blob: eaab5881a834da11f69527fb24920693634d7c71 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
|
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
This is an example illustrating the use of the Bayesian Network
inference utilities found in the dlib C++ library. In this example
we load a saved Bayesian Network from disk.
*/
#include <dlib/bayes_utils.h>
#include <dlib/graph_utils.h>
#include <dlib/graph.h>
#include <dlib/directed_graph.h>
#include <iostream>
#include <fstream>
using namespace dlib;
using namespace std;
// ----------------------------------------------------------------------------------------
int main(int argc, char** argv)
{
try
{
// This statement declares a bayesian network called bn. Note that a bayesian network
// in the dlib world is just a directed_graph object that contains a special kind
// of node called a bayes_node.
directed_graph<bayes_node>::kernel_1a_c bn;
if (argc != 2)
{
cout << "You must supply a file name on the command line. The file should "
<< "contain a serialized Bayesian Network" << endl;
return 1;
}
ifstream fin(argv[1],ios::binary);
// Note that the saved networks produced by the bayes_net_gui_ex.cpp example can be deserialized
// into a network. So you can make your networks using that GUI if you like.
cout << "Loading the network from disk..." << endl;
deserialize(bn, fin);
cout << "Number of nodes in the network: " << bn.number_of_nodes() << endl;
// Let's compute some probability values using the loaded network using the join tree (aka. Junction
// Tree) algorithm.
// First we need to create an undirected graph which contains set objects at each node and
// edge. This long declaration does the trick.
typedef graph<dlib::set<unsigned long>::compare_1b_c, dlib::set<unsigned long>::compare_1b_c>::kernel_1a_c join_tree_type;
join_tree_type join_tree;
// Now we need to populate the join_tree with data from our bayesian network. The next two
// function calls do this. Explaining exactly what they do is outside the scope of this
// example. Just think of them as filling join_tree with information that is useful
// later on for dealing with our bayesian network.
create_moral_graph(bn, join_tree);
create_join_tree(join_tree, join_tree);
// Now we have a proper join_tree we can use it to obtain a solution to our
// bayesian network. Doing this is as simple as declaring an instance of
// the bayesian_network_join_tree object as follows:
bayesian_network_join_tree solution(bn, join_tree);
// now print out the probabilities for each node
cout << "Using the join tree algorithm:\n";
for (unsigned long i = 0; i < bn.number_of_nodes(); ++i)
{
// print out the probability distribution for node i.
cout << "p(node " << i <<") = " << solution.probability(i);
}
}
catch (exception& e)
{
cout << "exception thrown: " << e.what() << endl;
return 1;
}
}
|