1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
|
/*
* SHA-256 hash implementation and interface functions
* Copyright (c) 2003-2011, Jouni Malinen <j@w1.fi>
*
* This software may be distributed under the terms of the BSD license.
* See README for more details.
*/
#include "sha256.h"
#include "sha256_i.h"
/**
* sha256_vector - SHA256 hash for data vector
* @num_elem: Number of elements in the data vector
* @addr: Pointers to the data areas
* @len: Lengths of the data blocks
* @mac: Buffer for the hash
* Returns: 0 on success, -1 of failure
*/
int sha256_vector(size_t num_elem, const uint8_t *addr[], const size_t *len,
uint8_t *mac)
{
struct sha256_state ctx;
size_t i;
sha256_init(&ctx);
for (i = 0; i < num_elem; i++)
if (sha256_process(&ctx, addr[i], len[i]))
return -1;
if (sha256_done(&ctx, mac))
return -1;
return 0;
}
/* ===== start - public domain SHA256 implementation ===== */
/* This is based on SHA256 implementation in LibTomCrypt that was released into
* public domain by Tom St Denis. */
/* the K array */
static const uint32_t K[64] =
{
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL,
0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL,
0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL,
0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL,
0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL,
0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL,
0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL,
0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL,
0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL,
0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
};
/* Various logical functions */
#define RORc(x, y) \
( ((((uint32_t) (x) & 0xFFFFFFFFUL) >> (uint32_t) ((y) & 31)) | \
((uint32_t) (x) << (uint32_t) (32 - ((y) & 31)))) & 0xFFFFFFFFUL)
#define Ch(x,y,z) (z ^ (x & (y ^ z)))
#define Maj(x,y,z) (((x | y) & z) | (x & y))
#define S(x, n) RORc((x), (n))
#define R(x, n) (((x)&0xFFFFFFFFUL)>>(n))
#define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
#define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
#define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
#define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))
#ifndef MIN
#define MIN(x, y) (((x) < (y)) ? (x) : (y))
#endif
/* compress 512-bits */
static int sha256_compress(struct sha256_state *md, unsigned char *buf)
{
uint32_t S[8], W[64];
int i;
/* copy state into S */
for (i = 0; i < 8; i++)
{
S[i] = md->state[i];
}
/* copy the state into 512-bits into W[0..15] */
for (i = 0; i < 16; i++)
W[i] = WPA_GET_BE32(buf + (4 * i));
/* fill W[16..63] */
for (i = 16; i < 64; i++)
{
W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) +
W[i - 16];
}
/* Compress */
#define RND(a,b,c,d,e,f,g,h,i) \
uint32_t t0, t1; \
t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \
t1 = Sigma0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;
for (i = 0; i < 64; ++i)
{
uint32_t t;
RND(S[0], S[1], S[2], S[3], S[4], S[5], S[6], S[7], i);
t = S[7];
S[7] = S[6];
S[6] = S[5];
S[5] = S[4];
S[4] = S[3];
S[3] = S[2];
S[2] = S[1];
S[1] = S[0];
S[0] = t;
}
/* feedback */
for (i = 0; i < 8; i++)
{
md->state[i] = md->state[i] + S[i];
}
return 0;
}
/* Initialize the hash state */
void sha256_init(struct sha256_state *md)
{
md->curlen = 0;
md->length = 0;
md->state[0] = 0x6A09E667UL;
md->state[1] = 0xBB67AE85UL;
md->state[2] = 0x3C6EF372UL;
md->state[3] = 0xA54FF53AUL;
md->state[4] = 0x510E527FUL;
md->state[5] = 0x9B05688CUL;
md->state[6] = 0x1F83D9ABUL;
md->state[7] = 0x5BE0CD19UL;
}
/**
Process a block of memory though the hash
@param md The hash state
@param in The data to hash
@param inlen The length of the data (octets)
@return CRYPT_OK if successful
*/
int sha256_process(struct sha256_state *md, const unsigned char *in,
unsigned long inlen)
{
unsigned long n;
if (md->curlen >= sizeof(md->buf))
return -1;
while (inlen > 0)
{
if (md->curlen == 0 && inlen >= SHA256_BLOCK_SIZE)
{
if (sha256_compress(md, (unsigned char *) in) < 0)
return -1;
md->length += SHA256_BLOCK_SIZE * 8;
in += SHA256_BLOCK_SIZE;
inlen -= SHA256_BLOCK_SIZE;
}
else
{
n = MIN(inlen, (SHA256_BLOCK_SIZE - md->curlen));
memcpy(md->buf + md->curlen, in, n);
md->curlen += n;
in += n;
inlen -= n;
if (md->curlen == SHA256_BLOCK_SIZE)
{
if (sha256_compress(md, md->buf) < 0)
return -1;
md->length += 8 * SHA256_BLOCK_SIZE;
md->curlen = 0;
}
}
}
return 0;
}
/**
Terminate the hash to get the digest
@param md The hash state
@param out [out] The destination of the hash (32 bytes)
@return CRYPT_OK if successful
*/
int sha256_done(struct sha256_state *md, unsigned char *out)
{
int i;
if (md->curlen >= sizeof(md->buf))
return -1;
/* increase the length of the message */
md->length += md->curlen * 8;
/* append the '1' bit */
md->buf[md->curlen++] = (unsigned char) 0x80;
/* if the length is currently above 56 bytes we append zeros
* then compress. Then we can fall back to padding zeros and length
* encoding like normal.
*/
if (md->curlen > 56)
{
while (md->curlen < SHA256_BLOCK_SIZE)
{
md->buf[md->curlen++] = (unsigned char) 0;
}
sha256_compress(md, md->buf);
md->curlen = 0;
}
/* pad up to 56 bytes of zeroes */
while (md->curlen < 56)
{
md->buf[md->curlen++] = (unsigned char) 0;
}
/* store length */
WPA_PUT_BE64(md->buf + 56, md->length);
sha256_compress(md, md->buf);
/* copy output */
for (i = 0; i < 8; i++)
WPA_PUT_BE32(out + (4 * i), md->state[i]);
return 0;
}
/* ===== end - public domain SHA256 implementation ===== */
|