1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
|
'\" t
.TH "SD_NOTIFY" "3" "" "systemd 254" "sd_notify"
.\" -----------------------------------------------------------------
.\" * Define some portability stuff
.\" -----------------------------------------------------------------
.\" ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.\" http://bugs.debian.org/507673
.\" http://lists.gnu.org/archive/html/groff/2009-02/msg00013.html
.\" ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.ie \n(.g .ds Aq \(aq
.el .ds Aq '
.\" -----------------------------------------------------------------
.\" * set default formatting
.\" -----------------------------------------------------------------
.\" disable hyphenation
.nh
.\" disable justification (adjust text to left margin only)
.ad l
.\" -----------------------------------------------------------------
.\" * MAIN CONTENT STARTS HERE *
.\" -----------------------------------------------------------------
.SH "NAME"
sd_notify, sd_notifyf, sd_pid_notify, sd_pid_notifyf, sd_pid_notify_with_fds, sd_pid_notifyf_with_fds, sd_notify_barrier, sd_pid_notify_barrier \- Notify service manager about start\-up completion and other service status changes
.SH "SYNOPSIS"
.sp
.ft B
.nf
#include <systemd/sd\-daemon\&.h>
.fi
.ft
.HP \w'int\ sd_notify('u
.BI "int sd_notify(int\ " "unset_environment" ", const\ char\ *" "state" ");"
.HP \w'int\ sd_notifyf('u
.BI "int sd_notifyf(int\ " "unset_environment" ", const\ char\ *" "format" ", \&...);"
.HP \w'int\ sd_pid_notify('u
.BI "int sd_pid_notify(pid_t\ " "pid" ", int\ " "unset_environment" ", const\ char\ *" "state" ");"
.HP \w'int\ sd_pid_notifyf('u
.BI "int sd_pid_notifyf(pid_t\ " "pid" ", int\ " "unset_environment" ", const\ char\ *" "format" ", \&...);"
.HP \w'int\ sd_pid_notify_with_fds('u
.BI "int sd_pid_notify_with_fds(pid_t\ " "pid" ", int\ " "unset_environment" ", const\ char\ *" "state" ", const\ int\ *" "fds" ", unsigned\ " "n_fds" ");"
.HP \w'int\ sd_pid_notifyf_with_fds('u
.BI "int sd_pid_notifyf_with_fds(pid_t\ " "pid" ", int\ " "unset_environment" ", const\ int\ *" "fds" ", size_t\ " "n_fds" ", const\ char\ *" "format" ", \&...);"
.HP \w'int\ sd_notify_barrier('u
.BI "int sd_notify_barrier(int\ " "unset_environment" ", uint64_t\ " "timeout" ");"
.HP \w'int\ sd_pid_notify_barrier('u
.BI "int sd_pid_notify_barrier(pid_t\ " "pid" ", int\ " "unset_environment" ", uint64_t\ " "timeout" ");"
.SH "DESCRIPTION"
.PP
\fBsd_notify()\fR
may be called by a service to notify the service manager about state changes\&. It can be used to send arbitrary information, encoded in an environment\-block\-like string\&. Most importantly, it can be used for start\-up completion notification\&.
.PP
If the
\fIunset_environment\fR
parameter is non\-zero,
\fBsd_notify()\fR
will unset the
\fI$NOTIFY_SOCKET\fR
environment variable before returning (regardless of whether the function call itself succeeded or not)\&. Further calls to
\fBsd_notify()\fR
will then fail, but the variable is no longer inherited by child processes\&.
.PP
The
\fIstate\fR
parameter should contain a newline\-separated list of variable assignments, similar in style to an environment block\&. A trailing newline is implied if none is specified\&. The string may contain any kind of variable assignments, but the following shall be considered well\-known:
.PP
READY=1
.RS 4
Tells the service manager that service startup is finished, or the service finished re\-loading its configuration\&. This is only used by systemd if the service definition file has
\fIType=notify\fR
or
\fIType=notify\-reload\fR
set\&. Since there is little value in signaling non\-readiness, the only value services should send is
"READY=1"
(i\&.e\&.
"READY=0"
is not defined)\&.
.RE
.PP
RELOADING=1
.RS 4
Tells the service manager that the service is beginning to reload its configuration\&. This is useful to allow the service manager to track the service\*(Aqs internal state, and present it to the user\&. Note that a service that sends this notification must also send a
"READY=1"
notification when it completed reloading its configuration\&. Reloads the service manager is notified about with this mechanisms are propagated in the same way as they are when originally initiated through the service manager\&. This message is particularly relevant for
\fIType=notify\-reload\fR
services, to inform the service manager that the request to reload the service has been received and is now being processed\&.
.RE
.PP
MONOTONIC_USEC=\&...
.RS 4
A field carrying the monotonic timestamp (as per
\fBCLOCK_MONOTONIC\fR) formatted in decimal in μs, when the notification message was generated by the client\&. This is typically used in combination with
"RELOADING=1", to allow the service manager to properly synchronize reload cycles\&. See
\fBsystemd.service\fR(5)
for details, specifically
"Type=notify\-reload"\&.
.RE
.PP
STOPPING=1
.RS 4
Tells the service manager that the service is beginning its shutdown\&. This is useful to allow the service manager to track the service\*(Aqs internal state, and present it to the user\&.
.RE
.PP
STATUS=\&...
.RS 4
Passes a single\-line UTF\-8 status string back to the service manager that describes the service state\&. This is free\-form and can be used for various purposes: general state feedback, fsck\-like programs could pass completion percentages and failing programs could pass a human\-readable error message\&. Example:
"STATUS=Completed 66% of file system check\&..."
.RE
.PP
NOTIFYACCESS=\&...
.RS 4
Reset the access to the service status notification socket during runtime, overriding
\fINotifyAccess=\fR
setting in the service unit file\&. See
\fBsystemd.service\fR(5)
for details, specifically
"NotifyAccess="
for a list of accepted values\&.
.RE
.PP
ERRNO=\&...
.RS 4
If a service fails, the errno\-style error code, formatted as string\&. Example:
"ERRNO=2"
for ENOENT\&.
.RE
.PP
BUSERROR=\&...
.RS 4
If a service fails, the D\-Bus error\-style error code\&. Example:
"BUSERROR=org\&.freedesktop\&.DBus\&.Error\&.TimedOut"
.RE
.PP
EXIT_STATUS=\&...
.RS 4
If a service exits, the return value of its
\fBmain()\fR
function\&.
.RE
.PP
MAINPID=\&...
.RS 4
The main process ID (PID) of the service, in case the service manager did not fork off the process itself\&. Example:
"MAINPID=4711"
.RE
.PP
WATCHDOG=1
.RS 4
Tells the service manager to update the watchdog timestamp\&. This is the keep\-alive ping that services need to issue in regular intervals if
\fIWatchdogSec=\fR
is enabled for it\&. See
\fBsystemd.service\fR(5)
for information how to enable this functionality and
\fBsd_watchdog_enabled\fR(3)
for the details of how the service can check whether the watchdog is enabled\&.
.RE
.PP
WATCHDOG=trigger
.RS 4
Tells the service manager that the service detected an internal error that should be handled by the configured watchdog options\&. This will trigger the same behaviour as if
\fIWatchdogSec=\fR
is enabled and the service did not send
"WATCHDOG=1"
in time\&. Note that
\fIWatchdogSec=\fR
does not need to be enabled for
"WATCHDOG=trigger"
to trigger the watchdog action\&. See
\fBsystemd.service\fR(5)
for information about the watchdog behavior\&.
.RE
.PP
WATCHDOG_USEC=\&...
.RS 4
Reset
\fIwatchdog_usec\fR
value during runtime\&. Notice that this is not available when using
\fBsd_event_set_watchdog()\fR
or
\fBsd_watchdog_enabled()\fR\&. Example :
"WATCHDOG_USEC=20000000"
.RE
.PP
EXTEND_TIMEOUT_USEC=\&...
.RS 4
Tells the service manager to extend the startup, runtime or shutdown service timeout corresponding the current state\&. The value specified is a time in microseconds during which the service must send a new message\&. A service timeout will occur if the message isn\*(Aqt received, but only if the runtime of the current state is beyond the original maximum times of
\fITimeoutStartSec=\fR,
\fIRuntimeMaxSec=\fR, and
\fITimeoutStopSec=\fR\&. See
\fBsystemd.service\fR(5)
for effects on the service timeouts\&.
.RE
.PP
FDSTORE=1
.RS 4
Stores additional file descriptors in the service manager\&. File descriptors sent this way will be maintained per\-service by the service manager and will later be handed back using the usual file descriptor passing logic at the next invocation of the service (e\&.g\&. when it is restarted), see
\fBsd_listen_fds\fR(3)\&. This is useful for implementing services that can restart after an explicit request or a crash without losing state\&. Any open sockets and other file descriptors which should not be closed during the restart may be stored this way\&. Application state can either be serialized to a file in
/run/, or better, stored in a
\fBmemfd_create\fR(2)
memory file descriptor\&. Note that the service manager will accept messages for a service only if its
\fIFileDescriptorStoreMax=\fR
setting is non\-zero (defaults to zero, see
\fBsystemd.service\fR(5))\&. If
\fIFDPOLL=0\fR
is not set and the file descriptors sent are pollable (see
\fBepoll_ctl\fR(2)), then any
\fBEPOLLHUP\fR
or
\fBEPOLLERR\fR
event seen on them will result in their automatic removal from the store\&. Multiple arrays of file descriptors may be sent in separate messages, in which case the arrays are combined\&. Note that the service manager removes duplicate (pointing to the same object) file descriptors before passing them to the service\&. When a service is stopped, its file descriptor store is discarded and all file descriptors in it are closed\&. Use
\fBsd_pid_notify_with_fds()\fR
to send messages with
"FDSTORE=1", see below\&. The service manager will set the
\fI$FDSTORE\fR
environment variable for services that have the file descriptor store enabled\&.
.sp
For further information on the file descriptor store see the
\m[blue]\fBFile Descriptor Store\fR\m[]\&\s-2\u[1]\d\s+2
overview\&.
.RE
.PP
FDSTOREREMOVE=1
.RS 4
Removes file descriptors from the file descriptor store\&. This field needs to be combined with
\fIFDNAME=\fR
to specify the name of the file descriptors to remove\&.
.RE
.PP
FDNAME=\&...
.RS 4
When used in combination with
\fIFDSTORE=1\fR, specifies a name for the submitted file descriptors\&. When used with
\fIFDSTOREREMOVE=1\fR, specifies the name for the file descriptors to remove\&. This name is passed to the service during activation, and may be queried using
\fBsd_listen_fds_with_names\fR(3)\&. File descriptors submitted without this field set, will implicitly get the name
"stored"
assigned\&. Note that, if multiple file descriptors are submitted at once, the specified name will be assigned to all of them\&. In order to assign different names to submitted file descriptors, submit them in separate invocations of
\fBsd_pid_notify_with_fds()\fR\&. The name may consist of arbitrary ASCII characters except control characters or
":"\&. It may not be longer than 255 characters\&. If a submitted name does not follow these restrictions, it is ignored\&.
.RE
.PP
FDPOLL=0
.RS 4
When used in combination with
\fIFDSTORE=1\fR, disables polling of the stored file descriptors regardless of whether or not they are pollable\&. As this option disables automatic cleanup of the stored file descriptors on EPOLLERR and EPOLLHUP, care must be taken to ensure proper manual cleanup\&. Use of this option is not generally recommended except for when automatic cleanup has unwanted behavior such as prematurely discarding file descriptors from the store\&.
.RE
.PP
BARRIER=1
.RS 4
Tells the service manager that the client is explicitly requesting synchronization by means of closing the file descriptor sent with this command\&. The service manager guarantees that the processing of a
\fIBARRIER=1\fR
command will only happen after all previous notification messages sent before this command have been processed\&. Hence, this command accompanied with a single file descriptor can be used to synchronize against reception of all previous status messages\&. Note that this command cannot be mixed with other notifications, and has to be sent in a separate message to the service manager, otherwise all assignments will be ignored\&. Note that sending 0 or more than 1 file descriptor with this command is a violation of the protocol\&.
.RE
.PP
It is recommended to prefix variable names that are not listed above with
\fIX_\fR
to avoid namespace clashes\&.
.PP
Note that systemd will accept status data sent from a service only if the
\fINotifyAccess=\fR
option is correctly set in the service definition file\&. See
\fBsystemd.service\fR(5)
for details\&.
.PP
Note that
\fBsd_notify()\fR
notifications may be attributed to units correctly only if either the sending process is still around at the time PID 1 processes the message, or if the sending process is explicitly runtime\-tracked by the service manager\&. The latter is the case if the service manager originally forked off the process, i\&.e\&. on all processes that match
\fINotifyAccess=\fR\fBmain\fR
or
\fINotifyAccess=\fR\fBexec\fR\&. Conversely, if an auxiliary process of the unit sends an
\fBsd_notify()\fR
message and immediately exits, the service manager might not be able to properly attribute the message to the unit, and thus will ignore it, even if
\fINotifyAccess=\fR\fBall\fR
is set for it\&.
.PP
Hence, to eliminate all race conditions involving lookup of the client\*(Aqs unit and attribution of notifications to units correctly,
\fBsd_notify_barrier()\fR
may be used\&. This call acts as a synchronization point and ensures all notifications sent before this call have been picked up by the service manager when it returns successfully\&. Use of
\fBsd_notify_barrier()\fR
is needed for clients which are not invoked by the service manager, otherwise this synchronization mechanism is unnecessary for attribution of notifications to the unit\&.
.PP
\fBsd_notifyf()\fR
is similar to
\fBsd_notify()\fR
but takes a
\fBprintf()\fR\-like format string plus arguments\&.
.PP
\fBsd_pid_notify()\fR
and
\fBsd_pid_notifyf()\fR
are similar to
\fBsd_notify()\fR
and
\fBsd_notifyf()\fR
but take a process ID (PID) to use as originating PID for the message as first argument\&. This is useful to send notification messages on behalf of other processes, provided the appropriate privileges are available\&. If the PID argument is specified as 0, the process ID of the calling process is used, in which case the calls are fully equivalent to
\fBsd_notify()\fR
and
\fBsd_notifyf()\fR\&.
.PP
\fBsd_pid_notify_with_fds()\fR
is similar to
\fBsd_pid_notify()\fR
but takes an additional array of file descriptors\&. These file descriptors are sent along the notification message to the service manager\&. This is particularly useful for sending
"FDSTORE=1"
messages, as described above\&. The additional arguments are a pointer to the file descriptor array plus the number of file descriptors in the array\&. If the number of file descriptors is passed as 0, the call is fully equivalent to
\fBsd_pid_notify()\fR, i\&.e\&. no file descriptors are passed\&. Note that file descriptors sent to the service manager on a message without
"FDSTORE=1"
are immediately closed on reception\&.
.PP
\fBsd_pid_notifyf_with_fds()\fR
is a combination of
\fBsd_pid_notify_with_fds()\fR
and
\fBsd_notifyf()\fR, i\&.e\&. it accepts both a PID and a set of file descriptors as input, and processes a format string to generate the state string\&.
.PP
\fBsd_notify_barrier()\fR
allows the caller to synchronize against reception of previously sent notification messages and uses the
\fIBARRIER=1\fR
command\&. It takes a relative
\fItimeout\fR
value in microseconds which is passed to
\fBppoll\fR(2)\&. A value of UINT64_MAX is interpreted as infinite timeout\&.
.PP
\fBsd_pid_notify_barrier()\fR
is just like
\fBsd_notify_barrier()\fR, but allows specifying the originating PID for the notification message\&.
.SH "RETURN VALUE"
.PP
On failure, these calls return a negative errno\-style error code\&. If
\fI$NOTIFY_SOCKET\fR
was not set and hence no status message could be sent, 0 is returned\&. If the status was sent, these functions return a positive value\&. In order to support both service managers that implement this scheme and those which do not, it is generally recommended to ignore the return value of this call\&. Note that the return value simply indicates whether the notification message was enqueued properly, it does not reflect whether the message could be processed successfully\&. Specifically, no error is returned when a file descriptor is attempted to be stored using
\fIFDSTORE=1\fR
but the service is not actually configured to permit storing of file descriptors (see above)\&.
.SH "NOTES"
.PP
Functions described here are available as a shared library, which can be compiled against and linked to with the
\fBlibsystemd\fR\ \&\fBpkg-config\fR(1)
file\&.
.PP
The code described here uses
\fBgetenv\fR(3), which is declared to be not multi\-thread\-safe\&. This means that the code calling the functions described here must not call
\fBsetenv\fR(3)
from a parallel thread\&. It is recommended to only do calls to
\fBsetenv()\fR
from an early phase of the program when no other threads have been started\&.
.PP
These functions send a single datagram with the state string as payload to the socket referenced in the
\fI$NOTIFY_SOCKET\fR
environment variable\&. If the first character of
\fI$NOTIFY_SOCKET\fR
is
"/"
or
"@", the string is understood as an
\fBAF_UNIX\fR
or Linux abstract namespace socket (respectively), and in both cases the datagram is accompanied by the process credentials of the sending service, using SCM_CREDENTIALS\&. If the string starts with
"vsock:"
then the string is understood as an
\fBAF_VSOCK\fR
address, which is useful for hypervisors/VMMs or other processes on the host to receive a notification when a virtual machine has finished booting\&. Note that in case the hypervisor does not support
\fBSOCK_DGRAM\fR
over
\fBAF_VSOCK\fR,
\fBSOCK_SEQPACKET\fR
will be used instead\&. The address should be in the form:
"vsock:CID:PORT"\&. Note that unlike other uses of vsock, the CID is mandatory and cannot be
"VMADDR_CID_ANY"\&. Note that PID1 will send the VSOCK packets from a privileged port (i\&.e\&.: lower than 1024), as an attempt to address concerns that unprivileged processes in the guest might try to send malicious notifications to the host, driving it to make destructive decisions based on them\&.
.SH "ENVIRONMENT"
.PP
\fI$NOTIFY_SOCKET\fR
.RS 4
Set by the service manager for supervised processes for status and start\-up completion notification\&. This environment variable specifies the socket
\fBsd_notify()\fR
talks to\&. See above for details\&.
.RE
.SH "EXAMPLES"
.PP
\fBExample\ \&1.\ \&Start\-up Notification\fR
.PP
When a service finished starting up, it might issue the following call to notify the service manager:
.sp
.if n \{\
.RS 4
.\}
.nf
sd_notify(0, "READY=1");
.fi
.if n \{\
.RE
.\}
.PP
\fBExample\ \&2.\ \&Extended Start\-up Notification\fR
.PP
A service could send the following after completing initialization:
.sp
.if n \{\
.RS 4
.\}
.nf
sd_notifyf(0, "READY=1\en"
"STATUS=Processing requests\&...\en"
"MAINPID=%lu",
(unsigned long) getpid());
.fi
.if n \{\
.RE
.\}
.PP
\fBExample\ \&3.\ \&Error Cause Notification\fR
.PP
A service could send the following shortly before exiting, on failure:
.sp
.if n \{\
.RS 4
.\}
.nf
sd_notifyf(0, "STATUS=Failed to start up: %s\en"
"ERRNO=%i",
strerror_r(errnum, (char[1024]){}, 1024),
errnum);
.fi
.if n \{\
.RE
.\}
.PP
\fBExample\ \&4.\ \&Store a File Descriptor in the Service Manager\fR
.PP
To store an open file descriptor in the service manager, in order to continue operation after a service restart without losing state, use
"FDSTORE=1":
.sp
.if n \{\
.RS 4
.\}
.nf
sd_pid_notify_with_fds(0, 0, "FDSTORE=1\enFDNAME=foobar", &fd, 1);
.fi
.if n \{\
.RE
.\}
.PP
\fBExample\ \&5.\ \&Eliminating race conditions\fR
.PP
When the client sending the notifications is not spawned by the service manager, it may exit too quickly and the service manager may fail to attribute them correctly to the unit\&. To prevent such races, use
\fBsd_notify_barrier()\fR
to synchronize against reception of all notifications sent before this call is made\&.
.sp
.if n \{\
.RS 4
.\}
.nf
sd_notify(0, "READY=1");
/* set timeout to 5 seconds */
sd_notify_barrier(0, 5 * 1000000);
.fi
.if n \{\
.RE
.\}
.SH "SEE ALSO"
.PP
\fBsystemd\fR(1),
\fBsd-daemon\fR(3),
\fBsd_listen_fds\fR(3),
\fBsd_listen_fds_with_names\fR(3),
\fBsd_watchdog_enabled\fR(3),
\fBdaemon\fR(7),
\fBsystemd.service\fR(5)
.SH "NOTES"
.IP " 1." 4
File Descriptor Store
.RS 4
\%https://systemd.io/FILE_DESCRIPTOR_STORE
.RE
|