diff options
Diffstat (limited to 'strings/decimal.c')
-rw-r--r-- | strings/decimal.c | 3271 |
1 files changed, 3271 insertions, 0 deletions
diff --git a/strings/decimal.c b/strings/decimal.c new file mode 100644 index 00000000..7d4e183e --- /dev/null +++ b/strings/decimal.c @@ -0,0 +1,3271 @@ +/* Copyright (c) 2004, 2014, Oracle and/or its affiliates. + Copyright (c) 2009, 2014, Monty Program Ab. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; version 2 of the License. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */ + +/* +======================================================================= + NOTE: this library implements SQL standard "exact numeric" type + and is not at all generic, but rather intentinally crippled to + follow the standard :) +======================================================================= + Quoting the standard + (SQL:2003, Part 2 Foundations, aka ISO/IEC 9075-2:2003) + +4.4.2 Characteristics of numbers, page 27: + + An exact numeric type has a precision P and a scale S. P is a positive + integer that determines the number of significant digits in a + particular radix R, where R is either 2 or 10. S is a non-negative + integer. Every value of an exact numeric type of scale S is of the + form n*10^{-S}, where n is an integer such that -R^P <= n <= R^P. + + [...] + + If an assignment of some number would result in a loss of its most + significant digit, an exception condition is raised. If least + significant digits are lost, implementation-defined rounding or + truncating occurs, with no exception condition being raised. + + [...] + + Whenever an exact or approximate numeric value is assigned to an exact + numeric value site, an approximation of its value that preserves + leading significant digits after rounding or truncating is represented + in the declared type of the target. The value is converted to have the + precision and scale of the target. The choice of whether to truncate + or round is implementation-defined. + + [...] + + All numeric values between the smallest and the largest value, + inclusive, in a given exact numeric type have an approximation + obtained by rounding or truncation for that type; it is + implementation-defined which other numeric values have such + approximations. + +5.3 <literal>, page 143 + + <exact numeric literal> ::= + <unsigned integer> [ <period> [ <unsigned integer> ] ] + | <period> <unsigned integer> + +6.1 <data type>, page 165: + + 19) The <scale> of an <exact numeric type> shall not be greater than + the <precision> of the <exact numeric type>. + + 20) For the <exact numeric type>s DECIMAL and NUMERIC: + + a) The maximum value of <precision> is implementation-defined. + <precision> shall not be greater than this value. + b) The maximum value of <scale> is implementation-defined. <scale> + shall not be greater than this maximum value. + + 21) NUMERIC specifies the data type exact numeric, with the decimal + precision and scale specified by the <precision> and <scale>. + + 22) DECIMAL specifies the data type exact numeric, with the decimal + scale specified by the <scale> and the implementation-defined + decimal precision equal to or greater than the value of the + specified <precision>. + +6.26 <numeric value expression>, page 241: + + 1) If the declared type of both operands of a dyadic arithmetic + operator is exact numeric, then the declared type of the result is + an implementation-defined exact numeric type, with precision and + scale determined as follows: + + a) Let S1 and S2 be the scale of the first and second operands + respectively. + b) The precision of the result of addition and subtraction is + implementation-defined, and the scale is the maximum of S1 and S2. + c) The precision of the result of multiplication is + implementation-defined, and the scale is S1 + S2. + d) The precision and scale of the result of division are + implementation-defined. +*/ + +#include "strings_def.h" +#include <m_ctype.h> +#include <myisampack.h> +#include <my_sys.h> /* for my_alloca */ +#include <decimal.h> + +/* + Internally decimal numbers are stored base 10^9 (see DIG_BASE below) + So one variable of type decimal_digit_t is limited: + + 0 < decimal_digit <= DIG_MAX < DIG_BASE + + in the struct st_decimal_t: + + intg is the number of *decimal* digits (NOT number of decimal_digit_t's !) + before the point + frac - number of decimal digits after the point + buf is an array of decimal_digit_t's + len is the length of buf (length of allocated space) in decimal_digit_t's, + not in bytes +*/ +typedef decimal_digit_t dec1; +typedef longlong dec2; + +#define DIG_PER_DEC1 9 +#define DIG_MASK 100000000 +#define DIG_BASE 1000000000 +#define DIG_MAX (DIG_BASE-1) +#define DIG_BASE2 ((dec2)DIG_BASE * (dec2)DIG_BASE) +static const dec1 powers10[DIG_PER_DEC1+1]={ + 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000}; +static const int dig2bytes[DIG_PER_DEC1+1]={0, 1, 1, 2, 2, 3, 3, 4, 4, 4}; +static const dec1 frac_max[DIG_PER_DEC1-1]={ + 900000000, 990000000, 999000000, + 999900000, 999990000, 999999000, + 999999900, 999999990 }; + +static inline int ROUND_UP(int x) +{ + return (x + (x > 0 ? DIG_PER_DEC1 - 1 : 0)) / DIG_PER_DEC1; +} + +#ifdef HAVE_valgrind +#define sanity(d) DBUG_ASSERT((d)->len > 0) +#else +#define sanity(d) DBUG_ASSERT((d)->len >0 && ((d)->buf[0] | \ + (d)->buf[(d)->len-1] | 1)) +#endif + +#define FIX_INTG_FRAC_ERROR(len, intg1, frac1, error) \ + do \ + { \ + if (unlikely(intg1+frac1 > (len))) \ + { \ + if (unlikely(intg1 > (len))) \ + { \ + intg1=(len); \ + frac1=0; \ + error=E_DEC_OVERFLOW; \ + } \ + else \ + { \ + frac1=(len)-intg1; \ + error=E_DEC_TRUNCATED; \ + } \ + } \ + else \ + error=E_DEC_OK; \ + } while(0) + +#define ADD(to, from1, from2, carry) /* assume carry <= 1 */ \ + do \ + { \ + dec1 a=(from1)+(from2)+(carry); \ + DBUG_ASSERT((carry) <= 1); \ + if (((carry)= a >= DIG_BASE)) /* no division here! */ \ + a-=DIG_BASE; \ + (to)=a; \ + } while(0) + +#define ADD2(to, from1, from2, carry) \ + do \ + { \ + dec2 a=((dec2)(from1))+(from2)+(carry); \ + if (((carry)= a >= DIG_BASE)) \ + a-=DIG_BASE; \ + if (unlikely(a >= DIG_BASE)) \ + { \ + a-=DIG_BASE; \ + carry++; \ + } \ + (to)=(dec1) a; \ + } while(0) + +#define SUB(to, from1, from2, carry) /* to=from1-from2 */ \ + do \ + { \ + dec1 a=(from1)-(from2)-(carry); \ + if (((carry)= a < 0)) \ + a+=DIG_BASE; \ + (to)=a; \ + } while(0) + +#define SUB2(to, from1, from2, carry) /* to=from1-from2 */ \ + do \ + { \ + dec1 a=(from1)-(from2)-(carry); \ + if (((carry)= a < 0)) \ + a+=DIG_BASE; \ + if (unlikely(a < 0)) \ + { \ + a+=DIG_BASE; \ + carry++; \ + } \ + (to)=a; \ + } while(0) + +/* + Get maximum value for given precision and scale + + SYNOPSIS + max_decimal() + precision/scale - see decimal_bin_size() below + to - decimal where where the result will be stored + to->buf and to->len must be set. +*/ + +void max_decimal(decimal_digits_t precision, decimal_digits_t frac, + decimal_t *to) +{ + decimal_digits_t intpart; + dec1 *buf= to->buf; + DBUG_ASSERT(precision && precision >= frac); + + to->sign= 0; + if ((intpart= to->intg= (precision - frac))) + { + int firstdigits= intpart % DIG_PER_DEC1; + if (firstdigits) + *buf++= powers10[firstdigits] - 1; /* get 9 99 999 ... */ + for(intpart/= DIG_PER_DEC1; intpart; intpart--) + *buf++= DIG_MAX; + } + + if ((to->frac= frac)) + { + int lastdigits= frac % DIG_PER_DEC1; + for(frac/= DIG_PER_DEC1; frac; frac--) + *buf++= DIG_MAX; + if (lastdigits) + *buf= frac_max[lastdigits - 1]; + } +} + + +static dec1 *remove_leading_zeroes(const decimal_t *from, + decimal_digits_t *intg_result) +{ + decimal_digits_t intg= from->intg, i; + dec1 *buf0= from->buf; + i= ((intg - 1) % DIG_PER_DEC1) + 1; + while (intg > 0 && *buf0 == 0) + { + intg-= i; + i= DIG_PER_DEC1; + buf0++; + } + if (intg > 0) + { + for (i= (intg - 1) % DIG_PER_DEC1; *buf0 < powers10[i--]; intg--) ; + DBUG_ASSERT(intg > 0); + } + else + intg=0; + *intg_result= intg; + return buf0; +} + + +/* + Count actual length of fraction part (without ending zeroes) + + SYNOPSIS + decimal_actual_fraction() + from number for processing +*/ + +decimal_digits_t decimal_actual_fraction(const decimal_t *from) +{ + decimal_digits_t frac= from->frac, i; + dec1 *buf0= from->buf + ROUND_UP(from->intg) + ROUND_UP(frac) - 1; + + if (frac == 0) + return 0; + + i= ((frac - 1) % DIG_PER_DEC1 + 1); + while (frac > 0 && *buf0 == 0) + { + frac-= i; + i= DIG_PER_DEC1; + buf0--; + } + if (frac > 0) + { + for (i= DIG_PER_DEC1 - ((frac - 1) % DIG_PER_DEC1); + *buf0 % powers10[i++] == 0; + frac--) {} + } + return frac; +} + + +/* + Convert decimal to its printable string representation + + SYNOPSIS + decimal2string() + from - value to convert + to - points to buffer where string representation + should be stored + *to_len - in: size of to buffer (incl. terminating '\0') + out: length of the actually written string (excl. '\0') + fixed_precision - 0 if representation can be variable length and + fixed_decimals will not be checked in this case. + Put number as with fixed point position with this + number of digits (sign counted and decimal point is + counted) + fixed_decimals - number digits after point. + filler - character to fill gaps in case of fixed_precision > 0 + + RETURN VALUE + E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW +*/ + +int decimal2string(const decimal_t *from, char *to, int *to_len, + decimal_digits_t fixed_precision, + decimal_digits_t fixed_decimals, + char filler) +{ + /* {intg_len, frac_len} output widths; {intg, frac} places in input */ + int len, frac= from->frac, i, intg_len, frac_len, fill, intg; + decimal_digits_t intg_tmp; + /* number digits before decimal point */ + int fixed_intg= (fixed_precision ? + (fixed_precision - fixed_decimals) : 0); + int error=E_DEC_OK; + char *s=to; + dec1 *buf, *buf0=from->buf, tmp; + + DBUG_ASSERT(*to_len >= 2+ (int) from->sign); + + /* removing leading zeroes */ + buf0= remove_leading_zeroes(from, &intg_tmp); + intg= (int) intg_tmp; /* intg can be negative later */ + if (unlikely(intg+frac==0)) + { + intg=1; + tmp=0; + buf0=&tmp; + } + + if (!(intg_len= fixed_precision ? fixed_intg : intg)) + intg_len= 1; + frac_len= fixed_precision ? fixed_decimals : frac; + len= from->sign + intg_len + MY_TEST(frac) + frac_len; + if (fixed_precision) + { + if (frac > fixed_decimals) + { + error= E_DEC_TRUNCATED; + frac= fixed_decimals; + } + if (intg > fixed_intg) + { + error= E_DEC_OVERFLOW; + intg= fixed_intg; + } + } + else if (unlikely(len > --*to_len)) /* reserve one byte for \0 */ + { + int j= len-*to_len; + error= (frac && j <= frac + 1) ? E_DEC_TRUNCATED : E_DEC_OVERFLOW; + if (frac && j >= frac + 1) j--; + if (j > frac) + { + intg-= j-frac; + frac= 0; + } + else + frac-=j; + frac_len= frac; + len= from->sign + intg_len + MY_TEST(frac) + frac_len; + } + *to_len=len; + s[len]=0; + + if (from->sign) + *s++='-'; + + if (frac) + { + char *s1= s + intg_len; + fill= frac_len - frac; + buf=buf0+ROUND_UP(intg); + *s1++='.'; + for (; frac>0; frac-=DIG_PER_DEC1) + { + dec1 x=*buf++; + for (i=MY_MIN(frac, DIG_PER_DEC1); i; i--) + { + dec1 y=x/DIG_MASK; + *s1++='0'+(uchar)y; + x-=y*DIG_MASK; + x*=10; + } + } + for(; fill; fill--) + *s1++=filler; + } + + fill= intg_len - intg; + if (intg == 0) + { + DBUG_ASSERT(fill > 0); + fill--; /* symbol 0 before digital point */ + } + for(; fill; fill--) + *s++=filler; + if (intg) + { + s+=intg; + for (buf=buf0+ROUND_UP(intg); intg>0; intg-=DIG_PER_DEC1) + { + dec1 x=*--buf; + for (i=MY_MIN(intg, DIG_PER_DEC1); i; i--) + { + dec1 y=x/10; + *--s='0'+(uchar)(x-y*10); + x=y; + } + } + } + else + *s= '0'; + return error; +} + + +/* + Return bounds of decimal digits in the number + + SYNOPSIS + digits_bounds() + from - decimal number for processing + start_result - index (from 0 ) of first decimal digits will + be written by this address + end_result - index of position just after last decimal digit + be written by this address +*/ + +static void digits_bounds(decimal_t *from, int *start_result, int *end_result) +{ + int start, stop, i; + dec1 *buf_beg= from->buf; + dec1 *end= from->buf + ROUND_UP(from->intg) + ROUND_UP(from->frac); + dec1 *buf_end= end - 1; + + /* find non-zero digit from number beginning */ + while (buf_beg < end && *buf_beg == 0) + buf_beg++; + + if (buf_beg >= end) + { + /* it is zero */ + *start_result= *end_result= 0; + return; + } + + /* find non-zero decimal digit from number beginning */ + if (buf_beg == from->buf && from->intg) + { + start= DIG_PER_DEC1 - (i= ((from->intg-1) % DIG_PER_DEC1 + 1)); + i--; + } + else + { + i= DIG_PER_DEC1 - 1; + start= (int) ((buf_beg - from->buf) * DIG_PER_DEC1); + } + if (buf_beg < end) + for (; *buf_beg < powers10[i--]; start++) ; + *start_result= start; /* index of first decimal digit (from 0) */ + + /* find non-zero digit at the end */ + while (buf_end > buf_beg && *buf_end == 0) + buf_end--; + /* find non-zero decimal digit from the end */ + if (buf_end == end - 1 && from->frac) + { + stop= (int) (((buf_end - from->buf) * DIG_PER_DEC1 + + (i= ((from->frac - 1) % DIG_PER_DEC1 + 1)))); + i= DIG_PER_DEC1 - i + 1; + } + else + { + stop= (int) ((buf_end - from->buf + 1) * DIG_PER_DEC1); + i= 1; + } + for (; *buf_end % powers10[i++] == 0; stop--) {} + *end_result= stop; /* index of position after last decimal digit (from 0) */ +} + + +/* + Left shift for alignment of data in buffer + + SYNOPSIS + do_mini_left_shift() + dec pointer to decimal number which have to be shifted + shift number of decimal digits on which it should be shifted + beg/end bounds of decimal digits (see digits_bounds()) + + NOTE + Result fitting in the buffer should be garanted. + 'shift' have to be from 1 to DIG_PER_DEC1-1 (inclusive) +*/ + +void do_mini_left_shift(decimal_t *dec, int shift, int beg, int last) +{ + dec1 *from= dec->buf + ROUND_UP(beg + 1) - 1; + dec1 *end= dec->buf + ROUND_UP(last) - 1; + int c_shift= DIG_PER_DEC1 - shift; + DBUG_ASSERT(from >= dec->buf); + DBUG_ASSERT(end < dec->buf + dec->len); + if (beg % DIG_PER_DEC1 < shift) + *(from - 1)= (*from) / powers10[c_shift]; + for(; from < end; from++) + *from= ((*from % powers10[c_shift]) * powers10[shift] + + (*(from + 1)) / powers10[c_shift]); + *from= (*from % powers10[c_shift]) * powers10[shift]; +} + + +/* + Right shift for alignment of data in buffer + + SYNOPSIS + do_mini_left_shift() + dec pointer to decimal number which have to be shifted + shift number of decimal digits on which it should be shifted + beg/end bounds of decimal digits (see digits_bounds()) + + NOTE + Result fitting in the buffer should be garanted. + 'shift' have to be from 1 to DIG_PER_DEC1-1 (inclusive) +*/ + +void do_mini_right_shift(decimal_t *dec, int shift, int beg, int last) +{ + dec1 *from= dec->buf + ROUND_UP(last) - 1; + dec1 *end= dec->buf + ROUND_UP(beg + 1) - 1; + int c_shift= DIG_PER_DEC1 - shift; + DBUG_ASSERT(from < dec->buf + dec->len); + DBUG_ASSERT(end >= dec->buf); + if (DIG_PER_DEC1 - ((last - 1) % DIG_PER_DEC1 + 1) < shift) + *(from + 1)= (*from % powers10[shift]) * powers10[c_shift]; + for(; from > end; from--) + *from= (*from / powers10[shift] + + (*(from - 1) % powers10[shift]) * powers10[c_shift]); + *from= *from / powers10[shift]; +} + + +/* + Shift of decimal digits in given number (with rounding if it need) + + SYNOPSIS + decimal_shift() + dec number to be shifted + shift number of decimal positions + shift > 0 means shift to left shift + shift < 0 meand right shift + NOTE + In fact it is multipling on 10^shift. + RETURN + E_DEC_OK OK + E_DEC_OVERFLOW operation lead to overflow, number is untoched + E_DEC_TRUNCATED number was rounded to fit into buffer +*/ + +int decimal_shift(decimal_t *dec, int shift) +{ + /* index of first non zero digit (all indexes from 0) */ + int beg; + /* index of position after last decimal digit */ + int end; + /* index of digit position just after point */ + int point= ROUND_UP(dec->intg) * DIG_PER_DEC1; + /* new point position */ + int new_point= point + shift; + /* number of digits in result */ + int digits_int, digits_frac; + /* length of result and new fraction in big digits*/ + int new_len, new_frac_len; + /* return code */ + int err= E_DEC_OK; + int new_front; + + if (shift == 0) + return E_DEC_OK; + + digits_bounds(dec, &beg, &end); + + if (beg == end) + { + decimal_make_zero(dec); + return E_DEC_OK; + } + + digits_int= new_point - beg; + set_if_bigger(digits_int, 0); + digits_frac= end - new_point; + set_if_bigger(digits_frac, 0); + + if ((new_len= ROUND_UP(digits_int) + (new_frac_len= ROUND_UP(digits_frac))) > + dec->len) + { + int lack= new_len - dec->len; + int diff; + + if (new_frac_len < lack) + return E_DEC_OVERFLOW; /* lack more then we have in fraction */ + + /* cat off fraction part to allow new number to fit in our buffer */ + err= E_DEC_TRUNCATED; + new_frac_len-= lack; + diff= digits_frac - (new_frac_len * DIG_PER_DEC1); + /* Make rounding method as parameter? */ + decimal_round(dec, dec, end - point - diff, HALF_UP); + end-= diff; + digits_frac= new_frac_len * DIG_PER_DEC1; + + if (end <= beg) + { + /* + we lost all digits (they will be shifted out of buffer), so we can + just return 0 + */ + decimal_make_zero(dec); + return E_DEC_TRUNCATED; + } + } + + if (shift % DIG_PER_DEC1) + { + int l_mini_shift, r_mini_shift, mini_shift; + int do_left; + /* + Calculate left/right shift to align decimal digits inside our bug + digits correctly + */ + if (shift > 0) + { + l_mini_shift= shift % DIG_PER_DEC1; + r_mini_shift= DIG_PER_DEC1 - l_mini_shift; + /* + It is left shift so prefer left shift, but if we have not place from + left, we have to have it from right, because we checked length of + result + */ + do_left= l_mini_shift <= beg; + DBUG_ASSERT(do_left || (dec->len * DIG_PER_DEC1 - end) >= r_mini_shift); + } + else + { + r_mini_shift= (-shift) % DIG_PER_DEC1; + l_mini_shift= DIG_PER_DEC1 - r_mini_shift; + /* see comment above */ + do_left= !((dec->len * DIG_PER_DEC1 - end) >= r_mini_shift); + DBUG_ASSERT(!do_left || l_mini_shift <= beg); + } + if (do_left) + { + do_mini_left_shift(dec, l_mini_shift, beg, end); + mini_shift= -l_mini_shift; + } + else + { + do_mini_right_shift(dec, r_mini_shift, beg, end); + mini_shift= r_mini_shift; + } + new_point+= mini_shift; + /* + If number is shifted and correctly aligned in buffer we can + finish + */ + if (!(shift+= mini_shift) && (new_point - digits_int) < DIG_PER_DEC1) + { + dec->intg= digits_int; + dec->frac= digits_frac; + return err; /* already shifted as it should be */ + } + beg+= mini_shift; + end+= mini_shift; + } + + /* if new 'decimal front' is in first digit, we do not need move digits */ + if ((new_front= (new_point - digits_int)) >= DIG_PER_DEC1 || + new_front < 0) + { + /* need to move digits */ + int d_shift; + dec1 *to, *barier; + if (new_front > 0) + { + /* move left */ + d_shift= new_front / DIG_PER_DEC1; + to= dec->buf + (ROUND_UP(beg + 1) - 1 - d_shift); + barier= dec->buf + (ROUND_UP(end) - 1 - d_shift); + DBUG_ASSERT(to >= dec->buf); + DBUG_ASSERT(barier + d_shift < dec->buf + dec->len); + for(; to <= barier; to++) + *to= *(to + d_shift); + for(barier+= d_shift; to <= barier; to++) + *to= 0; + d_shift= -d_shift; + } + else + { + /* move right */ + d_shift= (1 - new_front) / DIG_PER_DEC1; + to= dec->buf + ROUND_UP(end) - 1 + d_shift; + barier= dec->buf + ROUND_UP(beg + 1) - 1 + d_shift; + DBUG_ASSERT(to < dec->buf + dec->len); + DBUG_ASSERT(barier - d_shift >= dec->buf); + for(; to >= barier; to--) + *to= *(to - d_shift); + for(barier-= d_shift; to >= barier; to--) + *to= 0; + } + d_shift*= DIG_PER_DEC1; + beg+= d_shift; + end+= d_shift; + new_point+= d_shift; + } + + /* + If there are gaps then fill ren with 0. + + Only one of following 'for' loops will work because beg <= end + */ + beg= ROUND_UP(beg + 1) - 1; + end= ROUND_UP(end) - 1; + DBUG_ASSERT(new_point >= 0); + + /* We don't want negative new_point below */ + if (new_point != 0) + new_point= ROUND_UP(new_point) - 1; + + if (new_point > end) + { + do + { + dec->buf[new_point]=0; + } while (--new_point > end); + } + else + { + for (; new_point < beg; new_point++) + dec->buf[new_point]= 0; + } + dec->intg= digits_int; + dec->frac= digits_frac; + return err; +} + + +/* + Convert string to decimal + + SYNOPSIS + internal_str2decl() + from - value to convert. Doesn't have to be \0 terminated! + to - decimal where where the result will be stored + to->buf and to->len must be set. + end - Pointer to pointer to end of string. Will on return be + set to the char after the last used character + fixed - use to->intg, to->frac as limits for input number + + NOTE + to->intg and to->frac can be modified even when fixed=1 + (but only decreased, in this case) + + RETURN VALUE + E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_BAD_NUM/E_DEC_OOM + In case of E_DEC_FATAL_ERROR *to is set to decimal zero + (to make error handling easier) +*/ + +int +internal_str2dec(const char *from, decimal_t *to, char **end, my_bool fixed) +{ + const char *s= from, *s1, *endp, *end_of_string= *end; + int i, intg, frac, error, intg1, frac1; + dec1 x,*buf; + sanity(to); + + error= E_DEC_BAD_NUM; /* In case of bad number */ + while (s < end_of_string && my_isspace(&my_charset_latin1, *s)) + s++; + if (s == end_of_string) + goto fatal_error; + + if ((to->sign= (*s == '-'))) + s++; + else if (*s == '+') + s++; + + s1=s; + while (s < end_of_string && my_isdigit(&my_charset_latin1, *s)) + s++; + intg= (int) (s-s1); + /* + If the integer part is long enough and it has multiple leading zeros, + let's trim them, so this expression can return 1 without overflowing: + CAST(CONCAT(REPEAT('0',90),'1') AS DECIMAL(10)) + */ + if (intg > DIG_PER_DEC1 && s1[0] == '0' && s1[1] == '0') + { + /* + Keep at least one digit, to avoid an empty string. + So we trim '0000' to '0' rather than to ''. + Otherwise the below code (converting digits to to->buf) + would fail on a fatal error. + */ + const char *iend= s - 1; + for ( ; s1 < iend && *s1 == '0'; s1++) + { } + intg= (int) (s-s1); + } + if (s < end_of_string && *s=='.') + { + endp= s+1; + while (endp < end_of_string && my_isdigit(&my_charset_latin1, *endp)) + endp++; + frac= (int) (endp - s - 1); + } + else + { + frac= 0; + endp= s; + } + + *end= (char*) endp; + + if (frac+intg == 0) + goto fatal_error; + + error= 0; + if (fixed) + { + if (frac > to->frac) + { + error=E_DEC_TRUNCATED; + frac=to->frac; + } + if (intg > to->intg) + { + error=E_DEC_OVERFLOW; + intg=to->intg; + } + intg1=ROUND_UP(intg); + frac1=ROUND_UP(frac); + if (intg1+frac1 > to->len) + { + error= E_DEC_OOM; + goto fatal_error; + } + } + else + { + intg1=ROUND_UP(intg); + frac1=ROUND_UP(frac); + FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error); + if (unlikely(error)) + { + frac=frac1*DIG_PER_DEC1; + if (error == E_DEC_OVERFLOW) + intg=intg1*DIG_PER_DEC1; + } + } + /* Error is guaranteed to be set here */ + to->intg=intg; + to->frac=frac; + + buf=to->buf+intg1; + s1=s; + + for (x=0, i=0; intg; intg--) + { + x+= (*--s - '0')*powers10[i]; + + if (unlikely(++i == DIG_PER_DEC1)) + { + *--buf=x; + x=0; + i=0; + } + } + if (i) + *--buf=x; + + buf=to->buf+intg1; + for (x=0, i=0; frac; frac--) + { + x= (*++s1 - '0') + x*10; + + if (unlikely(++i == DIG_PER_DEC1)) + { + *buf++=x; + x=0; + i=0; + } + } + if (i) + *buf=x*powers10[DIG_PER_DEC1-i]; + + /* Handle exponent */ + if (endp+1 < end_of_string && (*endp == 'e' || *endp == 'E')) + { + int str_error; + const char *end_of_exponent= end_of_string; + longlong exponent= my_strtoll10(endp+1, (char**) &end_of_exponent, + &str_error); + + if (end_of_exponent != endp +1) /* If at least one digit */ + { + *end= (char*) end_of_exponent; + if (str_error > 0) + { + if (str_error == MY_ERRNO_ERANGE) + { + /* + Exponent is: + - a huge positive number that does not fit into ulonglong + - a huge negative number that does not fit into longlong + Skip all remaining digits. + */ + for ( ; end_of_exponent < end_of_string && + my_isdigit(&my_charset_latin1, *end_of_exponent) + ; end_of_exponent++) + { } + *end= (char*) end_of_exponent; + if (exponent == ~0) + { + if (!decimal_is_zero(to)) + { + /* + Non-zero mantissa and a huge positive exponent that + does not fit into ulonglong, e.g.: + 1e111111111111111111111 + */ + error= E_DEC_OVERFLOW; + } + else + { + /* + Zero mantissa and a huge positive exponent that + does not fit into ulonglong, e.g.: + 0e111111111111111111111 + Return zero without warnings. + */ + } + } + else + { + /* + Huge negative exponent that does not fit into longlong, e.g. + 1e-111111111111111111111 + 0e-111111111111111111111 + Return zero without warnings. + */ + } + goto fatal_error; + } + + /* + Some other error, e.g. MY_ERRNO_EDOM + */ + error= E_DEC_BAD_NUM; + goto fatal_error; + } + if (exponent > INT_MAX/2 || (str_error == 0 && exponent < 0)) + { + /* + The exponent fits into ulonglong, but it's still huge, e.g. + 1e1111111111 + */ + if (!decimal_is_zero(to)) + error= E_DEC_OVERFLOW; + goto fatal_error; + } + if (exponent < INT_MIN/2 && error != E_DEC_OVERFLOW) + { + error= E_DEC_TRUNCATED; + goto fatal_error; + } + if (error != E_DEC_OVERFLOW) + error= decimal_shift(to, (int) exponent); + } + } + if (to->sign && decimal_is_zero(to)) + to->sign= 0; + return error; + +fatal_error: + decimal_make_zero(to); + return error; +} + + +/* + Convert decimal to double + + SYNOPSIS + decimal2double() + from - value to convert + to - result will be stored there + + RETURN VALUE + E_DEC_OK/E_DEC_OVERFLOW/E_DEC_TRUNCATED +*/ + +int decimal2double(const decimal_t *from, double *to) +{ + char strbuf[FLOATING_POINT_BUFFER], *end; + int len= sizeof(strbuf); + int rc, error; + + rc = decimal2string(from, strbuf, &len, 0, 0, 0); + end= strbuf + len; + + DBUG_PRINT("info", ("interm.: %s", strbuf)); + + *to= my_strtod(strbuf, &end, &error); + + DBUG_PRINT("info", ("result: %f", *to)); + + return (rc != E_DEC_OK) ? rc : (error ? E_DEC_OVERFLOW : E_DEC_OK); +} + +/* + Convert double to decimal + + SYNOPSIS + double2decimal() + from - value to convert + to - result will be stored there + + RETURN VALUE + E_DEC_OK/E_DEC_OVERFLOW/E_DEC_TRUNCATED +*/ + +int double2decimal(double from, decimal_t *to) +{ + char buff[FLOATING_POINT_BUFFER], *end; + int res; + DBUG_ENTER("double2decimal"); + end= buff + my_gcvt(from, MY_GCVT_ARG_DOUBLE, sizeof(buff) - 1, buff, NULL); + res= string2decimal(buff, to, &end); + DBUG_PRINT("exit", ("res: %d", res)); + DBUG_RETURN(res); +} + + +static int ull2dec(ulonglong from, decimal_t *to) +{ + int intg1, error=E_DEC_OK; + ulonglong x=from; + dec1 *buf; + + sanity(to); + + if (!from) + { + decimal_make_zero(to); + return E_DEC_OK; + } + + for (intg1=1; from >= DIG_BASE; intg1++, from/=DIG_BASE) {} + if (unlikely(intg1 > to->len)) + { + intg1=to->len; + error=E_DEC_OVERFLOW; + } + to->frac=0; + for(to->intg= (intg1-1)*DIG_PER_DEC1; from; to->intg++, from/=10) {} + + for (buf=to->buf+intg1; intg1; intg1--) + { + ulonglong y=x/DIG_BASE; + *--buf=(dec1)(x-y*DIG_BASE); + x=y; + } + return error; +} + +int ulonglong2decimal(ulonglong from, decimal_t *to) +{ + to->sign=0; + return ull2dec(from, to); +} + +int longlong2decimal(longlong from, decimal_t *to) +{ + if ((to->sign= from < 0)) + { + if (from == LONGLONG_MIN) // avoid undefined behavior + return ull2dec((ulonglong)LONGLONG_MIN, to); + return ull2dec(-from, to); + } + return ull2dec(from, to); +} + +int decimal2ulonglong(const decimal_t *from, ulonglong *to) +{ + dec1 *buf=from->buf; + ulonglong x=0; + int intg, frac; + + if (from->sign) + { + *to= 0; + return E_DEC_OVERFLOW; + } + + for (intg=from->intg; intg > 0; intg-=DIG_PER_DEC1) + { + /* + Check that the decimal is bigger than any possible integer. + Do it before we do the x*=DIB_BASE to avoid integer + overflow. + */ + if (unlikely ( + x >= ULONGLONG_MAX/DIG_BASE && + (x > ULONGLONG_MAX/DIG_BASE || + *buf > (dec1) (ULONGLONG_MAX%DIG_BASE)))) + { + *to=ULONGLONG_MAX; + return E_DEC_OVERFLOW; + } + + x=x*DIG_BASE + *buf++; + } + *to=x; + for (frac=from->frac; unlikely(frac > 0); frac-=DIG_PER_DEC1) + if (*buf++) + return E_DEC_TRUNCATED; + return E_DEC_OK; +} + +int decimal2longlong(const decimal_t *from, longlong *to) +{ + dec1 *buf=from->buf; + longlong x=0; + int intg, frac; + + for (intg=from->intg; intg > 0; intg-=DIG_PER_DEC1) + { + /* + Check that the decimal is less than any possible integer. + Do it before we do the x*=DIB_BASE to avoid integer + overflow. + Attention: trick! + we're calculating -|from| instead of |from| here + because |LONGLONG_MIN| > LONGLONG_MAX + so we can convert -9223372036854775808 correctly. + */ + if (unlikely ( + x <= LONGLONG_MIN/DIG_BASE && + (x < LONGLONG_MIN/DIG_BASE || + *buf > (dec1) (-(LONGLONG_MIN%DIG_BASE))))) + { + /* + the decimal is bigger than any possible integer + return border integer depending on the sign + */ + *to= from->sign ? LONGLONG_MIN : LONGLONG_MAX; + return E_DEC_OVERFLOW; + } + + x=x*DIG_BASE - *buf++; + } + /* boundary case: 9223372036854775808 */ + if (unlikely(from->sign==0 && x == LONGLONG_MIN)) + { + *to= LONGLONG_MAX; + return E_DEC_OVERFLOW; + } + + *to=from->sign ? x : -x; + for (frac=from->frac; unlikely(frac > 0); frac-=DIG_PER_DEC1) + if (*buf++) + return E_DEC_TRUNCATED; + return E_DEC_OK; +} + +/* + Convert decimal to its binary fixed-length representation + two representations of the same length can be compared with memcmp + with the correct -1/0/+1 result + + SYNOPSIS + decimal2bin() + from - value to convert + to - points to buffer where string representation should be stored + precision/scale - see decimal_bin_size() below + + NOTE + the buffer is assumed to be of the size decimal_bin_size(precision, scale) + + RETURN VALUE + E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW + + DESCRIPTION + for storage decimal numbers are converted to the "binary" format. + + This format has the following properties: + 1. length of the binary representation depends on the {precision, scale} + as provided by the caller and NOT on the intg/frac of the decimal to + convert. + 2. binary representations of the same {precision, scale} can be compared + with memcmp - with the same result as decimal_cmp() of the original + decimals (not taking into account possible precision loss during + conversion). + + This binary format is as follows: + 1. First the number is converted to have a requested precision and scale. + 2. Every full DIG_PER_DEC1 digits of intg part are stored in 4 bytes + as is + 3. The first intg % DIG_PER_DEC1 digits are stored in the reduced + number of bytes (enough bytes to store this number of digits - + see dig2bytes) + 4. same for frac - full decimal_digit_t's are stored as is, + the last frac % DIG_PER_DEC1 digits - in the reduced number of bytes. + 5. If the number is negative - every byte is inversed. + 5. The very first bit of the resulting byte array is inverted (because + memcmp compares unsigned bytes, see property 2 above) + + Example: + + 1234567890.1234 + + internally is represented as 3 decimal_digit_t's + + 1 234567890 123400000 + + (assuming we want a binary representation with precision=14, scale=4) + in hex it's + + 00-00-00-01 0D-FB-38-D2 07-5A-EF-40 + + now, middle decimal_digit_t is full - it stores 9 decimal digits. It goes + into binary representation as is: + + + ........... 0D-FB-38-D2 ............ + + First decimal_digit_t has only one decimal digit. We can store one digit in + one byte, no need to waste four: + + 01 0D-FB-38-D2 ............ + + now, last digit. It's 123400000. We can store 1234 in two bytes: + + 01 0D-FB-38-D2 04-D2 + + So, we've packed 12 bytes number in 7 bytes. + And now we invert the highest bit to get the final result: + + 81 0D FB 38 D2 04 D2 + + And for -1234567890.1234 it would be + + 7E F2 04 C7 2D FB 2D +*/ +int decimal2bin(const decimal_t *from, uchar *to, decimal_digits_t precision, + decimal_digits_t frac) +{ + dec1 mask=from->sign ? -1 : 0, *buf1=from->buf, *stop1; + int error=E_DEC_OK, intg=precision-frac, + isize1, intg1, intg1x, + intg0=intg/DIG_PER_DEC1, + frac0=frac/DIG_PER_DEC1, + intg0x=intg-intg0*DIG_PER_DEC1, + frac0x=frac-frac0*DIG_PER_DEC1, + frac1=from->frac/DIG_PER_DEC1, + frac1x=from->frac-frac1*DIG_PER_DEC1, + isize0=intg0*sizeof(dec1)+dig2bytes[intg0x], + fsize0=frac0*sizeof(dec1)+dig2bytes[frac0x], + fsize1=frac1*sizeof(dec1)+dig2bytes[frac1x]; + decimal_digits_t from_intg; + const int orig_isize0= isize0; + const int orig_fsize0= fsize0; + uchar *orig_to= to; + + buf1= remove_leading_zeroes(from, &from_intg); + + if (unlikely(from_intg+fsize1==0)) + { + mask=0; /* just in case */ + intg=1; + buf1=&mask; + } + + intg1=from_intg/DIG_PER_DEC1; + intg1x=from_intg-intg1*DIG_PER_DEC1; + isize1=intg1*sizeof(dec1)+dig2bytes[intg1x]; + + if (intg < from_intg) + { + buf1+=intg1-intg0+(intg1x>0)-(intg0x>0); + intg1=intg0; intg1x=intg0x; + error=E_DEC_OVERFLOW; + } + else if (isize0 > isize1) + { + while (isize0-- > isize1) + *to++= (char)mask; + } + if (fsize0 < fsize1) + { + frac1=frac0; frac1x=frac0x; + error=E_DEC_TRUNCATED; + } + else if (fsize0 > fsize1 && frac1x) + { + if (frac0 == frac1) + { + frac1x=frac0x; + fsize0= fsize1; + } + else + { + frac1++; + frac1x=0; + } + } + + /* intg1x part */ + if (intg1x) + { + int i=dig2bytes[intg1x]; + dec1 x=(*buf1++ % powers10[intg1x]) ^ mask; + switch (i) + { + case 1: mi_int1store(to, x); break; + case 2: mi_int2store(to, x); break; + case 3: mi_int3store(to, x); break; + case 4: mi_int4store(to, x); break; + default: DBUG_ASSERT(0); + } + to+=i; + } + + /* intg1+frac1 part */ + for (stop1=buf1+intg1+frac1; buf1 < stop1; to+=sizeof(dec1)) + { + dec1 x=*buf1++ ^ mask; + DBUG_ASSERT(sizeof(dec1) == 4); + mi_int4store(to, x); + } + + /* frac1x part */ + if (frac1x) + { + dec1 x; + int i=dig2bytes[frac1x], + lim=(frac1 < frac0 ? DIG_PER_DEC1 : frac0x); + while (frac1x < lim && dig2bytes[frac1x] == i) + frac1x++; + x=(*buf1 / powers10[DIG_PER_DEC1 - frac1x]) ^ mask; + switch (i) + { + case 1: mi_int1store(to, x); break; + case 2: mi_int2store(to, x); break; + case 3: mi_int3store(to, x); break; + case 4: mi_int4store(to, x); break; + default: DBUG_ASSERT(0); + } + to+=i; + } + if (fsize0 > fsize1) + { + uchar *to_end= orig_to + orig_fsize0 + orig_isize0; + + while (fsize0-- > fsize1 && to < to_end) + *to++= (uchar)mask; + } + orig_to[0]^= 0x80; + + /* Check that we have written the whole decimal and nothing more */ + DBUG_ASSERT(to == orig_to + orig_fsize0 + orig_isize0); + return error; +} + +/* + Restores decimal from its binary fixed-length representation + + SYNOPSIS + bin2decimal() + from - value to convert + to - result + precision/scale - see decimal_bin_size() below + + NOTE + see decimal2bin() + the buffer is assumed to be of the size decimal_bin_size(precision, scale) + + RETURN VALUE + E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW +*/ + +int bin2decimal(const uchar *from, decimal_t *to, decimal_digits_t precision, + decimal_digits_t scale) +{ + int error=E_DEC_OK, intg=precision-scale, + intg0=intg/DIG_PER_DEC1, frac0=scale/DIG_PER_DEC1, + intg0x=intg-intg0*DIG_PER_DEC1, frac0x=scale-frac0*DIG_PER_DEC1, + intg1=intg0+(intg0x>0), frac1=frac0+(frac0x>0); + dec1 *buf=to->buf, mask=(*from & 0x80) ? 0 : -1; + const uchar *stop; + uchar *d_copy; + int bin_size= decimal_bin_size(precision, scale); + + sanity(to); + d_copy= (uchar*) my_alloca(bin_size); + memcpy(d_copy, from, bin_size); + d_copy[0]^= 0x80; + from= d_copy; + + FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error); + if (unlikely(error)) + { + if (intg1 < intg0+(intg0x>0)) + { + from+=dig2bytes[intg0x]+sizeof(dec1)*(intg0-intg1); + frac0=frac0x=intg0x=0; + intg0=intg1; + } + else + { + frac0x=0; + frac0=frac1; + } + } + + to->sign=(mask != 0); + to->intg=intg0*DIG_PER_DEC1+intg0x; + to->frac=frac0*DIG_PER_DEC1+frac0x; + + if (intg0x) + { + int i=dig2bytes[intg0x]; + dec1 UNINIT_VAR(x); + switch (i) + { + case 1: x=mi_sint1korr(from); break; + case 2: x=mi_sint2korr(from); break; + case 3: x=mi_sint3korr(from); break; + case 4: x=mi_sint4korr(from); break; + default: abort(); + } + from+=i; + *buf=x ^ mask; + if (((ulonglong)*buf) >= (ulonglong) powers10[intg0x+1]) + goto err; + if (buf > to->buf || *buf != 0) + buf++; + else + to->intg-=intg0x; + } + for (stop=from+intg0*sizeof(dec1); from < stop; from+=sizeof(dec1)) + { + DBUG_ASSERT(sizeof(dec1) == 4); + *buf=mi_sint4korr(from) ^ mask; + if (((uint32)*buf) > DIG_MAX) + goto err; + if (buf > to->buf || *buf != 0) + buf++; + else + to->intg-=DIG_PER_DEC1; + } + DBUG_ASSERT(to->intg >=0); + for (stop=from+frac0*sizeof(dec1); from < stop; from+=sizeof(dec1)) + { + DBUG_ASSERT(sizeof(dec1) == 4); + *buf=mi_sint4korr(from) ^ mask; + if (((uint32)*buf) > DIG_MAX) + goto err; + buf++; + } + if (frac0x) + { + int i=dig2bytes[frac0x]; + dec1 UNINIT_VAR(x); + switch (i) + { + case 1: x=mi_sint1korr(from); break; + case 2: x=mi_sint2korr(from); break; + case 3: x=mi_sint3korr(from); break; + case 4: x=mi_sint4korr(from); break; + default: abort(); + } + *buf=(x ^ mask) * powers10[DIG_PER_DEC1 - frac0x]; + if (((uint32)*buf) > DIG_MAX) + goto err; + buf++; + } + my_afree(d_copy); + + /* + No digits? We have read the number zero, of unspecified precision. + Make it a proper zero, with non-zero precision. + */ + if (to->intg == 0 && to->frac == 0) + decimal_make_zero(to); + return error; + +err: + my_afree(d_copy); + decimal_make_zero(to); + return(E_DEC_BAD_NUM); +} + +/* + Returns the size of array to hold a decimal with given precision and scale + + RETURN VALUE + size in dec1 + (multiply by sizeof(dec1) to get the size if bytes) +*/ + +uint decimal_size(decimal_digits_t precision, decimal_digits_t scale) +{ + DBUG_ASSERT(precision > 0 && scale <= precision); + return ROUND_UP(precision-scale)+ROUND_UP(scale); +} + +/* + Returns the size of array to hold a binary representation of a decimal + + RETURN VALUE + size in bytes +*/ + +uint decimal_bin_size(decimal_digits_t precision, decimal_digits_t scale) +{ + int intg=precision-scale, + intg0=intg/DIG_PER_DEC1, frac0=scale/DIG_PER_DEC1, + intg0x=intg-intg0*DIG_PER_DEC1, frac0x=scale-frac0*DIG_PER_DEC1; + + DBUG_ASSERT(precision > 0); + DBUG_ASSERT(scale <= precision); + return intg0*sizeof(dec1)+dig2bytes[intg0x]+ + frac0*sizeof(dec1)+dig2bytes[frac0x]; +} + +/* + Rounds the decimal to "scale" digits + + SYNOPSIS + decimal_round() + from - decimal to round, + to - result buffer. from==to is allowed + scale - to what position to round. can be negative! + mode - round to nearest even or truncate + + NOTES + scale can be negative ! + one TRUNCATED error (line XXX below) isn't treated very logical :( + + RETURN VALUE + E_DEC_OK/E_DEC_TRUNCATED +*/ + +int +decimal_round(const decimal_t *from, decimal_t *to, int scale, + decimal_round_mode mode) +{ + int frac0=scale>0 ? ROUND_UP(scale) : scale/DIG_PER_DEC1, + frac1=ROUND_UP(from->frac), UNINIT_VAR(round_digit), + intg0=ROUND_UP(from->intg), error=E_DEC_OK, len=to->len; + + dec1 *buf0=from->buf, *buf1=to->buf, x, y, carry=0; + int first_dig; + + sanity(to); + + switch (mode) { + case HALF_UP: + case HALF_EVEN: round_digit=5; break; + case CEILING: round_digit= from->sign ? 10 : 0; break; + case FLOOR: round_digit= from->sign ? 0 : 10; break; + case TRUNCATE: round_digit=10; break; + default: DBUG_ASSERT(0); + } + + /* + For my_decimal we always use len == DECIMAL_BUFF_LENGTH == 9 + For internal testing here (ifdef MAIN) we always use len == 100/4 + */ + DBUG_ASSERT(from->len == to->len); + + if (unlikely(frac0+intg0 > len)) + { + frac0=len-intg0; + scale=frac0*DIG_PER_DEC1; + error=E_DEC_TRUNCATED; + } + + if (scale+from->intg < 0) + { + decimal_make_zero(to); + return E_DEC_OK; + } + + if (to != from) + { + dec1 *p0= buf0+intg0+MY_MAX(frac1, frac0); + dec1 *p1= buf1+intg0+MY_MAX(frac1, frac0); + + DBUG_ASSERT(p0 - buf0 <= len); + DBUG_ASSERT(p1 - buf1 <= len); + + while (buf0 < p0) + *(--p1) = *(--p0); + + buf0=to->buf; + buf1=to->buf; + to->sign=from->sign; + to->intg=MY_MIN(intg0, len)*DIG_PER_DEC1; + } + + if (frac0 > frac1) + { + buf1+=intg0+frac1; + while (frac0-- > frac1) + *buf1++=0; + goto done; + } + + if (scale >= from->frac) + goto done; /* nothing to do */ + + buf0+=intg0+frac0-1; + buf1+=intg0+frac0-1; + if (scale == frac0*DIG_PER_DEC1) + { + int do_inc= FALSE; + DBUG_ASSERT(frac0+intg0 >= 0); + switch (round_digit) { + case 0: + { + dec1 *p0= buf0 + (frac1-frac0); + for (; p0 > buf0; p0--) + { + if (*p0) + { + do_inc= TRUE; + break; + } + } + break; + } + case 5: + { + x= buf0[1]/DIG_MASK; + do_inc= (x>5) || ((x == 5) && + (mode == HALF_UP || (frac0+intg0 > 0 && *buf0 & 1))); + break; + } + default: + break; + } + if (do_inc) + { + if (frac0+intg0>0) + (*buf1)++; + else + *(++buf1)=DIG_BASE; + } + else if (frac0+intg0==0) + { + decimal_make_zero(to); + return E_DEC_OK; + } + } + else + { + /* TODO - fix this code as it won't work for CEILING mode */ + int pos=frac0*DIG_PER_DEC1-scale-1; + DBUG_ASSERT(frac0+intg0 > 0); + x=*buf1 / powers10[pos]; + y=x % 10; + if (y > round_digit || + (round_digit == 5 && y == 5 && (mode == HALF_UP || (x/10) & 1))) + x+=10; + *buf1=powers10[pos]*(x-y); + } + if (*buf1 >= DIG_BASE) + { + carry=1; + *buf1-=DIG_BASE; + while (carry && --buf1 >= to->buf) + ADD(*buf1, *buf1, 0, carry); + if (unlikely(carry)) + { + /* shifting the number to create space for new digit */ + if (frac0+intg0 >= len) + { + frac0--; + scale=frac0*DIG_PER_DEC1; + error=E_DEC_TRUNCATED; /* XXX */ + } + for (buf1=to->buf+intg0+MY_MAX(frac0,0); buf1 > to->buf; buf1--) + { + buf1[0]=buf1[-1]; + } + *buf1=1; + to->intg++; + intg0++; + } + } + else + { + for (;;) + { + if (likely(*buf1)) + break; + if (buf1-- == to->buf) + { + /* making 'zero' with the proper scale */ + dec1 *p0= to->buf + frac0 + 1; + to->intg=1; + to->frac= MY_MAX(scale, 0); + to->sign= 0; + for (buf1= to->buf; buf1<p0; buf1++) + *buf1= 0; + return E_DEC_OK; + } + } + } + /* + In case we're rounding e.g. 1.5e9 to 2.0e9, the decimal_digit_t's inside + the buffer are as follows. + + Before <1, 5e8> + After <2, 5e8> + + Hence we need to set the 2nd field to 0. + The same holds if we round 1.5e-9 to 2e-9. + */ + if (frac0 < frac1) + { + dec1 *buf= to->buf + ((scale == 0 && intg0 == 0) ? 1 : intg0 + frac0); + dec1 *end= to->buf + len; + + while (buf < end) + *buf++=0; + } + + /* Here we check 999.9 -> 1000 case when we need to increase intg */ + first_dig= to->intg % DIG_PER_DEC1; + if (first_dig && (*buf1 >= powers10[first_dig])) + to->intg++; + + if (scale<0) + scale=0; + +done: + to->frac=scale; + return error; +} + +/* + Returns the size of the result of the operation + + SYNOPSIS + decimal_result_size() + from1 - operand of the unary operation or first operand of the + binary operation + from2 - second operand of the binary operation + op - operation. one char '+', '-', '*', '/' are allowed + others may be added later + param - extra param to the operation. unused for '+', '-', '*' + scale increment for '/' + + NOTE + returned valued may be larger than the actual buffer required + in the operation, as decimal_result_size, by design, operates on + precision/scale values only and not on the actual decimal number + + RETURN VALUE + size of to->buf array in dec1 elements. to get size in bytes + multiply by sizeof(dec1) +*/ + +uint decimal_result_size(decimal_t *from1, decimal_t *from2, char op, int param) +{ + switch (op) { + case '-': + return ROUND_UP(MY_MAX(from1->intg, from2->intg)) + + ROUND_UP(MY_MAX(from1->frac, from2->frac)); + case '+': + return ROUND_UP(MY_MAX(from1->intg, from2->intg)+1) + + ROUND_UP(MY_MAX(from1->frac, from2->frac)); + case '*': + return ROUND_UP(from1->intg+from2->intg)+ + ROUND_UP(from1->frac)+ROUND_UP(from2->frac); + case '/': + return ROUND_UP(from1->intg+from2->intg+1+from1->frac+from2->frac+param); + default: DBUG_ASSERT(0); + } + return 0; /* shut up the warning */ +} + +static int do_add(const decimal_t *from1, const decimal_t *from2, decimal_t *to) +{ + int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg), + frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac), + frac0=MY_MAX(frac1, frac2), intg0=MY_MAX(intg1, intg2), error; + dec1 *buf1, *buf2, *buf0, *stop, *stop2, x, carry; + + sanity(to); + + /* is there a need for extra word because of carry ? */ + x=intg1 > intg2 ? from1->buf[0] : + intg2 > intg1 ? from2->buf[0] : + from1->buf[0] + from2->buf[0] ; + if (unlikely(x > DIG_MAX-1)) /* yes, there is */ + { + intg0++; + to->buf[0]=0; /* safety */ + } + + FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error); + if (unlikely(error == E_DEC_OVERFLOW)) + { + max_decimal(to->len * DIG_PER_DEC1, 0, to); + return error; + } + + buf0=to->buf+intg0+frac0; + + to->sign=from1->sign; + to->frac=MY_MAX(from1->frac, from2->frac); + to->intg=intg0*DIG_PER_DEC1; + if (unlikely(error)) + { + set_if_smaller(to->frac, frac0*DIG_PER_DEC1); + set_if_smaller(frac1, frac0); + set_if_smaller(frac2, frac0); + set_if_smaller(intg1, intg0); + set_if_smaller(intg2, intg0); + } + + /* part 1 - MY_MAX(frac) ... min (frac) */ + if (frac1 > frac2) + { + buf1=from1->buf+intg1+frac1; + stop=from1->buf+intg1+frac2; + buf2=from2->buf+intg2+frac2; + stop2=from1->buf+(intg1 > intg2 ? intg1-intg2 : 0); + } + else + { + buf1=from2->buf+intg2+frac2; + stop=from2->buf+intg2+frac1; + buf2=from1->buf+intg1+frac1; + stop2=from2->buf+(intg2 > intg1 ? intg2-intg1 : 0); + } + while (buf1 > stop) + *--buf0=*--buf1; + + /* part 2 - MY_MIN(frac) ... MY_MIN(intg) */ + carry=0; + while (buf1 > stop2) + { + ADD(*--buf0, *--buf1, *--buf2, carry); + } + + /* part 3 - MY_MIN(intg) ... MY_MAX(intg) */ + buf1= intg1 > intg2 ? ((stop=from1->buf)+intg1-intg2) : + ((stop=from2->buf)+intg2-intg1) ; + while (buf1 > stop) + { + ADD(*--buf0, *--buf1, 0, carry); + } + + if (unlikely(carry)) + *--buf0=1; + DBUG_ASSERT(buf0 == to->buf || buf0 == to->buf+1); + + return error; +} + +/* to=from1-from2. + if to==0, return -1/0/+1 - the result of the comparison */ +static int do_sub(const decimal_t *from1, const decimal_t *from2, decimal_t *to) +{ + int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg), + frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac); + int frac0=MY_MAX(frac1, frac2), error; + dec1 *buf1, *buf2, *buf0, *stop1, *stop2, *start1, *start2; + my_bool carry=0; + + /* let carry:=1 if from2 > from1 */ + start1=buf1=from1->buf; stop1=buf1+intg1; + start2=buf2=from2->buf; stop2=buf2+intg2; + if (unlikely(*buf1 == 0)) + { + while (buf1 < stop1 && *buf1 == 0) + buf1++; + start1=buf1; + intg1= (int) (stop1-buf1); + } + if (unlikely(*buf2 == 0)) + { + while (buf2 < stop2 && *buf2 == 0) + buf2++; + start2=buf2; + intg2= (int) (stop2-buf2); + } + if (intg2 > intg1) + carry=1; + else if (intg2 == intg1) + { + dec1 *end1= stop1 + (frac1 - 1); + dec1 *end2= stop2 + (frac2 - 1); + while (unlikely((buf1 <= end1) && (*end1 == 0))) + end1--; + while (unlikely((buf2 <= end2) && (*end2 == 0))) + end2--; + frac1= (int) (end1 - stop1) + 1; + frac2= (int) (end2 - stop2) + 1; + while (buf1 <=end1 && buf2 <= end2 && *buf1 == *buf2) + buf1++, buf2++; + if (buf1 <= end1) + { + if (buf2 <= end2) + carry= *buf2 > *buf1; + else + carry= 0; + } + else + { + if (buf2 <= end2) + carry=1; + else /* short-circuit everything: from1 == from2 */ + { + if (to == 0) /* decimal_cmp() */ + return 0; + decimal_make_zero(to); + return E_DEC_OK; + } + } + } + + if (to == 0) /* decimal_cmp() */ + return carry == from1->sign ? 1 : -1; + + sanity(to); + + to->sign=from1->sign; + + /* ensure that always from1 > from2 (and intg1 >= intg2) */ + if (carry) + { + swap_variables(const decimal_t *, from1, from2); + swap_variables(dec1 *,start1, start2); + swap_variables(int,intg1,intg2); + swap_variables(int,frac1,frac2); + to->sign= !to->sign; + } + + FIX_INTG_FRAC_ERROR(to->len, intg1, frac0, error); + buf0=to->buf+intg1+frac0; + + to->frac=MY_MAX(from1->frac, from2->frac); + to->intg=intg1*DIG_PER_DEC1; + if (unlikely(error)) + { + set_if_smaller(to->frac, frac0*DIG_PER_DEC1); + set_if_smaller(frac1, frac0); + set_if_smaller(frac2, frac0); + set_if_smaller(intg2, intg1); + } + carry=0; + + /* part 1 - MY_MAX(frac) ... min (frac) */ + if (frac1 > frac2) + { + buf1=start1+intg1+frac1; + stop1=start1+intg1+frac2; + buf2=start2+intg2+frac2; + while (frac0-- > frac1) + *--buf0=0; + while (buf1 > stop1) + *--buf0=*--buf1; + } + else + { + buf1=start1+intg1+frac1; + buf2=start2+intg2+frac2; + stop2=start2+intg2+frac1; + while (frac0-- > frac2) + *--buf0=0; + while (buf2 > stop2) + { + SUB(*--buf0, 0, *--buf2, carry); + } + } + + /* part 2 - MY_MIN(frac) ... intg2 */ + while (buf2 > start2) + { + SUB(*--buf0, *--buf1, *--buf2, carry); + } + + /* part 3 - intg2 ... intg1 */ + while (carry && buf1 > start1) + { + SUB(*--buf0, *--buf1, 0, carry); + } + + while (buf1 > start1) + *--buf0=*--buf1; + + while (buf0 > to->buf) + *--buf0=0; + + return error; +} + +decimal_digits_t decimal_intg(const decimal_t *from) +{ + decimal_digits_t res; + remove_leading_zeroes(from, &res); + return res; +} + +int decimal_add(const decimal_t *from1, const decimal_t *from2, decimal_t *to) +{ + if (likely(from1->sign == from2->sign)) + return do_add(from1, from2, to); + return do_sub(from1, from2, to); +} + +int decimal_sub(const decimal_t *from1, const decimal_t *from2, decimal_t *to) +{ + if (likely(from1->sign == from2->sign)) + return do_sub(from1, from2, to); + return do_add(from1, from2, to); +} + +int decimal_cmp(const decimal_t *from1, const decimal_t *from2) +{ + if (likely(from1->sign == from2->sign)) + return do_sub(from1, from2, 0); + return from1->sign > from2->sign ? -1 : 1; +} + +int decimal_is_zero(const decimal_t *from) +{ + dec1 *buf1=from->buf, + *end=buf1+ROUND_UP(from->intg)+ROUND_UP(from->frac); + while (buf1 < end) + if (*buf1++) + return 0; + return 1; +} + +/* + multiply two decimals + + SYNOPSIS + decimal_mul() + from1, from2 - factors + to - product + + RETURN VALUE + E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW; + + NOTES + in this implementation, with sizeof(dec1)=4 we have DIG_PER_DEC1=9, + and 63-digit number will take only 7 dec1 words (basically a 7-digit + "base 999999999" number). Thus there's no need in fast multiplication + algorithms, 7-digit numbers can be multiplied with a naive O(n*n) + method. + + XXX if this library is to be used with huge numbers of thousands of + digits, fast multiplication must be implemented. +*/ +int decimal_mul(const decimal_t *from1, const decimal_t *from2, decimal_t *to) +{ + int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg), + frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac), + intg0=ROUND_UP(from1->intg+from2->intg), + frac0=frac1+frac2, error, i, j, d_to_move; + dec1 *buf1=from1->buf+intg1, *buf2=from2->buf+intg2, *buf0, + *start2, *stop2, *stop1, *start0, carry; + + sanity(to); + + i=intg0; /* save 'ideal' values */ + j=frac0; + FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error); /* bound size */ + to->sign=from1->sign != from2->sign; + to->frac=from1->frac+from2->frac; /* store size in digits */ + to->intg=intg0*DIG_PER_DEC1; + + if (unlikely(error)) + { + set_if_smaller(to->frac, frac0*DIG_PER_DEC1); + set_if_smaller(to->intg, intg0*DIG_PER_DEC1); + if (unlikely(i > intg0)) /* bounded integer-part */ + { + i-=intg0; + j=i >> 1; + intg1-= j; + intg2-=i-j; + frac1=frac2=0; /* frac0 is already 0 here */ + } + else /* bounded fract part */ + { + j-=frac0; + i=j >> 1; + if (frac1 <= frac2) + { + frac1-= i; + frac2-=j-i; + } + else + { + frac2-= i; + frac1-=j-i; + } + } + } + start0=to->buf+intg0+frac0-1; + start2=buf2+frac2-1; + stop1=buf1-intg1; + stop2=buf2-intg2; + + bzero(to->buf, (intg0+frac0)*sizeof(dec1)); + + for (buf1+=frac1-1; buf1 >= stop1; buf1--, start0--) + { + carry=0; + for (buf0=start0, buf2=start2; buf2 >= stop2; buf2--, buf0--) + { + dec1 hi, lo; + dec2 p= ((dec2)*buf1) * ((dec2)*buf2); + hi=(dec1)(p/DIG_BASE); + lo=(dec1)(p-((dec2)hi)*DIG_BASE); + ADD2(*buf0, *buf0, lo, carry); + carry+=hi; + } + if (carry) + { + if (buf0 < to->buf) + return E_DEC_OVERFLOW; + ADD2(*buf0, *buf0, 0, carry); + } + for (buf0--; carry; buf0--) + { + if (buf0 < to->buf) + return E_DEC_OVERFLOW; + ADD(*buf0, *buf0, 0, carry); + } + } + + /* Remove trailing zero words in frac part */ + frac0= ROUND_UP(to->frac); + + if (frac0 > 0 && to->buf[intg0 + frac0 - 1] == 0) + { + do + { + frac0--; + } while (frac0 > 0 && to->buf[intg0 + frac0 - 1] == 0); + to->frac= DIG_PER_DEC1 * frac0; + } + + /* Remove heading zero words in intg part */ + buf1= to->buf; + d_to_move= intg0 + frac0; + while (!*buf1 && (to->intg > DIG_PER_DEC1)) + { + buf1++; + to->intg-= DIG_PER_DEC1; + d_to_move--; + } + if (to->buf < buf1) + { + dec1 *cur_d= to->buf; + for (; d_to_move--; cur_d++, buf1++) + *cur_d= *buf1; + } + + /* Now we have to check for -0.000 case */ + if (to->sign && to->frac == 0 && to->buf[0] == 0) + { + DBUG_ASSERT(to->intg <= DIG_PER_DEC1); + /* We got decimal zero */ + decimal_make_zero(to); + } + return error; +} + +/* + naive division algorithm (Knuth's Algorithm D in 4.3.1) - + it's ok for short numbers + also we're using alloca() to allocate a temporary buffer + + XXX if this library is to be used with huge numbers of thousands of + digits, fast division must be implemented and alloca should be + changed to malloc (or at least fallback to malloc if alloca() fails) + but then, decimal_mul() should be rewritten too :( +*/ +static int do_div_mod(const decimal_t *from1, const decimal_t *from2, + decimal_t *to, decimal_t *mod, int scale_incr) +{ + int frac1=ROUND_UP(from1->frac)*DIG_PER_DEC1, prec1=from1->intg+frac1, + frac2=ROUND_UP(from2->frac)*DIG_PER_DEC1, prec2=from2->intg+frac2, + UNINIT_VAR(error), i, intg0, frac0, len1, len2, dintg, div_mod=(!mod); + dec1 *buf0, *buf1=from1->buf, *buf2=from2->buf, *tmp1, + *start2, *stop2, *stop1, *stop0, norm2, carry, *start1, dcarry; + dec2 norm_factor, x, guess, y; + + if (mod) + to=mod; + + sanity(to); + + /* removing all the leading zeroes */ + i= ((prec2 - 1) % DIG_PER_DEC1) + 1; + while (prec2 > 0 && *buf2 == 0) + { + prec2-= i; + i= DIG_PER_DEC1; + buf2++; + } + if (prec2 <= 0) /* short-circuit everything: from2 == 0 */ + return E_DEC_DIV_ZERO; + for (i= (prec2 - 1) % DIG_PER_DEC1; *buf2 < powers10[i--]; prec2--) ; + DBUG_ASSERT(prec2 > 0); + + i=((prec1-1) % DIG_PER_DEC1)+1; + while (prec1 > 0 && *buf1 == 0) + { + prec1-=i; + i=DIG_PER_DEC1; + buf1++; + } + if (prec1 <= 0) + { /* short-circuit everything: from1 == 0 */ + decimal_make_zero(to); + return E_DEC_OK; + } + for (i=(prec1-1) % DIG_PER_DEC1; *buf1 < powers10[i--]; prec1--) ; + DBUG_ASSERT(prec1 > 0); + + /* let's fix scale_incr, taking into account frac1,frac2 increase */ + if ((scale_incr-= frac1 - from1->frac + frac2 - from2->frac) < 0) + scale_incr=0; + + dintg=(prec1-frac1)-(prec2-frac2)+(*buf1 >= *buf2); + if (dintg < 0) + { + dintg/=DIG_PER_DEC1; + intg0=0; + } + else + intg0=ROUND_UP(dintg); + if (mod) + { + /* we're calculating N1 % N2. + The result will have + frac=MY_MAX(frac1, frac2), as for subtraction + intg=intg2 + */ + to->sign=from1->sign; + to->frac=MY_MAX(from1->frac, from2->frac); + frac0=0; + } + else + { + /* + we're calculating N1/N2. N1 is in the buf1, has prec1 digits + N2 is in the buf2, has prec2 digits. Scales are frac1 and + frac2 accordingly. + Thus, the result will have + frac = ROUND_UP(frac1+frac2+scale_incr) + and + intg = (prec1-frac1) - (prec2-frac2) + 1 + prec = intg+frac + */ + frac0=ROUND_UP(frac1+frac2+scale_incr); + FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error); + to->sign=from1->sign != from2->sign; + to->intg=intg0*DIG_PER_DEC1; + to->frac=frac0*DIG_PER_DEC1; + } + buf0=to->buf; + stop0=buf0+intg0+frac0; + if (likely(div_mod)) + while (dintg++ < 0 && buf0 < &to->buf[to->len]) + { + *buf0++=0; + } + + len1=(i=ROUND_UP(prec1))+ROUND_UP(2*frac2+scale_incr+1) + 1; + set_if_bigger(len1, 3); + if (!(tmp1=(dec1 *)my_alloca(len1*sizeof(dec1)))) + return E_DEC_OOM; + memcpy(tmp1, buf1, i*sizeof(dec1)); + bzero(tmp1+i, (len1-i)*sizeof(dec1)); + + start1=tmp1; + stop1=start1+len1; + start2=buf2; + stop2=buf2+ROUND_UP(prec2)-1; + + /* removing end zeroes */ + while (*stop2 == 0 && stop2 >= start2) + stop2--; + len2= (int) (stop2++ - start2); + + /* + calculating norm2 (normalized *start2) - we need *start2 to be large + (at least > DIG_BASE/2), but unlike Knuth's Alg. D we don't want to + normalize input numbers (as we don't make a copy of the divisor). + Thus we normalize first dec1 of buf2 only, and we'll normalize *start1 + on the fly for the purpose of guesstimation only. + It's also faster, as we're saving on normalization of buf2 + */ + norm_factor=DIG_BASE/(*start2+1); + norm2=(dec1)(norm_factor*start2[0]); + if (unlikely(len2>0)) + norm2+=(dec1)(norm_factor*start2[1]/DIG_BASE); + + if (*start1 < *start2) + dcarry=*start1++; + else + dcarry=0; + + /* main loop */ + for (; buf0 < stop0; buf0++) + { + /* short-circuit, if possible */ + if (unlikely(dcarry == 0 && *start1 < *start2)) + guess=0; + else + { + /* D3: make a guess */ + x=start1[0]+((dec2)dcarry)*DIG_BASE; + y=start1[1]; + guess=(norm_factor*x+norm_factor*y/DIG_BASE)/norm2; + if (unlikely(guess >= DIG_BASE)) + guess=DIG_BASE-1; + if (unlikely(len2>0)) + { + /* hmm, this is a suspicious trick - I removed normalization here */ + if (start2[1]*guess > (x-guess*start2[0])*DIG_BASE+y) + guess--; + if (unlikely(start2[1]*guess > (x-guess*start2[0])*DIG_BASE+y)) + guess--; + DBUG_ASSERT(start2[1]*guess <= (x-guess*start2[0])*DIG_BASE+y); + } + + /* D4: multiply and subtract */ + buf2=stop2; + buf1=start1+len2; + DBUG_ASSERT(buf1 < stop1); + for (carry=0; buf2 > start2; buf1--) + { + dec1 hi, lo; + x=guess * (*--buf2); + hi=(dec1)(x/DIG_BASE); + lo=(dec1)(x-((dec2)hi)*DIG_BASE); + SUB2(*buf1, *buf1, lo, carry); + carry+=hi; + } + carry= dcarry < carry; + + /* D5: check the remainder */ + if (unlikely(carry)) + { + /* D6: correct the guess */ + guess--; + buf2=stop2; + buf1=start1+len2; + for (carry=0; buf2 > start2; buf1--) + { + ADD(*buf1, *buf1, *--buf2, carry); + } + } + } + if (likely(div_mod)) + { + DBUG_ASSERT(buf0 < to->buf + to->len); + *buf0=(dec1)guess; + } +#ifdef WORKAROUND_GCC_4_3_2_BUG + dcarry= *(volatile dec1 *)start1; +#else + dcarry= *start1; +#endif + start1++; + } + if (mod) + { + /* + now the result is in tmp1, it has + intg=prec1-frac1 + frac=MY_MAX(frac1, frac2)=to->frac + */ + if (dcarry) + *--start1=dcarry; + buf0=to->buf; + intg0=(int) (ROUND_UP(prec1-frac1)-(start1-tmp1)); + frac0=ROUND_UP(to->frac); + error=E_DEC_OK; + if (unlikely(frac0==0 && intg0==0)) + { + decimal_make_zero(to); + goto done; + } + if (intg0<=0) + { + if (unlikely(-intg0 >= to->len)) + { + decimal_make_zero(to); + error=E_DEC_TRUNCATED; + goto done; + } + stop1= start1 + frac0 + intg0; + frac0+=intg0; + to->intg=0; + while (intg0++ < 0) + *buf0++=0; + } + else + { + if (unlikely(intg0 > to->len)) + { + frac0=0; + intg0=to->len; + error=E_DEC_OVERFLOW; + goto done; + } + DBUG_ASSERT(intg0 <= ROUND_UP(from2->intg)); + stop1=start1+frac0+intg0; + to->intg=MY_MIN(intg0*DIG_PER_DEC1, from2->intg); + } + if (unlikely(intg0+frac0 > to->len)) + { + stop1-=frac0+intg0-to->len; + frac0=to->len-intg0; + to->frac=frac0*DIG_PER_DEC1; + error=E_DEC_TRUNCATED; + } + DBUG_ASSERT(buf0 + (stop1 - start1) <= to->buf + to->len); + while (start1 < stop1) + *buf0++=*start1++; + } +done: + my_afree(tmp1); + return error; +} + +/* + division of two decimals + + SYNOPSIS + decimal_div() + from1 - dividend + from2 - divisor + to - quotient + + RETURN VALUE + E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO; + + NOTES + see do_div_mod() +*/ + +int +decimal_div(const decimal_t *from1, const decimal_t *from2, decimal_t *to, + int scale_incr) +{ + return do_div_mod(from1, from2, to, 0, scale_incr); +} + +/* + modulus + + SYNOPSIS + decimal_mod() + from1 - dividend + from2 - divisor + to - modulus + + RETURN VALUE + E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO; + + NOTES + see do_div_mod() + + DESCRIPTION + the modulus R in R = M mod N + + is defined as + + 0 <= |R| < |M| + sign R == sign M + R = M - k*N, where k is integer + + thus, there's no requirement for M or N to be integers +*/ + +int decimal_mod(const decimal_t *from1, const decimal_t *from2, decimal_t *to) +{ + return do_div_mod(from1, from2, 0, to, 0); +} + +#ifdef MAIN + +int full= 0; +decimal_t a, b, c; +char buf1[100], buf2[100], buf3[100]; + +void dump_decimal(decimal_t *d) +{ + int i; + printf("/* intg=%d, frac=%d, sign=%d, buf[]={", d->intg, d->frac, d->sign); + for (i=0; i < ROUND_UP(d->frac)+ROUND_UP(d->intg)-1; i++) + printf("%09d, ", d->buf[i]); + printf("%09d} */ ", d->buf[i]); +} + + +void check_result_code(int actual, int want) +{ + if (actual != want) + { + printf("\n^^^^^^^^^^^^^ must return %d\n", want); + exit(1); + } +} + + +void print_decimal(decimal_t *d, const char *orig, int actual, int want) +{ + char s[100]; + int slen=sizeof(s); + + if (full) dump_decimal(d); + decimal2string(d, s, &slen, 0, 0, 0); + printf("'%s'", s); + check_result_code(actual, want); + if (orig && strcmp(orig, s)) + { + printf("\n^^^^^^^^^^^^^ must've been '%s'\n", orig); + exit(1); + } +} + +void test_d2s() +{ + char s[100]; + int slen, res; + + /***********************************/ + printf("==== decimal2string ====\n"); + a.buf[0]=12345; a.intg=5; a.frac=0; a.sign=0; + slen=sizeof(s); + res=decimal2string(&a, s, &slen, 0, 0, 0); + dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen); + + a.buf[1]=987000000; a.frac=3; + slen=sizeof(s); + res=decimal2string(&a, s, &slen, 0, 0, 0); + dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen); + + a.sign=1; + slen=sizeof(s); + res=decimal2string(&a, s, &slen, 0, 0, 0); + dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen); + + slen=8; + res=decimal2string(&a, s, &slen, 0, 0, 0); + dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen); + + slen=5; + res=decimal2string(&a, s, &slen, 0, 0, 0); + dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen); + + a.buf[0]=987000000; a.frac=3; a.intg=0; + slen=sizeof(s); + res=decimal2string(&a, s, &slen, 0, 0, 0); + dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen); +} + +void test_s2d(const char *s, const char *orig, int ex) +{ + char s1[100], *end; + int res; + sprintf(s1, "'%s'", s); + end= strend(s); + printf("len=%2d %-30s => res=%d ", a.len, s1, + (res= string2decimal(s, &a, &end))); + print_decimal(&a, orig, res, ex); + printf("\n"); +} + +void test_d2f(const char *s, int ex) +{ + char s1[100], *end; + double x; + int res; + + sprintf(s1, "'%s'", s); + end= strend(s); + string2decimal(s, &a, &end); + res=decimal2double(&a, &x); + if (full) dump_decimal(&a); + printf("%-40s => res=%d %.*g\n", s1, res, a.intg+a.frac, x); + check_result_code(res, ex); +} + +void test_d2b2d(const char *str, int p, int s, const char *orig, int ex) +{ + char s1[100], *end; + uchar buf[100]; + int res, i, size=decimal_bin_size(p, s); + + sprintf(s1, "'%s'", str); + end= strend(str); + string2decimal(str, &a, &end); + res=decimal2bin(&a, buf, p, s); + printf("%-31s {%2d, %2d} => res=%d size=%-2d ", s1, p, s, res, size); + if (full) + { + printf("0x"); + for (i=0; i < size; i++) + printf("%02x", ((uchar *)buf)[i]); + } + res=bin2decimal(buf, &a, p, s); + printf(" => res=%d ", res); + print_decimal(&a, orig, res, ex); + printf("\n"); +} + +void test_f2d(double from, int ex) +{ + int res; + + res=double2decimal(from, &a); + printf("%-40.*f => res=%d ", DBL_DIG-2, from, res); + print_decimal(&a, 0, res, ex); + printf("\n"); +} + +void test_ull2d(ulonglong from, const char *orig, int ex) +{ + char s[100]; + int res; + + res=ulonglong2decimal(from, &a); + longlong10_to_str(from,s,10); + printf("%-40s => res=%d ", s, res); + print_decimal(&a, orig, res, ex); + printf("\n"); +} + +void test_ll2d(longlong from, const char *orig, int ex) +{ + char s[100]; + int res; + + res=longlong2decimal(from, &a); + longlong10_to_str(from,s,-10); + printf("%-40s => res=%d ", s, res); + print_decimal(&a, orig, res, ex); + printf("\n"); +} + +void test_d2ull(const char *s, const char *orig, int ex) +{ + char s1[100], *end; + ulonglong x; + int res; + + end= strend(s); + string2decimal(s, &a, &end); + res=decimal2ulonglong(&a, &x); + if (full) dump_decimal(&a); + longlong10_to_str(x,s1,10); + printf("%-40s => res=%d %s\n", s, res, s1); + check_result_code(res, ex); + if (orig && strcmp(orig, s1)) + { + printf("\n^^^^^^^^^^^^^ must've been '%s'\n", orig); + exit(1); + } +} + +void test_d2ll(const char *s, const char *orig, int ex) +{ + char s1[100], *end; + longlong x; + int res; + + end= strend(s); + string2decimal(s, &a, &end); + res=decimal2longlong(&a, &x); + if (full) dump_decimal(&a); + longlong10_to_str(x,s1,-10); + printf("%-40s => res=%d %s\n", s, res, s1); + check_result_code(res, ex); + if (orig && strcmp(orig, s1)) + { + printf("\n^^^^^^^^^^^^^ must've been '%s'\n", orig); + exit(1); + } +} + +void test_da(const char *s1, const char *s2, const char *orig, int ex) +{ + char s[100], *end; + int res; + sprintf(s, "'%s' + '%s'", s1, s2); + end= strend(s1); + string2decimal(s1, &a, &end); + end= strend(s2); + string2decimal(s2, &b, &end); + res=decimal_add(&a, &b, &c); + printf("%-40s => res=%d ", s, res); + print_decimal(&c, orig, res, ex); + printf("\n"); +} + +void test_ds(const char *s1, const char *s2, const char *orig, int ex) +{ + char s[100], *end; + int res; + sprintf(s, "'%s' - '%s'", s1, s2); + end= strend(s1); + string2decimal(s1, &a, &end); + end= strend(s2); + string2decimal(s2, &b, &end); + res=decimal_sub(&a, &b, &c); + printf("%-40s => res=%d ", s, res); + print_decimal(&c, orig, res, ex); + printf("\n"); +} + +void test_dc(const char *s1, const char *s2, int orig) +{ + char s[100], *end; + int res; + sprintf(s, "'%s' <=> '%s'", s1, s2); + end= strend(s1); + string2decimal(s1, &a, &end); + end= strend(s2); + string2decimal(s2, &b, &end); + res=decimal_cmp(&a, &b); + printf("%-40s => res=%d\n", s, res); + if (orig != res) + { + printf("\n^^^^^^^^^^^^^ must've been %d\n", orig); + exit(1); + } +} + +void test_dm(const char *s1, const char *s2, const char *orig, int ex) +{ + char s[100], *end; + int res; + sprintf(s, "'%s' * '%s'", s1, s2); + end= strend(s1); + string2decimal(s1, &a, &end); + end= strend(s2); + string2decimal(s2, &b, &end); + res=decimal_mul(&a, &b, &c); + printf("%-40s => res=%d ", s, res); + print_decimal(&c, orig, res, ex); + printf("\n"); +} + +void test_dv(const char *s1, const char *s2, const char *orig, int ex) +{ + char s[100], *end; + int res; + sprintf(s, "'%s' / '%s'", s1, s2); + end= strend(s1); + string2decimal(s1, &a, &end); + end= strend(s2); + string2decimal(s2, &b, &end); + res=decimal_div(&a, &b, &c, 5); + printf("%-40s => res=%d ", s, res); + check_result_code(res, ex); + if (res == E_DEC_DIV_ZERO) + printf("E_DEC_DIV_ZERO"); + else + print_decimal(&c, orig, res, ex); + printf("\n"); +} + +void test_md(const char *s1, const char *s2, const char *orig, int ex) +{ + char s[100], *end; + int res; + sprintf(s, "'%s' %% '%s'", s1, s2); + end= strend(s1); + string2decimal(s1, &a, &end); + end= strend(s2); + string2decimal(s2, &b, &end); + res=decimal_mod(&a, &b, &c); + printf("%-40s => res=%d ", s, res); + check_result_code(res, ex); + if (res == E_DEC_DIV_ZERO) + printf("E_DEC_DIV_ZERO"); + else + print_decimal(&c, orig, res, ex); + printf("\n"); +} + +const char *round_mode[]= +{"TRUNCATE", "HALF_EVEN", "HALF_UP", "CEILING", "FLOOR"}; + +void test_ro(const char *s1, int n, decimal_round_mode mode, const char *orig, + int ex) +{ + char s[100], *end; + int res; + sprintf(s, "'%s', %d, %s", s1, n, round_mode[mode]); + end= strend(s1); + string2decimal(s1, &a, &end); + res=decimal_round(&a, &b, n, mode); + printf("%-40s => res=%d ", s, res); + print_decimal(&b, orig, res, ex); + printf("\n"); +} + + +void test_mx(int precision, int frac, const char *orig) +{ + char s[100]; + sprintf(s, "%d, %d", precision, frac); + max_decimal(precision, frac, &a); + printf("%-40s => ", s); + print_decimal(&a, orig, 0, 0); + printf("\n"); +} + + +void test_pr(const char *s1, int prec, int dec, char filler, const char *orig, + int ex) +{ + char s[100], *end; + char s2[100]; + int slen= sizeof(s2); + int res; + + sprintf(s, filler ? "'%s', %d, %d, '%c'" : "'%s', %d, %d, '\\0'", + s1, prec, dec, filler); + end= strend(s1); + string2decimal(s1, &a, &end); + res= decimal2string(&a, s2, &slen, prec, dec, filler); + printf("%-40s => res=%d '%s'", s, res, s2); + check_result_code(res, ex); + if (orig && strcmp(orig, s2)) + { + printf("\n^^^^^^^^^^^^^ must've been '%s'\n", orig); + exit(1); + } + printf("\n"); +} + + +void test_sh(const char *s1, int shift, const char *orig, int ex) +{ + char s[100], *end; + int res; + sprintf(s, "'%s' %s %d", s1, ((shift < 0) ? ">>" : "<<"), abs(shift)); + end= strend(s1); + string2decimal(s1, &a, &end); + res= decimal_shift(&a, shift); + printf("%-40s => res=%d ", s, res); + print_decimal(&a, orig, res, ex); + printf("\n"); +} + + +void test_fr(const char *s1, const char *orig) +{ + char s[100], *end; + sprintf(s, "'%s'", s1); + printf("%-40s => ", s); + end= strend(s1); + string2decimal(s1, &a, &end); + a.frac= decimal_actual_fraction(&a); + print_decimal(&a, orig, 0, 0); + printf("\n"); +} + + +int main() +{ + a.buf=(void*)buf1; + a.len=sizeof(buf1)/sizeof(dec1); + b.buf=(void*)buf2; + b.len=sizeof(buf2)/sizeof(dec1); + c.buf=(void*)buf3; + c.len=sizeof(buf3)/sizeof(dec1); + + if (full) + test_d2s(); + + printf("==== string2decimal ====\n"); + test_s2d("12345", "12345", 0); + test_s2d("12345.", "12345", 0); + test_s2d("123.45", "123.45", 0); + test_s2d("-123.45", "-123.45", 0); + test_s2d(".00012345000098765", "0.00012345000098765", 0); + test_s2d(".12345000098765", "0.12345000098765", 0); + test_s2d("-.000000012345000098765", "-0.000000012345000098765", 0); + test_s2d("1234500009876.5", "1234500009876.5", 0); + a.len=1; + test_s2d("123450000098765", "98765", 2); + test_s2d("123450.000098765", "123450", 1); + a.len=sizeof(buf1)/sizeof(dec1); + test_s2d("123E5", "12300000", 0); + test_s2d("123E-2", "1.23", 0); + + printf("==== decimal2double ====\n"); + test_d2f("12345", 0); + test_d2f("123.45", 0); + test_d2f("-123.45", 0); + test_d2f("0.00012345000098765", 0); + test_d2f("1234500009876.5", 0); + + printf("==== double2decimal ====\n"); + test_f2d(12345, 0); + test_f2d(1.0/3, 0); + test_f2d(-123.45, 0); + test_f2d(0.00012345000098765, 0); + test_f2d(1234500009876.5, 0); + + printf("==== ulonglong2decimal ====\n"); + test_ull2d(12345ULL, "12345", 0); + test_ull2d(0ULL, "0", 0); + test_ull2d(18446744073709551615ULL, "18446744073709551615", 0); + + printf("==== decimal2ulonglong ====\n"); + test_d2ull("12345", "12345", 0); + test_d2ull("0", "0", 0); + test_d2ull("18446744073709551615", "18446744073709551615", 0); + test_d2ull("18446744073709551616", "18446744073709551615", 2); + test_d2ull("-1", "0", 2); + test_d2ull("1.23", "1", 1); + test_d2ull("9999999999999999999999999.000", "18446744073709551615", 2); + + printf("==== longlong2decimal ====\n"); + test_ll2d(-12345LL, "-12345", 0); + test_ll2d(-1LL, "-1", 0); + test_ll2d(-9223372036854775807LL, "-9223372036854775807", 0); + test_ll2d(9223372036854775808ULL, "-9223372036854775808", 0); + + printf("==== decimal2longlong ====\n"); + test_d2ll("18446744073709551615", "9223372036854775807", 2); + test_d2ll("-1", "-1", 0); + test_d2ll("-1.23", "-1", 1); + test_d2ll("-9223372036854775807", "-9223372036854775807", 0); + test_d2ll("-9223372036854775808", "-9223372036854775808", 0); + test_d2ll("9223372036854775808", "9223372036854775807", 2); + + printf("==== do_add ====\n"); + test_da(".00012345000098765" ,"123.45", "123.45012345000098765", 0); + test_da(".1" ,".45", "0.55", 0); + test_da("1234500009876.5" ,".00012345000098765", "1234500009876.50012345000098765", 0); + test_da("9999909999999.5" ,".555", "9999910000000.055", 0); + test_da("99999999" ,"1", "100000000", 0); + test_da("989999999" ,"1", "990000000", 0); + test_da("999999999" ,"1", "1000000000", 0); + test_da("12345" ,"123.45", "12468.45", 0); + test_da("-12345" ,"-123.45", "-12468.45", 0); + test_ds("-12345" ,"123.45", "-12468.45", 0); + test_ds("12345" ,"-123.45", "12468.45", 0); + + printf("==== do_sub ====\n"); + test_ds(".00012345000098765", "123.45","-123.44987654999901235", 0); + test_ds("1234500009876.5", ".00012345000098765","1234500009876.49987654999901235", 0); + test_ds("9999900000000.5", ".555","9999899999999.945", 0); + test_ds("1111.5551", "1111.555","0.0001", 0); + test_ds(".555", ".555","0", 0); + test_ds("10000000", "1","9999999", 0); + test_ds("1000001000", ".1","1000000999.9", 0); + test_ds("1000000000", ".1","999999999.9", 0); + test_ds("12345", "123.45","12221.55", 0); + test_ds("-12345", "-123.45","-12221.55", 0); + test_da("-12345", "123.45","-12221.55", 0); + test_da("12345", "-123.45","12221.55", 0); + test_ds("123.45", "12345","-12221.55", 0); + test_ds("-123.45", "-12345","12221.55", 0); + test_da("123.45", "-12345","-12221.55", 0); + test_da("-123.45", "12345","12221.55", 0); + test_da("5", "-6.0","-1.0", 0); + + printf("==== decimal_mul ====\n"); + test_dm("12", "10","120", 0); + test_dm("-123.456", "98765.4321","-12193185.1853376", 0); + test_dm("-123456000000", "98765432100000","-12193185185337600000000000", 0); + test_dm("123456", "987654321","121931851853376", 0); + test_dm("123456", "9876543210","1219318518533760", 0); + test_dm("123", "0.01","1.23", 0); + test_dm("123", "0","0", 0); + + printf("==== decimal_div ====\n"); + test_dv("120", "10","12.000000000", 0); + test_dv("123", "0.01","12300.000000000", 0); + test_dv("120", "100000000000.00000","0.000000001200000000", 0); + test_dv("123", "0","", 4); + test_dv("0", "0", "", 4); + test_dv("-12193185.1853376", "98765.4321","-123.456000000000000000", 0); + test_dv("121931851853376", "987654321","123456.000000000", 0); + test_dv("0", "987","0", 0); + test_dv("1", "3","0.333333333", 0); + test_dv("1.000000000000", "3","0.333333333333333333", 0); + test_dv("1", "1","1.000000000", 0); + test_dv("0.0123456789012345678912345", "9999999999","0.000000000001234567890246913578148141", 0); + test_dv("10.333000000", "12.34500","0.837019036046982584042122316", 0); + test_dv("10.000000000060", "2","5.000000000030000000", 0); + + printf("==== decimal_mod ====\n"); + test_md("234","10","4", 0); + test_md("234.567","10.555","2.357", 0); + test_md("-234.567","10.555","-2.357", 0); + test_md("234.567","-10.555","2.357", 0); + c.buf[1]=0x3ABECA; + test_md("99999999999999999999999999999999999999","3","0", 0); + if (c.buf[1] != 0x3ABECA) + { + printf("%X - overflow\n", c.buf[1]); + exit(1); + } + + printf("==== decimal2bin/bin2decimal ====\n"); + test_d2b2d("-10.55", 4, 2,"-10.55", 0); + test_d2b2d("0.0123456789012345678912345", 30, 25,"0.0123456789012345678912345", 0); + test_d2b2d("12345", 5, 0,"12345", 0); + test_d2b2d("12345", 10, 3,"12345.000", 0); + test_d2b2d("123.45", 10, 3,"123.450", 0); + test_d2b2d("-123.45", 20, 10,"-123.4500000000", 0); + test_d2b2d(".00012345000098765", 15, 14,"0.00012345000098", 0); + test_d2b2d(".00012345000098765", 22, 20,"0.00012345000098765000", 0); + test_d2b2d(".12345000098765", 30, 20,"0.12345000098765000000", 0); + test_d2b2d("-.000000012345000098765", 30, 20,"-0.00000001234500009876", 0); + test_d2b2d("1234500009876.5", 30, 5,"1234500009876.50000", 0); + test_d2b2d("111111111.11", 10, 2,"11111111.11", 0); + test_d2b2d("000000000.01", 7, 3,"0.010", 0); + test_d2b2d("123.4", 10, 2, "123.40", 0); + + + printf("==== decimal_cmp ====\n"); + test_dc("12","13",-1); + test_dc("13","12",1); + test_dc("-10","10",-1); + test_dc("10","-10",1); + test_dc("-12","-13",1); + test_dc("0","12",-1); + test_dc("-10","0",-1); + test_dc("4","4",0); + + printf("==== decimal_round ====\n"); + test_ro("5678.123451",-4,TRUNCATE,"0", 0); + test_ro("5678.123451",-3,TRUNCATE,"5000", 0); + test_ro("5678.123451",-2,TRUNCATE,"5600", 0); + test_ro("5678.123451",-1,TRUNCATE,"5670", 0); + test_ro("5678.123451",0,TRUNCATE,"5678", 0); + test_ro("5678.123451",1,TRUNCATE,"5678.1", 0); + test_ro("5678.123451",2,TRUNCATE,"5678.12", 0); + test_ro("5678.123451",3,TRUNCATE,"5678.123", 0); + test_ro("5678.123451",4,TRUNCATE,"5678.1234", 0); + test_ro("5678.123451",5,TRUNCATE,"5678.12345", 0); + test_ro("5678.123451",6,TRUNCATE,"5678.123451", 0); + test_ro("-5678.123451",-4,TRUNCATE,"0", 0); + memset(buf2, 33, sizeof(buf2)); + test_ro("99999999999999999999999999999999999999",-31,TRUNCATE,"99999990000000000000000000000000000000", 0); + test_ro("15.1",0,HALF_UP,"15", 0); + test_ro("15.5",0,HALF_UP,"16", 0); + test_ro("15.9",0,HALF_UP,"16", 0); + test_ro("-15.1",0,HALF_UP,"-15", 0); + test_ro("-15.5",0,HALF_UP,"-16", 0); + test_ro("-15.9",0,HALF_UP,"-16", 0); + test_ro("15.1",1,HALF_UP,"15.1", 0); + test_ro("-15.1",1,HALF_UP,"-15.1", 0); + test_ro("15.17",1,HALF_UP,"15.2", 0); + test_ro("15.4",-1,HALF_UP,"20", 0); + test_ro("-15.4",-1,HALF_UP,"-20", 0); + test_ro("5.4",-1,HALF_UP,"10", 0); + test_ro(".999", 0, HALF_UP, "1", 0); + memset(buf2, 33, sizeof(buf2)); + test_ro("999999999", -9, HALF_UP, "1000000000", 0); + test_ro("15.1",0,HALF_EVEN,"15", 0); + test_ro("15.5",0,HALF_EVEN,"16", 0); + test_ro("14.5",0,HALF_EVEN,"14", 0); + test_ro("15.9",0,HALF_EVEN,"16", 0); + test_ro("15.1",0,CEILING,"16", 0); + test_ro("-15.1",0,CEILING,"-15", 0); + test_ro("15.1",0,FLOOR,"15", 0); + test_ro("-15.1",0,FLOOR,"-16", 0); + test_ro("999999999999999999999.999", 0, CEILING,"1000000000000000000000", 0); + test_ro("-999999999999999999999.999", 0, FLOOR,"-1000000000000000000000", 0); + + b.buf[0]=DIG_BASE+1; + b.buf++; + test_ro(".3", 0, HALF_UP, "0", 0); + b.buf--; + if (b.buf[0] != DIG_BASE+1) + { + printf("%d - underflow\n", b.buf[0]); + exit(1); + } + + printf("==== max_decimal ====\n"); + test_mx(1,1,"0.9"); + test_mx(1,0,"9"); + test_mx(2,1,"9.9"); + test_mx(4,2,"99.99"); + test_mx(6,3,"999.999"); + test_mx(8,4,"9999.9999"); + test_mx(10,5,"99999.99999"); + test_mx(12,6,"999999.999999"); + test_mx(14,7,"9999999.9999999"); + test_mx(16,8,"99999999.99999999"); + test_mx(18,9,"999999999.999999999"); + test_mx(20,10,"9999999999.9999999999"); + test_mx(20,20,"0.99999999999999999999"); + test_mx(20,0,"99999999999999999999"); + test_mx(40,20,"99999999999999999999.99999999999999999999"); + + printf("==== decimal2string ====\n"); + test_pr("123.123", 0, 0, 0, "123.123", 0); + test_pr("123.123", 7, 3, '0', "0123.123", 0); + test_pr("123.123", 9, 3, '0', "000123.123", 0); + test_pr("123.123", 9, 4, '0', "00123.1230", 0); + test_pr("123.123", 9, 5, '0', "0123.12300", 0); + test_pr("123.123", 9, 2, '0', "0000123.12", 1); + test_pr("123.123", 8, 6, '0', "23.123000", 2); + + printf("==== decimal_shift ====\n"); + test_sh("123.123", 1, "1231.23", 0); + test_sh("123457189.123123456789000", 1, "1234571891.23123456789", 0); + test_sh("123457189.123123456789000", 4, "1234571891231.23456789", 0); + test_sh("123457189.123123456789000", 8, "12345718912312345.6789", 0); + test_sh("123457189.123123456789000", 9, "123457189123123456.789", 0); + test_sh("123457189.123123456789000", 10, "1234571891231234567.89", 0); + test_sh("123457189.123123456789000", 17, "12345718912312345678900000", 0); + test_sh("123457189.123123456789000", 18, "123457189123123456789000000", 0); + test_sh("123457189.123123456789000", 19, "1234571891231234567890000000", 0); + test_sh("123457189.123123456789000", 26, "12345718912312345678900000000000000", 0); + test_sh("123457189.123123456789000", 27, "123457189123123456789000000000000000", 0); + test_sh("123457189.123123456789000", 28, "1234571891231234567890000000000000000", 0); + test_sh("000000000000000000000000123457189.123123456789000", 26, "12345718912312345678900000000000000", 0); + test_sh("00000000123457189.123123456789000", 27, "123457189123123456789000000000000000", 0); + test_sh("00000000000000000123457189.123123456789000", 28, "1234571891231234567890000000000000000", 0); + test_sh("123", 1, "1230", 0); + test_sh("123", 10, "1230000000000", 0); + test_sh(".123", 1, "1.23", 0); + test_sh(".123", 10, "1230000000", 0); + test_sh(".123", 14, "12300000000000", 0); + test_sh("000.000", 1000, "0", 0); + test_sh("000.", 1000, "0", 0); + test_sh(".000", 1000, "0", 0); + test_sh("1", 1000, "1", 2); + test_sh("123.123", -1, "12.3123", 0); + test_sh("123987654321.123456789000", -1, "12398765432.1123456789", 0); + test_sh("123987654321.123456789000", -2, "1239876543.21123456789", 0); + test_sh("123987654321.123456789000", -3, "123987654.321123456789", 0); + test_sh("123987654321.123456789000", -8, "1239.87654321123456789", 0); + test_sh("123987654321.123456789000", -9, "123.987654321123456789", 0); + test_sh("123987654321.123456789000", -10, "12.3987654321123456789", 0); + test_sh("123987654321.123456789000", -11, "1.23987654321123456789", 0); + test_sh("123987654321.123456789000", -12, "0.123987654321123456789", 0); + test_sh("123987654321.123456789000", -13, "0.0123987654321123456789", 0); + test_sh("123987654321.123456789000", -14, "0.00123987654321123456789", 0); + test_sh("00000087654321.123456789000", -14, "0.00000087654321123456789", 0); + a.len= 2; + test_sh("123.123", -2, "1.23123", 0); + test_sh("123.123", -3, "0.123123", 0); + test_sh("123.123", -6, "0.000123123", 0); + test_sh("123.123", -7, "0.0000123123", 0); + test_sh("123.123", -15, "0.000000000000123123", 0); + test_sh("123.123", -16, "0.000000000000012312", 1); + test_sh("123.123", -17, "0.000000000000001231", 1); + test_sh("123.123", -18, "0.000000000000000123", 1); + test_sh("123.123", -19, "0.000000000000000012", 1); + test_sh("123.123", -20, "0.000000000000000001", 1); + test_sh("123.123", -21, "0", 1); + test_sh(".000000000123", -1, "0.0000000000123", 0); + test_sh(".000000000123", -6, "0.000000000000000123", 0); + test_sh(".000000000123", -7, "0.000000000000000012", 1); + test_sh(".000000000123", -8, "0.000000000000000001", 1); + test_sh(".000000000123", -9, "0", 1); + test_sh(".000000000123", 1, "0.00000000123", 0); + test_sh(".000000000123", 8, "0.0123", 0); + test_sh(".000000000123", 9, "0.123", 0); + test_sh(".000000000123", 10, "1.23", 0); + test_sh(".000000000123", 17, "12300000", 0); + test_sh(".000000000123", 18, "123000000", 0); + test_sh(".000000000123", 19, "1230000000", 0); + test_sh(".000000000123", 20, "12300000000", 0); + test_sh(".000000000123", 21, "123000000000", 0); + test_sh(".000000000123", 22, "1230000000000", 0); + test_sh(".000000000123", 23, "12300000000000", 0); + test_sh(".000000000123", 24, "123000000000000", 0); + test_sh(".000000000123", 25, "1230000000000000", 0); + test_sh(".000000000123", 26, "12300000000000000", 0); + test_sh(".000000000123", 27, "123000000000000000", 0); + test_sh(".000000000123", 28, "0.000000000123", 2); + test_sh("123456789.987654321", -1, "12345678.998765432", 1); + test_sh("123456789.987654321", -2, "1234567.899876543", 1); + test_sh("123456789.987654321", -8, "1.234567900", 1); + test_sh("123456789.987654321", -9, "0.123456789987654321", 0); + test_sh("123456789.987654321", -10, "0.012345678998765432", 1); + test_sh("123456789.987654321", -17, "0.000000001234567900", 1); + test_sh("123456789.987654321", -18, "0.000000000123456790", 1); + test_sh("123456789.987654321", -19, "0.000000000012345679", 1); + test_sh("123456789.987654321", -26, "0.000000000000000001", 1); + test_sh("123456789.987654321", -27, "0", 1); + test_sh("123456789.987654321", 1, "1234567900", 1); + test_sh("123456789.987654321", 2, "12345678999", 1); + test_sh("123456789.987654321", 4, "1234567899877", 1); + test_sh("123456789.987654321", 8, "12345678998765432", 1); + test_sh("123456789.987654321", 9, "123456789987654321", 0); + test_sh("123456789.987654321", 10, "123456789.987654321", 2); + test_sh("123456789.987654321", 0, "123456789.987654321", 0); + a.len= sizeof(buf1)/sizeof(dec1); + + printf("==== decimal_actual_fraction ====\n"); + test_fr("1.123456789000000000", "1.123456789"); + test_fr("1.12345678000000000", "1.12345678"); + test_fr("1.1234567000000000", "1.1234567"); + test_fr("1.123456000000000", "1.123456"); + test_fr("1.12345000000000", "1.12345"); + test_fr("1.1234000000000", "1.1234"); + test_fr("1.123000000000", "1.123"); + test_fr("1.12000000000", "1.12"); + test_fr("1.1000000000", "1.1"); + test_fr("1.000000000", "1"); + test_fr("1.0", "1"); + test_fr("10000000000000000000.0", "10000000000000000000"); + + return 0; +} +#endif |