summaryrefslogtreecommitdiffstats
path: root/sql/opt_range.h
blob: 59a01e5bb8dc3cda004183d01cc00ede2133543f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
/*
   Copyright (c) 2000, 2010, Oracle and/or its affiliates.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; version 2 of the License.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335  USA */


/* classes to use when handling where clause */

#ifndef _opt_range_h
#define _opt_range_h

#ifdef USE_PRAGMA_INTERFACE
#pragma interface			/* gcc class implementation */
#endif

#include "records.h"                            /* READ_RECORD */
#include "queues.h"                             /* QUEUE */
#include "filesort.h"                           /* SORT_INFO */

/*
  It is necessary to include set_var.h instead of item.h because there
  are dependencies on include order for set_var.h and item.h. This
  will be resolved later.
*/
#include "sql_class.h"                          // set_var.h: THD
#include "set_var.h"                            /* Item */

class JOIN;
class Item_sum;

struct KEY_PART {
  uint16           key,part;
  /* See KEY_PART_INFO for meaning of the next two: */
  uint16           store_length, length;
  uint8            null_bit;
  /*
    Keypart flags (0 when this structure is used by partition pruning code
    for fake partitioning index description)
  */
  uint8 flag;
  Field            *field;
  Field::imagetype image_type;
};


/**
  A helper function to invert min flags to max flags for DESC key parts.
  It changes NEAR_MIN, NO_MIN_RANGE to NEAR_MAX, NO_MAX_RANGE appropriately
*/

inline uint invert_min_flag(uint min_flag)
{
  uint max_flag_out = min_flag & ~(NEAR_MIN | NO_MIN_RANGE);
  if (min_flag & NEAR_MIN) max_flag_out |= NEAR_MAX;
  if (min_flag & NO_MIN_RANGE) max_flag_out |= NO_MAX_RANGE;
  return max_flag_out;
}


/**
  A helper function to invert max flags to min flags for DESC key parts.
  It changes NEAR_MAX, NO_MAX_RANGE to NEAR_MIN, NO_MIN_RANGE appropriately
*/

inline uint invert_max_flag(uint max_flag)
{
  uint min_flag_out = max_flag & ~(NEAR_MAX | NO_MAX_RANGE);
  if (max_flag & NEAR_MAX) min_flag_out |= NEAR_MIN;
  if (max_flag & NO_MAX_RANGE) min_flag_out |= NO_MIN_RANGE;
  return min_flag_out;
}

class RANGE_OPT_PARAM;
/*
  A construction block of the SEL_ARG-graph.

  The following description only covers graphs of SEL_ARG objects with
  sel_arg->type==KEY_RANGE:

  One SEL_ARG object represents an "elementary interval" in form

      min_value <=?  table.keypartX  <=? max_value

  The interval is a non-empty interval of any kind: with[out] minimum/maximum
  bound, [half]open/closed, single-point interval, etc.

  1. SEL_ARG GRAPH STRUCTURE

  SEL_ARG objects are linked together in a graph. The meaning of the graph
  is better demostrated by an example:

     tree->keys[i]
      |
      |             $              $
      |    part=1   $     part=2   $    part=3
      |             $              $
      |  +-------+  $   +-------+  $   +--------+
      |  | kp1<1 |--$-->| kp2=5 |--$-->| kp3=10 |
      |  +-------+  $   +-------+  $   +--------+
      |      |      $              $       |
      |      |      $              $   +--------+
      |      |      $              $   | kp3=12 |
      |      |      $              $   +--------+
      |  +-------+  $              $
      \->| kp1=2 |--$--------------$-+
         +-------+  $              $ |   +--------+
             |      $              $  ==>| kp3=11 |
         +-------+  $              $ |   +--------+
         | kp1=3 |--$--------------$-+       |
         +-------+  $              $     +--------+
             |      $              $     | kp3=14 |
            ...     $              $     +--------+

  The entire graph is partitioned into "interval lists".

  An interval list is a sequence of ordered disjoint intervals over the same
  key part. SEL_ARG are linked via "next" and "prev" pointers. Additionally,
  all intervals in the list form an RB-tree, linked via left/right/parent
  pointers. The RB-tree root SEL_ARG object will be further called "root of the
  interval list".

    In the example pic, there are 4 interval lists:
    "kp<1 OR kp1=2 OR kp1=3", "kp2=5", "kp3=10 OR kp3=12", "kp3=11 OR kp3=13".
    The vertical lines represent SEL_ARG::next/prev pointers.

  In an interval list, each member X may have SEL_ARG::next_key_part pointer
  pointing to the root of another interval list Y. The pointed interval list
  must cover a key part with greater number (i.e. Y->part > X->part).

    In the example pic, the next_key_part pointers are represented by
    horisontal lines.

  2. SEL_ARG GRAPH SEMANTICS

  It represents a condition in a special form (we don't have a name for it ATM)
  The SEL_ARG::next/prev is "OR", and next_key_part is "AND".

  For example, the picture represents the condition in form:
   (kp1 < 1 AND kp2=5 AND (kp3=10 OR kp3=12)) OR
   (kp1=2 AND (kp3=11 OR kp3=14)) OR
   (kp1=3 AND (kp3=11 OR kp3=14))


  3. SEL_ARG GRAPH USE

  Use get_mm_tree() to construct SEL_ARG graph from WHERE condition.
  Then walk the SEL_ARG graph and get a list of dijsoint ordered key
  intervals (i.e. intervals in form

   (constA1, .., const1_K) < (keypart1,.., keypartK) < (constB1, .., constB_K)

  Those intervals can be used to access the index. The uses are in:
   - check_quick_select() - Walk the SEL_ARG graph and find an estimate of
                            how many table records are contained within all
                            intervals.
   - get_quick_select()   - Walk the SEL_ARG, materialize the key intervals,
                            and create QUICK_RANGE_SELECT object that will
                            read records within these intervals.

  4. SPACE COMPLEXITY NOTES

    SEL_ARG graph is a representation of an ordered disjoint sequence of
    intervals over the ordered set of index tuple values.

    For multi-part keys, one can construct a WHERE expression such that its
    list of intervals will be of combinatorial size. Here is an example:

      (keypart1 IN (1,2, ..., n1)) AND
      (keypart2 IN (1,2, ..., n2)) AND
      (keypart3 IN (1,2, ..., n3))

    For this WHERE clause the list of intervals will have n1*n2*n3 intervals
    of form

      (keypart1, keypart2, keypart3) = (k1, k2, k3), where 1 <= k{i} <= n{i}

    SEL_ARG graph structure aims to reduce the amount of required space by
    "sharing" the elementary intervals when possible (the pic at the
    beginning of this comment has examples of such sharing). The sharing may
    prevent combinatorial blowup:

      There are WHERE clauses that have combinatorial-size interval lists but
      will be represented by a compact SEL_ARG graph.
      Example:
        (keypartN IN (1,2, ..., n1)) AND
        ...
        (keypart2 IN (1,2, ..., n2)) AND
        (keypart1 IN (1,2, ..., n3))

    but not in all cases:

    - There are WHERE clauses that do have a compact SEL_ARG-graph
      representation but get_mm_tree() and its callees will construct a
      graph of combinatorial size.
      Example:
        (keypart1 IN (1,2, ..., n1)) AND
        (keypart2 IN (1,2, ..., n2)) AND
        ...
        (keypartN IN (1,2, ..., n3))

    - There are WHERE clauses for which the minimal possible SEL_ARG graph
      representation will have combinatorial size.
      Example:
        By induction: Let's take any interval on some keypart in the middle:

           kp15=c0

        Then let's AND it with this interval 'structure' from preceding and
        following keyparts:

          (kp14=c1 AND kp16=c3) OR keypart14=c2) (*)

        We will obtain this SEL_ARG graph:

             kp14     $      kp15      $      kp16
                      $                $
         +---------+  $   +---------+  $   +---------+
         | kp14=c1 |--$-->| kp15=c0 |--$-->| kp16=c3 |
         +---------+  $   +---------+  $   +---------+
              |       $                $
         +---------+  $   +---------+  $
         | kp14=c2 |--$-->| kp15=c0 |  $
         +---------+  $   +---------+  $
                      $                $

       Note that we had to duplicate "kp15=c0" and there was no way to avoid
       that.
       The induction step: AND the obtained expression with another "wrapping"
       expression like (*).
       When the process ends because of the limit on max. number of keyparts
       we'll have:

         WHERE clause length  is O(3*#max_keyparts)
         SEL_ARG graph size   is O(2^(#max_keyparts/2))

       (it is also possible to construct a case where instead of 2 in 2^n we
        have a bigger constant, e.g. 4, and get a graph with 4^(31/2)= 2^31
        nodes)

    We avoid consuming too much memory by setting a limit on the number of
    SEL_ARG object we can construct during one range analysis invocation.

  5. SEL_ARG GRAPH WEIGHT

    A SEL_ARG graph has a property we call weight, and we define it as follows:

    <definition>
    If the SEL_ARG graph does not have any node with multiple incoming
    next_key_part edges, then its weight is the number of SEL_ARG objects used.

    If there is a node with multiple incoming next_key_part edges, clone that
    node, (and the nodes connected to it via prev/next links) and redirect one
    of the incoming next_key_part edges to the clone.

    Continue with cloning until we get a graph that has no nodes with multiple
    incoming next_key_part edges. Then, the number of SEL_ARG objects in the
    graph is the weight of the original graph.
    </definition>

    Example:

            kp1     $     kp2      $       kp3
                    $              $
      |  +-------+  $              $
      \->| kp1=2 |--$--------------$-+
         +-------+  $              $ |   +--------+
             |      $              $  ==>| kp3=11 |
         +-------+  $              $ |   +--------+
         | kp1>3 |--$--------------$-+       |
         +-------+  $              $     +--------+
                    $              $     | kp3=14 |
                    $              $     +--------+
                    $              $         |
                    $              $     +--------+
                    $              $     | kp3=14 |
                    $              $     +--------+

    Here, the weight is 2 + 2*3=8.

    The rationale behind using this definition of weight is:
    - it has the same order-of-magnitude as the number of ranges that the
      SEL_ARG graph is describing,
    - it is a lot easier to compute than computing the number of ranges,
    - it can be updated incrementally when performing AND/OR operations on
      parts of the graph.

  6. For handling DESC keyparts, See HowRangeOptimizerHandlesDescKeyparts
*/

class SEL_ARG :public Sql_alloc
{
  static int sel_cmp(Field *field, uchar *a, uchar *b, uint8 a_flag,
                     uint8 b_flag);
  bool min_max_are_equal() const;
public:
  uint8 min_flag,max_flag,maybe_flag;
  uint8 part;					// Which key part
  uint8 maybe_null;
  /*
    The ordinal number the least significant component encountered in
    the ranges of the SEL_ARG tree (the first component has number 1)

    Note: this number is currently not precise, it is an upper bound.
    @seealso SEL_ARG::get_max_key_part()
  */
  uint16 max_part_no;
  /*
    Number of children of this element in the RB-tree, plus 1 for this
    element itself.
  */
  uint32 elements;
  /*
    Valid only for elements which are RB-tree roots: Number of times this
    RB-tree is referred to (it is referred by SEL_ARG::next_key_part or by
    SEL_TREE::keys[i] or by a temporary SEL_ARG* variable)
  */
  ulong use_count;

  Field *field;
  uchar *min_value,*max_value;			// Pointer to range

  /*
    eq_tree() requires that left == right == 0 if the type is MAYBE_KEY.
   */
  SEL_ARG *left,*right;   /* R-B tree children */
  SEL_ARG *next,*prev;    /* Links for bi-directional interval list */
  SEL_ARG *parent;        /* R-B tree parent */
  SEL_ARG *next_key_part;
  enum leaf_color { BLACK,RED } color;
  enum Type { IMPOSSIBLE, MAYBE, MAYBE_KEY, KEY_RANGE } type;

  /*
    For R-B root nodes only: the graph weight, as defined above in the
    SEL_ARG GRAPH WEIGHT section.
  */
  uint weight;
  enum { MAX_WEIGHT = 32000 };

#ifndef DBUG_OFF
  uint verify_weight();
#endif

  /* See RANGE_OPT_PARAM::alloced_sel_args */
  enum { DEFAULT_MAX_SEL_ARGS = 16000 };

  SEL_ARG() = default;
  SEL_ARG(SEL_ARG &);
  SEL_ARG(Field *, const uchar *, const uchar *);
  SEL_ARG(Field *field, uint8 part,
          uchar *min_value, uchar *max_value,
	  uint8 min_flag, uint8 max_flag, uint8 maybe_flag);

  /* This is used to construct degenerate SEL_ARGS like ALWAYS, IMPOSSIBLE, etc */
  SEL_ARG(enum Type type_arg)
    :min_flag(0),
     max_part_no(0) /* first key part means 1. 0 mean 'no parts'*/,
     elements(1),use_count(1),left(0),right(0),
     next_key_part(0), color(BLACK), type(type_arg), weight(1)
  {}
  /**
    returns true if a range predicate is equal. Use all_same()
    to check for equality of all the predicates on this keypart.
  */
  inline bool is_same(const SEL_ARG *arg) const
  {
    if (type != arg->type || part != arg->part)
      return false;
    if (type != KEY_RANGE)
      return true;
    return cmp_min_to_min(arg) == 0 && cmp_max_to_max(arg) == 0;
  }

  uint get_max_key_part() const;

  /**
    returns true if all the predicates in the keypart tree are equal
  */
  bool all_same(const SEL_ARG *arg) const
  {
    if (type != arg->type || part != arg->part)
      return false;
    if (type != KEY_RANGE)
      return true;
    if (arg == this)
      return true;
    const SEL_ARG *cmp_arg= arg->first();
    const SEL_ARG *cur_arg= first();
    for (; cur_arg && cmp_arg && cur_arg->is_same(cmp_arg);
         cur_arg= cur_arg->next, cmp_arg= cmp_arg->next) ;
    if (cur_arg || cmp_arg)
      return false;
    return true;
  }
  int number_of_eq_groups(uint group_key_parts) const;
  inline void merge_flags(SEL_ARG *arg) { maybe_flag|=arg->maybe_flag; }
  inline void maybe_smaller() { maybe_flag=1; }
  /* Return true iff it's a single-point null interval */
  inline bool is_null_interval() { return maybe_null && max_value[0] == 1; }
  inline int cmp_min_to_min(const SEL_ARG* arg) const
  {
    return sel_cmp(field,min_value, arg->min_value, min_flag, arg->min_flag);
  }
  inline int cmp_min_to_max(const SEL_ARG* arg) const
  {
    return sel_cmp(field,min_value, arg->max_value, min_flag, arg->max_flag);
  }
  inline int cmp_max_to_max(const SEL_ARG* arg) const
  {
    return sel_cmp(field,max_value, arg->max_value, max_flag, arg->max_flag);
  }
  inline int cmp_max_to_min(const SEL_ARG* arg) const
  {
    return sel_cmp(field,max_value, arg->min_value, max_flag, arg->min_flag);
  }
  SEL_ARG *clone_and(THD *thd, SEL_ARG* arg)
  {						// Get overlapping range
    uchar *new_min,*new_max;
    uint8 flag_min,flag_max;
    if (cmp_min_to_min(arg) >= 0)
    {
      new_min=min_value; flag_min=min_flag;
    }
    else
    {
      new_min=arg->min_value; flag_min=arg->min_flag; /* purecov: deadcode */
    }
    if (cmp_max_to_max(arg) <= 0)
    {
      new_max=max_value; flag_max=max_flag;
    }
    else
    {
      new_max=arg->max_value; flag_max=arg->max_flag;
    }
    return new (thd->mem_root) SEL_ARG(field, part,
                                       new_min, new_max, flag_min,
                                       flag_max,
                                       MY_TEST(maybe_flag && arg->maybe_flag));
  }
  SEL_ARG *clone_first(SEL_ARG *arg)
  {						// min <= X < arg->min
    return new SEL_ARG(field, part, min_value, arg->min_value,
		       min_flag, arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX,
		       maybe_flag | arg->maybe_flag);
  }
  SEL_ARG *clone_last(SEL_ARG *arg)
  {						// min <= X <= key_max
    return new SEL_ARG(field, part, min_value, arg->max_value,
		       min_flag, arg->max_flag, maybe_flag | arg->maybe_flag);
  }
  SEL_ARG *clone(RANGE_OPT_PARAM *param, SEL_ARG *new_parent, SEL_ARG **next);

  bool copy_min(SEL_ARG* arg)
  {						// Get overlapping range
    if (cmp_min_to_min(arg) > 0)
    {
      min_value=arg->min_value; min_flag=arg->min_flag;
      if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
	  (NO_MAX_RANGE | NO_MIN_RANGE))
	return 1;				// Full range
    }
    maybe_flag|=arg->maybe_flag;
    return 0;
  }
  bool copy_max(SEL_ARG* arg)
  {						// Get overlapping range
    if (cmp_max_to_max(arg) <= 0)
    {
      max_value=arg->max_value; max_flag=arg->max_flag;
      if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
	  (NO_MAX_RANGE | NO_MIN_RANGE))
	return 1;				// Full range
    }
    maybe_flag|=arg->maybe_flag;
    return 0;
  }

  void copy_min_to_min(SEL_ARG *arg)
  {
    min_value=arg->min_value; min_flag=arg->min_flag;
  }
  void copy_min_to_max(SEL_ARG *arg)
  {
    max_value=arg->min_value;
    max_flag=arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX;
  }
  void copy_max_to_min(SEL_ARG *arg)
  {
    min_value=arg->max_value;
    min_flag=arg->max_flag & NEAR_MAX ? 0 : NEAR_MIN;
  }
  /* returns a number of keypart values (0 or 1) appended to the key buffer */
  int store_min(uint length, uchar **min_key,uint min_key_flag)
  {
    /* "(kp1 > c1) AND (kp2 OP c2) AND ..." -> (kp1 > c1) */
    if ((min_flag & GEOM_FLAG) ||
        (!(min_flag & NO_MIN_RANGE) &&
	!(min_key_flag & (NO_MIN_RANGE | NEAR_MIN))))
    {
      if (maybe_null && *min_value)
      {
	**min_key=1;
	bzero(*min_key+1,length-1);
      }
      else
	memcpy(*min_key,min_value,length);
      (*min_key)+= length;
      return 1;
    }
    return 0;
  }
  /* returns a number of keypart values (0 or 1) appended to the key buffer */
  int store_max(uint length, uchar **max_key, uint max_key_flag)
  {
    if (!(max_flag & NO_MAX_RANGE) &&
	!(max_key_flag & (NO_MAX_RANGE | NEAR_MAX)))
    {
      if (maybe_null && *max_value)
      {
	**max_key=1;
	bzero(*max_key+1,length-1);
      }
      else
	memcpy(*max_key,max_value,length);
      (*max_key)+= length;
      return 1;
    }
    return 0;
  }

  /* Save minimum and maximum, taking index order into account  */
  void store_min_max(KEY_PART *kp,
                     uint length,
                     uchar **min_key, uint min_flag,
                     uchar **max_key, uint max_flag,
                     int *min_part, int *max_part)
  {
    if (kp[part].flag & HA_REVERSE_SORT) {
      *max_part += store_min(length, max_key, min_flag);
      *min_part += store_max(length, min_key, max_flag);
    } else {
      *min_part += store_min(length, min_key, min_flag);
      *max_part += store_max(length, max_key, max_flag);
    }
  }
  /*
    Get the flag for range's starting endpoint, taking index order into
    account.
  */
  uint get_min_flag(KEY_PART *kp)
  {
    return (kp[part].flag & HA_REVERSE_SORT)? invert_max_flag(max_flag) : min_flag;
  }
  /*
    Get the flag for range's starting endpoint, taking index order into
    account.
  */
  uint get_max_flag(KEY_PART *kp)
  {
    return (kp[part].flag & HA_REVERSE_SORT)? invert_min_flag(min_flag) : max_flag ;
  }
  /* Get the previous interval, taking index order into account */
  inline SEL_ARG* index_order_prev(KEY_PART *kp)
  {
    return (kp[part].flag & HA_REVERSE_SORT)? next : prev;
  }
  /* Get the next interval, taking index order into account */
  inline SEL_ARG* index_order_next(KEY_PART *kp)
  {
    return (kp[part].flag & HA_REVERSE_SORT)? prev : next;
  }

  /*
    Produce a single multi-part interval, taking key part ordering into
    account.
  */
  void store_next_min_max_keys(KEY_PART *key, uchar **cur_min_key,
                               uint *cur_min_flag, uchar **cur_max_key,
                               uint *cur_max_flag, int *min_part,
                               int *max_part);

  /*
    Returns a number of keypart values appended to the key buffer
    for min key and max key. This function is used by both Range
    Analysis and Partition pruning. For partition pruning we have
    to ensure that we don't store also subpartition fields. Thus
    we have to stop at the last partition part and not step into
    the subpartition fields. For Range Analysis we set last_part
    to MAX_KEY which we should never reach.
  */
  int store_min_key(KEY_PART *key,
                    uchar **range_key,
                    uint *range_key_flag,
                    uint last_part,
                    bool start_key)
  {
    SEL_ARG *key_tree= first();
    uint res= key_tree->store_min(key[key_tree->part].store_length,
                                  range_key, *range_key_flag);
    // add flags only if a key_part is written to the buffer
    if (!res)
      return 0;
    *range_key_flag|= key_tree->min_flag;
    SEL_ARG *nkp= key_tree->next_key_part;
    if (nkp && nkp->type == SEL_ARG::KEY_RANGE &&
        key_tree->part != last_part &&
	nkp->part == key_tree->part+1 &&
	!(*range_key_flag & (NO_MIN_RANGE | NEAR_MIN)))
    {
      const bool asc = !(key[key_tree->part].flag & HA_REVERSE_SORT);
      if (start_key == asc)
      {
        res+= nkp->store_min_key(key, range_key, range_key_flag, last_part,
                                 start_key);
      }
      else
      {
        uint tmp_flag = invert_min_flag(*range_key_flag);
        res += nkp->store_max_key(key, range_key, &tmp_flag, last_part,
                                  start_key);
        *range_key_flag = invert_max_flag(tmp_flag);
      }
    }
    return res;
  }

  /* returns a number of keypart values appended to the key buffer */
  int store_max_key(KEY_PART *key,
                    uchar **range_key,
                    uint *range_key_flag,
                    uint last_part,
                    bool start_key)
  {
    SEL_ARG *key_tree= last();
    uint res=key_tree->store_max(key[key_tree->part].store_length,
                                 range_key, *range_key_flag);
    if (!res)
      return 0;
    *range_key_flag|= key_tree->max_flag;
    SEL_ARG *nkp= key_tree->next_key_part;
    if (nkp && nkp->type == SEL_ARG::KEY_RANGE &&
        key_tree->part != last_part &&
	nkp->part == key_tree->part+1 &&
	!(*range_key_flag & (NO_MAX_RANGE | NEAR_MAX)))
    {
      const bool asc = !(key[key_tree->part].flag & HA_REVERSE_SORT);
      if ((!start_key && asc) || (start_key && !asc))
      {
        res += nkp->store_max_key(key, range_key, range_key_flag, last_part,
                                  start_key);
      }
      else
      {
        uint tmp_flag = invert_max_flag(*range_key_flag);
        res += nkp->store_min_key(key, range_key, &tmp_flag, last_part,
                                  start_key);
        *range_key_flag = invert_min_flag(tmp_flag);
      }
    }
    return res;
  }

  SEL_ARG *insert(SEL_ARG *key);
  SEL_ARG *tree_delete(SEL_ARG *key);
  SEL_ARG *find_range(SEL_ARG *key);
  SEL_ARG *rb_insert(SEL_ARG *leaf);
  friend SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key, SEL_ARG *par);
#ifdef EXTRA_DEBUG
  friend int test_rb_tree(SEL_ARG *element,SEL_ARG *parent);
  void test_use_count(SEL_ARG *root);
#endif
  SEL_ARG *first();
  const SEL_ARG *first() const;
  SEL_ARG *last();
  void make_root();
  inline bool simple_key()
  {
    return !next_key_part && elements == 1;
  }
  void increment_use_count(long count)
  {
    if (next_key_part)
    {
      next_key_part->use_count+=count;
      count*= (next_key_part->use_count-count);
      for (SEL_ARG *pos=next_key_part->first(); pos ; pos=pos->next)
	if (pos->next_key_part)
	  pos->increment_use_count(count);
    }
  }
  void incr_refs()
  {
    increment_use_count(1);
    use_count++;
  }
  void incr_refs_all()
  {
    for (SEL_ARG *pos=first(); pos ; pos=pos->next)
    {
      pos->increment_use_count(1);
    }
    use_count++;
  }
  void free_tree()
  {
    for (SEL_ARG *pos=first(); pos ; pos=pos->next)
      if (pos->next_key_part)
      {
	pos->next_key_part->use_count--;
	pos->next_key_part->free_tree();
      }
  }

  inline SEL_ARG **parent_ptr()
  {
    return parent->left == this ? &parent->left : &parent->right;
  }


  /*
    Check if this SEL_ARG object represents a single-point interval

    SYNOPSIS
      is_singlepoint()

    DESCRIPTION
      Check if this SEL_ARG object (not tree) represents a single-point
      interval, i.e. if it represents a "keypart = const" or
      "keypart IS NULL".

    RETURN
      TRUE   This SEL_ARG object represents a singlepoint interval
      FALSE  Otherwise
  */

  bool is_singlepoint() const
  {
    /*
      Check for NEAR_MIN ("strictly less") and NO_MIN_RANGE (-inf < field)
      flags, and the same for right edge.
    */
    if (min_flag || max_flag)
      return FALSE;
    uchar *min_val= min_value;
    uchar *max_val= max_value;

    if (maybe_null)
    {
      /* First byte is a NULL value indicator */
      if (*min_val != *max_val)
        return FALSE;

      if (*min_val)
        return TRUE; /* This "x IS NULL" */
      min_val++;
      max_val++;
    }
    return !field->key_cmp(min_val, max_val);
  }
  SEL_ARG *clone_tree(RANGE_OPT_PARAM *param);
};

/*
  HowRangeOptimizerHandlesDescKeyparts
  ====================================

  Starting with MySQL-8.0 and MariaDB 10.8, index key parts may be descending,
  for example:

    INDEX idx1(col1, col2 DESC, col3, col4 DESC)

  Range Optimizer handles this as follows:

  Other than that, the SEL_ARG graph is built without any regard to DESC
  keyparts.

  For example, for an index

    INDEX idx2(kp1 DESC, kp2)

  and range

    kp1 BETWEEN 10 and 20       (RANGE-1)

  the SEL_ARG will have min_value=10, max_value=20

  The ordering of key parts is taken into account when SEL_ARG graph is
  linearized to ranges, in sel_arg_range_seq_next() and get_quick_keys().

  The storage engine expects the first bound to be the first in the index and
  the last bound to be the last, that is, for (RANGE-1) we will flip min and
  max and generate these key_range structures:

    start.key='20' , end.key='10'

  See SEL_ARG::store_min_max(). The flag values are flipped as well, see
  SEL_ARG::get_min_flag(), get_max_flag().

  == Handling multiple key parts ==

  For multi-part keys, the order of key parts has an effect on which ranges are
  generated. Consider

    kp1 >= 10 AND kp2 >'foo'

  for INDEX(kp1 ASC, kp2 ASC) the range will be

    (kp1, kp2) > (10, 'foo')

  while for INDEX(kp1 ASC, kp2 DESC) it will be just

    kp1 >= 10

  Another example:

    (kp1 BETWEEN 10 AND 20) AND (kp2 BETWEEN 'foo' AND 'quux')

  with INDEX (kp1 ASC, kp2 ASC) will generate

    (10, 'foo') <= (kp1, kp2) < (20, 'quux')

  while with index INDEX (kp1 ASC, kp2 DESC) it will generate

    (10, 'quux') <= (kp1, kp2) < (20, 'foo')

  This is again achieved by sel_arg_range_seq_next() and get_quick_keys()
  flipping SEL_ARG's min,max, their flags and next/prev as needed.
*/

extern MYSQL_PLUGIN_IMPORT SEL_ARG null_element;

class SEL_ARG_IMPOSSIBLE: public SEL_ARG
{
public:
  SEL_ARG_IMPOSSIBLE(Field *field)
   :SEL_ARG(field, 0, 0)
  {
    type= SEL_ARG::IMPOSSIBLE;
  }
};


class RANGE_OPT_PARAM
{
public:
  THD	*thd;   /* Current thread handle */
  TABLE *table; /* Table being analyzed */
  table_map prev_tables;
  table_map read_tables;
  table_map current_table; /* Bit of the table being analyzed */

  /* Array of parts of all keys for which range analysis is performed */
  KEY_PART *key_parts;
  KEY_PART *key_parts_end;
  MEM_ROOT *mem_root; /* Memory that will be freed when range analysis completes */
  MEM_ROOT *old_root; /* Memory that will last until the query end */
  /*
    Number of indexes used in range analysis (In SEL_TREE::keys only first
    #keys elements are not empty)
  */
  uint keys;

  /*
    If true, the index descriptions describe real indexes (and it is ok to
    call field->optimize_range(real_keynr[...], ...).
    Otherwise index description describes fake indexes.
  */
  bool using_real_indexes;

  /*
    Aggressively remove "scans" that do not have conditions on first
    keyparts. Such scans are usable when doing partition pruning but not
    regular range optimization.
  */
  bool remove_jump_scans;

  /*
    TRUE <=> Range analyzer should remove parts of condition that are found
    to be always FALSE.
  */
  bool remove_false_where_parts;

  /*
    Which functions should give SQL notes for unusable keys.
  */
  Item_func::Bitmap note_unusable_keys;

  /*
    used_key_no -> table_key_no translation table. Only makes sense if
    using_real_indexes==TRUE
  */
  uint real_keynr[MAX_KEY];

  /*
    Used to store 'current key tuples', in both range analysis and
    partitioning (list) analysis
  */
  uchar *min_key;
  uchar *max_key;

  /* Number of SEL_ARG objects allocated by SEL_ARG::clone_tree operations */
  uint alloced_sel_args;

  bool force_default_mrr;
  KEY_PART *key[MAX_KEY]; /* First key parts of keys used in the query */

  bool statement_should_be_aborted() const
  {
    return
      thd->killed ||
      thd->is_fatal_error ||
      thd->is_error() ||
      alloced_sel_args > thd->variables.optimizer_max_sel_args;
  }
};


class Explain_quick_select;
/*
  A "MIN_TUPLE < tbl.key_tuple < MAX_TUPLE" interval. 
  
  One of endpoints may be absent. 'flags' member has flags which tell whether
  the endpoints are '<' or '<='.
*/
class QUICK_RANGE :public Sql_alloc {
 public:
  uchar *min_key,*max_key;
  uint16 min_length,max_length,flag;
  key_part_map min_keypart_map, // bitmap of used keyparts in min_key
               max_keypart_map; // bitmap of used keyparts in max_key
#ifdef HAVE_valgrind
  uint16 dummy;					/* Avoid warnings on 'flag' */
#endif
  QUICK_RANGE();				/* Full range */
  QUICK_RANGE(THD *thd, const uchar *min_key_arg, uint min_length_arg,
              key_part_map min_keypart_map_arg,
	      const uchar *max_key_arg, uint max_length_arg,
              key_part_map max_keypart_map_arg,
	      uint flag_arg)
    : min_key((uchar*) thd->memdup(min_key_arg, min_length_arg + 1)),
      max_key((uchar*) thd->memdup(max_key_arg, max_length_arg + 1)),
      min_length((uint16) min_length_arg),
      max_length((uint16) max_length_arg),
      flag((uint16) flag_arg),
      min_keypart_map(min_keypart_map_arg),
      max_keypart_map(max_keypart_map_arg)
    {
#ifdef HAVE_valgrind
      dummy=0;
#endif
    }

  /**
     Initializes a key_range object for communication with storage engine. 

     This function facilitates communication with the Storage Engine API by
     translating the minimum endpoint of the interval represented by this
     QUICK_RANGE into an index range endpoint specifier for the engine.

     @param Pointer to an uninitialized key_range C struct.

     @param prefix_length The length of the search key prefix to be used for
     lookup.
     
     @param keypart_map A set (bitmap) of keyparts to be used.
  */
  void make_min_endpoint(key_range *kr, uint prefix_length, 
                         key_part_map keypart_map) {
    make_min_endpoint(kr);
    kr->length= MY_MIN(kr->length, prefix_length);
    kr->keypart_map&= keypart_map;
  }
  
  /**
     Initializes a key_range object for communication with storage engine. 

     This function facilitates communication with the Storage Engine API by
     translating the minimum endpoint of the interval represented by this
     QUICK_RANGE into an index range endpoint specifier for the engine.

     @param Pointer to an uninitialized key_range C struct.
  */
  void make_min_endpoint(key_range *kr) {
    kr->key= (const uchar*)min_key;
    kr->length= min_length;
    kr->keypart_map= min_keypart_map;
    kr->flag= ((flag & NEAR_MIN) ? HA_READ_AFTER_KEY :
               (flag & EQ_RANGE) ? HA_READ_KEY_EXACT : HA_READ_KEY_OR_NEXT);
  }

  /**
     Initializes a key_range object for communication with storage engine. 

     This function facilitates communication with the Storage Engine API by
     translating the maximum endpoint of the interval represented by this
     QUICK_RANGE into an index range endpoint specifier for the engine.

     @param Pointer to an uninitialized key_range C struct.

     @param prefix_length The length of the search key prefix to be used for
     lookup.
     
     @param keypart_map A set (bitmap) of keyparts to be used.
  */
  void make_max_endpoint(key_range *kr, uint prefix_length, 
                         key_part_map keypart_map) {
    make_max_endpoint(kr);
    kr->length= MY_MIN(kr->length, prefix_length);
    kr->keypart_map&= keypart_map;
  }

  /**
     Initializes a key_range object for communication with storage engine. 

     This function facilitates communication with the Storage Engine API by
     translating the maximum endpoint of the interval represented by this
     QUICK_RANGE into an index range endpoint specifier for the engine.

     @param Pointer to an uninitialized key_range C struct.
  */
  void make_max_endpoint(key_range *kr) {
    kr->key= (const uchar*)max_key;
    kr->length= max_length;
    kr->keypart_map= max_keypart_map;
    /*
      We use READ_AFTER_KEY here because if we are reading on a key
      prefix we want to find all keys with this prefix
    */
    kr->flag= (flag & NEAR_MAX ? HA_READ_BEFORE_KEY : HA_READ_AFTER_KEY);
  }
};


/*
  Quick select interface.
  This class is a parent for all QUICK_*_SELECT and FT_SELECT classes.

  The usage scenario is as follows:
  1. Create quick select
    quick= new QUICK_XXX_SELECT(...);

  2. Perform lightweight initialization. This can be done in 2 ways:
  2.a: Regular initialization
    if (quick->init())
    {
      //the only valid action after failed init() call is delete
      delete quick;
    }
  2.b: Special initialization for quick selects merged by QUICK_ROR_*_SELECT
    if (quick->init_ror_merged_scan())
      delete quick;

  3. Perform zero, one, or more scans.
    while (...)
    {
      // initialize quick select for scan. This may allocate
      // buffers and/or prefetch rows.
      if (quick->reset())
      {
        //the only valid action after failed reset() call is delete
        delete quick;
        //abort query
      }

      // perform the scan
      do
      {
        res= quick->get_next();
      } while (res && ...)
    }

  4. Delete the select:
    delete quick;
  
  NOTE 
    quick select doesn't use Sql_alloc/MEM_ROOT allocation because "range
    checked for each record" functionality may create/destroy
    O(#records_in_some_table) quick selects during query execution.
*/

class QUICK_SELECT_I
{
public:
  ha_rows records;  /* estimate of # of records to be retrieved */
  double  read_time; /* time to perform this retrieval          */
  TABLE   *head;
  /*
    Index this quick select uses, or MAX_KEY for quick selects
    that use several indexes
  */
  uint index;

  /*
    Total length of first used_key_parts parts of the key.
    Applicable if index!= MAX_KEY.
  */
  uint max_used_key_length;

  /*
    Max. number of (first) key parts this quick select uses for retrieval.
    eg. for "(key1p1=c1 AND key1p2=c2) OR key1p1=c2" used_key_parts == 2.
    Applicable if index!= MAX_KEY.

    For QUICK_GROUP_MIN_MAX_SELECT it includes MIN/MAX argument keyparts.
  */
  uint used_key_parts;

  /*
    Set to 1 if we used group by optimization to calculate number of rows
    in the result, stored in table->opt_range_condition_rows.
    This is only used for asserts.
  */
  bool group_by_optimization_used;

  QUICK_SELECT_I();
  virtual ~QUICK_SELECT_I() = default;;

  /*
    Do post-constructor initialization.
    SYNOPSIS
      init()

    init() performs initializations that should have been in constructor if
    it was possible to return errors from constructors. The join optimizer may
    create and then delete quick selects without retrieving any rows so init()
    must not contain any IO or CPU intensive code.

    If init() call fails the only valid action is to delete this quick select,
    reset() and get_next() must not be called.

    RETURN
      0      OK
      other  Error code
  */
  virtual int  init() = 0;

  /*
    Initialize quick select for row retrieval.
    SYNOPSIS
      reset()

    reset() should be called when it is certain that row retrieval will be
    necessary. This call may do heavyweight initialization like buffering first
    N records etc. If reset() call fails get_next() must not be called.
    Note that reset() may be called several times if 
     * the quick select is executed in a subselect
     * a JOIN buffer is used
    
    RETURN
      0      OK
      other  Error code
  */
  virtual int  reset(void) = 0;

  virtual int  get_next() = 0;   /* get next record to retrieve */

  /* Range end should be called when we have looped over the whole index */
  virtual void range_end() {}

  virtual bool reverse_sorted() = 0;
  virtual bool unique_key_range() { return false; }

  /*
    Request that this quick select produces sorted output. Not all quick
    selects can do it, the caller is responsible for calling this function
    only for those quick selects that can.
  */
  virtual void need_sorted_output() = 0;
  enum {
    QS_TYPE_RANGE = 0,
    QS_TYPE_INDEX_INTERSECT = 1,
    QS_TYPE_INDEX_MERGE = 2,
    QS_TYPE_RANGE_DESC = 3,
    QS_TYPE_FULLTEXT   = 4,
    QS_TYPE_ROR_INTERSECT = 5,
    QS_TYPE_ROR_UNION = 6,
    QS_TYPE_GROUP_MIN_MAX = 7
  };

  /* Get type of this quick select - one of the QS_TYPE_* values */
  virtual int get_type() = 0;

  /*
    Initialize this quick select as a merged scan inside a ROR-union or a ROR-
    intersection scan. The caller must not additionally call init() if this
    function is called.
    SYNOPSIS
      init_ror_merged_scan()
        reuse_handler  If true, the quick select may use table->handler,
                       otherwise it must create and use a separate handler
                       object.
    RETURN
      0     Ok
      other Error
  */
  virtual int init_ror_merged_scan(bool reuse_handler, MEM_ROOT *alloc)
  { DBUG_ASSERT(0); return 1; }

  /*
    Save ROWID of last retrieved row in file->ref. This used in ROR-merging.
  */
  virtual void save_last_pos(){};
  
  void add_key_and_length(String *key_names,
                          String *used_lengths,
                          bool *first);

  /*
    Append comma-separated list of keys this quick select uses to key_names;
    append comma-separated list of corresponding used lengths to used_lengths.
    This is used by select_describe.
  */
  virtual void add_keys_and_lengths(String *key_names,
                                    String *used_lengths)=0;

  void add_key_name(String *str, bool *first);

  /* Save information about quick select's query plan */
  virtual Explain_quick_select* get_explain(MEM_ROOT *alloc)= 0;

  /*
    Return 1 if any index used by this quick select
    uses field which is marked in passed bitmap.
  */
  virtual bool is_keys_used(const MY_BITMAP *fields);

  /**
    Simple sanity check that the quick select has been set up
    correctly. Function is overridden by quick selects that merge
    indices.
   */
  virtual bool is_valid() { return index != MAX_KEY; };

  /*
    rowid of last row retrieved by this quick select. This is used only when
    doing ROR-index_merge selects
  */
  uchar    *last_rowid;

  /*
    Table record buffer used by this quick select.
  */
  uchar    *record;

  virtual void replace_handler(handler *new_file)
  {
    DBUG_ASSERT(0); /* Only supported in QUICK_RANGE_SELECT */
  }

#ifndef DBUG_OFF
  /*
    Print quick select information to DBUG_FILE. Caller is responsible
    for locking DBUG_FILE before this call and unlocking it afterwards.
  */
  virtual void dbug_dump(int indent, bool verbose)= 0;
#endif

  /*
    Returns a QUICK_SELECT with reverse order of to the index.
  */
  virtual QUICK_SELECT_I *make_reverse(uint used_key_parts_arg) { return NULL; }

  /*
    Add the key columns used by the quick select into table's read set.

    This is used by an optimization in filesort.
  */
  virtual void add_used_key_part_to_set()=0;
};


struct st_qsel_param;
class PARAM;


/*
  MRR range sequence, array<QUICK_RANGE> implementation: sequence traversal
  context.
*/
typedef struct st_quick_range_seq_ctx
{
  QUICK_RANGE **first;
  QUICK_RANGE **cur;
  QUICK_RANGE **last;
} QUICK_RANGE_SEQ_CTX;

range_seq_t quick_range_seq_init(void *init_param, uint n_ranges, uint flags);
bool quick_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range);


/*
  Quick select that does a range scan on a single key. The records are
  returned in key order.
*/
class QUICK_RANGE_SELECT : public QUICK_SELECT_I
{
protected:
  THD *thd;
  bool no_alloc;
  MEM_ROOT *parent_alloc;

  /* true if we enabled key only reads */
  handler *file;

  /* Members to deal with case when this quick select is a ROR-merged scan */
  bool in_ror_merged_scan;
  MY_BITMAP column_bitmap;
  bool free_file;   /* TRUE <=> this->file is "owned" by this quick select */

  /* Range pointers to be used when not using MRR interface */
  /* Members needed to use the MRR interface */
  QUICK_RANGE_SEQ_CTX qr_traversal_ctx;
public:
  uint mrr_flags; /* Flags to be used with MRR interface */
protected:
  uint mrr_buf_size; /* copy from thd->variables.mrr_buff_size */  
  HANDLER_BUFFER *mrr_buf_desc; /* the handler buffer */

  /* Info about index we're scanning */
  
  DYNAMIC_ARRAY ranges;     /* ordered array of range ptrs */
  QUICK_RANGE **cur_range;  /* current element in ranges  */
  
  QUICK_RANGE *last_range;
  
  KEY_PART *key_parts;
  KEY_PART_INFO *key_part_info;
  
  bool dont_free; /* Used by QUICK_SELECT_DESC */

  int cmp_next(QUICK_RANGE *range);
  int cmp_prev(QUICK_RANGE *range);
  bool row_in_ranges();
public:
  MEM_ROOT alloc;

  QUICK_RANGE_SELECT(THD *thd, TABLE *table,uint index_arg,bool no_alloc,
                     MEM_ROOT *parent_alloc, bool *create_err);
  ~QUICK_RANGE_SELECT();
  virtual QUICK_RANGE_SELECT *clone(bool *create_error)
    { return new QUICK_RANGE_SELECT(thd, head, index, no_alloc, parent_alloc,
                                    create_error); }
  
  void need_sorted_output();
  int init();
  int reset(void);
  int get_next();
  void range_end();
  int get_next_prefix(uint prefix_length, uint group_key_parts, 
                      uchar *cur_prefix);
  bool reverse_sorted() { return 0; }
  bool unique_key_range();
  int init_ror_merged_scan(bool reuse_handler, MEM_ROOT *alloc);
  void save_last_pos()
  { file->position(record); }
  int get_type() { return QS_TYPE_RANGE; }
  void add_keys_and_lengths(String *key_names, String *used_lengths);
  Explain_quick_select *get_explain(MEM_ROOT *alloc);
#ifndef DBUG_OFF
  void dbug_dump(int indent, bool verbose);
#endif
  virtual void replace_handler(handler *new_file) { file= new_file; }
  QUICK_SELECT_I *make_reverse(uint used_key_parts_arg);

  virtual void add_used_key_part_to_set();

private:
  /* Default copy ctor used by QUICK_SELECT_DESC */
  friend class TRP_ROR_INTERSECT;
  friend
  QUICK_RANGE_SELECT *get_quick_select_for_ref(THD *thd, TABLE *table,
                                               struct st_table_ref *ref,
                                               ha_rows records);
  friend bool get_quick_keys(PARAM *param, QUICK_RANGE_SELECT *quick, 
                             KEY_PART *key, SEL_ARG *key_tree, 
                             uchar *min_key, uint min_key_flag,
                             uchar *max_key, uint max_key_flag);
  friend QUICK_RANGE_SELECT *get_quick_select(PARAM*,uint idx,
                                              SEL_ARG *key_tree,
                                              uint mrr_flags,
                                              uint mrr_buf_size,
                                              MEM_ROOT *alloc);
  friend class QUICK_SELECT_DESC;
  friend class QUICK_INDEX_SORT_SELECT;
  friend class QUICK_INDEX_MERGE_SELECT;
  friend class QUICK_ROR_INTERSECT_SELECT;
  friend class QUICK_INDEX_INTERSECT_SELECT;
  friend class QUICK_GROUP_MIN_MAX_SELECT;
  friend bool quick_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range);
  friend range_seq_t quick_range_seq_init(void *init_param,
                                          uint n_ranges, uint flags);
  friend 
  int read_keys_and_merge_scans(THD *thd, TABLE *head,
                                List<QUICK_RANGE_SELECT> quick_selects,
                                QUICK_RANGE_SELECT *pk_quick_select,
                                READ_RECORD *read_record,
                                bool intersection,
                                key_map *filtered_scans,
                                Unique **unique_ptr);

};


class QUICK_RANGE_SELECT_GEOM: public QUICK_RANGE_SELECT
{
public:
  QUICK_RANGE_SELECT_GEOM(THD *thd, TABLE *table, uint index_arg,
                          bool no_alloc, MEM_ROOT *parent_alloc, 
                          bool *create_err)
    :QUICK_RANGE_SELECT(thd, table, index_arg, no_alloc, parent_alloc,
    create_err)
    {};
  virtual QUICK_RANGE_SELECT *clone(bool *create_error)
    {
      DBUG_ASSERT(0);
      return new QUICK_RANGE_SELECT_GEOM(thd, head, index, no_alloc,
                                         parent_alloc, create_error);
    }
  virtual int get_next();
};


/*
  QUICK_INDEX_SORT_SELECT is the base class for the common functionality of:
  - QUICK_INDEX_MERGE_SELECT, access based on multi-index merge/union 
  - QUICK_INDEX_INTERSECT_SELECT, access based on  multi-index intersection 
    

    QUICK_INDEX_SORT_SELECT uses
     * QUICK_RANGE_SELECTs to get rows
     * Unique class
       - to remove duplicate rows for QUICK_INDEX_MERGE_SELECT
       - to intersect rows for QUICK_INDEX_INTERSECT_SELECT

  INDEX MERGE OPTIMIZER
    Current implementation doesn't detect all cases where index merge could
    be used, in particular:

     * index_merge+'using index' is not supported

     * If WHERE part contains complex nested AND and OR conditions, some ways
       to retrieve rows using index merge will not be considered. The choice
       of read plan may depend on the order of conjuncts/disjuncts in WHERE
       part of the query, see comments near imerge_list_or_list and
       SEL_IMERGE::or_sel_tree_with_checks functions for details.

     * There is no "index_merge_ref" method (but index merge on non-first
       table in join is possible with 'range checked for each record').


  ROW RETRIEVAL ALGORITHM

    index merge/intersection uses Unique class for duplicates removal. 
    index merge/intersection takes advantage of Clustered Primary Key (CPK)
    if the table has one.
    The index merge/intersection algorithm consists of two phases:

    Phase 1 
    (implemented by a QUICK_INDEX_MERGE_SELECT::read_keys_and_merge call):

    prepare()
    {
      activate 'index only';
      while(retrieve next row for non-CPK scan)
      {
        if (there is a CPK scan and row will be retrieved by it)
          skip this row;
        else
          put its rowid into Unique;
      }
      deactivate 'index only';
    }

    Phase 2 
    (implemented as sequence of QUICK_INDEX_MERGE_SELECT::get_next calls):

    fetch()
    {
      retrieve all rows from row pointers stored in Unique
      (merging/intersecting them);
      free Unique;
      if (! intersection) 
        retrieve all rows for CPK scan;
    }
*/

class QUICK_INDEX_SORT_SELECT : public QUICK_SELECT_I
{
protected:
  Unique *unique;
public:
  QUICK_INDEX_SORT_SELECT(THD *thd, TABLE *table);
  ~QUICK_INDEX_SORT_SELECT();

  int  init();
  void need_sorted_output() { DBUG_ASSERT(0); /* Can't do it */ }
  int  reset(void);
  bool reverse_sorted() { return false; }
  bool unique_key_range() { return false; }
  bool is_keys_used(const MY_BITMAP *fields);
#ifndef DBUG_OFF
  void dbug_dump(int indent, bool verbose);
#endif
  Explain_quick_select *get_explain(MEM_ROOT *alloc);

  bool push_quick_back(QUICK_RANGE_SELECT *quick_sel_range);

  /* range quick selects this index merge/intersect consists of */
  List<QUICK_RANGE_SELECT> quick_selects;

  /* quick select that uses clustered primary key (NULL if none) */
  QUICK_RANGE_SELECT* pk_quick_select;

  MEM_ROOT alloc;
  THD *thd;
  virtual bool is_valid()
  {
    List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
    QUICK_RANGE_SELECT *quick;
    bool valid= true;
    while ((quick= it++))
    {
      if (!quick->is_valid())
      {
        valid= false;
        break;
      }
    }
    return valid;
  }
  virtual int read_keys_and_merge()= 0;
  /* used to get rows collected in Unique */
  READ_RECORD read_record;

  virtual void add_used_key_part_to_set();
};



class QUICK_INDEX_MERGE_SELECT : public QUICK_INDEX_SORT_SELECT
{
private:
  /* true if this select is currently doing a clustered PK scan */
  bool  doing_pk_scan;
protected:
  int read_keys_and_merge();

public:
  QUICK_INDEX_MERGE_SELECT(THD *thd_arg, TABLE *table)
    :QUICK_INDEX_SORT_SELECT(thd_arg, table) {}

  int get_next();
  int get_type() { return QS_TYPE_INDEX_MERGE; }
  void add_keys_and_lengths(String *key_names, String *used_lengths);
};

class QUICK_INDEX_INTERSECT_SELECT : public QUICK_INDEX_SORT_SELECT
{
protected:
  int read_keys_and_merge();

public:
  QUICK_INDEX_INTERSECT_SELECT(THD *thd_arg, TABLE *table)
    :QUICK_INDEX_SORT_SELECT(thd_arg, table) {}

  key_map filtered_scans;
  int get_next();
  int get_type() { return QS_TYPE_INDEX_INTERSECT; }
  void add_keys_and_lengths(String *key_names, String *used_lengths);
  Explain_quick_select *get_explain(MEM_ROOT *alloc);
};


/*
  Rowid-Ordered Retrieval (ROR) index intersection quick select.
  This quick select produces intersection of row sequences returned
  by several QUICK_RANGE_SELECTs it "merges".

  All merged QUICK_RANGE_SELECTs must return rowids in rowid order.
  QUICK_ROR_INTERSECT_SELECT will return rows in rowid order, too.

  All merged quick selects retrieve {rowid, covered_fields} tuples (not full
  table records).
  QUICK_ROR_INTERSECT_SELECT retrieves full records if it is not being used
  by QUICK_ROR_INTERSECT_SELECT and all merged quick selects together don't
  cover needed all fields.

  If one of the merged quick selects is a Clustered PK range scan, it is
  used only to filter rowid sequence produced by other merged quick selects.
*/

class QUICK_ROR_INTERSECT_SELECT : public QUICK_SELECT_I
{
public:
  QUICK_ROR_INTERSECT_SELECT(THD *thd, TABLE *table,
                             bool retrieve_full_rows,
                             MEM_ROOT *parent_alloc);
  ~QUICK_ROR_INTERSECT_SELECT();

  int  init();
  void need_sorted_output() { DBUG_ASSERT(0); /* Can't do it */ }
  int  reset(void);
  int  get_next();
  bool reverse_sorted() { return false; }
  bool unique_key_range() { return false; }
  int get_type() { return QS_TYPE_ROR_INTERSECT; }
  void add_keys_and_lengths(String *key_names, String *used_lengths);
  Explain_quick_select *get_explain(MEM_ROOT *alloc);
  bool is_keys_used(const MY_BITMAP *fields);
  void add_used_key_part_to_set();
#ifndef DBUG_OFF
  void dbug_dump(int indent, bool verbose);
#endif
  int init_ror_merged_scan(bool reuse_handler, MEM_ROOT *alloc);
  bool push_quick_back(MEM_ROOT *alloc, QUICK_RANGE_SELECT *quick_sel_range);

  class QUICK_SELECT_WITH_RECORD : public Sql_alloc
  {
  public:
    QUICK_RANGE_SELECT *quick;
    uchar *key_tuple;
    ~QUICK_SELECT_WITH_RECORD() { delete quick; }
  };

  /*
    Range quick selects this intersection consists of, not including
    cpk_quick.
  */
  List<QUICK_SELECT_WITH_RECORD> quick_selects;

  virtual bool is_valid()
  {
    List_iterator_fast<QUICK_SELECT_WITH_RECORD> it(quick_selects);
    QUICK_SELECT_WITH_RECORD *quick;
    bool valid= true;
    while ((quick= it++))
    {
      if (!quick->quick->is_valid())
      {
        valid= false;
        break;
      }
    }
    return valid;
  }

  /*
    Merged quick select that uses Clustered PK, if there is one. This quick
    select is not used for row retrieval, it is used for row retrieval.
  */
  QUICK_RANGE_SELECT *cpk_quick;

  MEM_ROOT alloc; /* Memory pool for this and merged quick selects data. */
  THD *thd;       /* current thread */
  bool need_to_fetch_row; /* if true, do retrieve full table records. */
  /* in top-level quick select, true if merged scans where initialized */
  bool scans_inited; 
};


/*
  Rowid-Ordered Retrieval index union select.
  This quick select produces union of row sequences returned by several
  quick select it "merges".

  All merged quick selects must return rowids in rowid order.
  QUICK_ROR_UNION_SELECT will return rows in rowid order, too.

  All merged quick selects are set not to retrieve full table records.
  ROR-union quick select always retrieves full records.

*/

class QUICK_ROR_UNION_SELECT : public QUICK_SELECT_I
{
public:
  QUICK_ROR_UNION_SELECT(THD *thd, TABLE *table);
  ~QUICK_ROR_UNION_SELECT();

  int  init();
  void need_sorted_output() { DBUG_ASSERT(0); /* Can't do it */ }
  int  reset(void);
  int  get_next();
  bool reverse_sorted() { return false; }
  bool unique_key_range() { return false; }
  int get_type() { return QS_TYPE_ROR_UNION; }
  void add_keys_and_lengths(String *key_names, String *used_lengths);
  Explain_quick_select *get_explain(MEM_ROOT *alloc);
  bool is_keys_used(const MY_BITMAP *fields);
  void add_used_key_part_to_set();
#ifndef DBUG_OFF
  void dbug_dump(int indent, bool verbose);
#endif

  bool push_quick_back(QUICK_SELECT_I *quick_sel_range);

  List<QUICK_SELECT_I> quick_selects; /* Merged quick selects */

  virtual bool is_valid()
  {
    List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
    QUICK_SELECT_I *quick;
    bool valid= true;
    while ((quick= it++))
    {
      if (!quick->is_valid())
      {
        valid= false;
        break;
      }
    }
    return valid;
  }

  QUEUE queue;    /* Priority queue for merge operation */
  MEM_ROOT alloc; /* Memory pool for this and merged quick selects data. */

  THD *thd;             /* current thread */
  uchar *cur_rowid;      /* buffer used in get_next() */
  uchar *prev_rowid;     /* rowid of last row returned by get_next() */
  bool have_prev_rowid; /* true if prev_rowid has valid data */
  uint rowid_length;    /* table rowid length */
private:
  bool scans_inited; 
};


/*
  Index scan for GROUP-BY queries with MIN/MAX aggregate functions.

  This class provides a specialized index access method for GROUP-BY queries
  of the forms:

       SELECT A_1,...,A_k, [B_1,...,B_m], [MIN(C)], [MAX(C)]
         FROM T
        WHERE [RNG(A_1,...,A_p ; where p <= k)]
         [AND EQ(B_1,...,B_m)]
         [AND PC(C)]
         [AND PA(A_i1,...,A_iq)]
       GROUP BY A_1,...,A_k;

    or

       SELECT DISTINCT A_i1,...,A_ik
         FROM T
        WHERE [RNG(A_1,...,A_p ; where p <= k)]
         [AND PA(A_i1,...,A_iq)];

  where all selected fields are parts of the same index.
  The class of queries that can be processed by this quick select is fully
  specified in the description of get_best_trp_group_min_max() in opt_range.cc.

  The get_next() method directly produces result tuples, thus obviating the
  need to call end_send_group() because all grouping is already done inside
  get_next().

  Since one of the requirements is that all select fields are part of the same
  index, this class produces only index keys, and not complete records.
*/

class QUICK_GROUP_MIN_MAX_SELECT : public QUICK_SELECT_I
{
private:
  handler * const file;   /* The handler used to get data. */
  JOIN *join;            /* Descriptor of the current query */
  KEY  *index_info;      /* The index chosen for data access */
  uchar *record;          /* Buffer where the next record is returned. */
  uchar *tmp_record;      /* Temporary storage for next_min(), next_max(). */
  uchar *group_prefix;    /* Key prefix consisting of the GROUP fields. */
  const uint group_prefix_len; /* Length of the group prefix. */
  uint group_key_parts;  /* A number of keyparts in the group prefix */
  bool have_min;         /* Specify whether we are computing */
  bool have_max;         /*   a MIN, a MAX, or both.         */
  bool have_agg_distinct;/*   aggregate_function(DISTINCT ...).  */
  bool seen_first_key;   /* Denotes whether the first key was retrieved.*/
  bool doing_key_read;   /* true if we enabled key only reads */

  KEY_PART_INFO *min_max_arg_part; /* The keypart of the only argument field */
                                   /* of all MIN/MAX functions.              */
  uint min_max_arg_len;  /* The length of the MIN/MAX argument field */
  uchar *key_infix;       /* Infix of constants from equality predicates. */
  uint key_infix_len;
  DYNAMIC_ARRAY min_max_ranges; /* Array of range ptrs for the MIN/MAX field. */
  uint real_prefix_len; /* Length of key prefix extended with key_infix. */
  uint real_key_parts;  /* A number of keyparts in the above value.      */
  List<Item_sum> *min_functions;
  List<Item_sum> *max_functions;
  List_iterator<Item_sum> *min_functions_it;
  List_iterator<Item_sum> *max_functions_it;
  /* 
    Use index scan to get the next different key instead of jumping into it 
    through index read 
  */
  bool is_index_scan; 
public:
  /*
    The following two members are public to allow easy access from
    TRP_GROUP_MIN_MAX::make_quick()
  */
  MEM_ROOT alloc; /* Memory pool for this and quick_prefix_select data. */
  QUICK_RANGE_SELECT *quick_prefix_select;/* For retrieval of group prefixes. */
private:
  int  next_prefix();
  int  next_min_in_range();
  int  next_max_in_range();
  int  next_min();
  int  next_max();
  void update_min_result();
  void update_max_result();
  int cmp_min_max_key(const uchar *key, uint16 length);
public:
  QUICK_GROUP_MIN_MAX_SELECT(TABLE *table, JOIN *join, bool have_min,
                             bool have_max, bool have_agg_distinct,
                             KEY_PART_INFO *min_max_arg_part,
                             uint group_prefix_len, uint group_key_parts,
                             uint used_key_parts, KEY *index_info, uint
                             use_index, double read_cost, ha_rows records, uint
                             key_infix_len, uchar *key_infix, MEM_ROOT
                             *parent_alloc, bool is_index_scan);
  ~QUICK_GROUP_MIN_MAX_SELECT();
  bool add_range(SEL_ARG *sel_range);
  void update_key_stat();
  void adjust_prefix_ranges();
  bool alloc_buffers();
  int init();
  void need_sorted_output() { /* always do it */ }
  int reset();
  int get_next();
  bool reverse_sorted() { return false; }
  bool unique_key_range() { return false; }
  int get_type() { return QS_TYPE_GROUP_MIN_MAX; }
  void add_keys_and_lengths(String *key_names, String *used_lengths);
  void add_used_key_part_to_set();
#ifndef DBUG_OFF
  void dbug_dump(int indent, bool verbose);
#endif
  bool is_agg_distinct() { return have_agg_distinct; }
  bool loose_scan_is_scanning() { return is_index_scan; }
  Explain_quick_select *get_explain(MEM_ROOT *alloc);
};


class QUICK_SELECT_DESC: public QUICK_RANGE_SELECT
{
public:
  QUICK_SELECT_DESC(QUICK_RANGE_SELECT *q, uint used_key_parts);
  virtual QUICK_RANGE_SELECT *clone(bool *create_error)
    { DBUG_ASSERT(0); return new QUICK_SELECT_DESC(this, used_key_parts); }
  int get_next();
  bool reverse_sorted() { return 1; }
  int get_type() { return QS_TYPE_RANGE_DESC; }
  QUICK_SELECT_I *make_reverse(uint used_key_parts_arg)
  {
    return this; // is already reverse sorted
  }
private:
  bool range_reads_after_key(QUICK_RANGE *range);
  int reset(void) { rev_it.rewind(); return QUICK_RANGE_SELECT::reset(); }
  List<QUICK_RANGE> rev_ranges;
  List_iterator<QUICK_RANGE> rev_it;
  uint used_key_parts;
};


class SQL_SELECT :public Sql_alloc {
 public:
  QUICK_SELECT_I *quick;	// If quick-select used
  COND		*cond;		// where condition

  /*
    When using Index Condition Pushdown: condition that we've had before
    extracting and pushing index condition.
    In other cases, NULL.
  */
  Item *pre_idx_push_select_cond;
  TABLE *head;
  IO_CACHE file;                // Positions to used records
  ha_rows records;              // Records in use if read from file
  ALL_READ_COST read_cost;      // Cost of reading rows
  double read_time;             // Time to read rows (from read_cost)
  key_map quick_keys;           // Possible quick keys
  key_map needed_reg;           // Possible quick keys after prev tables.
  table_map const_tables,read_tables;
  /* See PARAM::possible_keys */
  key_map possible_keys;
  bool	free_cond; /* Currently not used and always FALSE */

  SQL_SELECT();
  ~SQL_SELECT();
  void cleanup();
  void set_quick(QUICK_SELECT_I *new_quick) { delete quick; quick= new_quick; }

  /*
    @return
      true  - for ERROR and IMPOSSIBLE_RANGE
      false   - Ok
  */
  bool check_quick(THD *thd, bool force_quick_range, ha_rows limit,
                   Item_func::Bitmap note_unusable_keys)
  {
    key_map tmp;
    tmp.set_all();
    return test_quick_select(thd, tmp, 0, limit, force_quick_range,
                             FALSE, FALSE, FALSE,
                             note_unusable_keys) != OK;
  }

  /* 
    RETURN
      0   if record must be skipped <-> (cond && cond->val_int() == 0)
     -1   if error
      1   otherwise
  */   
  inline int skip_record(THD *thd)
  {
    int rc= MY_TEST(!cond || cond->val_int());
    if (thd->is_error())
      rc= -1;
    return rc;
  }

  enum quick_select_return_type {
    IMPOSSIBLE_RANGE = -1,
    ERROR,
    OK
  };

  enum quick_select_return_type
  test_quick_select(THD *thd, key_map keys, table_map prev_tables,
                    ha_rows limit,
                    bool force_quick_range,
                    bool ordered_output,
                    bool remove_false_parts_of_where,
                    bool only_single_index_range_scan,
                    Item_func::Bitmap note_unusable_keys);
};

typedef enum SQL_SELECT::quick_select_return_type quick_select_return;


class SQL_SELECT_auto
{
  SQL_SELECT *select;
public:
  SQL_SELECT_auto(): select(NULL)
  {}
  ~SQL_SELECT_auto()
  {
    delete select;
  }
  SQL_SELECT_auto&
  operator= (SQL_SELECT *_select)
  {
    select= _select;
    return *this;
  }
  operator SQL_SELECT * () const
  {
    return select;
  }
  SQL_SELECT *
  operator-> () const
  {
    return select;
  }
  operator bool () const
  {
    return select;
  }
};


class FT_SELECT: public QUICK_RANGE_SELECT 
{
public:
  FT_SELECT(THD *thd, TABLE *table, uint key, bool *create_err) :
      QUICK_RANGE_SELECT (thd, table, key, 1, NULL, create_err) 
  { (void) init(); }
  ~FT_SELECT() { file->ft_end(); }
  virtual QUICK_RANGE_SELECT *clone(bool *create_error)
    { DBUG_ASSERT(0); return new FT_SELECT(thd, head, index, create_error); }
  int init() { return file->ft_init(); }
  int reset() { return 0; }
  int get_next() { return file->ha_ft_read(record); }
  int get_type() { return QS_TYPE_FULLTEXT; }
};

FT_SELECT *get_ft_select(THD *thd, TABLE *table, uint key);
QUICK_RANGE_SELECT *get_quick_select_for_ref(THD *thd, TABLE *table,
                                             struct st_table_ref *ref,
                                             ha_rows records);
SQL_SELECT *make_select(TABLE *head, table_map const_tables,
			table_map read_tables, COND *conds,
                        SORT_INFO* filesort,
                        bool allow_null_cond,  int *error);

bool calculate_cond_selectivity_for_table(THD *thd, TABLE *table, Item **cond);

bool eq_ranges_exceeds_limit(RANGE_SEQ_IF *seq, void *seq_init_param,
                             uint limit);

#ifdef WITH_PARTITION_STORAGE_ENGINE
bool prune_partitions(THD *thd, TABLE *table, Item *pprune_cond);
#endif
void store_key_image_to_rec(Field *field, uchar *ptr, uint len);

extern String null_string;

/* check this number of rows (default value) */
#define SELECTIVITY_SAMPLING_LIMIT 100
/* but no more then this part of table (10%) */
#define SELECTIVITY_SAMPLING_SHARE 0.10
/* do not check if we are going check less then this number of records */
#define SELECTIVITY_SAMPLING_THRESHOLD 10

#endif