1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
|
.TH "Flow filter in tc" 8 "20 Oct 2015" "iproute2" "Linux"
.SH NAME
flow \- flow based traffic control filter
.SH SYNOPSIS
.TP
Mapping mode:
.RS
.in +8
.ti -8
.BR tc " " filter " ... " "flow map key "
.IR KEY " [ " OPS " ] [ " OPTIONS " ] "
.RE
.TP
Hashing mode:
.RS
.in +8
.ti -8
.BR tc " " filter " ... " "flow hash keys "
.IR KEY_LIST " [ "
.B perturb
.IR secs " ] [ " OPTIONS " ] "
.RE
.in +8
.ti -8
.IR OPS " := [ " OPS " ] " OP
.ti -8
.IR OPTIONS " := [ "
.B divisor
.IR NUM " ] [ "
.B baseclass
.IR ID " ] [ "
.B match
.IR EMATCH_TREE " ] [ "
.B action
.IR ACTION_SPEC " ]"
.ti -8
.IR KEY_LIST " := [ " KEY_LIST " ] " KEY
.ti -8
.IR OP " := { "
.BR or " | " and " | " xor " | " rshift " | " addend " } "
.I NUM
.ti -8
.IR ID " := " X : Y
.ti -8
.IR KEY " := { "
.BR src " | " dst " | " proto " | " proto-src " | " proto-dst " | " iif " | "
.BR priority " | " mark " | " nfct " | " nfct-src " | " nfct-dst " | "
.BR nfct-proto-src " | " nfct-proto-dst " | " rt-classid " | " sk-uid " | "
.BR sk-gid " | " vlan-tag " | " rxhash " }"
.SH DESCRIPTION
The
.B flow
classifier is meant to extend the
.B SFQ
hashing capabilities without hard-coding new hash functions. It also allows
deterministic mappings of keys to classes.
.SH OPTIONS
.TP
.BI action " ACTION_SPEC"
Apply an action from the generic actions framework on matching packets.
.TP
.BI baseclass " ID"
An offset for the resulting class ID.
.I ID
may be
.BR root ", " none
or a hexadecimal class ID in the form [\fIX\fB:\fR]\fIY\fR. \fIX\fR must
match qdisc's/class's major handle (if omitted, the correct value is chosen
automatically). If the whole \fBbaseclass\fR is omitted, \fIY\fR defaults
to 1.
.TP
.BI divisor " NUM"
Number of buckets to use for sorting into. Keys are calculated modulo
.IR NUM .
.TP
.BI "hash keys " KEY-LIST
Perform a
.B jhash2
operation over the keys in
.IR KEY-LIST ,
the result (modulo the
.B divisor
if given) is taken as class ID, optionally offset by the value of
.BR baseclass .
It is possible to specify an interval (in seconds) after which
.BR jhash2 's
entropy source is recreated using the
.B perturb
parameter.
.TP
.BI "map key " KEY
Packet data identified by
.I KEY
is translated into class IDs to push the packet into. The value may be mangled by
.I OPS
before using it for the mapping. They are applied in the order listed here:
.RS
.TP 4
.BI and " NUM"
Perform bitwise
.B AND
operation with numeric value
.IR NUM .
.TP
.BI or " NUM"
Perform bitwise
.B OR
operation with numeric value
.IR NUM .
.TP
.BI xor " NUM"
Perform bitwise
.B XOR
operation with numeric value
.IR NUM .
.TP
.BI rshift " NUM"
Shift the value of
.I KEY
to the right by
.I NUM
bits.
.TP
.BI addend " NUM"
Add
.I NUM
to the value of
.IR KEY .
.RE
.RS
For the
.BR or ", " and ", " xor " and " rshift
operations,
.I NUM
is assumed to be an unsigned, 32bit integer value. For the
.B addend
operation,
.I NUM
may be much more complex: It may be prefixed by a minus ('-') sign to cause
subtraction instead of addition and for keys of
.BR src ", " dst ", " nfct-src " and " nfct-dst
it may be given in IP address notation. See below for an illustrating example.
.RE
.TP
.BI match " EMATCH_TREE"
Match packets using the extended match infrastructure. See
.BR tc-ematch (8)
for a detailed description of the allowed syntax in
.IR EMATCH_TREE .
.SH KEYS
In mapping mode, a single key is used (after optional permutation) to build a
class ID. The resulting ID is deducible in most cases. In hashing more, a number
of keys may be specified which are then hashed and the output used as class ID.
This ID is not deducible in beforehand, and may even change over time for a
given flow if a
.B perturb
interval has been given.
The range of class IDs can be limited by the
.B divisor
option, which is used for a modulus.
.TP
.BR src ", " dst
Use source or destination address as key. In case of IPv4 and TIPC, this is the
actual address value. For IPv6, the 128bit address is folded into a 32bit value
by XOR'ing the four 32bit words. In all other cases, the kernel-internal socket
address is used (after folding into 32bits on 64bit systems).
.TP
.B proto
Use the layer four protocol number as key.
.TP
.B proto-src
Use the layer four source port as key. If not available, the kernel-internal
socket address is used instead.
.TP
.B proto-dst
Use the layer four destination port as key. If not available, the associated
kernel-internal dst_entry address is used after XOR'ing with the packet's
layer three protocol number.
.TP
.B iif
Use the incoming interface index as key.
.TP
.B priority
Use the packet's priority as key. Usually this is the IP header's DSCP/ECN
value.
.TP
.B mark
Use the netfilter
.B fwmark
as key.
.TP
.B nfct
Use the associated conntrack entry address as key.
.TP
.BR nfct-src ", " nfct-dst ", " nfct-proto-src ", " nfct-proto-dst
These are conntrack-aware variants of
.BR src ", " dst ", " proto-src " and " proto-dst .
In case of NAT, these are basically the packet header's values before NAT was
applied.
.TP
.B rt-classid
Use the packet's destination routing table entry's realm as key.
.TP
.B sk-uid
.TQ
.B sk-gid
For locally generated packets, use the user or group ID the originating socket
belongs to as key.
.TP
.B vlan-tag
Use the packet's vlan ID as key.
.TP
.B rxhash
Use the flow hash as key.
.SH EXAMPLES
.TP
Classic SFQ hash:
.EX
tc filter add ... flow hash \\
keys src,dst,proto,proto-src,proto-dst divisor 1024
.EE
.TP
Classic SFQ hash, but using information from conntrack to work properly in combination with NAT:
.EX
tc filter add ... flow hash \\
keys nfct-src,nfct-dst,proto,nfct-proto-src,nfct-proto-dst \\
divisor 1024
.EE
.TP
Map destination IPs of 192.168.0.0/24 to classids 1-256:
.EX
tc filter add ... flow map \\
key dst addend -192.168.0.0 divisor 256
.EE
.TP
Alternative to the above:
.EX
tc filter add ... flow map \\
key dst and 0xff
.EE
.TP
The same, but in reverse order:
.EX
tc filter add ... flow map \\
key dst and 0xff xor 0xff
.EE
.SH SEE ALSO
.BR tc (8),
.BR tc-ematch (8),
.BR tc-sfq (8)
|