diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 02:57:58 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 02:57:58 +0000 |
commit | be1c7e50e1e8809ea56f2c9d472eccd8ffd73a97 (patch) | |
tree | 9754ff1ca740f6346cf8483ec915d4054bc5da2d /ml/dlib/tools/python/src/decision_functions.cpp | |
parent | Initial commit. (diff) | |
download | netdata-be1c7e50e1e8809ea56f2c9d472eccd8ffd73a97.tar.xz netdata-be1c7e50e1e8809ea56f2c9d472eccd8ffd73a97.zip |
Adding upstream version 1.44.3.upstream/1.44.3upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'ml/dlib/tools/python/src/decision_functions.cpp')
-rw-r--r-- | ml/dlib/tools/python/src/decision_functions.cpp | 263 |
1 files changed, 263 insertions, 0 deletions
diff --git a/ml/dlib/tools/python/src/decision_functions.cpp b/ml/dlib/tools/python/src/decision_functions.cpp new file mode 100644 index 00000000..a93fe49b --- /dev/null +++ b/ml/dlib/tools/python/src/decision_functions.cpp @@ -0,0 +1,263 @@ +// Copyright (C) 2013 Davis E. King (davis@dlib.net) +// License: Boost Software License See LICENSE.txt for the full license. + +#include "opaque_types.h" +#include <dlib/python.h> +#include "testing_results.h" +#include <dlib/svm.h> + +using namespace dlib; +using namespace std; + +namespace py = pybind11; + +typedef matrix<double,0,1> sample_type; +typedef std::vector<std::pair<unsigned long,double> > sparse_vect; + +template <typename decision_function> +double predict ( + const decision_function& df, + const typename decision_function::kernel_type::sample_type& samp +) +{ + typedef typename decision_function::kernel_type::sample_type T; + if (df.basis_vectors.size() == 0) + { + return 0; + } + else if (is_matrix<T>::value && df.basis_vectors(0).size() != samp.size()) + { + std::ostringstream sout; + sout << "Input vector should have " << df.basis_vectors(0).size() + << " dimensions, not " << samp.size() << "."; + PyErr_SetString( PyExc_ValueError, sout.str().c_str() ); + throw py::error_already_set(); + } + return df(samp); +} + +template <typename kernel_type> +void add_df ( + py::module& m, + const std::string name +) +{ + typedef decision_function<kernel_type> df_type; + py::class_<df_type>(m, name.c_str()) + .def("__call__", &predict<df_type>) + .def(py::pickle(&getstate<df_type>, &setstate<df_type>)); +} + +template <typename df_type> +typename df_type::sample_type get_weights( + const df_type& df +) +{ + if (df.basis_vectors.size() == 0) + { + PyErr_SetString( PyExc_ValueError, "Decision function is empty." ); + throw py::error_already_set(); + } + df_type temp = simplify_linear_decision_function(df); + return temp.basis_vectors(0); +} + +template <typename df_type> +typename df_type::scalar_type get_bias( + const df_type& df +) +{ + if (df.basis_vectors.size() == 0) + { + PyErr_SetString( PyExc_ValueError, "Decision function is empty." ); + throw py::error_already_set(); + } + return df.b; +} + +template <typename df_type> +void set_bias( + df_type& df, + double b +) +{ + if (df.basis_vectors.size() == 0) + { + PyErr_SetString( PyExc_ValueError, "Decision function is empty." ); + throw py::error_already_set(); + } + df.b = b; +} + +template <typename kernel_type> +void add_linear_df ( + py::module &m, + const std::string name +) +{ + typedef decision_function<kernel_type> df_type; + py::class_<df_type>(m, name.c_str()) + .def("__call__", predict<df_type>) + .def_property_readonly("weights", &get_weights<df_type>) + .def_property("bias", get_bias<df_type>, set_bias<df_type>) + .def(py::pickle(&getstate<df_type>, &setstate<df_type>)); +} + +// ---------------------------------------------------------------------------------------- + +std::string binary_test__str__(const binary_test& item) +{ + std::ostringstream sout; + sout << "class1_accuracy: "<< item.class1_accuracy << " class2_accuracy: "<< item.class2_accuracy; + return sout.str(); +} +std::string binary_test__repr__(const binary_test& item) { return "< " + binary_test__str__(item) + " >";} + +std::string regression_test__str__(const regression_test& item) +{ + std::ostringstream sout; + sout << "mean_squared_error: "<< item.mean_squared_error << " R_squared: "<< item.R_squared; + sout << " mean_average_error: "<< item.mean_average_error << " mean_error_stddev: "<< item.mean_error_stddev; + return sout.str(); +} +std::string regression_test__repr__(const regression_test& item) { return "< " + regression_test__str__(item) + " >";} + +std::string ranking_test__str__(const ranking_test& item) +{ + std::ostringstream sout; + sout << "ranking_accuracy: "<< item.ranking_accuracy << " mean_ap: "<< item.mean_ap; + return sout.str(); +} +std::string ranking_test__repr__(const ranking_test& item) { return "< " + ranking_test__str__(item) + " >";} + +// ---------------------------------------------------------------------------------------- + +template <typename K> +binary_test _test_binary_decision_function ( + const decision_function<K>& dec_funct, + const std::vector<typename K::sample_type>& x_test, + const std::vector<double>& y_test +) { return binary_test(test_binary_decision_function(dec_funct, x_test, y_test)); } + +template <typename K> +regression_test _test_regression_function ( + const decision_function<K>& reg_funct, + const std::vector<typename K::sample_type>& x_test, + const std::vector<double>& y_test +) { return regression_test(test_regression_function(reg_funct, x_test, y_test)); } + +template < typename K > +ranking_test _test_ranking_function1 ( + const decision_function<K>& funct, + const std::vector<ranking_pair<typename K::sample_type> >& samples +) { return ranking_test(test_ranking_function(funct, samples)); } + +template < typename K > +ranking_test _test_ranking_function2 ( + const decision_function<K>& funct, + const ranking_pair<typename K::sample_type>& sample +) { return ranking_test(test_ranking_function(funct, sample)); } + + +void bind_decision_functions(py::module &m) +{ + add_linear_df<linear_kernel<sample_type> >(m, "_decision_function_linear"); + add_linear_df<sparse_linear_kernel<sparse_vect> >(m, "_decision_function_sparse_linear"); + + add_df<histogram_intersection_kernel<sample_type> >(m, "_decision_function_histogram_intersection"); + add_df<sparse_histogram_intersection_kernel<sparse_vect> >(m, "_decision_function_sparse_histogram_intersection"); + + add_df<polynomial_kernel<sample_type> >(m, "_decision_function_polynomial"); + add_df<sparse_polynomial_kernel<sparse_vect> >(m, "_decision_function_sparse_polynomial"); + + add_df<radial_basis_kernel<sample_type> >(m, "_decision_function_radial_basis"); + add_df<sparse_radial_basis_kernel<sparse_vect> >(m, "_decision_function_sparse_radial_basis"); + + add_df<sigmoid_kernel<sample_type> >(m, "_decision_function_sigmoid"); + add_df<sparse_sigmoid_kernel<sparse_vect> >(m, "_decision_function_sparse_sigmoid"); + + + m.def("test_binary_decision_function", _test_binary_decision_function<linear_kernel<sample_type> >, + py::arg("function"), py::arg("samples"), py::arg("labels")); + m.def("test_binary_decision_function", _test_binary_decision_function<sparse_linear_kernel<sparse_vect> >, + py::arg("function"), py::arg("samples"), py::arg("labels")); + m.def("test_binary_decision_function", _test_binary_decision_function<radial_basis_kernel<sample_type> >, + py::arg("function"), py::arg("samples"), py::arg("labels")); + m.def("test_binary_decision_function", _test_binary_decision_function<sparse_radial_basis_kernel<sparse_vect> >, + py::arg("function"), py::arg("samples"), py::arg("labels")); + m.def("test_binary_decision_function", _test_binary_decision_function<polynomial_kernel<sample_type> >, + py::arg("function"), py::arg("samples"), py::arg("labels")); + m.def("test_binary_decision_function", _test_binary_decision_function<sparse_polynomial_kernel<sparse_vect> >, + py::arg("function"), py::arg("samples"), py::arg("labels")); + m.def("test_binary_decision_function", _test_binary_decision_function<histogram_intersection_kernel<sample_type> >, + py::arg("function"), py::arg("samples"), py::arg("labels")); + m.def("test_binary_decision_function", _test_binary_decision_function<sparse_histogram_intersection_kernel<sparse_vect> >, + py::arg("function"), py::arg("samples"), py::arg("labels")); + m.def("test_binary_decision_function", _test_binary_decision_function<sigmoid_kernel<sample_type> >, + py::arg("function"), py::arg("samples"), py::arg("labels")); + m.def("test_binary_decision_function", _test_binary_decision_function<sparse_sigmoid_kernel<sparse_vect> >, + py::arg("function"), py::arg("samples"), py::arg("labels")); + + m.def("test_regression_function", _test_regression_function<linear_kernel<sample_type> >, + py::arg("function"), py::arg("samples"), py::arg("targets")); + m.def("test_regression_function", _test_regression_function<sparse_linear_kernel<sparse_vect> >, + py::arg("function"), py::arg("samples"), py::arg("targets")); + m.def("test_regression_function", _test_regression_function<radial_basis_kernel<sample_type> >, + py::arg("function"), py::arg("samples"), py::arg("targets")); + m.def("test_regression_function", _test_regression_function<sparse_radial_basis_kernel<sparse_vect> >, + py::arg("function"), py::arg("samples"), py::arg("targets")); + m.def("test_regression_function", _test_regression_function<histogram_intersection_kernel<sample_type> >, + py::arg("function"), py::arg("samples"), py::arg("targets")); + m.def("test_regression_function", _test_regression_function<sparse_histogram_intersection_kernel<sparse_vect> >, + py::arg("function"), py::arg("samples"), py::arg("targets")); + m.def("test_regression_function", _test_regression_function<sigmoid_kernel<sample_type> >, + py::arg("function"), py::arg("samples"), py::arg("targets")); + m.def("test_regression_function", _test_regression_function<sparse_sigmoid_kernel<sparse_vect> >, + py::arg("function"), py::arg("samples"), py::arg("targets")); + m.def("test_regression_function", _test_regression_function<polynomial_kernel<sample_type> >, + py::arg("function"), py::arg("samples"), py::arg("targets")); + m.def("test_regression_function", _test_regression_function<sparse_polynomial_kernel<sparse_vect> >, + py::arg("function"), py::arg("samples"), py::arg("targets")); + + m.def("test_ranking_function", _test_ranking_function1<linear_kernel<sample_type> >, + py::arg("function"), py::arg("samples")); + m.def("test_ranking_function", _test_ranking_function1<sparse_linear_kernel<sparse_vect> >, + py::arg("function"), py::arg("samples")); + m.def("test_ranking_function", _test_ranking_function2<linear_kernel<sample_type> >, + py::arg("function"), py::arg("sample")); + m.def("test_ranking_function", _test_ranking_function2<sparse_linear_kernel<sparse_vect> >, + py::arg("function"), py::arg("sample")); + + + py::class_<binary_test>(m, "_binary_test") + .def("__str__", binary_test__str__) + .def("__repr__", binary_test__repr__) + .def_readwrite("class1_accuracy", &binary_test::class1_accuracy, + "A value between 0 and 1, measures accuracy on the +1 class.") + .def_readwrite("class2_accuracy", &binary_test::class2_accuracy, + "A value between 0 and 1, measures accuracy on the -1 class."); + + py::class_<ranking_test>(m, "_ranking_test") + .def("__str__", ranking_test__str__) + .def("__repr__", ranking_test__repr__) + .def_readwrite("ranking_accuracy", &ranking_test::ranking_accuracy, + "A value between 0 and 1, measures the fraction of times a relevant sample was ordered before a non-relevant sample.") + .def_readwrite("mean_ap", &ranking_test::mean_ap, + "A value between 0 and 1, measures the mean average precision of the ranking."); + + py::class_<regression_test>(m, "_regression_test") + .def("__str__", regression_test__str__) + .def("__repr__", regression_test__repr__) + .def_readwrite("mean_average_error", ®ression_test::mean_average_error, + "The mean average error of a regression function on a dataset.") + .def_readwrite("mean_error_stddev", ®ression_test::mean_error_stddev, + "The standard deviation of the absolute value of the error of a regression function on a dataset.") + .def_readwrite("mean_squared_error", ®ression_test::mean_squared_error, + "The mean squared error of a regression function on a dataset.") + .def_readwrite("R_squared", ®ression_test::R_squared, + "A value between 0 and 1, measures the squared correlation between the output of a \n" + "regression function and the target values."); +} + + + |