1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
|
/***************************************************************************//**
Copyright (c) 2007, 2015, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2020, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
*****************************************************************************/
/********************************************************************//**
Red-Black tree implementation
(c) 2007 Oracle/Innobase Oy
Created 2007-03-20 Sunny Bains
***********************************************************************/
#include "ut0rbt.h"
#include "ut0new.h"
/**********************************************************************//**
Definition of a red-black tree
==============================
A red-black tree is a binary search tree which has the following
red-black properties:
1. Every node is either red or black.
2. Every leaf (NULL - in our case tree->nil) is black.
3. If a node is red, then both its children are black.
4. Every simple path from a node to a descendant leaf contains the
same number of black nodes.
from (3) above, the implication is that on any path from the root
to a leaf, red nodes must not be adjacent.
However, any number of black nodes may appear in a sequence.
*/
#if defined(IB_RBT_TESTING)
#warning "Testing enabled!"
#endif
#define ROOT(t) (t->root->left)
#define SIZEOF_NODE(t) ((sizeof(ib_rbt_node_t) + t->sizeof_value) - 1)
#if defined UNIV_DEBUG || defined IB_RBT_TESTING
/**********************************************************************//**
Verify that the keys are in order.
@return TRUE of OK. FALSE if not ordered */
static
ibool
rbt_check_ordering(
/*===============*/
const ib_rbt_t* tree) /*!< in: tree to verfify */
{
const ib_rbt_node_t* node;
const ib_rbt_node_t* prev = NULL;
/* Iterate over all the nodes, comparing each node with the prev */
for (node = rbt_first(tree); node; node = rbt_next(tree, prev)) {
if (prev) {
int result;
if (tree->cmp_arg) {
result = tree->compare_with_arg(
tree->cmp_arg, prev->value,
node->value);
} else {
result = tree->compare(
prev->value, node->value);
}
if (result >= 0) {
return(FALSE);
}
}
prev = node;
}
return(TRUE);
}
/**********************************************************************//**
Check that every path from the root to the leaves has the same count.
Count is expressed in the number of black nodes.
@return 0 on failure else black height of the subtree */
static
ibool
rbt_count_black_nodes(
/*==================*/
const ib_rbt_t* tree, /*!< in: tree to verify */
const ib_rbt_node_t* node) /*!< in: start of sub-tree */
{
ulint result;
if (node != tree->nil) {
ulint left_height = rbt_count_black_nodes(tree, node->left);
ulint right_height = rbt_count_black_nodes(tree, node->right);
if (left_height == 0
|| right_height == 0
|| left_height != right_height) {
result = 0;
} else if (node->color == IB_RBT_RED) {
/* Case 3 */
if (node->left->color != IB_RBT_BLACK
|| node->right->color != IB_RBT_BLACK) {
result = 0;
} else {
result = left_height;
}
/* Check if it's anything other than RED or BLACK. */
} else if (node->color != IB_RBT_BLACK) {
result = 0;
} else {
result = right_height + 1;
}
} else {
result = 1;
}
return(result);
}
#endif /* UNIV_DEBUG || IB_RBT_TESTING */
/**********************************************************************//**
Turn the node's right child's left sub-tree into node's right sub-tree.
This will also make node's right child it's parent. */
static
void
rbt_rotate_left(
/*============*/
const ib_rbt_node_t* nil, /*!< in: nil node of the tree */
ib_rbt_node_t* node) /*!< in: node to rotate */
{
ib_rbt_node_t* right = node->right;
node->right = right->left;
if (right->left != nil) {
right->left->parent = node;
}
/* Right's new parent was node's parent. */
right->parent = node->parent;
/* Since root's parent is tree->nil and root->parent->left points
back to root, we can avoid the check. */
if (node == node->parent->left) {
/* Node was on the left of its parent. */
node->parent->left = right;
} else {
/* Node must have been on the right. */
node->parent->right = right;
}
/* Finally, put node on right's left. */
right->left = node;
node->parent = right;
}
/**********************************************************************//**
Turn the node's left child's right sub-tree into node's left sub-tree.
This also make node's left child it's parent. */
static
void
rbt_rotate_right(
/*=============*/
const ib_rbt_node_t* nil, /*!< in: nil node of tree */
ib_rbt_node_t* node) /*!< in: node to rotate */
{
ib_rbt_node_t* left = node->left;
node->left = left->right;
if (left->right != nil) {
left->right->parent = node;
}
/* Left's new parent was node's parent. */
left->parent = node->parent;
/* Since root's parent is tree->nil and root->parent->left points
back to root, we can avoid the check. */
if (node == node->parent->right) {
/* Node was on the left of its parent. */
node->parent->right = left;
} else {
/* Node must have been on the left. */
node->parent->left = left;
}
/* Finally, put node on left's right. */
left->right = node;
node->parent = left;
}
/**********************************************************************//**
Append a node to the tree. */
static
ib_rbt_node_t*
rbt_tree_add_child(
/*===============*/
const ib_rbt_t* tree,
ib_rbt_bound_t* parent,
ib_rbt_node_t* node)
{
/* Cast away the const. */
ib_rbt_node_t* last = (ib_rbt_node_t*) parent->last;
if (last == tree->root || parent->result < 0) {
last->left = node;
} else {
/* FIXME: We don't handle duplicates (yet)! */
ut_a(parent->result != 0);
last->right = node;
}
node->parent = last;
return(node);
}
/**********************************************************************//**
Generic binary tree insert */
static
ib_rbt_node_t*
rbt_tree_insert(
/*============*/
ib_rbt_t* tree,
const void* key,
ib_rbt_node_t* node)
{
ib_rbt_bound_t parent;
ib_rbt_node_t* current = ROOT(tree);
parent.result = 0;
parent.last = tree->root;
/* Regular binary search. */
while (current != tree->nil) {
parent.last = current;
if (tree->cmp_arg) {
parent.result = tree->compare_with_arg(
tree->cmp_arg, key, current->value);
} else {
parent.result = tree->compare(key, current->value);
}
if (parent.result < 0) {
current = current->left;
} else {
current = current->right;
}
}
ut_a(current == tree->nil);
rbt_tree_add_child(tree, &parent, node);
return(node);
}
/**********************************************************************//**
Balance a tree after inserting a node. */
static
void
rbt_balance_tree(
/*=============*/
const ib_rbt_t* tree, /*!< in: tree to balance */
ib_rbt_node_t* node) /*!< in: node that was inserted */
{
const ib_rbt_node_t* nil = tree->nil;
ib_rbt_node_t* parent = node->parent;
/* Restore the red-black property. */
node->color = IB_RBT_RED;
while (node != ROOT(tree) && parent->color == IB_RBT_RED) {
ib_rbt_node_t* grand_parent = parent->parent;
if (parent == grand_parent->left) {
ib_rbt_node_t* uncle = grand_parent->right;
if (uncle->color == IB_RBT_RED) {
/* Case 1 - change the colors. */
uncle->color = IB_RBT_BLACK;
parent->color = IB_RBT_BLACK;
grand_parent->color = IB_RBT_RED;
/* Move node up the tree. */
node = grand_parent;
} else {
if (node == parent->right) {
/* Right is a black node and node is
to the right, case 2 - move node
up and rotate. */
node = parent;
rbt_rotate_left(nil, node);
}
grand_parent = node->parent->parent;
/* Case 3. */
node->parent->color = IB_RBT_BLACK;
grand_parent->color = IB_RBT_RED;
rbt_rotate_right(nil, grand_parent);
}
} else {
ib_rbt_node_t* uncle = grand_parent->left;
if (uncle->color == IB_RBT_RED) {
/* Case 1 - change the colors. */
uncle->color = IB_RBT_BLACK;
parent->color = IB_RBT_BLACK;
grand_parent->color = IB_RBT_RED;
/* Move node up the tree. */
node = grand_parent;
} else {
if (node == parent->left) {
/* Left is a black node and node is to
the right, case 2 - move node up and
rotate. */
node = parent;
rbt_rotate_right(nil, node);
}
grand_parent = node->parent->parent;
/* Case 3. */
node->parent->color = IB_RBT_BLACK;
grand_parent->color = IB_RBT_RED;
rbt_rotate_left(nil, grand_parent);
}
}
parent = node->parent;
}
/* Color the root black. */
ROOT(tree)->color = IB_RBT_BLACK;
}
/**********************************************************************//**
Find the given node's successor.
@return successor node or NULL if no successor */
static
ib_rbt_node_t*
rbt_find_successor(
/*===============*/
const ib_rbt_t* tree, /*!< in: rb tree */
const ib_rbt_node_t* current) /*!< in: this is declared const
because it can be called via
rbt_next() */
{
const ib_rbt_node_t* nil = tree->nil;
ib_rbt_node_t* next = current->right;
/* Is there a sub-tree to the right that we can follow. */
if (next != nil) {
/* Follow the left most links of the current right child. */
while (next->left != nil) {
next = next->left;
}
} else { /* We will have to go up the tree to find the successor. */
ib_rbt_node_t* parent = current->parent;
/* Cast away the const. */
next = (ib_rbt_node_t*) current;
while (parent != tree->root && next == parent->right) {
next = parent;
parent = next->parent;
}
next = (parent == tree->root) ? NULL : parent;
}
return(next);
}
/**********************************************************************//**
Find the given node's precedecessor.
@return predecessor node or NULL if no predecesor */
static
ib_rbt_node_t*
rbt_find_predecessor(
/*=================*/
const ib_rbt_t* tree, /*!< in: rb tree */
const ib_rbt_node_t* current) /*!< in: this is declared const
because it can be called via
rbt_prev() */
{
const ib_rbt_node_t* nil = tree->nil;
ib_rbt_node_t* prev = current->left;
/* Is there a sub-tree to the left that we can follow. */
if (prev != nil) {
/* Follow the right most links of the current left child. */
while (prev->right != nil) {
prev = prev->right;
}
} else { /* We will have to go up the tree to find the precedecessor. */
ib_rbt_node_t* parent = current->parent;
/* Cast away the const. */
prev = (ib_rbt_node_t*) current;
while (parent != tree->root && prev == parent->left) {
prev = parent;
parent = prev->parent;
}
prev = (parent == tree->root) ? NULL : parent;
}
return(prev);
}
/**********************************************************************//**
Replace node with child. After applying transformations eject becomes
an orphan. */
static
void
rbt_eject_node(
/*===========*/
ib_rbt_node_t* eject, /*!< in: node to eject */
ib_rbt_node_t* node) /*!< in: node to replace with */
{
/* Update the to be ejected node's parent's child pointers. */
if (eject->parent->left == eject) {
eject->parent->left = node;
} else if (eject->parent->right == eject) {
eject->parent->right = node;
} else {
ut_a(0);
}
/* eject is now an orphan but otherwise its pointers
and color are left intact. */
node->parent = eject->parent;
}
/**********************************************************************//**
Replace a node with another node. */
static
void
rbt_replace_node(
/*=============*/
ib_rbt_node_t* replace, /*!< in: node to replace */
ib_rbt_node_t* node) /*!< in: node to replace with */
{
ib_rbt_color_t color = node->color;
/* Update the node pointers. */
node->left = replace->left;
node->right = replace->right;
/* Update the child node pointers. */
node->left->parent = node;
node->right->parent = node;
/* Make the parent of replace point to node. */
rbt_eject_node(replace, node);
/* Swap the colors. */
node->color = replace->color;
replace->color = color;
}
/**********************************************************************//**
Detach node from the tree replacing it with one of it's children.
@return the child node that now occupies the position of the detached node */
static
ib_rbt_node_t*
rbt_detach_node(
/*============*/
const ib_rbt_t* tree, /*!< in: rb tree */
ib_rbt_node_t* node) /*!< in: node to detach */
{
ib_rbt_node_t* child;
const ib_rbt_node_t* nil = tree->nil;
if (node->left != nil && node->right != nil) {
/* Case where the node to be deleted has two children. */
ib_rbt_node_t* successor = rbt_find_successor(tree, node);
ut_a(successor != nil);
ut_a(successor->parent != nil);
ut_a(successor->left == nil);
child = successor->right;
/* Remove the successor node and replace with its child. */
rbt_eject_node(successor, child);
/* Replace the node to delete with its successor node. */
rbt_replace_node(node, successor);
} else {
ut_a(node->left == nil || node->right == nil);
child = (node->left != nil) ? node->left : node->right;
/* Replace the node to delete with one of it's children. */
rbt_eject_node(node, child);
}
/* Reset the node links. */
node->parent = node->right = node->left = tree->nil;
return(child);
}
/**********************************************************************//**
Rebalance the right sub-tree after deletion.
@return node to rebalance if more rebalancing required else NULL */
static
ib_rbt_node_t*
rbt_balance_right(
/*==============*/
const ib_rbt_node_t* nil, /*!< in: rb tree nil node */
ib_rbt_node_t* parent, /*!< in: parent node */
ib_rbt_node_t* sibling) /*!< in: sibling node */
{
ib_rbt_node_t* node = NULL;
ut_a(sibling != nil);
/* Case 3. */
if (sibling->color == IB_RBT_RED) {
parent->color = IB_RBT_RED;
sibling->color = IB_RBT_BLACK;
rbt_rotate_left(nil, parent);
sibling = parent->right;
ut_a(sibling != nil);
}
/* Since this will violate case 3 because of the change above. */
if (sibling->left->color == IB_RBT_BLACK
&& sibling->right->color == IB_RBT_BLACK) {
node = parent; /* Parent needs to be rebalanced too. */
sibling->color = IB_RBT_RED;
} else {
if (sibling->right->color == IB_RBT_BLACK) {
ut_a(sibling->left->color == IB_RBT_RED);
sibling->color = IB_RBT_RED;
sibling->left->color = IB_RBT_BLACK;
rbt_rotate_right(nil, sibling);
sibling = parent->right;
ut_a(sibling != nil);
}
sibling->color = parent->color;
sibling->right->color = IB_RBT_BLACK;
parent->color = IB_RBT_BLACK;
rbt_rotate_left(nil, parent);
}
return(node);
}
/**********************************************************************//**
Rebalance the left sub-tree after deletion.
@return node to rebalance if more rebalancing required else NULL */
static
ib_rbt_node_t*
rbt_balance_left(
/*=============*/
const ib_rbt_node_t* nil, /*!< in: rb tree nil node */
ib_rbt_node_t* parent, /*!< in: parent node */
ib_rbt_node_t* sibling) /*!< in: sibling node */
{
ib_rbt_node_t* node = NULL;
ut_a(sibling != nil);
/* Case 3. */
if (sibling->color == IB_RBT_RED) {
parent->color = IB_RBT_RED;
sibling->color = IB_RBT_BLACK;
rbt_rotate_right(nil, parent);
sibling = parent->left;
ut_a(sibling != nil);
}
/* Since this will violate case 3 because of the change above. */
if (sibling->right->color == IB_RBT_BLACK
&& sibling->left->color == IB_RBT_BLACK) {
node = parent; /* Parent needs to be rebalanced too. */
sibling->color = IB_RBT_RED;
} else {
if (sibling->left->color == IB_RBT_BLACK) {
ut_a(sibling->right->color == IB_RBT_RED);
sibling->color = IB_RBT_RED;
sibling->right->color = IB_RBT_BLACK;
rbt_rotate_left(nil, sibling);
sibling = parent->left;
ut_a(sibling != nil);
}
sibling->color = parent->color;
sibling->left->color = IB_RBT_BLACK;
parent->color = IB_RBT_BLACK;
rbt_rotate_right(nil, parent);
}
return(node);
}
/**********************************************************************//**
Delete the node and rebalance the tree if necessary */
static
void
rbt_remove_node_and_rebalance(
/*==========================*/
ib_rbt_t* tree, /*!< in: rb tree */
ib_rbt_node_t* node) /*!< in: node to remove */
{
/* Detach node and get the node that will be used
as rebalance start. */
ib_rbt_node_t* child = rbt_detach_node(tree, node);
if (node->color == IB_RBT_BLACK) {
ib_rbt_node_t* last = child;
ROOT(tree)->color = IB_RBT_RED;
while (child && child->color == IB_RBT_BLACK) {
ib_rbt_node_t* parent = child->parent;
/* Did the deletion cause an imbalance in the
parents left sub-tree. */
if (parent->left == child) {
child = rbt_balance_right(
tree->nil, parent, parent->right);
} else if (parent->right == child) {
child = rbt_balance_left(
tree->nil, parent, parent->left);
} else {
ut_error;
}
if (child) {
last = child;
}
}
ut_a(last);
last->color = IB_RBT_BLACK;
ROOT(tree)->color = IB_RBT_BLACK;
}
/* Note that we have removed a node from the tree. */
--tree->n_nodes;
}
/**********************************************************************//**
Recursively free the nodes. */
static
void
rbt_free_node(
/*==========*/
ib_rbt_node_t* node, /*!< in: node to free */
ib_rbt_node_t* nil) /*!< in: rb tree nil node */
{
if (node != nil) {
rbt_free_node(node->left, nil);
rbt_free_node(node->right, nil);
ut_free(node);
}
}
/**********************************************************************//**
Free all the nodes and free the tree. */
void
rbt_free(
/*=====*/
ib_rbt_t* tree) /*!< in: rb tree to free */
{
rbt_free_node(tree->root, tree->nil);
ut_free(tree->nil);
ut_free(tree);
}
/**********************************************************************//**
Create an instance of a red black tree, whose comparison function takes
an argument
@return an empty rb tree */
ib_rbt_t*
rbt_create_arg_cmp(
/*===============*/
size_t sizeof_value, /*!< in: sizeof data item */
ib_rbt_arg_compare
compare, /*!< in: fn to compare items */
void* cmp_arg) /*!< in: compare fn arg */
{
ib_rbt_t* tree;
ut_a(cmp_arg);
tree = rbt_create(sizeof_value, NULL);
tree->cmp_arg = cmp_arg;
tree->compare_with_arg = compare;
return(tree);
}
/**********************************************************************//**
Create an instance of a red black tree.
@return an empty rb tree */
ib_rbt_t*
rbt_create(
/*=======*/
size_t sizeof_value, /*!< in: sizeof data item */
ib_rbt_compare compare) /*!< in: fn to compare items */
{
ib_rbt_t* tree;
ib_rbt_node_t* node;
tree = (ib_rbt_t*) ut_zalloc_nokey(sizeof(*tree));
tree->sizeof_value = sizeof_value;
/* Create the sentinel (NIL) node. */
node = tree->nil = (ib_rbt_node_t*) ut_zalloc_nokey(sizeof(*node));
node->color = IB_RBT_BLACK;
node->parent = node->left = node->right = node;
/* Create the "fake" root, the real root node will be the
left child of this node. */
node = tree->root = (ib_rbt_node_t*) ut_zalloc_nokey(sizeof(*node));
node->color = IB_RBT_BLACK;
node->parent = node->left = node->right = tree->nil;
tree->compare = compare;
return(tree);
}
/**********************************************************************//**
Generic insert of a value in the rb tree.
@return inserted node */
const ib_rbt_node_t*
rbt_insert(
/*=======*/
ib_rbt_t* tree, /*!< in: rb tree */
const void* key, /*!< in: key for ordering */
const void* value) /*!< in: value of key, this value
is copied to the node */
{
ib_rbt_node_t* node;
/* Create the node that will hold the value data. */
node = (ib_rbt_node_t*) ut_malloc_nokey(SIZEOF_NODE(tree));
memcpy(node->value, value, tree->sizeof_value);
node->parent = node->left = node->right = tree->nil;
/* Insert in the tree in the usual way. */
rbt_tree_insert(tree, key, node);
rbt_balance_tree(tree, node);
++tree->n_nodes;
return(node);
}
/**********************************************************************//**
Add a new node to the tree, useful for data that is pre-sorted.
@return appended node */
const ib_rbt_node_t*
rbt_add_node(
/*=========*/
ib_rbt_t* tree, /*!< in: rb tree */
ib_rbt_bound_t* parent, /*!< in: bounds */
const void* value) /*!< in: this value is copied
to the node */
{
ib_rbt_node_t* node;
/* Create the node that will hold the value data */
node = (ib_rbt_node_t*) ut_malloc_nokey(SIZEOF_NODE(tree));
memcpy(node->value, value, tree->sizeof_value);
node->parent = node->left = node->right = tree->nil;
/* If tree is empty */
if (parent->last == NULL) {
parent->last = tree->root;
}
/* Append the node, the hope here is that the caller knows
what s/he is doing. */
rbt_tree_add_child(tree, parent, node);
rbt_balance_tree(tree, node);
++tree->n_nodes;
#if defined UNIV_DEBUG || defined IB_RBT_TESTING
ut_a(rbt_validate(tree));
#endif
return(node);
}
/**********************************************************************//**
Find a matching node in the rb tree.
@return NULL if not found else the node where key was found */
static
const ib_rbt_node_t*
rbt_lookup(
/*=======*/
const ib_rbt_t* tree, /*!< in: rb tree */
const void* key) /*!< in: key to use for search */
{
const ib_rbt_node_t* current = ROOT(tree);
/* Regular binary search. */
while (current != tree->nil) {
int result;
if (tree->cmp_arg) {
result = tree->compare_with_arg(
tree->cmp_arg, key, current->value);
} else {
result = tree->compare(key, current->value);
}
if (result < 0) {
current = current->left;
} else if (result > 0) {
current = current->right;
} else {
break;
}
}
return(current != tree->nil ? current : NULL);
}
/**********************************************************************//**
Delete a node indentified by key.
@return TRUE if success FALSE if not found */
ibool
rbt_delete(
/*=======*/
ib_rbt_t* tree, /*!< in: rb tree */
const void* key) /*!< in: key to delete */
{
ibool deleted = FALSE;
ib_rbt_node_t* node = (ib_rbt_node_t*) rbt_lookup(tree, key);
if (node) {
rbt_remove_node_and_rebalance(tree, node);
ut_free(node);
deleted = TRUE;
}
return(deleted);
}
/**********************************************************************//**
Remove a node from the rb tree, the node is not free'd, that is the
callers responsibility.
@return deleted node but without the const */
ib_rbt_node_t*
rbt_remove_node(
/*============*/
ib_rbt_t* tree, /*!< in: rb tree */
const ib_rbt_node_t* const_node) /*!< in: node to delete, this
is a fudge and declared const
because the caller can access
only const nodes */
{
/* Cast away the const. */
rbt_remove_node_and_rebalance(tree, (ib_rbt_node_t*) const_node);
/* This is to make it easier to do something like this:
ut_free(rbt_remove_node(node));
*/
return((ib_rbt_node_t*) const_node);
}
/**********************************************************************//**
Find the node that has the greatest key that is <= key.
@return value of result */
int
rbt_search(
/*=======*/
const ib_rbt_t* tree, /*!< in: rb tree */
ib_rbt_bound_t* parent, /*!< in: search bounds */
const void* key) /*!< in: key to search */
{
ib_rbt_node_t* current = ROOT(tree);
/* Every thing is greater than the NULL root. */
parent->result = 1;
parent->last = NULL;
while (current != tree->nil) {
parent->last = current;
if (tree->cmp_arg) {
parent->result = tree->compare_with_arg(
tree->cmp_arg, key, current->value);
} else {
parent->result = tree->compare(key, current->value);
}
if (parent->result > 0) {
current = current->right;
} else if (parent->result < 0) {
current = current->left;
} else {
break;
}
}
return(parent->result);
}
/**********************************************************************//**
Find the node that has the greatest key that is <= key. But use the
supplied comparison function.
@return value of result */
int
rbt_search_cmp(
/*===========*/
const ib_rbt_t* tree, /*!< in: rb tree */
ib_rbt_bound_t* parent, /*!< in: search bounds */
const void* key, /*!< in: key to search */
ib_rbt_compare compare, /*!< in: fn to compare items */
ib_rbt_arg_compare
arg_compare) /*!< in: fn to compare items
with argument */
{
ib_rbt_node_t* current = ROOT(tree);
/* Every thing is greater than the NULL root. */
parent->result = 1;
parent->last = NULL;
while (current != tree->nil) {
parent->last = current;
if (arg_compare) {
ut_ad(tree->cmp_arg);
parent->result = arg_compare(
tree->cmp_arg, key, current->value);
} else {
parent->result = compare(key, current->value);
}
if (parent->result > 0) {
current = current->right;
} else if (parent->result < 0) {
current = current->left;
} else {
break;
}
}
return(parent->result);
}
/**********************************************************************//**
Return the left most node in the tree. */
const ib_rbt_node_t*
rbt_first(
/*======*/
/* out leftmost node or NULL */
const ib_rbt_t* tree) /* in: rb tree */
{
ib_rbt_node_t* first = NULL;
ib_rbt_node_t* current = ROOT(tree);
while (current != tree->nil) {
first = current;
current = current->left;
}
return(first);
}
/**********************************************************************//**
Return the right most node in the tree.
@return the rightmost node or NULL */
const ib_rbt_node_t*
rbt_last(
/*=====*/
const ib_rbt_t* tree) /*!< in: rb tree */
{
ib_rbt_node_t* last = NULL;
ib_rbt_node_t* current = ROOT(tree);
while (current != tree->nil) {
last = current;
current = current->right;
}
return(last);
}
/**********************************************************************//**
Return the next node.
@return node next from current */
const ib_rbt_node_t*
rbt_next(
/*=====*/
const ib_rbt_t* tree, /*!< in: rb tree */
const ib_rbt_node_t* current) /*!< in: current node */
{
return(current ? rbt_find_successor(tree, current) : NULL);
}
/**********************************************************************//**
Return the previous node.
@return node prev from current */
const ib_rbt_node_t*
rbt_prev(
/*=====*/
const ib_rbt_t* tree, /*!< in: rb tree */
const ib_rbt_node_t* current) /*!< in: current node */
{
return(current ? rbt_find_predecessor(tree, current) : NULL);
}
/**********************************************************************//**
Merge the node from dst into src. Return the number of nodes merged.
@return no. of recs merged */
ulint
rbt_merge_uniq(
/*===========*/
ib_rbt_t* dst, /*!< in: dst rb tree */
const ib_rbt_t* src) /*!< in: src rb tree */
{
ib_rbt_bound_t parent;
ulint n_merged = 0;
const ib_rbt_node_t* src_node = rbt_first(src);
if (rbt_empty(src) || dst == src) {
return(0);
}
for (/* No op */; src_node; src_node = rbt_next(src, src_node)) {
if (rbt_search(dst, &parent, src_node->value) != 0) {
rbt_add_node(dst, &parent, src_node->value);
++n_merged;
}
}
return(n_merged);
}
#if defined UNIV_DEBUG || defined IB_RBT_TESTING
/**********************************************************************//**
Check that every path from the root to the leaves has the same count and
the tree nodes are in order.
@return TRUE if OK FALSE otherwise */
ibool
rbt_validate(
/*=========*/
const ib_rbt_t* tree) /*!< in: RB tree to validate */
{
if (rbt_count_black_nodes(tree, ROOT(tree)) > 0) {
return(rbt_check_ordering(tree));
}
return(FALSE);
}
#endif /* UNIV_DEBUG || IB_RBT_TESTING */
|