduce any all none notall first reductions
\&
\& max maxstr min minstr product sum sum0
\&
\& pairs unpairs pairkeys pairvalues pairfirst pairgrep pairmap
\&
\& shuffle uniq uniqint uniqnum uniqstr zip mesh
\& );
.Ve
.SH DESCRIPTION
.IX Header "DESCRIPTION"
\&\f(CW\*(C`List::Util\*(C'\fR contains a selection of subroutines that people have expressed
would be nice to have in the perl core, but the usage would not really be high
enough to warrant the use of a keyword, and the size so small such that being
individual extensions would be wasteful.
.PP
By default \f(CW\*(C`List::Util\*(C'\fR does not export any subroutines.
.SH "LIST-REDUCTION FUNCTIONS"
.IX Header "LIST-REDUCTION FUNCTIONS"
The following set of functions all apply a given block of code to a list of
values.
.SS reduce
.IX Subsection "reduce"
.Vb 1
\& $result = reduce { BLOCK } @list
.Ve
.PP
Reduces \f(CW@list\fR by calling \f(CW\*(C`BLOCK\*(C'\fR in a scalar context multiple times,
setting \f(CW$a\fR and \f(CW$b\fR each time. The first call will be with \f(CW$a\fR and \f(CW$b\fR
set to the first two elements of the list, subsequent calls will be done by
setting \f(CW$a\fR to the result of the previous call and \f(CW$b\fR to the next element
in the list.
.PP
Returns the result of the last call to the \f(CW\*(C`BLOCK\*(C'\fR. If \f(CW@list\fR is empty then
\&\f(CW\*(C`undef\*(C'\fR is returned. If \f(CW@list\fR only contains one element then that element
is returned and \f(CW\*(C`BLOCK\*(C'\fR is not executed.
.PP
The following examples all demonstrate how \f(CW\*(C`reduce\*(C'\fR could be used to implement
the other list-reduction functions in this module. (They are not in fact
implemented like this, but instead in a more efficient manner in individual C
functions).
.PP
.Vb 3
\& $foo = reduce { defined($a) ? $a :
\& $code\->(local $_ = $b) ? $b :
\& undef } undef, @list # first
\&
\& $foo = reduce { $a > $b ? $a : $b } 1..10 # max
\& $foo = reduce { $a gt $b ? $a : $b } \*(AqA\*(Aq..\*(AqZ\*(Aq # maxstr
\& $foo = reduce { $a < $b ? $a : $b } 1..10 # min
\& $foo = reduce { $a lt $b ? $a : $b } \*(Aqaa\*(Aq..\*(Aqzz\*(Aq # minstr
\& $foo = reduce { $a + $b } 1 .. 10 # sum
\& $foo = reduce { $a . $b } @bar # concat
\&
\& $foo = reduce { $a || $code\->(local $_ = $b) } 0, @bar # any
\& $foo = reduce { $a && $code\->(local $_ = $b) } 1, @bar # all
\& $foo = reduce { $a && !$code\->(local $_ = $b) } 1, @bar # none
\& $foo = reduce { $a || !$code\->(local $_ = $b) } 0, @bar # notall
\& # Note that these implementations do not fully short\-circuit
.Ve
.PP
If your algorithm requires that \f(CW\*(C`reduce\*(C'\fR produce an identity value, then make
sure that you always pass that identity value as the first argument to prevent
\&\f(CW\*(C`undef\*(C'\fR being returned
.PP
.Vb 1
\& $foo = reduce { $a + $b } 0, @values; # sum with 0 identity value
.Ve
.PP
The above example code blocks also suggest how to use \f(CW\*(C`reduce\*(C'\fR to build a
more efficient combined version of one of these basic functions and a \f(CW\*(C`map\*(C'\fR
block. For example, to find the total length of all the strings in a list,
we could use
.PP
.Vb 1
\& $total = sum map { length } @strings;
.Ve
.PP
However, this produces a list of temporary integer values as long as the
original list of strings, only to reduce it down to a single value again. We
can compute the same result more efficiently by using \f(CW\*(C`reduce\*(C'\fR with a code
block that accumulates lengths by writing this instead as:
.PP
.Vb 1
\& $total = reduce { $a + length $b } 0, @strings
.Ve
.PP
The other scalar-returning list reduction functions are all specialisations of
this generic idea.
.SS reductions
.IX Subsection "reductions"
.Vb 1
\& @results = reductions { BLOCK } @list
.Ve
.PP
\&\fISince version 1.54.\fR
.PP
Similar to \f(CW\*(C`reduce\*(C'\fR except that it also returns the intermediate values along
with the final result. As before, \f(CW$a\fR is set to the first element of the
given list, and the \f(CW\*(C`BLOCK\*(C'\fR is then called once for remaining item in the
list set into \f(CW$b\fR, with the result being captured for return as well as
becoming the new value for \f(CW$a\fR.
.PP
The returned list will begin with the initial value for \f(CW$a\fR, followed by
each return value from the block in order. The final value of the result will
be identical to what the \f(CW\*(C`reduce\*(C'\fR function would have returned given the same
block and list.
.PP
.Vb 2
\& reduce { "$a\-$b" } "a".."d" # "a\-b\-c\-d"
\& reductions { "$a\-$b" } "a".."d" # "a", "a\-b", "a\-b\-c", "a\-b\-c\-d"
.Ve
.SS any
.IX Subsection "any"
.Vb 1
\& my $bool = any { BLOCK } @list;
.Ve
.PP
\&\fISince version 1.33.\fR
.PP
Similar to \f(CW\*(C`grep\*(C'\fR in that it evaluates \f(CW\*(C`BLOCK\*(C'\fR setting \f(CW$_\fR to each element
of \f(CW@list\fR in turn. \f(CW\*(C`any\*(C'\fR returns true if any element makes the \f(CW\*(C`BLOCK\*(C'\fR
return a true value. If \f(CW\*(C`BLOCK\*(C'\fR never returns true or \f(CW@list\fR was empty then
it returns false.
.PP
Many cases of using \f(CW\*(C`grep\*(C'\fR in a conditional can be written using \f(CW\*(C`any\*(C'\fR
instead, as it can short-circuit after the first true result.
.PP
.Vb 3
\& if( any { length > 10 } @strings ) {
\& # at least one string has more than 10 characters
\& }
.Ve
.PP
Note: Due to XS issues the block passed may be able to access the outer \f(CW@_\fR
directly. This is not intentional and will break under debugger.
.SS all
.IX Subsection "all"
.Vb 1
\& my $bool = all { BLOCK } @list;
.Ve
.PP
\&\fISince version 1.33.\fR
.PP
Similar to "any", except that it requires all elements of the \f(CW@list\fR to
make the \f(CW\*(C`BLOCK\*(C'\fR return true. If any element returns false, then it returns
false. If the \f(CW\*(C`BLOCK\*(C'\fR never returns false or the \f(CW@list\fR was empty then it
returns true.
.PP
Note: Due to XS issues the block passed may be able to access the outer \f(CW@_\fR
directly. This is not intentional and will break under debugger.
.SS none
.IX Subsection "none"
.SS notall
.IX Subsection "notall"
.Vb 1
\& my $bool = none { BLOCK } @list;
\&
\& my $bool = notall { BLOCK } @list;
.Ve
.PP
\&\fISince version 1.33.\fR
.PP
Similar to "any" and "all", but with the return sense inverted. \f(CW\*(C`none\*(C'\fR
returns true only if no value in the \f(CW@list\fR causes the \f(CW\*(C`BLOCK\*(C'\fR to return
true, and \f(CW\*(C`notall\*(C'\fR returns true only if not all of the values do.
.PP
Note: Due to XS issues the block passed may be able to access the outer \f(CW@_\fR
directly. This is not intentional and will break under debugger.
.SS first
.IX Subsection "first"
.Vb 1
\& my $val = first { BLOCK } @list;
.Ve
.PP
Similar to \f(CW\*(C`grep\*(C'\fR in that it evaluates \f(CW\*(C`BLOCK\*(C'\fR setting \f(CW$_\fR to each element
of \f(CW@list\fR in turn. \f(CW\*(C`first\*(C'\fR returns the first element where the result from
\&\f(CW\*(C`BLOCK\*(C'\fR is a true value. If \f(CW\*(C`BLOCK\*(C'\fR never returns true or \f(CW@list\fR was empty
then \f(CW\*(C`undef\*(C'\fR is returned.
.PP
.Vb 3
\& $foo = first { defined($_) } @list # first defined value in @list
\& $foo = first { $_ > $value } @list # first value in @list which
\& # is greater than $value
.Ve
.SS max
.IX Subsection "max"
.Vb 1
\& my $num = max @list;
.Ve
.PP
Returns the entry in the list with the highest numerical value. If the list is
empty then \f(CW\*(C`undef\*(C'\fR is returned.
.PP
.Vb 3
\& $foo = max 1..10 # 10
\& $foo = max 3,9,12 # 12
\& $foo = max @bar, @baz # whatever
.Ve
.SS maxstr
.IX Subsection "maxstr"
.Vb 1
\& my $str = maxstr @list;
.Ve
.PP
Similar to "max", but treats all the entries in the list as strings and
returns the highest string as defined by the \f(CW\*(C`gt\*(C'\fR operator. If the list is
empty then \f(CW\*(C`undef\*(C'\fR is returned.
.PP
.Vb 3
\& $foo = maxstr \*(AqA\*(Aq..\*(AqZ\*(Aq # \*(AqZ\*(Aq
\& $foo = maxstr "hello","world" # "world"
\& $foo = maxstr @bar, @baz # whatever
.Ve
.SS min
.IX Subsection "min"
.Vb 1
\& my $num = min @list;
.Ve
.PP
Similar to "max" but returns the entry in the list with the lowest numerical
value. If the list is empty then \f(CW\*(C`undef\*(C'\fR is returned.
.PP
.Vb 3
\& $foo = min 1..10 # 1
\& $foo = min 3,9,12 # 3
\& $foo = min @bar, @baz # whatever
.Ve
.SS minstr
.IX Subsection "minstr"
.Vb 1
\& my $str = minstr @list;
.Ve
.PP
Similar to "min", but treats all the entries in the list as strings and
returns the lowest string as defined by the \f(CW\*(C`lt\*(C'\fR operator. If the list is
empty then \f(CW\*(C`undef\*(C'\fR is returned.
.PP
.Vb 3
\& $foo = minstr \*(AqA\*(Aq..\*(AqZ\*(Aq # \*(AqA\*(Aq
\& $foo = minstr "hello","world" # "hello"
\& $foo = minstr @bar, @baz # whatever
.Ve
.SS product
.IX Subsection "product"
.Vb 1
\& my $num = product @list;
.Ve
.PP
\&\fISince version 1.35.\fR
.PP
Returns the numerical product of all the elements in \f(CW@list\fR. If \f(CW@list\fR is
empty then \f(CW1\fR is returned.
.PP
.Vb 2
\& $foo = product 1..10 # 3628800
\& $foo = product 3,9,12 # 324
.Ve
.SS sum
.IX Subsection "sum"
.Vb 1
\& my $num_or_undef = sum @list;
.Ve
.PP
Returns the numerical sum of all the elements in \f(CW@list\fR. For backwards
compatibility, if \f(CW@list\fR is empty then \f(CW\*(C`undef\*(C'\fR is returned.
.PP
.Vb 3
\& $foo = sum 1..10 # 55
\& $foo = sum 3,9,12 # 24
\& $foo = sum @bar, @baz # whatever
.Ve
.SS sum0
.IX Subsection "sum0"
.Vb 1
\& my $num = sum0 @list;
.Ve
.PP
\&\fISince version 1.26.\fR
.PP
Similar to "sum", except this returns 0 when given an empty list, rather
than \f(CW\*(C`undef\*(C'\fR.
.SH "KEY/VALUE PAIR LIST FUNCTIONS"
.IX Header "KEY/VALUE PAIR LIST FUNCTIONS"
The following set of functions, all inspired by List::Pairwise, consume an
even-sized list of pairs. The pairs may be key/value associations from a hash,
or just a list of values. The functions will all preserve the original ordering
of the pairs, and will not be confused by multiple pairs having the same "key"
value \- nor even do they require that the first of each pair be a plain string.
.PP
\&\fBNOTE\fR: At the time of writing, the following \f(CW\*(C`pair*\*(C'\fR functions that take a
block do not modify the value of \f(CW$_\fR within the block, and instead operate
using the \f(CW$a\fR and \f(CW$b\fR globals instead. This has turned out to be a poor
design, as it precludes the ability to provide a \f(CW\*(C`pairsort\*(C'\fR function. Better
would be to pass pair-like objects as 2\-element array references in \f(CW$_\fR, in
a style similar to the return value of the \f(CW\*(C`pairs\*(C'\fR function. At some future
version this behaviour may be added.
.PP
Until then, users are alerted \fBNOT\fR to rely on the value of \f(CW$_\fR remaining
unmodified between the outside and the inside of the control block. In
particular, the following example is \fBUNSAFE\fR:
.PP
.Vb 1
\& my @kvlist = ...
\&
\& foreach (qw( some keys here )) {
\& my @items = pairgrep { $a eq $_ } @kvlist;
\& ...
\& }
.Ve
.PP
Instead, write this using a lexical variable:
.PP
.Vb 4
\& foreach my $key (qw( some keys here )) {
\& my @items = pairgrep { $a eq $key } @kvlist;
\& ...
\& }
.Ve
.SS pairs
.IX Subsection "pairs"
.Vb 1
\& my @pairs = pairs @kvlist;
.Ve
.PP
\&\fISince version 1.29.\fR
.PP
A convenient shortcut to operating on even-sized lists of pairs, this function
returns a list of \f(CW\*(C`ARRAY\*(C'\fR references, each containing two items from the
given list. It is a more efficient version of
.PP
.Vb 1
\& @pairs = pairmap { [ $a, $b ] } @kvlist
.Ve
.PP
It is most convenient to use in a \f(CW\*(C`foreach\*(C'\fR loop, for example:
.PP
.Vb 4
\& foreach my $pair ( pairs @kvlist ) {
\& my ( $key, $value ) = @$pair;
\& ...
\& }
.Ve
.PP
Since version \f(CW1.39\fR these \f(CW\*(C`ARRAY\*(C'\fR references are blessed objects,
recognising the two methods \f(CW\*(C`key\*(C'\fR and \f(CW\*(C`value\*(C'\fR. The following code is
equivalent:
.PP
.Vb 5
\& foreach my $pair ( pairs @kvlist ) {
\& my $key = $pair\->key;
\& my $value = $pair\->value;
\& ...
\& }
.Ve
.PP
Since version \f(CW1.51\fR they also have a \f(CW\*(C`TO_JSON\*(C'\fR method to ease
serialisation.
.SS unpairs
.IX Subsection "unpairs"
.Vb 1
\& my @kvlist = unpairs @pairs
.Ve
.PP
\&\fISince version 1.42.\fR
.PP
The inverse function to \f(CW\*(C`pairs\*(C'\fR; this function takes a list of \f(CW\*(C`ARRAY\*(C'\fR
references containing two elements each, and returns a flattened list of the
two values from each of the pairs, in order. This is notionally equivalent to
.PP
.Vb 1
\& my @kvlist = map { @{$_}[0,1] } @pairs
.Ve
.PP
except that it is implemented more efficiently internally. Specifically, for
any input item it will extract exactly two values for the output list; using
\&\f(CW\*(C`undef\*(C'\fR if the input array references are short.
.PP
Between \f(CW\*(C`pairs\*(C'\fR and \f(CW\*(C`unpairs\*(C'\fR, a higher-order list function can be used to
operate on the pairs as single scalars; such as the following near-equivalents
of the other \f(CW\*(C`pair*\*(C'\fR higher-order functions:
.PP
.Vb 2
\& @kvlist = unpairs grep { FUNC } pairs @kvlist
\& # Like pairgrep, but takes $_ instead of $a and $b
\&
\& @kvlist = unpairs map { FUNC } pairs @kvlist
\& # Like pairmap, but takes $_ instead of $a and $b
.Ve
.PP
Note however that these versions will not behave as nicely in scalar context.
.PP
Finally, this technique can be used to implement a sort on a keyvalue pair
list; e.g.:
.PP
.Vb 1
\& @kvlist = unpairs sort { $a\->key cmp $b\->key } pairs @kvlist
.Ve
.SS pairkeys
.IX Subsection "pairkeys"
.Vb 1
\& my @keys = pairkeys @kvlist;
.Ve
.PP
\&\fISince version 1.29.\fR
.PP
A convenient shortcut to operating on even-sized lists of pairs, this function
returns a list of the the first values of each of the pairs in the given list.
It is a more efficient version of
.PP
.Vb 1
\& @keys = pairmap { $a } @kvlist
.Ve
.SS pairvalues
.IX Subsection "pairvalues"
.Vb 1
\& my @values = pairvalues @kvlist;
.Ve
.PP
\&\fISince version 1.29.\fR
.PP
A convenient shortcut to operating on even-sized lists of pairs, this function
returns a list of the the second values of each of the pairs in the given list.
It is a more efficient version of
.PP
.Vb 1
\& @values = pairmap { $b } @kvlist
.Ve
.SS pairgrep
.IX Subsection "pairgrep"
.Vb 1
\& my @kvlist = pairgrep { BLOCK } @kvlist;
\&
\& my $count = pairgrep { BLOCK } @kvlist;
.Ve
.PP
\&\fISince version 1.29.\fR
.PP
Similar to perl's \f(CW\*(C`grep\*(C'\fR keyword, but interprets the given list as an
even-sized list of pairs. It invokes the \f(CW\*(C`BLOCK\*(C'\fR multiple times, in scalar
context, with \f(CW$a\fR and \f(CW$b\fR set to successive pairs of values from the
\&\f(CW@kvlist\fR.
.PP
Returns an even-sized list of those pairs for which the \f(CW\*(C`BLOCK\*(C'\fR returned true
in list context, or the count of the \fBnumber of pairs\fR in scalar context.
(Note, therefore, in scalar context that it returns a number half the size of
the count of items it would have returned in list context).
.PP
.Vb 1
\& @subset = pairgrep { $a =~ m/^[[:upper:]]+$/ } @kvlist
.Ve
.PP
As with \f(CW\*(C`grep\*(C'\fR aliasing \f(CW$_\fR to list elements, \f(CW\*(C`pairgrep\*(C'\fR aliases \f(CW$a\fR and
\&\f(CW$b\fR to elements of the given list. Any modifications of it by the code block
will be visible to the caller.
.SS pairfirst
.IX Subsection "pairfirst"
.Vb 1
\& my ( $key, $val ) = pairfirst { BLOCK } @kvlist;
\&
\& my $found = pairfirst { BLOCK } @kvlist;
.Ve
.PP
\&\fISince version 1.30.\fR
.PP
Similar to the "first" function, but interprets the given list as an
even-sized list of pairs. It invokes the \f(CW\*(C`BLOCK\*(C'\fR multiple times, in scalar
context, with \f(CW$a\fR and \f(CW$b\fR set to successive pairs of values from the
\&\f(CW@kvlist\fR.
.PP
Returns the first pair of values from the list for which the \f(CW\*(C`BLOCK\*(C'\fR returned
true in list context, or an empty list of no such pair was found. In scalar
context it returns a simple boolean value, rather than either the key or the
value found.
.PP
.Vb 1
\& ( $key, $value ) = pairfirst { $a =~ m/^[[:upper:]]+$/ } @kvlist
.Ve
.PP
As with \f(CW\*(C`grep\*(C'\fR aliasing \f(CW$_\fR to list elements, \f(CW\*(C`pairfirst\*(C'\fR aliases \f(CW$a\fR and
\&\f(CW$b\fR to elements of the given list. Any modifications of it by the code block
will be visible to the caller.
.SS pairmap
.IX Subsection "pairmap"
.Vb 1
\& my @list = pairmap { BLOCK } @kvlist;
\&
\& my $count = pairmap { BLOCK } @kvlist;
.Ve
.PP
\&\fISince version 1.29.\fR
.PP
Similar to perl's \f(CW\*(C`map\*(C'\fR keyword, but interprets the given list as an
even-sized list of pairs. It invokes the \f(CW\*(C`BLOCK\*(C'\fR multiple times, in list
context, with \f(CW$a\fR and \f(CW$b\fR set to successive pairs of values from the
\&\f(CW@kvlist\fR.
.PP
Returns the concatenation of all the values returned by the \f(CW\*(C`BLOCK\*(C'\fR in list
context, or the count of the number of items that would have been returned in
scalar context.
.PP
.Vb 1
\& @result = pairmap { "The key $a has value $b" } @kvlist
.Ve
.PP
As with \f(CW\*(C`map\*(C'\fR aliasing \f(CW$_\fR to list elements, \f(CW\*(C`pairmap\*(C'\fR aliases \f(CW$a\fR and
\&\f(CW$b\fR to elements of the given list. Any modifications of it by the code block
will be visible to the caller.
.PP
See "KNOWN BUGS" for a known-bug with \f(CW\*(C`pairmap\*(C'\fR, and a workaround.
.SH "OTHER FUNCTIONS"
.IX Header "OTHER FUNCTIONS"
.SS shuffle
.IX Subsection "shuffle"
.Vb 1
\& my @values = shuffle @values;
.Ve
.PP
Returns the values of the input in a random order
.PP
.Vb 1
\& @cards = shuffle 0..51 # 0..51 in a random order
.Ve
.PP
This function is affected by the \f(CW$RAND\fR variable.
.SS sample
.IX Subsection "sample"
.Vb 1
\& my @items = sample $count, @values
.Ve
.PP
\&\fISince version 1.54.\fR
.PP
Randomly select the given number of elements from the input list. Any given
position in the input list will be selected at most once.
.PP
If there are fewer than \f(CW$count\fR items in the list then the function will
return once all of them have been randomly selected; effectively the function
behaves similarly to "shuffle".
.PP
This function is affected by the \f(CW$RAND\fR variable.
.SS uniq
.IX Subsection "uniq"
.Vb 1
\& my @subset = uniq @values
.Ve
.PP
\&\fISince version 1.45.\fR
.PP
Filters a list of values to remove subsequent duplicates, as judged by a
DWIM-ish string equality or \f(CW\*(C`undef\*(C'\fR test. Preserves the order of unique
elements, and retains the first value of any duplicate set.
.PP
.Vb 1
\& my $count = uniq @values
.Ve
.PP
In scalar context, returns the number of elements that would have been
returned as a list.
.PP
The \f(CW\*(C`undef\*(C'\fR value is treated by this function as distinct from the empty
string, and no warning will be produced. It is left as-is in the returned
list. Subsequent \f(CW\*(C`undef\*(C'\fR values are still considered identical to the first,
and will be removed.
.SS uniqint
.IX Subsection "uniqint"
.Vb 1
\& my @subset = uniqint @values
.Ve
.PP
\&\fISince version 1.55.\fR
.PP
Filters a list of values to remove subsequent duplicates, as judged by an
integer numerical equality test. Preserves the order of unique elements, and
retains the first value of any duplicate set. Values in the returned list will
be coerced into integers.
.PP
.Vb 1
\& my $count = uniqint @values
.Ve
.PP
In scalar context, returns the number of elements that would have been
returned as a list.
.PP
Note that \f(CW\*(C`undef\*(C'\fR is treated much as other numerical operations treat it; it
compares equal to zero but additionally produces a warning if such warnings
are enabled (\f(CW\*(C`use warnings \*(Aquninitialized\*(Aq;\*(C'\fR). In addition, an \f(CW\*(C`undef\*(C'\fR in
the returned list is coerced into a numerical zero, so that the entire list of
values returned by \f(CW\*(C`uniqint\*(C'\fR are well-behaved as integers.
.SS uniqnum
.IX Subsection "uniqnum"
.Vb 1
\& my @subset = uniqnum @values
.Ve
.PP
\&\fISince version 1.44.\fR
.PP
Filters a list of values to remove subsequent duplicates, as judged by a
numerical equality test. Preserves the order of unique elements, and retains
the first value of any duplicate set.
.PP
.Vb 1
\& my $count = uniqnum @values
.Ve
.PP
In scalar context, returns the number of elements that would have been
returned as a list.
.PP
Note that \f(CW\*(C`undef\*(C'\fR is treated much as other numerical operations treat it; it
compares equal to zero but additionally produces a warning if such warnings
are enabled (\f(CW\*(C`use warnings \*(Aquninitialized\*(Aq;\*(C'\fR). In addition, an \f(CW\*(C`undef\*(C'\fR in
the returned list is coerced into a numerical zero, so that the entire list of
values returned by \f(CW\*(C`uniqnum\*(C'\fR are well-behaved as numbers.
.PP
Note also that multiple IEEE \f(CW\*(C`NaN\*(C'\fR values are treated as duplicates of
each other, regardless of any differences in their payloads, and despite
the fact that \f(CW\*(C`0+\*(AqNaN\*(Aq == 0+\*(AqNaN\*(Aq\*(C'\fR yields false.
.SS uniqstr
.IX Subsection "uniqstr"
.Vb 1
\& my @subset = uniqstr @values
.Ve
.PP
\&\fISince version 1.45.\fR
.PP
Filters a list of values to remove subsequent duplicates, as judged by a
string equality test. Preserves the order of unique elements, and retains the
first value of any duplicate set.
.PP
.Vb 1
\& my $count = uniqstr @values
.Ve
.PP
In scalar context, returns the number of elements that would have been
returned as a list.
.PP
Note that \f(CW\*(C`undef\*(C'\fR is treated much as other string operations treat it; it
compares equal to the empty string but additionally produces a warning if such
warnings are enabled (\f(CW\*(C`use warnings \*(Aquninitialized\*(Aq;\*(C'\fR). In addition, an
\&\f(CW\*(C`undef\*(C'\fR in the returned list is coerced into an empty string, so that the
entire list of values returned by \f(CW\*(C`uniqstr\*(C'\fR are well-behaved as strings.
.SS head
.IX Subsection "head"
.Vb 1
\& my @values = head $size, @list;
.Ve
.PP
\&\fISince version 1.50.\fR
.PP
Returns the first \f(CW$size\fR elements from \f(CW@list\fR. If \f(CW$size\fR is negative, returns
all but the last \f(CW$size\fR elements from \f(CW@list\fR.
.PP
.Vb 2
\& @result = head 2, qw( foo bar baz );
\& # foo, bar
\&
\& @result = head \-2, qw( foo bar baz );
\& # foo
.Ve
.SS tail
.IX Subsection "tail"
.Vb 1
\& my @values = tail $size, @list;
.Ve
.PP
\&\fISince version 1.50.\fR
.PP
Returns the last \f(CW$size\fR elements from \f(CW@list\fR. If \f(CW$size\fR is negative, returns
all but the first \f(CW$size\fR elements from \f(CW@list\fR.
.PP
.Vb 2
\& @result = tail 2, qw( foo bar baz );
\& # bar, baz
\&
\& @result = tail \-2, qw( foo bar baz );
\& # baz
.Ve
.SS zip
.IX Subsection "zip"
.Vb 2
\& my @result = zip [1..3], [\*(Aqa\*(Aq..\*(Aqc\*(Aq];
\& # [1, \*(Aqa\*(Aq], [2, \*(Aqb\*(Aq], [3, \*(Aqc\*(Aq]
.Ve
.PP
\&\fISince version 1.56.\fR
.PP
Returns a list of array references, composed of elements from the given list
of array references. Each array in the returned list is composed of elements
at that corresponding position from each of the given input arrays. If any
input arrays run out of elements before others, then \f(CW\*(C`undef\*(C'\fR will be inserted
into the result to fill in the gaps.
.PP
The \f(CW\*(C`zip\*(C'\fR function is particularly handy for iterating over multiple arrays
at the same time with a \f(CW\*(C`foreach\*(C'\fR loop, taking one element from each:
.PP
.Vb 4
\& foreach ( zip \e@xs, \e@ys, \e@zs ) {
\& my ($x, $y, $z) = @$_;
\& ...
\& }
.Ve
.PP
\&\fBNOTE\fR to users of List::MoreUtils: This function does not behave the same
as \f(CW\*(C`List::MoreUtils::zip\*(C'\fR, but is actually a non-prototyped equivalent to
\&\f(CW\*(C`List::MoreUtils::zip_unflatten\*(C'\fR. This function does not apply a prototype,
so make sure to invoke it with references to arrays.
.PP
For a function similar to the \f(CW\*(C`zip\*(C'\fR function from \f(CW\*(C`List::MoreUtils\*(C'\fR, see
mesh.
.PP
.Vb 1
\& my @result = zip_shortest ...
.Ve
.PP
A variation of the function that differs in how it behaves when given input
arrays of differing lengths. \f(CW\*(C`zip_shortest\*(C'\fR will stop as soon as any one of
the input arrays run out of elements, discarding any remaining unused values
from the others.
.PP
.Vb 1
\& my @result = zip_longest ...
.Ve
.PP
\&\f(CW\*(C`zip_longest\*(C'\fR is an alias to the \f(CW\*(C`zip\*(C'\fR function, provided simply to be
explicit about that behaviour as compared to \f(CW\*(C`zip_shortest\*(C'\fR.
.SS mesh
.IX Subsection "mesh"
.Vb 2
\& my @result = mesh [1..3], [\*(Aqa\*(Aq..\*(Aqc\*(Aq];
\& # (1, \*(Aqa\*(Aq, 2, \*(Aqb\*(Aq, 3, \*(Aqc\*(Aq)
.Ve
.PP
\&\fISince version 1.56.\fR
.PP
Returns a list of items collected from elements of the given list of array
references. Each section of items in the returned list is composed of elements
at the corresponding position from each of the given input arrays. If any
input arrays run out of elements before others, then \f(CW\*(C`undef\*(C'\fR will be inserted
into the result to fill in the gaps.
.PP
This is similar to zip, except that all of the ranges in the result are
returned in one long flattened list, instead of being bundled into separate
arrays.
.PP
Because it returns a flat list of items, the \f(CW\*(C`mesh\*(C'\fR function is particularly
useful for building a hash out of two separate arrays of keys and values:
.PP
.Vb 1
\& my %hash = mesh \e@keys, \e@values;
\&
\& my $href = { mesh \e@keys, \e@values };
.Ve
.PP
\&\fBNOTE\fR to users of List::MoreUtils: This function is a non-prototyped
equivalent to \f(CW\*(C`List::MoreUtils::mesh\*(C'\fR or \f(CW\*(C`List::MoreUtils::zip\*(C'\fR (themselves
aliases of each other). This function does not apply a prototype, so make sure
to invoke it with references to arrays.
.PP
.Vb 1
\& my @result = mesh_shortest ...
\&
\& my @result = mesh_longest ...
.Ve
.PP
These variations are similar to those of zip, in that they differ in
behaviour when one of the input lists runs out of elements before the others.
.SH "CONFIGURATION VARIABLES"
.IX Header "CONFIGURATION VARIABLES"
.ie n .SS $RAND
.el .SS \f(CW$RAND\fP
.IX Subsection "$RAND"
.Vb 1
\& local $List::Util::RAND = sub { ... };
.Ve
.PP
\&\fISince version 1.54.\fR
.PP
This package variable is used by code which needs to generate random numbers
(such as the "shuffle" and "sample" functions). If set to a CODE reference
it provides an alternative to perl's builtin \f(CWrand()\fR function. When a new
random number is needed this function will be invoked with no arguments and is
expected to return a floating-point value, of which only the fractional part
will be used.
.SH "KNOWN BUGS"
.IX Header "KNOWN BUGS"
.SS "RT #95409"
.IX Subsection "RT #95409"
<https://rt.cpan.org/Ticket/Display.html?id=95409>
.PP
If the block of code given to "pairmap" contains lexical variables that are
captured by a returned closure, and the closure is executed after the block
has been re-used for the next iteration, these lexicals will not see the
correct values. For example:
.PP
.Vb 4
\& my @subs = pairmap {
\& my $var = "$a is $b";
\& sub { print "$var\en" };
\& } one => 1, two => 2, three => 3;
\&
\& $_\->() for @subs;
.Ve
.PP
Will incorrectly print
.PP
.Vb 3
\& three is 3
\& three is 3
\& three is 3
.Ve
.PP
This is due to the performance optimisation of using \f(CW\*(C`MULTICALL\*(C'\fR for the code
block, which means that fresh SVs do not get allocated for each call to the
block. Instead, the same SV is re-assigned for each iteration, and all the
closures will share the value seen on the final iteration.
.PP
To work around this bug, surround the code with a second set of braces. This
creates an inner block that defeats the \f(CW\*(C`MULTICALL\*(C'\fR logic, and does get fresh
SVs allocated each time:
.PP
.Vb 6
\& my @subs = pairmap {
\& {
\& my $var = "$a is $b";
\& sub { print "$var\en"; }
\& }
\& } one => 1, two => 2, three => 3;
.Ve
.PP
This bug only affects closures that are generated by the block but used
afterwards. Lexical variables that are only used during the lifetime of the
block's execution will take their individual values for each invocation, as
normal.
.SS "\fBuniqnum()\fP on oversized bignums"
.IX Subsection "uniqnum() on oversized bignums"
Due to the way that \f(CWuniqnum()\fR compares numbers, it cannot distinguish
differences between bignums (especially bigints) that are too large to fit in
the native platform types. For example,
.PP
.Vb 2
\& my $x = Math::BigInt\->new( "1" x 100 );
\& my $y = $x + 1;
\&
\& say for uniqnum( $x, $y );
.Ve
.PP
Will print just the value of \f(CW$x\fR, believing that \f(CW$y\fR is a numerically\-
equivalent value. This bug does not affect \f(CWuniqstr()\fR, which will correctly
observe that the two values stringify to different strings.
.SH "SUGGESTED ADDITIONS"
.IX Header "SUGGESTED ADDITIONS"
The following are additions that have been requested, but I have been reluctant
to add due to them being very simple to implement in perl
.PP
.Vb 1
\& # How many elements are true
\&
\& sub true { scalar grep { $_ } @_ }
\&
\& # How many elements are false
\&
\& sub false { scalar grep { !$_ } @_ }
.Ve
.SH "SEE ALSO"
.IX Header "SEE ALSO"
Scalar::Util, List::MoreUtils
.SH COPYRIGHT
.IX Header "COPYRIGHT"
Copyright (c) 1997\-2007 Graham Barr <gbarr@pobox.com>. All rights reserved.
This program is free software; you can redistribute it and/or
modify it under the same terms as Perl itself.
.PP
Recent additions and current maintenance by
Paul Evans, <leonerd@leonerd.org.uk>.
|