summaryrefslogtreecommitdiffstats
path: root/ml/dlib/tools/python/src/svm_struct.cpp
blob: d8ebad957a099caeae1fe787faee7061440d3264 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
// Copyright (C) 2013  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.

#include "opaque_types.h"
#include <dlib/python.h>
#include <dlib/matrix.h>
#include <dlib/svm.h>

using namespace dlib;
using namespace std;
namespace py = pybind11;

template <typename psi_type>
class svm_struct_prob : public structural_svm_problem<matrix<double,0,1>, psi_type>
{
    typedef structural_svm_problem<matrix<double,0,1>, psi_type> base;
    typedef typename base::feature_vector_type feature_vector_type;
    typedef typename base::matrix_type matrix_type;
    typedef typename base::scalar_type scalar_type;
public:
    svm_struct_prob (
        py::object& problem_,
        long num_dimensions_,
        long num_samples_
    ) : 
        num_dimensions(num_dimensions_),
        num_samples(num_samples_),
        problem(problem_)
    {} 

    virtual long get_num_dimensions (
    ) const { return num_dimensions; }

    virtual long get_num_samples (
    ) const { return num_samples; }

    virtual void get_truth_joint_feature_vector (
        long idx,
        feature_vector_type& psi 
    ) const 
    {
        psi = problem.attr("get_truth_joint_feature_vector")(idx).template cast<feature_vector_type&>();
    }

    virtual void separation_oracle (
        const long idx,
        const matrix_type& current_solution,
        scalar_type& loss,
        feature_vector_type& psi
    ) const 
    {
        py::object res = problem.attr("separation_oracle")(idx,std::ref(current_solution));
        pyassert(len(res) == 2, "separation_oracle() must return two objects, the loss and the psi vector");
        py::tuple t = res.cast<py::tuple>();
        // let the user supply the output arguments in any order.
        try {
            loss = t[0].cast<scalar_type>();
            psi = t[1].cast<feature_vector_type&>();
        } catch(py::cast_error &e) {
            psi = t[0].cast<feature_vector_type&>();
            loss = t[1].cast<scalar_type>();
       }
    }

private:

    const long num_dimensions;
    const long num_samples;
    py::object& problem;
};

// ----------------------------------------------------------------------------------------

template <typename psi_type>
matrix<double,0,1> solve_structural_svm_problem_impl(
    py::object problem
)
{
  const double C = problem.attr("C").cast<double>();
    const bool be_verbose = py::hasattr(problem,"be_verbose") && problem.attr("be_verbose").cast<bool>();
    const bool use_sparse_feature_vectors = py::hasattr(problem,"use_sparse_feature_vectors") && 
                                            problem.attr("use_sparse_feature_vectors").cast<bool>();
    const bool learns_nonnegative_weights = py::hasattr(problem,"learns_nonnegative_weights") && 
                                            problem.attr("learns_nonnegative_weights").cast<bool>();

    double eps = 0.001;
    unsigned long max_cache_size = 10;
    if (py::hasattr(problem, "epsilon"))
        eps = problem.attr("epsilon").cast<double>();
    if (py::hasattr(problem, "max_cache_size"))
        max_cache_size = problem.attr("max_cache_size").cast<double>();

    const long num_samples = problem.attr("num_samples").cast<long>();
    const long num_dimensions = problem.attr("num_dimensions").cast<long>();

    pyassert(num_samples > 0, "You can't train a Structural-SVM if you don't have any training samples.");

    if (be_verbose)
    {
        cout << "C:              " << C << endl;
        cout << "epsilon:        " << eps << endl;
        cout << "max_cache_size: " << max_cache_size << endl;
        cout << "num_samples:    " << num_samples << endl;
        cout << "num_dimensions: " << num_dimensions << endl;
        cout << "use_sparse_feature_vectors: " << std::boolalpha << use_sparse_feature_vectors << endl;
        cout << "learns_nonnegative_weights: " << std::boolalpha << learns_nonnegative_weights << endl;
        cout << endl;
    }

    svm_struct_prob<psi_type> prob(problem, num_dimensions, num_samples);
    prob.set_c(C);
    prob.set_epsilon(eps);
    prob.set_max_cache_size(max_cache_size);
    if (be_verbose)
        prob.be_verbose();

    oca solver;
    matrix<double,0,1> w;
    if (learns_nonnegative_weights)
        solver(prob, w, prob.get_num_dimensions());
    else
        solver(prob, w);
    return w;
}

// ----------------------------------------------------------------------------------------

matrix<double,0,1> solve_structural_svm_problem(
    py::object problem
)
{
    // Check if the python code is using sparse or dense vectors to represent PSI()
    if (py::isinstance<matrix<double,0,1>>(problem.attr("get_truth_joint_feature_vector")(0)))
        return solve_structural_svm_problem_impl<matrix<double,0,1> >(problem);
    else
        return solve_structural_svm_problem_impl<std::vector<std::pair<unsigned long,double> > >(problem);
}

// ----------------------------------------------------------------------------------------

void bind_svm_struct(py::module& m)
{
    m.def("solve_structural_svm_problem",solve_structural_svm_problem, py::arg("problem"),
"This function solves a structural SVM problem and returns the weight vector    \n\
that defines the solution.  See the example program python_examples/svm_struct.py    \n\
for documentation about how to create a proper problem object.   " 
        );
}

// ----------------------------------------------------------------------------------------