blob: a18edf24d50256640f44aa7bda7a4365c945868f (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
|
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
This is an example illustrating the use of the epsilon-insensitive support vector
regression object from the dlib C++ Library.
In this example we will draw some points from the sinc() function and do a
non-linear regression on them.
*/
#include <iostream>
#include <vector>
#include <dlib/svm.h>
using namespace std;
using namespace dlib;
// Here is the sinc function we will be trying to learn with the svr_trainer
// object.
double sinc(double x)
{
if (x == 0)
return 1;
return sin(x)/x;
}
int main()
{
// Here we declare that our samples will be 1 dimensional column vectors.
typedef matrix<double,1,1> sample_type;
// Now we are making a typedef for the kind of kernel we want to use. I picked the
// radial basis kernel because it only has one parameter and generally gives good
// results without much fiddling.
typedef radial_basis_kernel<sample_type> kernel_type;
std::vector<sample_type> samples;
std::vector<double> targets;
// The first thing we do is pick a few training points from the sinc() function.
sample_type m;
for (double x = -10; x <= 4; x += 1)
{
m(0) = x;
samples.push_back(m);
targets.push_back(sinc(x));
}
// Now setup a SVR trainer object. It has three parameters, the kernel and
// two parameters specific to SVR.
svr_trainer<kernel_type> trainer;
trainer.set_kernel(kernel_type(0.1));
// This parameter is the usual regularization parameter. It determines the trade-off
// between trying to reduce the training error or allowing more errors but hopefully
// improving the generalization of the resulting function. Larger values encourage exact
// fitting while smaller values of C may encourage better generalization.
trainer.set_c(10);
// Epsilon-insensitive regression means we do regression but stop trying to fit a data
// point once it is "close enough" to its target value. This parameter is the value that
// controls what we mean by "close enough". In this case, I'm saying I'm happy if the
// resulting regression function gets within 0.001 of the target value.
trainer.set_epsilon_insensitivity(0.001);
// Now do the training and save the results
decision_function<kernel_type> df = trainer.train(samples, targets);
// now we output the value of the sinc function for a few test points as well as the
// value predicted by SVR.
m(0) = 2.5; cout << sinc(m(0)) << " " << df(m) << endl;
m(0) = 0.1; cout << sinc(m(0)) << " " << df(m) << endl;
m(0) = -4; cout << sinc(m(0)) << " " << df(m) << endl;
m(0) = 5.0; cout << sinc(m(0)) << " " << df(m) << endl;
// The output is as follows:
// 0.239389 0.23905
// 0.998334 0.997331
// -0.189201 -0.187636
// -0.191785 -0.218924
// The first column is the true value of the sinc function and the second
// column is the output from the SVR estimate.
// We can also do 5-fold cross-validation and find the mean squared error and R-squared
// values. Note that we need to randomly shuffle the samples first. See the svm_ex.cpp
// for a discussion of why this is important.
randomize_samples(samples, targets);
cout << "MSE and R-Squared: "<< cross_validate_regression_trainer(trainer, samples, targets, 5) << endl;
// The output is:
// MSE and R-Squared: 1.65984e-05 0.999901
}
|