summaryrefslogtreecommitdiffstats
path: root/ml/dlib/examples/dnn_semantic_segmentation_ex.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'ml/dlib/examples/dnn_semantic_segmentation_ex.cpp')
-rw-r--r--ml/dlib/examples/dnn_semantic_segmentation_ex.cpp172
1 files changed, 172 insertions, 0 deletions
diff --git a/ml/dlib/examples/dnn_semantic_segmentation_ex.cpp b/ml/dlib/examples/dnn_semantic_segmentation_ex.cpp
new file mode 100644
index 00000000..fa49c5a9
--- /dev/null
+++ b/ml/dlib/examples/dnn_semantic_segmentation_ex.cpp
@@ -0,0 +1,172 @@
+// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
+/*
+ This example shows how to do semantic segmentation on an image using net pretrained
+ on the PASCAL VOC2012 dataset. For an introduction to what segmentation is, see the
+ accompanying header file dnn_semantic_segmentation_ex.h.
+
+ Instructions how to run the example:
+ 1. Download the PASCAL VOC2012 data, and untar it somewhere.
+ http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
+ 2. Build the dnn_semantic_segmentation_train_ex example program.
+ 3. Run:
+ ./dnn_semantic_segmentation_train_ex /path/to/VOC2012
+ 4. Wait while the network is being trained.
+ 5. Build the dnn_semantic_segmentation_ex example program.
+ 6. Run:
+ ./dnn_semantic_segmentation_ex /path/to/VOC2012-or-other-images
+
+ An alternative to steps 2-4 above is to download a pre-trained network
+ from here: http://dlib.net/files/semantic_segmentation_voc2012net.dnn
+
+ It would be a good idea to become familiar with dlib's DNN tooling before reading this
+ example. So you should read dnn_introduction_ex.cpp and dnn_introduction2_ex.cpp
+ before reading this example program.
+*/
+
+#include "dnn_semantic_segmentation_ex.h"
+
+#include <iostream>
+#include <dlib/data_io.h>
+#include <dlib/gui_widgets.h>
+
+using namespace std;
+using namespace dlib;
+
+// ----------------------------------------------------------------------------------------
+
+// The PASCAL VOC2012 dataset contains 20 ground-truth classes + background. Each class
+// is represented using an RGB color value. We associate each class also to an index in the
+// range [0, 20], used internally by the network. To generate nice RGB representations of
+// inference results, we need to be able to convert the index values to the corresponding
+// RGB values.
+
+// Given an index in the range [0, 20], find the corresponding PASCAL VOC2012 class
+// (e.g., 'dog').
+const Voc2012class& find_voc2012_class(const uint16_t& index_label)
+{
+ return find_voc2012_class(
+ [&index_label](const Voc2012class& voc2012class)
+ {
+ return index_label == voc2012class.index;
+ }
+ );
+}
+
+// Convert an index in the range [0, 20] to a corresponding RGB class label.
+inline rgb_pixel index_label_to_rgb_label(uint16_t index_label)
+{
+ return find_voc2012_class(index_label).rgb_label;
+}
+
+// Convert an image containing indexes in the range [0, 20] to a corresponding
+// image containing RGB class labels.
+void index_label_image_to_rgb_label_image(
+ const matrix<uint16_t>& index_label_image,
+ matrix<rgb_pixel>& rgb_label_image
+)
+{
+ const long nr = index_label_image.nr();
+ const long nc = index_label_image.nc();
+
+ rgb_label_image.set_size(nr, nc);
+
+ for (long r = 0; r < nr; ++r)
+ {
+ for (long c = 0; c < nc; ++c)
+ {
+ rgb_label_image(r, c) = index_label_to_rgb_label(index_label_image(r, c));
+ }
+ }
+}
+
+// Find the most prominent class label from amongst the per-pixel predictions.
+std::string get_most_prominent_non_background_classlabel(const matrix<uint16_t>& index_label_image)
+{
+ const long nr = index_label_image.nr();
+ const long nc = index_label_image.nc();
+
+ std::vector<unsigned int> counters(class_count);
+
+ for (long r = 0; r < nr; ++r)
+ {
+ for (long c = 0; c < nc; ++c)
+ {
+ const uint16_t label = index_label_image(r, c);
+ ++counters[label];
+ }
+ }
+
+ const auto max_element = std::max_element(counters.begin() + 1, counters.end());
+ const uint16_t most_prominent_index_label = max_element - counters.begin();
+
+ return find_voc2012_class(most_prominent_index_label).classlabel;
+}
+
+// ----------------------------------------------------------------------------------------
+
+int main(int argc, char** argv) try
+{
+ if (argc != 2)
+ {
+ cout << "You call this program like this: " << endl;
+ cout << "./dnn_semantic_segmentation_train_ex /path/to/images" << endl;
+ cout << endl;
+ cout << "You will also need a trained 'semantic_segmentation_voc2012net.dnn' file." << endl;
+ cout << "You can either train it yourself (see example program" << endl;
+ cout << "dnn_semantic_segmentation_train_ex), or download a" << endl;
+ cout << "copy from here: http://dlib.net/files/semantic_segmentation_voc2012net.dnn" << endl;
+ return 1;
+ }
+
+ // Read the file containing the trained network from the working directory.
+ anet_type net;
+ deserialize("semantic_segmentation_voc2012net.dnn") >> net;
+
+ // Show inference results in a window.
+ image_window win;
+
+ matrix<rgb_pixel> input_image;
+ matrix<uint16_t> index_label_image;
+ matrix<rgb_pixel> rgb_label_image;
+
+ // Find supported image files.
+ const std::vector<file> files = dlib::get_files_in_directory_tree(argv[1],
+ dlib::match_endings(".jpeg .jpg .png"));
+
+ cout << "Found " << files.size() << " images, processing..." << endl;
+
+ for (const file& file : files)
+ {
+ // Load the input image.
+ load_image(input_image, file.full_name());
+
+ // Create predictions for each pixel. At this point, the type of each prediction
+ // is an index (a value between 0 and 20). Note that the net may return an image
+ // that is not exactly the same size as the input.
+ const matrix<uint16_t> temp = net(input_image);
+
+ // Crop the returned image to be exactly the same size as the input.
+ const chip_details chip_details(
+ centered_rect(temp.nc() / 2, temp.nr() / 2, input_image.nc(), input_image.nr()),
+ chip_dims(input_image.nr(), input_image.nc())
+ );
+ extract_image_chip(temp, chip_details, index_label_image, interpolate_nearest_neighbor());
+
+ // Convert the indexes to RGB values.
+ index_label_image_to_rgb_label_image(index_label_image, rgb_label_image);
+
+ // Show the input image on the left, and the predicted RGB labels on the right.
+ win.set_image(join_rows(input_image, rgb_label_image));
+
+ // Find the most prominent class label from amongst the per-pixel predictions.
+ const std::string classlabel = get_most_prominent_non_background_classlabel(index_label_image);
+
+ cout << file.name() << " : " << classlabel << " - hit enter to process the next image";
+ cin.get();
+ }
+}
+catch(std::exception& e)
+{
+ cout << e.what() << endl;
+}
+