summaryrefslogtreecommitdiffstats
path: root/web/server/h2o/libh2o/deps/brotli/enc/backward_references.cc
blob: 02d956ddc75391804984a071c01a0daeb0b7c087 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
/* Copyright 2013 Google Inc. All Rights Reserved.

   Distributed under MIT license.
   See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/

// Function to find backward reference copies.

#include "./backward_references.h"

#include <algorithm>
#include <limits>
#include <vector>

#include "./command.h"
#include "./fast_log.h"
#include "./literal_cost.h"

namespace brotli {

// The maximum length for which the zopflification uses distinct distances.
static const uint16_t kMaxZopfliLen = 325;

static const double kInfinity = std::numeric_limits<double>::infinity();

// Histogram based cost model for zopflification.
class ZopfliCostModel {
 public:
  ZopfliCostModel() : min_cost_cmd_(kInfinity) {}

  void SetFromCommands(size_t num_bytes,
                       size_t position,
                       const uint8_t* ringbuffer,
                       size_t ringbuffer_mask,
                       const Command* commands,
                       size_t num_commands,
                       size_t last_insert_len) {
    std::vector<uint32_t> histogram_literal(256, 0);
    std::vector<uint32_t> histogram_cmd(kNumCommandPrefixes, 0);
    std::vector<uint32_t> histogram_dist(kNumDistancePrefixes, 0);

    size_t pos = position - last_insert_len;
    for (size_t i = 0; i < num_commands; i++) {
      size_t inslength = commands[i].insert_len_;
      size_t copylength = commands[i].copy_len_;
      size_t distcode = commands[i].dist_prefix_;
      size_t cmdcode = commands[i].cmd_prefix_;

      histogram_cmd[cmdcode]++;
      if (cmdcode >= 128) histogram_dist[distcode]++;

      for (size_t j = 0; j < inslength; j++) {
        histogram_literal[ringbuffer[(pos + j) & ringbuffer_mask]]++;
      }

      pos += inslength + copylength;
    }

    std::vector<double> cost_literal;
    Set(histogram_literal, &cost_literal);
    Set(histogram_cmd, &cost_cmd_);
    Set(histogram_dist, &cost_dist_);

    for (uint32_t i = 0; i < kNumCommandPrefixes; ++i) {
      min_cost_cmd_ = std::min(min_cost_cmd_, cost_cmd_[i]);
    }

    literal_costs_.resize(num_bytes + 1);
    literal_costs_[0] = 0.0;
    for (size_t i = 0; i < num_bytes; ++i) {
      literal_costs_[i + 1] = literal_costs_[i] +
          cost_literal[ringbuffer[(position + i) & ringbuffer_mask]];
    }
  }

  void SetFromLiteralCosts(size_t num_bytes,
                           size_t position,
                           const uint8_t* ringbuffer,
                           size_t ringbuffer_mask) {
    std::vector<float> literal_cost(num_bytes + 1);
    EstimateBitCostsForLiterals(position, num_bytes, ringbuffer_mask,
                                ringbuffer, &literal_cost[0]);
    literal_costs_.resize(num_bytes + 1);
    literal_costs_[0] = 0.0;
    for (size_t i = 0; i < num_bytes; ++i) {
      literal_costs_[i + 1] = literal_costs_[i] + literal_cost[i];
    }
    cost_cmd_.resize(kNumCommandPrefixes);
    cost_dist_.resize(kNumDistancePrefixes);
    for (uint32_t i = 0; i < kNumCommandPrefixes; ++i) {
      cost_cmd_[i] = FastLog2(11 + i);
    }
    for (uint32_t i = 0; i < kNumDistancePrefixes; ++i) {
      cost_dist_[i] = FastLog2(20 + i);
    }
    min_cost_cmd_ = FastLog2(11);
  }

  double GetCommandCost(
      size_t dist_code, size_t length_code, size_t insert_length) const {
    uint16_t inscode = GetInsertLengthCode(insert_length);
    uint16_t copycode = GetCopyLengthCode(length_code);
    uint16_t cmdcode = CombineLengthCodes(inscode, copycode, dist_code == 0);
    uint16_t dist_symbol;
    uint32_t distextra;
    PrefixEncodeCopyDistance(dist_code, 0, 0, &dist_symbol, &distextra);
    uint32_t distnumextra = distextra >> 24;

    double result =  static_cast<double>(
        kInsExtra[inscode] + kCopyExtra[copycode] + distnumextra);
    result += cost_cmd_[cmdcode];
    if (cmdcode >= 128) result += cost_dist_[dist_symbol];
    return result;
  }

  double GetLiteralCosts(size_t from, size_t to) const {
    return literal_costs_[to] - literal_costs_[from];
  }

  double GetMinCostCmd() const {
    return min_cost_cmd_;
  }

 private:
  void Set(const std::vector<uint32_t>& histogram, std::vector<double>* cost) {
    cost->resize(histogram.size());
    size_t sum = 0;
    for (size_t i = 0; i < histogram.size(); i++) {
      sum += histogram[i];
    }
    double log2sum = FastLog2(sum);
    for (size_t i = 0; i < histogram.size(); i++) {
      if (histogram[i] == 0) {
        (*cost)[i] = log2sum + 2;
        continue;
      }

      // Shannon bits for this symbol.
      (*cost)[i] = log2sum - FastLog2(histogram[i]);

      // Cannot be coded with less than 1 bit
      if ((*cost)[i] < 1) (*cost)[i] = 1;
    }
  }

  std::vector<double> cost_cmd_;  // The insert and copy length symbols.
  std::vector<double> cost_dist_;
  // Cumulative costs of literals per position in the stream.
  std::vector<double> literal_costs_;
  double min_cost_cmd_;
};

inline void SetDistanceCache(size_t distance,
                             size_t distance_code,
                             size_t max_distance,
                             const int* dist_cache,
                             int* result_dist_cache) {
  if (distance <= max_distance && distance_code > 0) {
    result_dist_cache[0] = static_cast<int>(distance);
    memcpy(&result_dist_cache[1], dist_cache, 3 * sizeof(dist_cache[0]));
  } else {
    memcpy(result_dist_cache, dist_cache, 4 * sizeof(dist_cache[0]));
  }
}

inline size_t ComputeDistanceCode(size_t distance,
                                  size_t max_distance,
                                  int quality,
                                  const int* dist_cache) {
  if (distance <= max_distance) {
    if (distance == static_cast<size_t>(dist_cache[0])) {
      return 0;
    } else if (distance == static_cast<size_t>(dist_cache[1])) {
      return 1;
    } else if (distance == static_cast<size_t>(dist_cache[2])) {
      return 2;
    } else if (distance == static_cast<size_t>(dist_cache[3])) {
      return 3;
    } else if (quality > 3 && distance >= 6) {
      for (size_t k = 4; k < kNumDistanceShortCodes; ++k) {
        size_t idx = kDistanceCacheIndex[k];
        size_t candidate =
            static_cast<size_t>(dist_cache[idx] + kDistanceCacheOffset[k]);
        static const size_t kLimits[16] = {  0,  0,  0,  0,
                                             6,  6, 11, 11,
                                            11, 11, 11, 11,
                                            12, 12, 12, 12 };
        if (distance == candidate && distance >= kLimits[k]) {
          return k;
        }
      }
    }
  }
  return distance + 15;
}

struct ZopfliNode {
  ZopfliNode() : length(1),
                 distance(0),
                 distance_code(0),
                 length_code(0),
                 insert_length(0),
                 cost(kInfinity) {}

  // best length to get up to this byte (not including this byte itself)
  uint32_t length;
  // distance associated with the length
  uint32_t distance;
  uint32_t distance_code;
  int distance_cache[4];
  // length code associated with the length - usually the same as length,
  // except in case of length-changing dictionary transformation.
  uint32_t length_code;
  // number of literal inserts before this copy
  uint32_t insert_length;
  // smallest cost to get to this byte from the beginning, as found so far
  double cost;
};

inline void UpdateZopfliNode(ZopfliNode* nodes, size_t pos, size_t start_pos,
                             size_t len, size_t len_code, size_t dist,
                             size_t dist_code, size_t max_dist,
                             const int* dist_cache, double cost) {
  ZopfliNode& next = nodes[pos + len];
  next.length = static_cast<uint32_t>(len);
  next.length_code = static_cast<uint32_t>(len_code);
  next.distance = static_cast<uint32_t>(dist);
  next.distance_code = static_cast<uint32_t>(dist_code);
  next.insert_length = static_cast<uint32_t>(pos - start_pos);
  next.cost = cost;
  SetDistanceCache(dist, dist_code, max_dist, dist_cache,
                   &next.distance_cache[0]);
}

// Maintains the smallest 2^k cost difference together with their positions
class StartPosQueue {
 public:
  explicit StartPosQueue(int bits)
      : mask_((1u << bits) - 1), q_(1 << bits), idx_(0) {}

  void Clear() {
    idx_ = 0;
  }

  void Push(size_t pos, double costdiff) {
    if (costdiff == kInfinity) {
      // We can't start a command from an unreachable start position.
      // E.g. position 1 in a stream is always unreachable, because all commands
      // have a copy of at least length 2.
      return;
    }
    size_t offset = -idx_ & mask_;
    ++idx_;
    size_t len = size();
    q_[offset] = std::make_pair(pos, costdiff);
    /* Restore the sorted order. In the list of |len| items at most |len - 1|
       adjacent element comparisons / swaps are required. */
    for (size_t i = 1; i < len; ++i) {
      if (q_[offset & mask_].second > q_[(offset + 1) & mask_].second) {
        std::swap(q_[offset & mask_], q_[(offset + 1) & mask_]);
      }
      ++offset;
    }
  }

  size_t size() const { return std::min(idx_, mask_ + 1); }

  size_t GetStartPos(size_t k) const {
    return q_[(k + 1 - idx_) & mask_].first;
  }

 private:
  const size_t mask_;
  std::vector<std::pair<size_t, double> > q_;
  size_t idx_;
};

// Returns the minimum possible copy length that can improve the cost of any
// future position.
size_t ComputeMinimumCopyLength(const StartPosQueue& queue,
                                const std::vector<ZopfliNode>& nodes,
                                const ZopfliCostModel& model,
                                size_t pos,
                                double min_cost_cmd) {
  // Compute the minimum possible cost of reaching any future position.
  const size_t start0 = queue.GetStartPos(0);
  double min_cost = (nodes[start0].cost +
                     model.GetLiteralCosts(start0, pos) +
                     min_cost_cmd);
  size_t len = 2;
  size_t next_len_bucket = 4;
  size_t next_len_offset = 10;
  while (pos + len < nodes.size() && nodes[pos + len].cost <= min_cost) {
    // We already reached (pos + len) with no more cost than the minimum
    // possible cost of reaching anything from this pos, so there is no point in
    // looking for lengths <= len.
    ++len;
    if (len == next_len_offset) {
      // We reached the next copy length code bucket, so we add one more
      // extra bit to the minimum cost.
      min_cost += 1.0;
      next_len_offset += next_len_bucket;
      next_len_bucket *= 2;
    }
  }
  return len;
}

void ZopfliIterate(size_t num_bytes,
                   size_t position,
                   const uint8_t* ringbuffer,
                   size_t ringbuffer_mask,
                   const size_t max_backward_limit,
                   const ZopfliCostModel& model,
                   const std::vector<uint32_t>& num_matches,
                   const std::vector<BackwardMatch>& matches,
                   int* dist_cache,
                   size_t* last_insert_len,
                   Command* commands,
                   size_t* num_commands,
                   size_t* num_literals) {
  const Command * const orig_commands = commands;

  std::vector<ZopfliNode> nodes(num_bytes + 1);
  nodes[0].length = 0;
  nodes[0].cost = 0;
  memcpy(nodes[0].distance_cache, dist_cache, 4 * sizeof(dist_cache[0]));

  StartPosQueue queue(3);
  const double min_cost_cmd = model.GetMinCostCmd();

  size_t cur_match_pos = 0;
  for (size_t i = 0; i + 3 < num_bytes; i++) {
    size_t cur_ix = position + i;
    size_t cur_ix_masked = cur_ix & ringbuffer_mask;
    size_t max_distance = std::min(cur_ix, max_backward_limit);
    size_t max_length = num_bytes - i;

    queue.Push(i, nodes[i].cost - model.GetLiteralCosts(0, i));

    const size_t min_len = ComputeMinimumCopyLength(queue, nodes, model,
                                                    i, min_cost_cmd);

    // Go over the command starting positions in order of increasing cost
    // difference.
    for (size_t k = 0; k < 5 && k < queue.size(); ++k) {
      const size_t start = queue.GetStartPos(k);
      const double start_costdiff =
          nodes[start].cost - model.GetLiteralCosts(0, start);
      const int* dist_cache2 = &nodes[start].distance_cache[0];

      // Look for last distance matches using the distance cache from this
      // starting position.
      size_t best_len = min_len - 1;
      for (size_t j = 0; j < kNumDistanceShortCodes; ++j) {
        const size_t idx = kDistanceCacheIndex[j];
        const size_t backward =
            static_cast<size_t>(dist_cache2[idx] + kDistanceCacheOffset[j]);
        size_t prev_ix = cur_ix - backward;
        if (prev_ix >= cur_ix) {
          continue;
        }
        if (PREDICT_FALSE(backward > max_distance)) {
          continue;
        }
        prev_ix &= ringbuffer_mask;

        if (cur_ix_masked + best_len > ringbuffer_mask ||
            prev_ix + best_len > ringbuffer_mask ||
            ringbuffer[cur_ix_masked + best_len] !=
            ringbuffer[prev_ix + best_len]) {
          continue;
        }
        const size_t len =
            FindMatchLengthWithLimit(&ringbuffer[prev_ix],
                                     &ringbuffer[cur_ix_masked],
                                     max_length);
        for (size_t l = best_len + 1; l <= len; ++l) {
          const size_t inslen = i - start;
          double cmd_cost = model.GetCommandCost(j, l, inslen);
          double cost = start_costdiff + cmd_cost + model.GetLiteralCosts(0, i);
          if (cost < nodes[i + l].cost) {
            UpdateZopfliNode(&nodes[0], i, start, l, l, backward, j,
                             max_distance, dist_cache2, cost);
          }
          best_len = l;
        }
      }

      // At higher iterations look only for new last distance matches, since
      // looking only for new command start positions with the same distances
      // does not help much.
      if (k >= 2) continue;

      // Loop through all possible copy lengths at this position.
      size_t len = min_len;
      for (size_t j = 0; j < num_matches[i]; ++j) {
        BackwardMatch match = matches[cur_match_pos + j];
        size_t dist = match.distance;
        bool is_dictionary_match = dist > max_distance;
        // We already tried all possible last distance matches, so we can use
        // normal distance code here.
        size_t dist_code = dist + 15;
        // Try all copy lengths up until the maximum copy length corresponding
        // to this distance. If the distance refers to the static dictionary, or
        // the maximum length is long enough, try only one maximum length.
        size_t max_len = match.length();
        if (len < max_len && (is_dictionary_match || max_len > kMaxZopfliLen)) {
          len = max_len;
        }
        for (; len <= max_len; ++len) {
          size_t len_code = is_dictionary_match ? match.length_code() : len;
          const size_t inslen = i - start;
          double cmd_cost = model.GetCommandCost(dist_code, len_code, inslen);
          double cost = start_costdiff + cmd_cost + model.GetLiteralCosts(0, i);
          if (cost < nodes[i + len].cost) {
            UpdateZopfliNode(&nodes[0], i, start, len, len_code, dist,
                             dist_code, max_distance, dist_cache2, cost);
          }
        }
      }
    }

    cur_match_pos += num_matches[i];

    // The zopflification can be too slow in case of very long lengths, so in
    // such case skip it all, it does not cost a lot of compression ratio.
    if (num_matches[i] == 1 &&
        matches[cur_match_pos - 1].length() > kMaxZopfliLen) {
      i += matches[cur_match_pos - 1].length() - 1;
      queue.Clear();
    }
  }

  std::vector<uint32_t> backwards;
  size_t index = num_bytes;
  while (nodes[index].cost == kInfinity) --index;
  while (index != 0) {
    size_t len = nodes[index].length + nodes[index].insert_length;
    backwards.push_back(static_cast<uint32_t>(len));
    index -= len;
  }

  std::vector<uint32_t> path;
  for (size_t i = backwards.size(); i > 0; i--) {
    path.push_back(backwards[i - 1]);
  }

  size_t pos = 0;
  for (size_t i = 0; i < path.size(); i++) {
    const ZopfliNode& next = nodes[pos + path[i]];
    size_t copy_length = next.length;
    size_t insert_length = next.insert_length;
    pos += insert_length;
    if (i == 0) {
      insert_length += *last_insert_len;
      *last_insert_len = 0;
    }
    size_t distance = next.distance;
    size_t len_code = next.length_code;
    size_t max_distance = std::min(position + pos, max_backward_limit);
    bool is_dictionary = (distance > max_distance);
    size_t dist_code = next.distance_code;

    Command cmd(insert_length, copy_length, len_code, dist_code);
    *commands++ = cmd;

    if (!is_dictionary && dist_code > 0) {
      dist_cache[3] = dist_cache[2];
      dist_cache[2] = dist_cache[1];
      dist_cache[1] = dist_cache[0];
      dist_cache[0] = static_cast<int>(distance);
    }

    *num_literals += insert_length;
    insert_length = 0;
    pos += copy_length;
  }
  *last_insert_len += num_bytes - pos;
  *num_commands += static_cast<size_t>(commands - orig_commands);
}

template<typename Hasher>
void CreateBackwardReferences(size_t num_bytes,
                              size_t position,
                              bool is_last,
                              const uint8_t* ringbuffer,
                              size_t ringbuffer_mask,
                              const int quality,
                              const int lgwin,
                              Hasher* hasher,
                              int* dist_cache,
                              size_t* last_insert_len,
                              Command* commands,
                              size_t* num_commands,
                              size_t* num_literals) {
  // Set maximum distance, see section 9.1. of the spec.
  const size_t max_backward_limit = (1 << lgwin) - 16;

  // Choose which init method is faster.
  // memset is about 100 times faster than hasher->InitForData().
  const size_t kMaxBytesForPartialHashInit = Hasher::kHashMapSize >> 7;
  if (position == 0 && is_last && num_bytes <= kMaxBytesForPartialHashInit) {
    hasher->InitForData(ringbuffer, num_bytes);
  } else {
    hasher->Init();
  }
  if (num_bytes >= 3 && position >= 3) {
    // Prepare the hashes for three last bytes of the last write.
    // These could not be calculated before, since they require knowledge
    // of both the previous and the current block.
    hasher->Store(&ringbuffer[(position - 3) & ringbuffer_mask],
                  static_cast<uint32_t>(position - 3));
    hasher->Store(&ringbuffer[(position - 2) & ringbuffer_mask],
                  static_cast<uint32_t>(position - 2));
    hasher->Store(&ringbuffer[(position - 1) & ringbuffer_mask],
                  static_cast<uint32_t>(position - 1));
  }
  const Command * const orig_commands = commands;
  size_t insert_length = *last_insert_len;
  size_t i = position & ringbuffer_mask;
  const size_t i_diff = position - i;
  const size_t i_end = i + num_bytes;

  // For speed up heuristics for random data.
  const size_t random_heuristics_window_size = quality < 9 ? 64 : 512;
  size_t apply_random_heuristics = i + random_heuristics_window_size;

  // Minimum score to accept a backward reference.
  const int kMinScore = 4.0;

  while (i + Hasher::kHashTypeLength - 1 < i_end) {
    size_t max_length = i_end - i;
    size_t max_distance = std::min(i + i_diff, max_backward_limit);
    size_t best_len = 0;
    size_t best_len_code = 0;
    size_t best_dist = 0;
    double best_score = kMinScore;
    bool match_found = hasher->FindLongestMatch(
        ringbuffer, ringbuffer_mask,
        dist_cache, static_cast<uint32_t>(i + i_diff), max_length, max_distance,
        &best_len, &best_len_code, &best_dist, &best_score);
    if (match_found) {
      // Found a match. Let's look for something even better ahead.
      int delayed_backward_references_in_row = 0;
      for (;;) {
        --max_length;
        size_t best_len_2 =
            quality < 5 ? std::min(best_len - 1, max_length) : 0;
        size_t best_len_code_2 = 0;
        size_t best_dist_2 = 0;
        double best_score_2 = kMinScore;
        max_distance = std::min(i + i_diff + 1, max_backward_limit);
        match_found = hasher->FindLongestMatch(
            ringbuffer, ringbuffer_mask,
            dist_cache, static_cast<uint32_t>(i + i_diff + 1),
            max_length, max_distance,
            &best_len_2, &best_len_code_2, &best_dist_2, &best_score_2);
        double cost_diff_lazy = 7.0;
        if (match_found && best_score_2 >= best_score + cost_diff_lazy) {
          // Ok, let's just write one byte for now and start a match from the
            // next byte.
          ++i;
          ++insert_length;
          best_len = best_len_2;
          best_len_code = best_len_code_2;
          best_dist = best_dist_2;
          best_score = best_score_2;
          if (++delayed_backward_references_in_row < 4) {
            continue;
          }
        }
        break;
      }
      apply_random_heuristics =
          i + 2 * best_len + random_heuristics_window_size;
      max_distance = std::min(i + i_diff, max_backward_limit);
      // The first 16 codes are special shortcodes, and the minimum offset is 1.
      size_t distance_code =
          ComputeDistanceCode(best_dist, max_distance, quality, dist_cache);
      if (best_dist <= max_distance && distance_code > 0) {
        dist_cache[3] = dist_cache[2];
        dist_cache[2] = dist_cache[1];
        dist_cache[1] = dist_cache[0];
        dist_cache[0] = static_cast<int>(best_dist);
      }
      Command cmd(insert_length, best_len, best_len_code, distance_code);
      *commands++ = cmd;
      *num_literals += insert_length;
      insert_length = 0;
      // Put the hash keys into the table, if there are enough
      // bytes left.
      for (size_t j = 2; j < best_len; ++j) {
        hasher->Store(&ringbuffer[i + j],
                      static_cast<uint32_t>(i + i_diff + j));
      }
      i += best_len;
    } else {
      ++insert_length;
      ++i;
      // If we have not seen matches for a long time, we can skip some
      // match lookups. Unsuccessful match lookups are very very expensive
      // and this kind of a heuristic speeds up compression quite
      // a lot.
      if (i > apply_random_heuristics) {
        // Going through uncompressible data, jump.
        if (i > apply_random_heuristics + 4 * random_heuristics_window_size) {
          // It is quite a long time since we saw a copy, so we assume
          // that this data is not compressible, and store hashes less
          // often. Hashes of non compressible data are less likely to
          // turn out to be useful in the future, too, so we store less of
          // them to not to flood out the hash table of good compressible
          // data.
          size_t i_jump = std::min(i + 16, i_end - 4);
          for (; i < i_jump; i += 4) {
            hasher->Store(ringbuffer + i, static_cast<uint32_t>(i + i_diff));
            insert_length += 4;
          }
        } else {
          size_t i_jump = std::min(i + 8, i_end - 3);
          for (; i < i_jump; i += 2) {
            hasher->Store(ringbuffer + i, static_cast<uint32_t>(i + i_diff));
            insert_length += 2;
          }
        }
      }
    }
  }
  insert_length += i_end - i;
  *last_insert_len = insert_length;
  *num_commands += static_cast<size_t>(commands - orig_commands);
}

void CreateBackwardReferences(size_t num_bytes,
                              size_t position,
                              bool is_last,
                              const uint8_t* ringbuffer,
                              size_t ringbuffer_mask,
                              const int quality,
                              const int lgwin,
                              Hashers* hashers,
                              int hash_type,
                              int* dist_cache,
                              size_t* last_insert_len,
                              Command* commands,
                              size_t* num_commands,
                              size_t* num_literals) {
  bool zopflify = quality > 9;
  if (zopflify) {
    Hashers::H10* hasher = hashers->hash_h10;
    hasher->Init(lgwin, position, num_bytes, is_last);
    if (num_bytes >= 3 && position >= kMaxTreeCompLength) {
      // Store the last `kMaxTreeCompLength - 1` positions in the hasher.
      // These could not be calculated before, since they require knowledge
      // of both the previous and the current block.
      for (size_t i = position - kMaxTreeCompLength + 1; i < position; ++i) {
        hasher->Store(ringbuffer, ringbuffer_mask, i, num_bytes + position - i);
      }
    }
    // Set maximum distance, see section 9.1. of the spec.
    const size_t max_backward_limit = (1 << lgwin) - 16;
    std::vector<uint32_t> num_matches(num_bytes);
    std::vector<BackwardMatch> matches(4 * num_bytes);
    size_t cur_match_pos = 0;
    for (size_t i = 0; i + 3 < num_bytes; ++i) {
      size_t max_distance = std::min(position + i, max_backward_limit);
      size_t max_length = num_bytes - i;
      // Ensure that we have enough free slots.
      if (matches.size() < cur_match_pos + Hashers::H10::kMaxNumMatches) {
        matches.resize(cur_match_pos + Hashers::H10::kMaxNumMatches);
      }
      size_t num_found_matches = hasher->FindAllMatches(
          ringbuffer, ringbuffer_mask, position + i, max_length, max_distance,
          &matches[cur_match_pos]);
      const size_t cur_match_end = cur_match_pos + num_found_matches;
      for (size_t j = cur_match_pos; j + 1 < cur_match_end; ++j) {
        assert(matches[j].length() < matches[j + 1].length());
        assert(matches[j].distance > max_distance ||
               matches[j].distance <= matches[j + 1].distance);
      }
      num_matches[i] = static_cast<uint32_t>(num_found_matches);
      if (num_found_matches > 0) {
        const size_t match_len = matches[cur_match_end - 1].length();
        if (match_len > kMaxZopfliLen) {
          matches[cur_match_pos++] = matches[cur_match_end - 1];
          num_matches[i] = 1;
          for (size_t j = 1; j < match_len; ++j) {
            ++i;
            if (match_len - j < 64) {
              hasher->Store(ringbuffer, ringbuffer_mask, position + i,
                            num_bytes - i);
            }
            num_matches[i] = 0;
          }
        } else {
          cur_match_pos = cur_match_end;
        }
      }
    }
    size_t orig_num_literals = *num_literals;
    size_t orig_last_insert_len = *last_insert_len;
    int orig_dist_cache[4] = {
      dist_cache[0], dist_cache[1], dist_cache[2], dist_cache[3]
    };
    size_t orig_num_commands = *num_commands;
    static const size_t kIterations = 2;
    for (size_t i = 0; i < kIterations; i++) {
      ZopfliCostModel model;
      if (i == 0) {
        model.SetFromLiteralCosts(num_bytes, position,
                                  ringbuffer, ringbuffer_mask);
      } else {
        model.SetFromCommands(num_bytes, position,
                              ringbuffer, ringbuffer_mask,
                              commands, *num_commands - orig_num_commands,
                              orig_last_insert_len);
      }
      *num_commands = orig_num_commands;
      *num_literals = orig_num_literals;
      *last_insert_len = orig_last_insert_len;
      memcpy(dist_cache, orig_dist_cache, 4 * sizeof(dist_cache[0]));
      ZopfliIterate(num_bytes, position, ringbuffer, ringbuffer_mask,
                    max_backward_limit, model, num_matches, matches, dist_cache,
                    last_insert_len, commands, num_commands, num_literals);
    }
    return;
  }

  switch (hash_type) {
    case 2:
      CreateBackwardReferences<Hashers::H2>(
          num_bytes, position, is_last, ringbuffer, ringbuffer_mask,
          quality, lgwin, hashers->hash_h2, dist_cache,
          last_insert_len, commands, num_commands, num_literals);
      break;
    case 3:
      CreateBackwardReferences<Hashers::H3>(
          num_bytes, position, is_last, ringbuffer, ringbuffer_mask,
          quality, lgwin, hashers->hash_h3, dist_cache,
          last_insert_len, commands, num_commands, num_literals);
      break;
    case 4:
      CreateBackwardReferences<Hashers::H4>(
          num_bytes, position, is_last, ringbuffer, ringbuffer_mask,
          quality, lgwin, hashers->hash_h4, dist_cache,
          last_insert_len, commands, num_commands, num_literals);
      break;
    case 5:
      CreateBackwardReferences<Hashers::H5>(
          num_bytes, position, is_last, ringbuffer, ringbuffer_mask,
          quality, lgwin, hashers->hash_h5, dist_cache,
          last_insert_len, commands, num_commands, num_literals);
      break;
    case 6:
      CreateBackwardReferences<Hashers::H6>(
          num_bytes, position, is_last, ringbuffer, ringbuffer_mask,
          quality, lgwin, hashers->hash_h6, dist_cache,
          last_insert_len, commands, num_commands, num_literals);
      break;
    case 7:
      CreateBackwardReferences<Hashers::H7>(
          num_bytes, position, is_last, ringbuffer, ringbuffer_mask,
          quality, lgwin, hashers->hash_h7, dist_cache,
          last_insert_len, commands, num_commands, num_literals);
      break;
    case 8:
      CreateBackwardReferences<Hashers::H8>(
          num_bytes, position, is_last, ringbuffer, ringbuffer_mask,
          quality, lgwin, hashers->hash_h8, dist_cache,
          last_insert_len, commands, num_commands, num_literals);
      break;
    case 9:
      CreateBackwardReferences<Hashers::H9>(
          num_bytes, position, is_last, ringbuffer, ringbuffer_mask,
          quality, lgwin, hashers->hash_h9, dist_cache,
          last_insert_len, commands, num_commands, num_literals);
      break;
    default:
      break;
  }
}

}  // namespace brotli