1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
|
// Copyright (C) 2017 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#include "opaque_types.h"
#include <dlib/python.h>
#include <dlib/global_optimization.h>
#include <dlib/matrix.h>
#include <pybind11/stl.h>
using namespace dlib;
using namespace std;
namespace py = pybind11;
// ----------------------------------------------------------------------------------------
std::vector<bool> list_to_bool_vector(
const py::list& l
)
{
std::vector<bool> result(len(l));
for (long i = 0; i < result.size(); ++i)
{
result[i] = l[i].cast<bool>();
}
return result;
}
matrix<double,0,1> list_to_mat(
const py::list& l
)
{
matrix<double,0,1> result(len(l));
for (long i = 0; i < result.size(); ++i)
result(i) = l[i].cast<double>();
return result;
}
py::list mat_to_list (
const matrix<double,0,1>& m
)
{
py::list l;
for (long i = 0; i < m.size(); ++i)
l.append(m(i));
return l;
}
size_t num_function_arguments(py::object f, size_t expected_num)
{
const auto code_object = f.attr(hasattr(f,"func_code") ? "func_code" : "__code__");
const auto num = code_object.attr("co_argcount").cast<std::size_t>();
if (num < expected_num && (code_object.attr("co_flags").cast<int>() & CO_VARARGS))
return expected_num;
return num;
}
double call_func(py::object f, const matrix<double,0,1>& args)
{
const auto num = num_function_arguments(f, args.size());
DLIB_CASSERT(num == args.size(),
"The function being optimized takes a number of arguments that doesn't agree with the size of the bounds lists you provided to find_max_global()");
DLIB_CASSERT(0 < num && num < 15, "Functions being optimized must take between 1 and 15 scalar arguments.");
#define CALL_WITH_N_ARGS(N) case N: return dlib::gopt_impl::_cwv(f,args,typename make_compile_time_integer_range<N>::type()).cast<double>();
switch (num)
{
CALL_WITH_N_ARGS(1)
CALL_WITH_N_ARGS(2)
CALL_WITH_N_ARGS(3)
CALL_WITH_N_ARGS(4)
CALL_WITH_N_ARGS(5)
CALL_WITH_N_ARGS(6)
CALL_WITH_N_ARGS(7)
CALL_WITH_N_ARGS(8)
CALL_WITH_N_ARGS(9)
CALL_WITH_N_ARGS(10)
CALL_WITH_N_ARGS(11)
CALL_WITH_N_ARGS(12)
CALL_WITH_N_ARGS(13)
CALL_WITH_N_ARGS(14)
CALL_WITH_N_ARGS(15)
default:
DLIB_CASSERT(false, "oops");
break;
}
}
// ----------------------------------------------------------------------------------------
py::tuple py_find_max_global (
py::object f,
py::list bound1,
py::list bound2,
py::list is_integer_variable,
unsigned long num_function_calls,
double solver_epsilon = 0
)
{
DLIB_CASSERT(len(bound1) == len(bound2));
DLIB_CASSERT(len(bound1) == len(is_integer_variable));
auto func = [&](const matrix<double,0,1>& x)
{
return call_func(f, x);
};
auto result = find_max_global(func, list_to_mat(bound1), list_to_mat(bound2),
list_to_bool_vector(is_integer_variable), max_function_calls(num_function_calls),
solver_epsilon);
return py::make_tuple(mat_to_list(result.x),result.y);
}
py::tuple py_find_max_global2 (
py::object f,
py::list bound1,
py::list bound2,
unsigned long num_function_calls,
double solver_epsilon = 0
)
{
DLIB_CASSERT(len(bound1) == len(bound2));
auto func = [&](const matrix<double,0,1>& x)
{
return call_func(f, x);
};
auto result = find_max_global(func, list_to_mat(bound1), list_to_mat(bound2), max_function_calls(num_function_calls), solver_epsilon);
return py::make_tuple(mat_to_list(result.x),result.y);
}
// ----------------------------------------------------------------------------------------
py::tuple py_find_min_global (
py::object f,
py::list bound1,
py::list bound2,
py::list is_integer_variable,
unsigned long num_function_calls,
double solver_epsilon = 0
)
{
DLIB_CASSERT(len(bound1) == len(bound2));
DLIB_CASSERT(len(bound1) == len(is_integer_variable));
auto func = [&](const matrix<double,0,1>& x)
{
return call_func(f, x);
};
auto result = find_min_global(func, list_to_mat(bound1), list_to_mat(bound2),
list_to_bool_vector(is_integer_variable), max_function_calls(num_function_calls),
solver_epsilon);
return py::make_tuple(mat_to_list(result.x),result.y);
}
py::tuple py_find_min_global2 (
py::object f,
py::list bound1,
py::list bound2,
unsigned long num_function_calls,
double solver_epsilon = 0
)
{
DLIB_CASSERT(len(bound1) == len(bound2));
auto func = [&](const matrix<double,0,1>& x)
{
return call_func(f, x);
};
auto result = find_min_global(func, list_to_mat(bound1), list_to_mat(bound2), max_function_calls(num_function_calls), solver_epsilon);
return py::make_tuple(mat_to_list(result.x),result.y);
}
// ----------------------------------------------------------------------------------------
function_spec py_function_spec1 (
py::list a,
py::list b
)
{
return function_spec(list_to_mat(a), list_to_mat(b));
}
function_spec py_function_spec2 (
py::list a,
py::list b,
py::list c
)
{
return function_spec(list_to_mat(a), list_to_mat(b), list_to_bool_vector(c));
}
std::shared_ptr<global_function_search> py_global_function_search1 (
py::list functions
)
{
std::vector<function_spec> tmp;
for (auto i : functions)
tmp.emplace_back(i.cast<function_spec>());
return std::make_shared<global_function_search>(tmp);
}
std::shared_ptr<global_function_search> py_global_function_search2 (
py::list functions,
py::list initial_function_evals,
double relative_noise_magnitude
)
{
std::vector<function_spec> specs;
for (auto i : functions)
specs.emplace_back(i.cast<function_spec>());
std::vector<std::vector<function_evaluation>> func_evals;
for (auto i : initial_function_evals)
{
std::vector<function_evaluation> evals;
for (auto j : i)
{
evals.emplace_back(j.cast<function_evaluation>());
}
func_evals.emplace_back(std::move(evals));
}
return std::make_shared<global_function_search>(specs, func_evals, relative_noise_magnitude);
}
function_evaluation py_function_evaluation(
const py::list& x,
double y
)
{
return function_evaluation(list_to_mat(x), y);
}
// ----------------------------------------------------------------------------------------
void bind_global_optimization(py::module& m)
{
/*!
requires
- len(bound1) == len(bound2) == len(is_integer_variable)
- for all valid i: bound1[i] != bound2[i]
- solver_epsilon >= 0
- f() is a real valued multi-variate function. It must take scalar real
numbers as its arguments and the number of arguments must be len(bound1).
ensures
- This function performs global optimization on the given f() function.
The goal is to maximize the following objective function:
f(x)
subject to the constraints:
min(bound1[i],bound2[i]) <= x[i] <= max(bound1[i],bound2[i])
if (is_integer_variable[i]) then x[i] is an integer.
- find_max_global() runs until it has called f() num_function_calls times.
Then it returns the best x it has found along with the corresponding output
of f(). That is, it returns (best_x_seen,f(best_x_seen)). Here best_x_seen
is a list containing the best arguments to f() this function has found.
- find_max_global() uses a global optimization method based on a combination of
non-parametric global function modeling and quadratic trust region modeling
to efficiently find a global maximizer. It usually does a good job with a
relatively small number of calls to f(). For more information on how it
works read the documentation for dlib's global_function_search object.
However, one notable element is the solver epsilon, which you can adjust.
The search procedure will only attempt to find a global maximizer to at most
solver_epsilon accuracy. Once a local maximizer is found to that accuracy
the search will focus entirely on finding other maxima elsewhere rather than
on further improving the current local optima found so far. That is, once a
local maxima is identified to about solver_epsilon accuracy, the algorithm
will spend all its time exploring the function to find other local maxima to
investigate. An epsilon of 0 means it will keep solving until it reaches
full floating point precision. Larger values will cause it to switch to pure
global exploration sooner and therefore might be more effective if your
objective function has many local maxima and you don't care about a super
high precision solution.
- Any variables that satisfy the following conditions are optimized on a log-scale:
- The lower bound on the variable is > 0
- The ratio of the upper bound to lower bound is > 1000
- The variable is not an integer variable
We do this because it's common to optimize machine learning models that have
parameters with bounds in a range such as [1e-5 to 1e10] (e.g. the SVM C
parameter) and it's much more appropriate to optimize these kinds of
variables on a log scale. So we transform them by applying log() to
them and then undo the transform via exp() before invoking the function
being optimized. Therefore, this transformation is invisible to the user
supplied functions. In most cases, it improves the efficiency of the
optimizer.
!*/
{
m.def("find_max_global", &py_find_max_global,
"requires \n\
- len(bound1) == len(bound2) == len(is_integer_variable) \n\
- for all valid i: bound1[i] != bound2[i] \n\
- solver_epsilon >= 0 \n\
- f() is a real valued multi-variate function. It must take scalar real \n\
numbers as its arguments and the number of arguments must be len(bound1). \n\
ensures \n\
- This function performs global optimization on the given f() function. \n\
The goal is to maximize the following objective function: \n\
f(x) \n\
subject to the constraints: \n\
min(bound1[i],bound2[i]) <= x[i] <= max(bound1[i],bound2[i]) \n\
if (is_integer_variable[i]) then x[i] is an integer. \n\
- find_max_global() runs until it has called f() num_function_calls times. \n\
Then it returns the best x it has found along with the corresponding output \n\
of f(). That is, it returns (best_x_seen,f(best_x_seen)). Here best_x_seen \n\
is a list containing the best arguments to f() this function has found. \n\
- find_max_global() uses a global optimization method based on a combination of \n\
non-parametric global function modeling and quadratic trust region modeling \n\
to efficiently find a global maximizer. It usually does a good job with a \n\
relatively small number of calls to f(). For more information on how it \n\
works read the documentation for dlib's global_function_search object. \n\
However, one notable element is the solver epsilon, which you can adjust. \n\
\n\
The search procedure will only attempt to find a global maximizer to at most \n\
solver_epsilon accuracy. Once a local maximizer is found to that accuracy \n\
the search will focus entirely on finding other maxima elsewhere rather than \n\
on further improving the current local optima found so far. That is, once a \n\
local maxima is identified to about solver_epsilon accuracy, the algorithm \n\
will spend all its time exploring the function to find other local maxima to \n\
investigate. An epsilon of 0 means it will keep solving until it reaches \n\
full floating point precision. Larger values will cause it to switch to pure \n\
global exploration sooner and therefore might be more effective if your \n\
objective function has many local maxima and you don't care about a super \n\
high precision solution. \n\
- Any variables that satisfy the following conditions are optimized on a log-scale: \n\
- The lower bound on the variable is > 0 \n\
- The ratio of the upper bound to lower bound is > 1000 \n\
- The variable is not an integer variable \n\
We do this because it's common to optimize machine learning models that have \n\
parameters with bounds in a range such as [1e-5 to 1e10] (e.g. the SVM C \n\
parameter) and it's much more appropriate to optimize these kinds of \n\
variables on a log scale. So we transform them by applying log() to \n\
them and then undo the transform via exp() before invoking the function \n\
being optimized. Therefore, this transformation is invisible to the user \n\
supplied functions. In most cases, it improves the efficiency of the \n\
optimizer."
,
py::arg("f"), py::arg("bound1"), py::arg("bound2"), py::arg("is_integer_variable"), py::arg("num_function_calls"), py::arg("solver_epsilon")=0
);
}
{
m.def("find_max_global", &py_find_max_global2,
"This function simply calls the other version of find_max_global() with is_integer_variable set to False for all variables.",
py::arg("f"), py::arg("bound1"), py::arg("bound2"), py::arg("num_function_calls"), py::arg("solver_epsilon")=0
);
}
{
m.def("find_min_global", &py_find_min_global,
"This function is just like find_max_global(), except it performs minimization rather than maximization."
,
py::arg("f"), py::arg("bound1"), py::arg("bound2"), py::arg("is_integer_variable"), py::arg("num_function_calls"), py::arg("solver_epsilon")=0
);
}
{
m.def("find_min_global", &py_find_min_global2,
"This function simply calls the other version of find_min_global() with is_integer_variable set to False for all variables.",
py::arg("f"), py::arg("bound1"), py::arg("bound2"), py::arg("num_function_calls"), py::arg("solver_epsilon")=0
);
}
// -------------------------------------------------
// -------------------------------------------------
py::class_<function_evaluation> (m, "function_evaluation", R"RAW(
This object records the output of a real valued function in response to
some input.
In particular, if you have a function F(x) then the function_evaluation is
simply a struct that records x and the scalar value F(x). )RAW")
.def(py::init<matrix<double,0,1>,double>(), py::arg("x"), py::arg("y"))
.def(py::init<>(&py_function_evaluation), py::arg("x"), py::arg("y"))
.def_readonly("x", &function_evaluation::x)
.def_readonly("y", &function_evaluation::y);
py::class_<function_spec> (m, "function_spec", "See: http://dlib.net/dlib/global_optimization/global_function_search_abstract.h.html")
.def(py::init<matrix<double,0,1>,matrix<double,0,1>>(), py::arg("bound1"), py::arg("bound2") )
.def(py::init<matrix<double,0,1>,matrix<double,0,1>,std::vector<bool>>(), py::arg("bound1"), py::arg("bound2"), py::arg("is_integer") )
.def(py::init<>(&py_function_spec1), py::arg("bound1"), py::arg("bound2"))
.def(py::init<>(&py_function_spec2), py::arg("bound1"), py::arg("bound2"), py::arg("is_integer"))
.def_readonly("lower", &function_spec::lower)
.def_readonly("upper", &function_spec::upper)
.def_readonly("is_integer_variable", &function_spec::is_integer_variable);
py::class_<function_evaluation_request> (m, "function_evaluation_request", "See: http://dlib.net/dlib/global_optimization/global_function_search_abstract.h.html")
.def_property_readonly("function_idx", &function_evaluation_request::function_idx)
.def_property_readonly("x", &function_evaluation_request::x)
.def_property_readonly("has_been_evaluated", &function_evaluation_request::has_been_evaluated)
.def("set", &function_evaluation_request::set);
py::class_<global_function_search, std::shared_ptr<global_function_search>> (m, "global_function_search", "See: http://dlib.net/dlib/global_optimization/global_function_search_abstract.h.html")
.def(py::init<function_spec>(), py::arg("function"))
.def(py::init<>(&py_global_function_search1), py::arg("functions"))
.def(py::init<>(&py_global_function_search2), py::arg("functions"), py::arg("initial_function_evals"), py::arg("relative_noise_magnitude"))
.def("set_seed", &global_function_search::set_seed, py::arg("seed"))
.def("num_functions", &global_function_search::num_functions)
.def("get_function_evaluations", [](const global_function_search& self) {
std::vector<function_spec> specs;
std::vector<std::vector<function_evaluation>> function_evals;
self.get_function_evaluations(specs,function_evals);
py::list py_specs, py_func_evals;
for (auto& s : specs)
py_specs.append(s);
for (auto& i : function_evals)
{
py::list tmp;
for (auto& j : i)
tmp.append(j);
py_func_evals.append(tmp);
}
return py::make_tuple(py_specs,py_func_evals);})
.def("get_best_function_eval", [](const global_function_search& self) {
matrix<double,0,1> x; double y; size_t idx; self.get_best_function_eval(x,y,idx); return py::make_tuple(x,y,idx);})
.def("get_next_x", &global_function_search::get_next_x)
.def("get_pure_random_search_probability", &global_function_search::get_pure_random_search_probability)
.def("set_pure_random_search_probability", &global_function_search::set_pure_random_search_probability, py::arg("prob"))
.def("get_solver_epsilon", &global_function_search::get_solver_epsilon)
.def("set_solver_epsilon", &global_function_search::set_solver_epsilon, py::arg("eps"))
.def("get_relative_noise_magnitude", &global_function_search::get_relative_noise_magnitude)
.def("set_relative_noise_magnitude", &global_function_search::set_relative_noise_magnitude, py::arg("value"))
.def("get_monte_carlo_upper_bound_sample_num", &global_function_search::get_monte_carlo_upper_bound_sample_num)
.def("set_monte_carlo_upper_bound_sample_num", &global_function_search::set_monte_carlo_upper_bound_sample_num, py::arg("num"))
;
}
|