summaryrefslogtreecommitdiffstats
path: root/ml/dlib/tools/python/src/decision_functions.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 02:57:58 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 02:57:58 +0000
commitbe1c7e50e1e8809ea56f2c9d472eccd8ffd73a97 (patch)
tree9754ff1ca740f6346cf8483ec915d4054bc5da2d /ml/dlib/tools/python/src/decision_functions.cpp
parentInitial commit. (diff)
downloadnetdata-be1c7e50e1e8809ea56f2c9d472eccd8ffd73a97.tar.xz
netdata-be1c7e50e1e8809ea56f2c9d472eccd8ffd73a97.zip
Adding upstream version 1.44.3.upstream/1.44.3upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'ml/dlib/tools/python/src/decision_functions.cpp')
-rw-r--r--ml/dlib/tools/python/src/decision_functions.cpp263
1 files changed, 263 insertions, 0 deletions
diff --git a/ml/dlib/tools/python/src/decision_functions.cpp b/ml/dlib/tools/python/src/decision_functions.cpp
new file mode 100644
index 00000000..a93fe49b
--- /dev/null
+++ b/ml/dlib/tools/python/src/decision_functions.cpp
@@ -0,0 +1,263 @@
+// Copyright (C) 2013 Davis E. King (davis@dlib.net)
+// License: Boost Software License See LICENSE.txt for the full license.
+
+#include "opaque_types.h"
+#include <dlib/python.h>
+#include "testing_results.h"
+#include <dlib/svm.h>
+
+using namespace dlib;
+using namespace std;
+
+namespace py = pybind11;
+
+typedef matrix<double,0,1> sample_type;
+typedef std::vector<std::pair<unsigned long,double> > sparse_vect;
+
+template <typename decision_function>
+double predict (
+ const decision_function& df,
+ const typename decision_function::kernel_type::sample_type& samp
+)
+{
+ typedef typename decision_function::kernel_type::sample_type T;
+ if (df.basis_vectors.size() == 0)
+ {
+ return 0;
+ }
+ else if (is_matrix<T>::value && df.basis_vectors(0).size() != samp.size())
+ {
+ std::ostringstream sout;
+ sout << "Input vector should have " << df.basis_vectors(0).size()
+ << " dimensions, not " << samp.size() << ".";
+ PyErr_SetString( PyExc_ValueError, sout.str().c_str() );
+ throw py::error_already_set();
+ }
+ return df(samp);
+}
+
+template <typename kernel_type>
+void add_df (
+ py::module& m,
+ const std::string name
+)
+{
+ typedef decision_function<kernel_type> df_type;
+ py::class_<df_type>(m, name.c_str())
+ .def("__call__", &predict<df_type>)
+ .def(py::pickle(&getstate<df_type>, &setstate<df_type>));
+}
+
+template <typename df_type>
+typename df_type::sample_type get_weights(
+ const df_type& df
+)
+{
+ if (df.basis_vectors.size() == 0)
+ {
+ PyErr_SetString( PyExc_ValueError, "Decision function is empty." );
+ throw py::error_already_set();
+ }
+ df_type temp = simplify_linear_decision_function(df);
+ return temp.basis_vectors(0);
+}
+
+template <typename df_type>
+typename df_type::scalar_type get_bias(
+ const df_type& df
+)
+{
+ if (df.basis_vectors.size() == 0)
+ {
+ PyErr_SetString( PyExc_ValueError, "Decision function is empty." );
+ throw py::error_already_set();
+ }
+ return df.b;
+}
+
+template <typename df_type>
+void set_bias(
+ df_type& df,
+ double b
+)
+{
+ if (df.basis_vectors.size() == 0)
+ {
+ PyErr_SetString( PyExc_ValueError, "Decision function is empty." );
+ throw py::error_already_set();
+ }
+ df.b = b;
+}
+
+template <typename kernel_type>
+void add_linear_df (
+ py::module &m,
+ const std::string name
+)
+{
+ typedef decision_function<kernel_type> df_type;
+ py::class_<df_type>(m, name.c_str())
+ .def("__call__", predict<df_type>)
+ .def_property_readonly("weights", &get_weights<df_type>)
+ .def_property("bias", get_bias<df_type>, set_bias<df_type>)
+ .def(py::pickle(&getstate<df_type>, &setstate<df_type>));
+}
+
+// ----------------------------------------------------------------------------------------
+
+std::string binary_test__str__(const binary_test& item)
+{
+ std::ostringstream sout;
+ sout << "class1_accuracy: "<< item.class1_accuracy << " class2_accuracy: "<< item.class2_accuracy;
+ return sout.str();
+}
+std::string binary_test__repr__(const binary_test& item) { return "< " + binary_test__str__(item) + " >";}
+
+std::string regression_test__str__(const regression_test& item)
+{
+ std::ostringstream sout;
+ sout << "mean_squared_error: "<< item.mean_squared_error << " R_squared: "<< item.R_squared;
+ sout << " mean_average_error: "<< item.mean_average_error << " mean_error_stddev: "<< item.mean_error_stddev;
+ return sout.str();
+}
+std::string regression_test__repr__(const regression_test& item) { return "< " + regression_test__str__(item) + " >";}
+
+std::string ranking_test__str__(const ranking_test& item)
+{
+ std::ostringstream sout;
+ sout << "ranking_accuracy: "<< item.ranking_accuracy << " mean_ap: "<< item.mean_ap;
+ return sout.str();
+}
+std::string ranking_test__repr__(const ranking_test& item) { return "< " + ranking_test__str__(item) + " >";}
+
+// ----------------------------------------------------------------------------------------
+
+template <typename K>
+binary_test _test_binary_decision_function (
+ const decision_function<K>& dec_funct,
+ const std::vector<typename K::sample_type>& x_test,
+ const std::vector<double>& y_test
+) { return binary_test(test_binary_decision_function(dec_funct, x_test, y_test)); }
+
+template <typename K>
+regression_test _test_regression_function (
+ const decision_function<K>& reg_funct,
+ const std::vector<typename K::sample_type>& x_test,
+ const std::vector<double>& y_test
+) { return regression_test(test_regression_function(reg_funct, x_test, y_test)); }
+
+template < typename K >
+ranking_test _test_ranking_function1 (
+ const decision_function<K>& funct,
+ const std::vector<ranking_pair<typename K::sample_type> >& samples
+) { return ranking_test(test_ranking_function(funct, samples)); }
+
+template < typename K >
+ranking_test _test_ranking_function2 (
+ const decision_function<K>& funct,
+ const ranking_pair<typename K::sample_type>& sample
+) { return ranking_test(test_ranking_function(funct, sample)); }
+
+
+void bind_decision_functions(py::module &m)
+{
+ add_linear_df<linear_kernel<sample_type> >(m, "_decision_function_linear");
+ add_linear_df<sparse_linear_kernel<sparse_vect> >(m, "_decision_function_sparse_linear");
+
+ add_df<histogram_intersection_kernel<sample_type> >(m, "_decision_function_histogram_intersection");
+ add_df<sparse_histogram_intersection_kernel<sparse_vect> >(m, "_decision_function_sparse_histogram_intersection");
+
+ add_df<polynomial_kernel<sample_type> >(m, "_decision_function_polynomial");
+ add_df<sparse_polynomial_kernel<sparse_vect> >(m, "_decision_function_sparse_polynomial");
+
+ add_df<radial_basis_kernel<sample_type> >(m, "_decision_function_radial_basis");
+ add_df<sparse_radial_basis_kernel<sparse_vect> >(m, "_decision_function_sparse_radial_basis");
+
+ add_df<sigmoid_kernel<sample_type> >(m, "_decision_function_sigmoid");
+ add_df<sparse_sigmoid_kernel<sparse_vect> >(m, "_decision_function_sparse_sigmoid");
+
+
+ m.def("test_binary_decision_function", _test_binary_decision_function<linear_kernel<sample_type> >,
+ py::arg("function"), py::arg("samples"), py::arg("labels"));
+ m.def("test_binary_decision_function", _test_binary_decision_function<sparse_linear_kernel<sparse_vect> >,
+ py::arg("function"), py::arg("samples"), py::arg("labels"));
+ m.def("test_binary_decision_function", _test_binary_decision_function<radial_basis_kernel<sample_type> >,
+ py::arg("function"), py::arg("samples"), py::arg("labels"));
+ m.def("test_binary_decision_function", _test_binary_decision_function<sparse_radial_basis_kernel<sparse_vect> >,
+ py::arg("function"), py::arg("samples"), py::arg("labels"));
+ m.def("test_binary_decision_function", _test_binary_decision_function<polynomial_kernel<sample_type> >,
+ py::arg("function"), py::arg("samples"), py::arg("labels"));
+ m.def("test_binary_decision_function", _test_binary_decision_function<sparse_polynomial_kernel<sparse_vect> >,
+ py::arg("function"), py::arg("samples"), py::arg("labels"));
+ m.def("test_binary_decision_function", _test_binary_decision_function<histogram_intersection_kernel<sample_type> >,
+ py::arg("function"), py::arg("samples"), py::arg("labels"));
+ m.def("test_binary_decision_function", _test_binary_decision_function<sparse_histogram_intersection_kernel<sparse_vect> >,
+ py::arg("function"), py::arg("samples"), py::arg("labels"));
+ m.def("test_binary_decision_function", _test_binary_decision_function<sigmoid_kernel<sample_type> >,
+ py::arg("function"), py::arg("samples"), py::arg("labels"));
+ m.def("test_binary_decision_function", _test_binary_decision_function<sparse_sigmoid_kernel<sparse_vect> >,
+ py::arg("function"), py::arg("samples"), py::arg("labels"));
+
+ m.def("test_regression_function", _test_regression_function<linear_kernel<sample_type> >,
+ py::arg("function"), py::arg("samples"), py::arg("targets"));
+ m.def("test_regression_function", _test_regression_function<sparse_linear_kernel<sparse_vect> >,
+ py::arg("function"), py::arg("samples"), py::arg("targets"));
+ m.def("test_regression_function", _test_regression_function<radial_basis_kernel<sample_type> >,
+ py::arg("function"), py::arg("samples"), py::arg("targets"));
+ m.def("test_regression_function", _test_regression_function<sparse_radial_basis_kernel<sparse_vect> >,
+ py::arg("function"), py::arg("samples"), py::arg("targets"));
+ m.def("test_regression_function", _test_regression_function<histogram_intersection_kernel<sample_type> >,
+ py::arg("function"), py::arg("samples"), py::arg("targets"));
+ m.def("test_regression_function", _test_regression_function<sparse_histogram_intersection_kernel<sparse_vect> >,
+ py::arg("function"), py::arg("samples"), py::arg("targets"));
+ m.def("test_regression_function", _test_regression_function<sigmoid_kernel<sample_type> >,
+ py::arg("function"), py::arg("samples"), py::arg("targets"));
+ m.def("test_regression_function", _test_regression_function<sparse_sigmoid_kernel<sparse_vect> >,
+ py::arg("function"), py::arg("samples"), py::arg("targets"));
+ m.def("test_regression_function", _test_regression_function<polynomial_kernel<sample_type> >,
+ py::arg("function"), py::arg("samples"), py::arg("targets"));
+ m.def("test_regression_function", _test_regression_function<sparse_polynomial_kernel<sparse_vect> >,
+ py::arg("function"), py::arg("samples"), py::arg("targets"));
+
+ m.def("test_ranking_function", _test_ranking_function1<linear_kernel<sample_type> >,
+ py::arg("function"), py::arg("samples"));
+ m.def("test_ranking_function", _test_ranking_function1<sparse_linear_kernel<sparse_vect> >,
+ py::arg("function"), py::arg("samples"));
+ m.def("test_ranking_function", _test_ranking_function2<linear_kernel<sample_type> >,
+ py::arg("function"), py::arg("sample"));
+ m.def("test_ranking_function", _test_ranking_function2<sparse_linear_kernel<sparse_vect> >,
+ py::arg("function"), py::arg("sample"));
+
+
+ py::class_<binary_test>(m, "_binary_test")
+ .def("__str__", binary_test__str__)
+ .def("__repr__", binary_test__repr__)
+ .def_readwrite("class1_accuracy", &binary_test::class1_accuracy,
+ "A value between 0 and 1, measures accuracy on the +1 class.")
+ .def_readwrite("class2_accuracy", &binary_test::class2_accuracy,
+ "A value between 0 and 1, measures accuracy on the -1 class.");
+
+ py::class_<ranking_test>(m, "_ranking_test")
+ .def("__str__", ranking_test__str__)
+ .def("__repr__", ranking_test__repr__)
+ .def_readwrite("ranking_accuracy", &ranking_test::ranking_accuracy,
+ "A value between 0 and 1, measures the fraction of times a relevant sample was ordered before a non-relevant sample.")
+ .def_readwrite("mean_ap", &ranking_test::mean_ap,
+ "A value between 0 and 1, measures the mean average precision of the ranking.");
+
+ py::class_<regression_test>(m, "_regression_test")
+ .def("__str__", regression_test__str__)
+ .def("__repr__", regression_test__repr__)
+ .def_readwrite("mean_average_error", &regression_test::mean_average_error,
+ "The mean average error of a regression function on a dataset.")
+ .def_readwrite("mean_error_stddev", &regression_test::mean_error_stddev,
+ "The standard deviation of the absolute value of the error of a regression function on a dataset.")
+ .def_readwrite("mean_squared_error", &regression_test::mean_squared_error,
+ "The mean squared error of a regression function on a dataset.")
+ .def_readwrite("R_squared", &regression_test::R_squared,
+ "A value between 0 and 1, measures the squared correlation between the output of a \n"
+ "regression function and the target values.");
+}
+
+
+