summaryrefslogtreecommitdiffstats
path: root/web/server/h2o/libh2o/deps/brotli/enc/compress_fragment_two_pass.cc
blob: 8477603104f563ce28771de075674aaf7415a6a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
/* Copyright 2015 Google Inc. All Rights Reserved.

   Distributed under MIT license.
   See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/

// Function for fast encoding of an input fragment, independently from the input
// history. This function uses two-pass processing: in the first pass we save
// the found backward matches and literal bytes into a buffer, and in the
// second pass we emit them into the bit stream using prefix codes built based
// on the actual command and literal byte histograms.

#include "./compress_fragment_two_pass.h"

#include <algorithm>

#include "./brotli_bit_stream.h"
#include "./bit_cost.h"
#include "./entropy_encode.h"
#include "./fast_log.h"
#include "./find_match_length.h"
#include "./port.h"
#include "./write_bits.h"

namespace brotli {

// kHashMul32 multiplier has these properties:
// * The multiplier must be odd. Otherwise we may lose the highest bit.
// * No long streaks of 1s or 0s.
// * There is no effort to ensure that it is a prime, the oddity is enough
//   for this use.
// * The number has been tuned heuristically against compression benchmarks.
static const uint32_t kHashMul32 = 0x1e35a7bd;

static inline uint32_t Hash(const uint8_t* p, size_t shift) {
  const uint64_t h = (BROTLI_UNALIGNED_LOAD64(p) << 16) * kHashMul32;
  return static_cast<uint32_t>(h >> shift);
}

static inline uint32_t HashBytesAtOffset(uint64_t v, int offset, size_t shift) {
  assert(offset >= 0);
  assert(offset <= 2);
  const uint64_t h = ((v >> (8 * offset)) << 16) * kHashMul32;
  return static_cast<uint32_t>(h >> shift);
}

static inline int IsMatch(const uint8_t* p1, const uint8_t* p2) {
  return (BROTLI_UNALIGNED_LOAD32(p1) == BROTLI_UNALIGNED_LOAD32(p2) &&
          p1[4] == p2[4] &&
          p1[5] == p2[5]);
}

// Builds a command and distance prefix code (each 64 symbols) into "depth" and
// "bits" based on "histogram" and stores it into the bit stream.
static void BuildAndStoreCommandPrefixCode(
    const uint32_t histogram[128],
    uint8_t depth[128], uint16_t bits[128],
    size_t* storage_ix, uint8_t* storage) {
  CreateHuffmanTree(histogram, 64, 15, depth);
  CreateHuffmanTree(&histogram[64], 64, 14, &depth[64]);
  // We have to jump through a few hoopes here in order to compute
  // the command bits because the symbols are in a different order than in
  // the full alphabet. This looks complicated, but having the symbols
  // in this order in the command bits saves a few branches in the Emit*
  // functions.
  uint8_t cmd_depth[64];
  uint16_t cmd_bits[64];
  memcpy(cmd_depth, depth + 24, 24);
  memcpy(cmd_depth + 24, depth, 8);
  memcpy(cmd_depth + 32, depth + 48, 8);
  memcpy(cmd_depth + 40, depth + 8, 8);
  memcpy(cmd_depth + 48, depth + 56, 8);
  memcpy(cmd_depth + 56, depth + 16, 8);
  ConvertBitDepthsToSymbols(cmd_depth, 64, cmd_bits);
  memcpy(bits, cmd_bits + 24, 16);
  memcpy(bits + 8, cmd_bits + 40, 16);
  memcpy(bits + 16, cmd_bits + 56, 16);
  memcpy(bits + 24, cmd_bits, 48);
  memcpy(bits + 48, cmd_bits + 32, 16);
  memcpy(bits + 56, cmd_bits + 48, 16);
  ConvertBitDepthsToSymbols(&depth[64], 64, &bits[64]);
  {
    // Create the bit length array for the full command alphabet.
    uint8_t cmd_depth[704] = { 0 };
    memcpy(cmd_depth, depth + 24, 8);
    memcpy(cmd_depth + 64, depth + 32, 8);
    memcpy(cmd_depth + 128, depth + 40, 8);
    memcpy(cmd_depth + 192, depth + 48, 8);
    memcpy(cmd_depth + 384, depth + 56, 8);
    for (size_t i = 0; i < 8; ++i) {
      cmd_depth[128 + 8 * i] = depth[i];
      cmd_depth[256 + 8 * i] = depth[8 + i];
      cmd_depth[448 + 8 * i] = depth[16 + i];
    }
    StoreHuffmanTree(cmd_depth, 704, storage_ix, storage);
  }
  StoreHuffmanTree(&depth[64], 64, storage_ix, storage);
}

inline void EmitInsertLen(uint32_t insertlen, uint32_t** commands) {
  if (insertlen < 6) {
    **commands = insertlen;
  } else if (insertlen < 130) {
    insertlen -= 2;
    const uint32_t nbits = Log2FloorNonZero(insertlen) - 1u;
    const uint32_t prefix = insertlen >> nbits;
    const uint32_t inscode = (nbits << 1) + prefix + 2;
    const uint32_t extra = insertlen - (prefix << nbits);
    **commands = inscode | (extra << 8);
  } else if (insertlen < 2114) {
    insertlen -= 66;
    const uint32_t nbits = Log2FloorNonZero(insertlen);
    const uint32_t code = nbits + 10;
    const uint32_t extra = insertlen - (1 << nbits);
    **commands = code | (extra << 8);
  } else if (insertlen < 6210) {
    const uint32_t extra = insertlen - 2114;
    **commands = 21 | (extra << 8);
  } else if (insertlen < 22594) {
    const uint32_t extra = insertlen - 6210;
    **commands = 22 | (extra << 8);
  } else {
    const uint32_t extra = insertlen - 22594;
    **commands = 23 | (extra << 8);
  }
  ++(*commands);
}

inline void EmitCopyLen(size_t copylen, uint32_t** commands) {
  if (copylen < 10) {
    **commands = static_cast<uint32_t>(copylen + 38);
  } else if (copylen < 134) {
    copylen -= 6;
    const size_t nbits = Log2FloorNonZero(copylen) - 1;
    const size_t prefix = copylen >> nbits;
    const size_t code = (nbits << 1) + prefix + 44;
    const size_t extra = copylen - (prefix << nbits);
    **commands = static_cast<uint32_t>(code | (extra << 8));
  } else if (copylen < 2118) {
    copylen -= 70;
    const size_t nbits = Log2FloorNonZero(copylen);
    const size_t code = nbits + 52;
    const size_t extra = copylen - (1 << nbits);
    **commands = static_cast<uint32_t>(code | (extra << 8));
  } else {
    const size_t extra = copylen - 2118;
    **commands = static_cast<uint32_t>(63 | (extra << 8));
  }
  ++(*commands);
}

inline void EmitCopyLenLastDistance(size_t copylen, uint32_t** commands) {
  if (copylen < 12) {
    **commands = static_cast<uint32_t>(copylen + 20);
    ++(*commands);
  } else if (copylen < 72) {
    copylen -= 8;
    const size_t nbits = Log2FloorNonZero(copylen) - 1;
    const size_t prefix = copylen >> nbits;
    const size_t code = (nbits << 1) + prefix + 28;
    const size_t extra = copylen - (prefix << nbits);
    **commands = static_cast<uint32_t>(code | (extra << 8));
    ++(*commands);
  } else if (copylen < 136) {
    copylen -= 8;
    const size_t code = (copylen >> 5) + 54;
    const size_t extra = copylen & 31;
    **commands = static_cast<uint32_t>(code | (extra << 8));
    ++(*commands);
    **commands = 64;
    ++(*commands);
  } else if (copylen < 2120) {
    copylen -= 72;
    const size_t nbits = Log2FloorNonZero(copylen);
    const size_t code = nbits + 52;
    const size_t extra = copylen - (1 << nbits);
    **commands = static_cast<uint32_t>(code | (extra << 8));
    ++(*commands);
    **commands = 64;
    ++(*commands);
  } else {
    const size_t extra = copylen - 2120;
    **commands = static_cast<uint32_t>(63 | (extra << 8));
    ++(*commands);
    **commands = 64;
    ++(*commands);
  }
}

inline void EmitDistance(uint32_t distance, uint32_t** commands) {
  distance += 3;
  uint32_t nbits = Log2FloorNonZero(distance) - 1;
  const uint32_t prefix = (distance >> nbits) & 1;
  const uint32_t offset = (2 + prefix) << nbits;
  const uint32_t distcode = 2 * (nbits - 1) + prefix + 80;
  uint32_t extra = distance - offset;
  **commands = distcode | (extra << 8);
  ++(*commands);
}

// REQUIRES: len <= 1 << 20.
static void StoreMetaBlockHeader(
    size_t len, bool is_uncompressed, size_t* storage_ix, uint8_t* storage) {
  // ISLAST
  WriteBits(1, 0, storage_ix, storage);
  if (len <= (1U << 16)) {
    // MNIBBLES is 4
    WriteBits(2, 0, storage_ix, storage);
    WriteBits(16, len - 1, storage_ix, storage);
  } else {
    // MNIBBLES is 5
    WriteBits(2, 1, storage_ix, storage);
    WriteBits(20, len - 1, storage_ix, storage);
  }
  // ISUNCOMPRESSED
  WriteBits(1, is_uncompressed, storage_ix, storage);
}

void CreateCommands(const uint8_t* input, size_t block_size, size_t input_size,
                    const uint8_t* base_ip,
                    int* table, size_t table_size,
                    uint8_t** literals, uint32_t** commands) {
  // "ip" is the input pointer.
  const uint8_t* ip = input;
  assert(table_size);
  assert(table_size <= (1u << 31));
  assert((table_size & (table_size - 1)) == 0);  // table must be power of two
  const size_t shift = 64u - Log2FloorNonZero(table_size);
  assert(static_cast<size_t>(0xffffffffffffffffU >> shift) == table_size - 1);
  const uint8_t* ip_end = input + block_size;
  // "next_emit" is a pointer to the first byte that is not covered by a
  // previous copy. Bytes between "next_emit" and the start of the next copy or
  // the end of the input will be emitted as literal bytes.
  const uint8_t* next_emit = input;

  int last_distance = -1;
  const size_t kInputMarginBytes = 16;
  const size_t kMinMatchLen = 6;
  if (PREDICT_TRUE(block_size >= kInputMarginBytes)) {
    // For the last block, we need to keep a 16 bytes margin so that we can be
    // sure that all distances are at most window size - 16.
    // For all other blocks, we only need to keep a margin of 5 bytes so that
    // we don't go over the block size with a copy.
    const size_t len_limit = std::min(block_size - kMinMatchLen,
                                      input_size - kInputMarginBytes);
    const uint8_t* ip_limit = input + len_limit;

    for (uint32_t next_hash = Hash(++ip, shift); ; ) {
      assert(next_emit < ip);
      // Step 1: Scan forward in the input looking for a 6-byte-long match.
      // If we get close to exhausting the input then goto emit_remainder.
      //
      // Heuristic match skipping: If 32 bytes are scanned with no matches
      // found, start looking only at every other byte. If 32 more bytes are
      // scanned, look at every third byte, etc.. When a match is found,
      // immediately go back to looking at every byte. This is a small loss
      // (~5% performance, ~0.1% density) for compressible data due to more
      // bookkeeping, but for non-compressible data (such as JPEG) it's a huge
      // win since the compressor quickly "realizes" the data is incompressible
      // and doesn't bother looking for matches everywhere.
      //
      // The "skip" variable keeps track of how many bytes there are since the
      // last match; dividing it by 32 (ie. right-shifting by five) gives the
      // number of bytes to move ahead for each iteration.
      uint32_t skip = 32;

      const uint8_t* next_ip = ip;
      const uint8_t* candidate;
      do {
        ip = next_ip;
        uint32_t hash = next_hash;
        assert(hash == Hash(ip, shift));
        uint32_t bytes_between_hash_lookups = skip++ >> 5;
        next_ip = ip + bytes_between_hash_lookups;
        if (PREDICT_FALSE(next_ip > ip_limit)) {
          goto emit_remainder;
        }
        next_hash = Hash(next_ip, shift);
        candidate = ip - last_distance;
        if (IsMatch(ip, candidate)) {
          if (PREDICT_TRUE(candidate < ip)) {
            table[hash] = static_cast<int>(ip - base_ip);
            break;
          }
        }
        candidate = base_ip + table[hash];
        assert(candidate >= base_ip);
        assert(candidate < ip);

        table[hash] = static_cast<int>(ip - base_ip);
      } while (PREDICT_TRUE(!IsMatch(ip, candidate)));

      // Step 2: Emit the found match together with the literal bytes from
      // "next_emit", and then see if we can find a next macth immediately
      // afterwards. Repeat until we find no match for the input
      // without emitting some literal bytes.
      uint64_t input_bytes;

      {
        // We have a 6-byte match at ip, and we need to emit bytes in
        // [next_emit, ip).
        const uint8_t* base = ip;
        size_t matched = 6 + FindMatchLengthWithLimit(
            candidate + 6, ip + 6, static_cast<size_t>(ip_end - ip) - 6);
        ip += matched;
        int distance = static_cast<int>(base - candidate);  /* > 0 */
        int insert = static_cast<int>(base - next_emit);
        assert(0 == memcmp(base, candidate, matched));
        EmitInsertLen(static_cast<uint32_t>(insert), commands);
        memcpy(*literals, next_emit, static_cast<size_t>(insert));
        *literals += insert;
        if (distance == last_distance) {
          **commands = 64;
          ++(*commands);
        } else {
          EmitDistance(static_cast<uint32_t>(distance), commands);
          last_distance = distance;
        }
        EmitCopyLenLastDistance(matched, commands);

        next_emit = ip;
        if (PREDICT_FALSE(ip >= ip_limit)) {
          goto emit_remainder;
        }
        // We could immediately start working at ip now, but to improve
        // compression we first update "table" with the hashes of some positions
        // within the last copy.
        input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 5);
        uint32_t prev_hash = HashBytesAtOffset(input_bytes, 0, shift);
        table[prev_hash] = static_cast<int>(ip - base_ip - 5);
        prev_hash = HashBytesAtOffset(input_bytes, 1, shift);
        table[prev_hash] = static_cast<int>(ip - base_ip - 4);
        prev_hash = HashBytesAtOffset(input_bytes, 2, shift);
        table[prev_hash] = static_cast<int>(ip - base_ip - 3);
        input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 2);
        prev_hash = HashBytesAtOffset(input_bytes, 0, shift);
        table[prev_hash] = static_cast<int>(ip - base_ip - 2);
        prev_hash = HashBytesAtOffset(input_bytes, 1, shift);
        table[prev_hash] = static_cast<int>(ip - base_ip - 1);

        uint32_t cur_hash = HashBytesAtOffset(input_bytes, 2, shift);
        candidate = base_ip + table[cur_hash];
        table[cur_hash] = static_cast<int>(ip - base_ip);
      }

      while (IsMatch(ip, candidate)) {
        // We have a 6-byte match at ip, and no need to emit any
        // literal bytes prior to ip.
        const uint8_t* base = ip;
        size_t matched = 6 + FindMatchLengthWithLimit(
            candidate + 6, ip + 6, static_cast<size_t>(ip_end - ip) - 6);
        ip += matched;
        last_distance = static_cast<int>(base - candidate);  /* > 0 */
        assert(0 == memcmp(base, candidate, matched));
        EmitCopyLen(matched, commands);
        EmitDistance(static_cast<uint32_t>(last_distance), commands);

        next_emit = ip;
        if (PREDICT_FALSE(ip >= ip_limit)) {
          goto emit_remainder;
        }
        // We could immediately start working at ip now, but to improve
        // compression we first update "table" with the hashes of some positions
        // within the last copy.
        input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 5);
        uint32_t prev_hash = HashBytesAtOffset(input_bytes, 0, shift);
        table[prev_hash] = static_cast<int>(ip - base_ip - 5);
        prev_hash = HashBytesAtOffset(input_bytes, 1, shift);
        table[prev_hash] = static_cast<int>(ip - base_ip - 4);
        prev_hash = HashBytesAtOffset(input_bytes, 2, shift);
        table[prev_hash] = static_cast<int>(ip - base_ip - 3);
        input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 2);
        prev_hash = HashBytesAtOffset(input_bytes, 0, shift);
        table[prev_hash] = static_cast<int>(ip - base_ip - 2);
        prev_hash = HashBytesAtOffset(input_bytes, 1, shift);
        table[prev_hash] = static_cast<int>(ip - base_ip - 1);

        uint32_t cur_hash = HashBytesAtOffset(input_bytes, 2, shift);
        candidate = base_ip + table[cur_hash];
        table[cur_hash] = static_cast<int>(ip - base_ip);
      }

      next_hash = Hash(++ip, shift);
    }
  }

emit_remainder:
  assert(next_emit <= ip_end);
  // Emit the remaining bytes as literals.
  if (next_emit < ip_end) {
    const uint32_t insert = static_cast<uint32_t>(ip_end - next_emit);
    EmitInsertLen(insert, commands);
    memcpy(*literals, next_emit, insert);
    *literals += insert;
  }
}

void StoreCommands(const uint8_t* literals, const size_t num_literals,
                   const uint32_t* commands, const size_t num_commands,
                   size_t* storage_ix, uint8_t* storage) {
  uint8_t lit_depths[256] = { 0 };
  uint16_t lit_bits[256] = { 0 };
  uint32_t lit_histo[256] = { 0 };
  for (size_t i = 0; i < num_literals; ++i) {
    ++lit_histo[literals[i]];
  }
  BuildAndStoreHuffmanTreeFast(lit_histo, num_literals,
                               /* max_bits = */ 8,
                               lit_depths, lit_bits,
                               storage_ix, storage);

  uint8_t cmd_depths[128] = { 0 };
  uint16_t cmd_bits[128] = { 0 };
  uint32_t cmd_histo[128] = { 0 };
  for (size_t i = 0; i < num_commands; ++i) {
    ++cmd_histo[commands[i] & 0xff];
  }
  cmd_histo[1] += 1;
  cmd_histo[2] += 1;
  cmd_histo[64] += 1;
  cmd_histo[84] += 1;
  BuildAndStoreCommandPrefixCode(cmd_histo, cmd_depths, cmd_bits,
                                 storage_ix, storage);

  static const uint32_t kNumExtraBits[128] = {
    0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 10, 12, 14, 24,
    0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4,
    0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 10, 24,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
    9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16,
    17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24,
  };
  static const uint32_t kInsertOffset[24] = {
    0, 1, 2, 3, 4, 5, 6, 8, 10, 14, 18, 26, 34, 50, 66, 98, 130, 194, 322, 578,
    1090, 2114, 6210, 22594,
  };

  for (size_t i = 0; i < num_commands; ++i) {
    const uint32_t cmd = commands[i];
    const uint32_t code = cmd & 0xff;
    const uint32_t extra = cmd >> 8;
    WriteBits(cmd_depths[code], cmd_bits[code], storage_ix, storage);
    WriteBits(kNumExtraBits[code], extra, storage_ix, storage);
    if (code < 24) {
      const uint32_t insert = kInsertOffset[code] + extra;
      for (uint32_t j = 0; j < insert; ++j) {
        const uint8_t lit = *literals;
        WriteBits(lit_depths[lit], lit_bits[lit], storage_ix, storage);
        ++literals;
      }
    }
  }
}

bool ShouldCompress(const uint8_t* input, size_t input_size,
                    size_t num_literals) {
  static const double kAcceptableLossForUncompressibleSpeedup = 0.02;
  static const double kMaxRatioOfLiterals =
      1.0 - kAcceptableLossForUncompressibleSpeedup;
  if (num_literals < kMaxRatioOfLiterals * static_cast<double>(input_size)) {
    return true;
  }
  uint32_t literal_histo[256] = { 0 };
  static const uint32_t kSampleRate = 43;
  static const double kMaxEntropy =
      8 * (1.0 - kAcceptableLossForUncompressibleSpeedup);
  const double max_total_bit_cost =
      static_cast<double>(input_size) * kMaxEntropy / kSampleRate;
  for (size_t i = 0; i < input_size; i += kSampleRate) {
    ++literal_histo[input[i]];
  }
  return BitsEntropy(literal_histo, 256) < max_total_bit_cost;
}

void BrotliCompressFragmentTwoPass(const uint8_t* input, size_t input_size,
                                   bool is_last,
                                   uint32_t* command_buf, uint8_t* literal_buf,
                                   int* table, size_t table_size,
                                   size_t* storage_ix, uint8_t* storage) {
  // Save the start of the first block for position and distance computations.
  const uint8_t* base_ip = input;

  while (input_size > 0) {
    size_t block_size = std::min(input_size, kCompressFragmentTwoPassBlockSize);
    uint32_t* commands = command_buf;
    uint8_t* literals = literal_buf;
    CreateCommands(input, block_size, input_size, base_ip, table, table_size,
                   &literals, &commands);
    const size_t num_literals = static_cast<size_t>(literals - literal_buf);
    const size_t num_commands = static_cast<size_t>(commands - command_buf);
    if (ShouldCompress(input, block_size, num_literals)) {
      StoreMetaBlockHeader(block_size, 0, storage_ix, storage);
      // No block splits, no contexts.
      WriteBits(13, 0, storage_ix, storage);
      StoreCommands(literal_buf, num_literals, command_buf, num_commands,
                    storage_ix, storage);
    } else {
      // Since we did not find many backward references and the entropy of
      // the data is close to 8 bits, we can simply emit an uncompressed block.
      // This makes compression speed of uncompressible data about 3x faster.
      StoreMetaBlockHeader(block_size, 1, storage_ix, storage);
      *storage_ix = (*storage_ix + 7u) & ~7u;
      memcpy(&storage[*storage_ix >> 3], input, block_size);
      *storage_ix += block_size << 3;
      storage[*storage_ix >> 3] = 0;
    }
    input += block_size;
    input_size -= block_size;
  }

  if (is_last) {
    WriteBits(1, 1, storage_ix, storage);  // islast
    WriteBits(1, 1, storage_ix, storage);  // isempty
    *storage_ix = (*storage_ix + 7u) & ~7u;
  }
}

}  // namespace brotli