summaryrefslogtreecommitdiffstats
path: root/web/server/h2o/libh2o/deps/klib/khmm.c
blob: 711ade5a2f239c72930cc2d81a9edeebb6c2e693 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
#include <math.h>
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include <stdlib.h>
#include "khmm.h"

// new/delete hmm_par_t

hmm_par_t *hmm_new_par(int m, int n)
{
	hmm_par_t *hp;
	int i;
	assert(m > 0 && n > 0);
	hp = (hmm_par_t*)calloc(1, sizeof(hmm_par_t));
	hp->m = m; hp->n = n;
	hp->a0 = (FLOAT*)calloc(n, sizeof(FLOAT));
	hp->a = (FLOAT**)calloc2(n, n, sizeof(FLOAT));
	hp->e = (FLOAT**)calloc2(m + 1, n, sizeof(FLOAT));
	hp->ae = (FLOAT**)calloc2((m + 1) * n, n, sizeof(FLOAT));
	for (i = 0; i != n; ++i) hp->e[m][i] = 1.0;
	return hp;
}
void hmm_delete_par(hmm_par_t *hp)
{
	int i;
	if (hp == 0) return;
	for (i = 0; i != hp->n; ++i) free(hp->a[i]);
	for (i = 0; i <= hp->m; ++i) free(hp->e[i]);
	for (i = 0; i < (hp->m + 1) * hp->n; ++i) free(hp->ae[i]);
	free(hp->a); free(hp->e); free(hp->a0); free(hp->ae);
	free(hp);
}

// new/delete hmm_data_t

hmm_data_t *hmm_new_data(int L, const char *seq, const hmm_par_t *hp)
{
	hmm_data_t *hd;
	hd = (hmm_data_t*)calloc(1, sizeof(hmm_data_t));
	hd->L = L;
	hd->seq = (char*)malloc(L + 1);
	memcpy(hd->seq + 1, seq, L);
	return hd;
}
void hmm_delete_data(hmm_data_t *hd)
{
	int i;
	if (hd == 0) return;
	for (i = 0; i <= hd->L; ++i) {
		if (hd->f) free(hd->f[i]);
		if (hd->b) free(hd->b[i]);
	}
	free(hd->f); free(hd->b); free(hd->s); free(hd->v); free(hd->p); free(hd->seq);
	free(hd);
}

// new/delete hmm_exp_t

hmm_exp_t *hmm_new_exp(const hmm_par_t *hp)
{
	hmm_exp_t *he;
	assert(hp);
	he = (hmm_exp_t*)calloc(1, sizeof(hmm_exp_t));
	he->m = hp->m; he->n = hp->n;
	he->A0 = (FLOAT*)calloc(hp->n, sizeof(FLOAT));
	he->A = (FLOAT**)calloc2(hp->n, hp->n, sizeof(FLOAT));
	he->E = (FLOAT**)calloc2(hp->m + 1, hp->n, sizeof(FLOAT));
	return he;
}
void hmm_delete_exp(hmm_exp_t *he)
{
	int i;
	if (he == 0) return;
	for (i = 0; i != he->n; ++i) free(he->A[i]);
	for (i = 0; i <= he->m; ++i) free(he->E[i]);
	free(he->A); free(he->E); free(he->A0);
	free(he);
}

// Viterbi algorithm

FLOAT hmm_Viterbi(const hmm_par_t *hp, hmm_data_t *hd)
{
	FLOAT **la, **le, *preV, *curV, max;
	int **Vmax, max_l; // backtrace matrix
	int k, l, b, u;
	
	if (hd->v) free(hd->v);
	hd->v = (int*)calloc(hd->L+1, sizeof(int));
	la = (FLOAT**)calloc2(hp->n, hp->n, sizeof(FLOAT));
	le = (FLOAT**)calloc2(hp->m + 1, hp->n, sizeof(FLOAT));
	Vmax = (int**)calloc2(hd->L+1, hp->n, sizeof(int));
	preV = (FLOAT*)malloc(sizeof(FLOAT) * hp->n);
	curV = (FLOAT*)malloc(sizeof(FLOAT) * hp->n);
	for (k = 0; k != hp->n; ++k)
		for (l = 0; l != hp->n; ++l)
			la[k][l] = log(hp->a[l][k]); // this is not a bug
	for (b = 0; b != hp->m; ++b)
		for (k = 0; k != hp->n; ++k)
			le[b][k] = log(hp->e[b][k]);
	for (k = 0; k != hp->n; ++k) le[hp->m][k] = 0.0;
	// V_k(1)
	for (k = 0; k != hp->n; ++k) {
		preV[k] = le[(int)hd->seq[1]][k] + log(hp->a0[k]);
		Vmax[1][k] = 0;
	}
	// all the rest
	for (u = 2; u <= hd->L; ++u) {
		FLOAT *tmp, *leu = le[(int)hd->seq[u]];
		for (k = 0; k != hp->n; ++k) {
			FLOAT *laa = la[k];
			for (l = 0, max = -HMM_INF, max_l = -1; l != hp->n; ++l) {
				if (max < preV[l] + laa[l]) {
					max = preV[l] + laa[l];
					max_l = l;
				}
			}
			assert(max_l >= 0); // cannot be zero
			curV[k] = leu[k] + max;
			Vmax[u][k] = max_l;
		}
		tmp = curV; curV = preV; preV = tmp; // swap
	}
	// backtrace
	for (k = 0, max_l = -1, max = -HMM_INF; k != hp->n; ++k) {
		if (max < preV[k]) {
			max = preV[k]; max_l = k;
		}
	}
	assert(max_l >= 0); // cannot be zero
	hd->v[hd->L] = max_l;
	for (u = hd->L; u >= 1; --u)
		hd->v[u-1] = Vmax[u][hd->v[u]];
	for (k = 0; k != hp->n; ++k) free(la[k]);
	for (b = 0; b < hp->m; ++b) free(le[b]);
	for (u = 0; u <= hd->L; ++u) free(Vmax[u]);
	free(la); free(le); free(Vmax); free(preV); free(curV);
	hd->status |= HMM_VITERBI;
	return max;
}

// forward algorithm

void hmm_forward(const hmm_par_t *hp, hmm_data_t *hd)
{
	FLOAT sum, tmp, **at;
	int u, k, l;
	int n, m, L;
	assert(hp && hd);
	// allocate memory for hd->f and hd->s
	n = hp->n; m = hp->m; L = hd->L;
	if (hd->s) free(hd->s);
	if (hd->f) { 
		for (k = 0; k <= hd->L; ++k) free(hd->f[k]);
		free(hd->f);
	}
	hd->f = (FLOAT**)calloc2(hd->L+1, hp->n, sizeof(FLOAT));
	hd->s = (FLOAT*)calloc(hd->L+1, sizeof(FLOAT));
	hd->status &= ~(unsigned)HMM_FORWARD;
	// at[][] array helps to improve the cache efficiency
	at = (FLOAT**)calloc2(n, n, sizeof(FLOAT));
	// transpose a[][]
	for (k = 0; k != n; ++k)
		for (l = 0; l != n; ++l)
			at[k][l] = hp->a[l][k];
	// f[0], but it should never be used
	hd->s[0] = 1.0;
	for (k = 0; k != n; ++k) hd->f[0][k] = 0.0;
	// f[1]
	for (k = 0, sum = 0.0; k != n; ++k)
		sum += (hd->f[1][k] = hp->a0[k] * hp->e[(int)hd->seq[1]][k]);
	for (k = 0; k != n; ++k) hd->f[1][k] /= sum;
	hd->s[1] = sum;
	// f[2..hmmL], the core loop
	for (u = 2; u <= L; ++u) {
		FLOAT *fu = hd->f[u], *fu1 = hd->f[u-1], *eu = hp->e[(int)hd->seq[u]];
		for (k = 0, sum = 0.0; k != n; ++k) {
			FLOAT *aa = at[k];
			for (l = 0, tmp = 0.0; l != n; ++l) tmp += fu1[l] * aa[l];
			sum += (fu[k] = eu[k] * tmp);
		}
		for (k = 0; k != n; ++k) fu[k] /= sum;
		hd->s[u] = sum;
	}
	// free at array
	for (k = 0; k != hp->n; ++k) free(at[k]);
	free(at);
	hd->status |= HMM_FORWARD;
}

//  precalculate hp->ae

void hmm_pre_backward(hmm_par_t *hp)
{
	int m, n, b, k, l;
	assert(hp);
	m = hp->m; n = hp->n;
	for (b = 0; b <= m; ++b) {
		for (k = 0; k != n; ++k) {
			FLOAT *p = hp->ae[b * hp->n + k];
			for (l = 0; l != n; ++l)
				p[l] = hp->e[b][l] * hp->a[k][l];
		}
	}
}

// backward algorithm

void hmm_backward(const hmm_par_t *hp, hmm_data_t *hd)
{
	FLOAT tmp;
	int k, l, u;
	int m, n, L;
	assert(hp && hd);
	assert(hd->status & HMM_FORWARD);
	// allocate memory for hd->b
	m = hp->m; n = hp->n; L = hd->L;
	if (hd->b) { 
		for (k = 0; k <= hd->L; ++k) free(hd->b[k]);
		free(hd->b);
	}
	hd->status &= ~(unsigned)HMM_BACKWARD;
	hd->b = (FLOAT**)calloc2(L+1, hp->n, sizeof(FLOAT));
	// b[L]
	for (k = 0; k != hp->n; ++k) hd->b[L][k] = 1.0 / hd->s[L];
	// b[1..L-1], the core loop
	for (u = L-1; u >= 1; --u) {
		FLOAT *bu1 = hd->b[u+1], **p = hp->ae + (int)hd->seq[u+1] * n;
		for (k = 0; k != n; ++k) {
			FLOAT *q = p[k];
			for (l = 0, tmp = 0.0; l != n; ++l) tmp += q[l] * bu1[l];
			hd->b[u][k] = tmp / hd->s[u];
		}
	}
	hd->status |= HMM_BACKWARD;
	for (l = 0, tmp = 0.0; l != n; ++l)
		tmp += hp->a0[l] * hd->b[1][l] * hp->e[(int)hd->seq[1]][l];
	if (tmp > 1.0 + 1e-6 || tmp < 1.0 - 1e-6) // in theory, tmp should always equal to 1
		fprintf(stderr, "++ Underflow may have happened (%lg).\n", tmp);
}

// log-likelihood of the observation

FLOAT hmm_lk(const hmm_data_t *hd)
{
    FLOAT sum = 0.0, prod = 1.0;
	int u, L;
	L = hd->L;
	assert(hd->status & HMM_FORWARD);
	for (u = 1; u <= L; ++u) {
		prod *= hd->s[u];
		if (prod < HMM_TINY || prod >= 1.0/HMM_TINY) { // reset
			sum += log(prod);
			prod = 1.0;
		}
	}
	sum += log(prod);
	return sum;
}

// posterior decoding

void hmm_post_decode(const hmm_par_t *hp, hmm_data_t *hd)
{
	int u, k;
	assert(hd->status && HMM_BACKWARD);
	if (hd->p) free(hd->p);
	hd->p = (int*)calloc(hd->L + 1, sizeof(int));
	for (u = 1; u <= hd->L; ++u) {
		FLOAT prob, max, *fu = hd->f[u], *bu = hd->b[u], su = hd->s[u];
		int max_k;
		for (k = 0, max = -1.0, max_k = -1; k != hp->n; ++k) {
			if (max < (prob = fu[k] * bu[k] * su)) {
				max = prob; max_k = k;
			}
		}
		assert(max_k >= 0);
		hd->p[u] = max_k;
	}
	hd->status |= HMM_POSTDEC;
}

// posterior probability of states

FLOAT hmm_post_state(const hmm_par_t *hp, const hmm_data_t *hd, int u, FLOAT *prob)
{
	FLOAT sum = 0.0, ss = hd->s[u], *fu = hd->f[u], *bu = hd->b[u];
	int k;
	for (k = 0; k != hp->n; ++k)
		sum += (prob[k] = fu[k] * bu[k] * ss);
	return sum; // in theory, this should always equal to 1.0
}

// expected counts

hmm_exp_t *hmm_expect(const hmm_par_t *hp, const hmm_data_t *hd)
{
	int k, l, u, b, m, n;
	hmm_exp_t *he;
	assert(hd->status & HMM_BACKWARD);
	he = hmm_new_exp(hp);
	// initialization
	m = hp->m; n = hp->n;
	for (k = 0; k != n; ++k)
		for (l = 0; l != n; ++l) he->A[k][l] = HMM_TINY;
	for (b = 0; b <= m; ++b)
		for (l = 0; l != n; ++l) he->E[b][l] = HMM_TINY;
	// calculate A_{kl} and E_k(b), k,l\in[0,n)
	for (u = 1; u < hd->L; ++u) {
		FLOAT *fu = hd->f[u], *bu = hd->b[u], *bu1 = hd->b[u+1], ss = hd->s[u];
		FLOAT *Ec = he->E[(int)hd->seq[u]], **p = hp->ae + (int)hd->seq[u+1] * n;
		for (k = 0; k != n; ++k) {
			FLOAT *q = p[k], *AA = he->A[k], fuk = fu[k];
			for (l = 0; l != n; ++l) // this is cache-efficient
				AA[l] += fuk * q[l] * bu1[l];
			Ec[k] += fuk * bu[k] * ss;
		}
	}
	// calculate A0_l
	for (l = 0; l != n; ++l)
		he->A0[l] += hp->a0[l] * hp->e[(int)hd->seq[1]][l] * hd->b[1][l];
	return he;
}

FLOAT hmm_Q0(const hmm_par_t *hp, hmm_exp_t *he)
{
	int k, l, b;
	FLOAT sum = 0.0;
	for (k = 0; k != hp->n; ++k) {
		FLOAT tmp;
		for (b = 0, tmp = 0.0; b != hp->m; ++b) tmp += he->E[b][k];
		for (b = 0; b != hp->m; ++b)
			sum += he->E[b][k] * log(he->E[b][k] / tmp);
	}
	for (k = 0; k != hp->n; ++k) {
		FLOAT tmp, *A = he->A[k];
		for (l = 0, tmp = 0.0; l != hp->n; ++l) tmp += A[l];
		for (l = 0; l != hp->n; ++l) sum += A[l] * log(A[l] / tmp);
	}
	return (he->Q0 = sum);
}

// add he0 to he1

void hmm_add_expect(const hmm_exp_t *he0, hmm_exp_t *he1)
{
	int b, k, l;
	assert(he0->m == he1->m && he0->n == he1->n);
	for (k = 0; k != he1->n; ++k) {
		he1->A0[k] += he0->A0[k];
		for (l = 0; l != he1->n; ++l)
			he1->A[k][l] += he0->A[k][l];
	}
	for (b = 0; b != he1->m; ++b) {
		for (l = 0; l != he1->n; ++l)
			he1->E[b][l] += he0->E[b][l];
	}
}

// the EM-Q function

FLOAT hmm_Q(const hmm_par_t *hp, const hmm_exp_t *he)
{
	FLOAT sum = 0.0;
	int bb, k, l;
	for (bb = 0; bb != he->m; ++bb) {
		FLOAT *eb = hp->e[bb], *Eb = he->E[bb];
		for (k = 0; k != hp->n; ++k) {
			if (eb[k] <= 0.0) return -HMM_INF;
			sum += Eb[k] * log(eb[k]);
		}
	}
	for (k = 0; k != he->n; ++k) {
		FLOAT *Ak = he->A[k], *ak = hp->a[k];
		for (l = 0; l != he->n; ++l) {
			if (ak[l] <= 0.0) return -HMM_INF;
			sum += Ak[l] * log(ak[l]);
		}
	}
	return (sum -= he->Q0);
}

// simulate sequence

char *hmm_simulate(const hmm_par_t *hp, int L)
{
	int i, k, l, b;
	FLOAT x, y, **et;
	char *seq;
	seq = (char*)calloc(L+1, 1);
	// calculate the transpose of hp->e[][]
	et = (FLOAT**)calloc2(hp->n, hp->m, sizeof(FLOAT));
	for (k = 0; k != hp->n; ++k)
		for (b = 0; b != hp->m; ++b)
			et[k][b] = hp->e[b][k];
	// the initial state, drawn from a0[]
	x = drand48();
	for (k = 0, y = 0.0; k != hp->n; ++k) {
		y += hp->a0[k];
		if (y >= x) break;
	}
	// main loop
	for (i = 0; i != L; ++i) {
		FLOAT *el, *ak = hp->a[k];
		x = drand48();
		for (l = 0, y = 0.0; l != hp->n; ++l) {
			y += ak[l];
			if (y >= x) break;
		}
		el = et[l];
		x = drand48();
		for (b = 0, y = 0.0; b != hp->m; ++b) {
			y += el[b];
			if (y >= x) break;
		} 
		seq[i] = b;
		k = l;
	}
	for (k = 0; k != hp->n; ++k) free(et[k]);
	free(et);
	return seq;
}