summaryrefslogtreecommitdiffstats
path: root/web/server/h2o/libh2o/deps/picotls/deps/cifra/src/sha256.c
blob: 8ecef1685610b9c2402693155fbba2622e1bd185 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/*
 * cifra - embedded cryptography library
 * Written in 2014 by Joseph Birr-Pixton <jpixton@gmail.com>
 *
 * To the extent possible under law, the author(s) have dedicated all
 * copyright and related and neighboring rights to this software to the
 * public domain worldwide. This software is distributed without any
 * warranty.
 *
 * You should have received a copy of the CC0 Public Domain Dedication
 * along with this software. If not, see
 * <http://creativecommons.org/publicdomain/zero/1.0/>.
 */

#include <string.h>

#include "sha2.h"
#include "blockwise.h"
#include "bitops.h"
#include "handy.h"
#include "tassert.h"

static const uint32_t K[64] = {
  0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
  0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
  0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
  0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
  0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
  0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
  0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
  0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
  0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
  0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
  0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
  0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
  0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
  0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
  0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
  0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};

# define CH(x, y, z) (((x) & (y)) ^ (~(x) & (z)))
# define MAJ(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
# define BSIG0(x) (rotr32((x), 2) ^ rotr32((x), 13) ^ rotr32((x), 22))
# define BSIG1(x) (rotr32((x), 6) ^ rotr32((x), 11) ^ rotr32((x), 25))
# define SSIG0(x) (rotr32((x), 7) ^ rotr32((x), 18) ^ ((x) >> 3))
# define SSIG1(x) (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10))

void cf_sha256_init(cf_sha256_context *ctx)
{
  memset(ctx, 0, sizeof *ctx);
  ctx->H[0] = 0x6a09e667;
  ctx->H[1] = 0xbb67ae85;
  ctx->H[2] = 0x3c6ef372;
  ctx->H[3] = 0xa54ff53a;
  ctx->H[4] = 0x510e527f;
  ctx->H[5] = 0x9b05688c;
  ctx->H[6] = 0x1f83d9ab;
  ctx->H[7] = 0x5be0cd19;
}

void cf_sha224_init(cf_sha256_context *ctx)
{
  memset(ctx, 0, sizeof *ctx);
  ctx->H[0] = 0xc1059ed8;
  ctx->H[1] = 0x367cd507;
  ctx->H[2] = 0x3070dd17;
  ctx->H[3] = 0xf70e5939;
  ctx->H[4] = 0xffc00b31;
  ctx->H[5] = 0x68581511;
  ctx->H[6] = 0x64f98fa7;
  ctx->H[7] = 0xbefa4fa4;
}

static void sha256_update_block(void *vctx, const uint8_t *inp)
{
  cf_sha256_context *ctx = vctx;

  /* This is a 16-word window into the whole W array. */
  uint32_t W[16];

  uint32_t a = ctx->H[0],
           b = ctx->H[1],
           c = ctx->H[2],
           d = ctx->H[3],
           e = ctx->H[4],
           f = ctx->H[5],
           g = ctx->H[6],
           h = ctx->H[7],
           Wt;

  size_t t;
  for (t = 0; t < 64; t++)
  {
    /* For W[0..16] we process the input into W.
     * For W[16..64] we compute the next W value:
     *
     * W[t] = SSIG1(W[t - 2]) + W[t - 7] + SSIG0(W[t - 15]) + W[t - 16];
     *
     * But all W indices are reduced mod 16 into our window.
     */
    if (t < 16)
    {
      W[t] = Wt = read32_be(inp);
      inp += 4;
    } else {
      Wt = SSIG1(W[(t - 2) % 16]) +
           W[(t - 7) % 16] +
           SSIG0(W[(t - 15) % 16]) +
           W[(t - 16) % 16];
      W[t % 16] = Wt;
    }

    uint32_t T1 = h + BSIG1(e) + CH(e, f, g) + K[t] + Wt;
    uint32_t T2 = BSIG0(a) + MAJ(a, b, c);
    h = g;
    g = f;
    f = e;
    e = d + T1;
    d = c;
    c = b;
    b = a;
    a = T1 + T2;
  }

  ctx->H[0] += a;
  ctx->H[1] += b;
  ctx->H[2] += c;
  ctx->H[3] += d;
  ctx->H[4] += e;
  ctx->H[5] += f;
  ctx->H[6] += g;
  ctx->H[7] += h;

  ctx->blocks++;
}

void cf_sha256_update(cf_sha256_context *ctx, const void *data, size_t nbytes)
{
  cf_blockwise_accumulate(ctx->partial, &ctx->npartial, sizeof ctx->partial,
                          data, nbytes,
                          sha256_update_block, ctx);
}

void cf_sha224_update(cf_sha256_context *ctx, const void *data, size_t nbytes)
{
  cf_sha256_update(ctx, data, nbytes);
}

void cf_sha256_digest(const cf_sha256_context *ctx, uint8_t hash[CF_SHA256_HASHSZ])
{
  /* We copy the context, so the finalisation doesn't effect the caller's
   * context.  This means the caller can do:
   *
   * x = init()
   * x.update('hello')
   * h1 = x.digest()
   * x.update(' world')
   * h2 = x.digest()
   *
   * to get h1 = H('hello') and h2 = H('hello world')
   *
   * This wouldn't work if we applied MD-padding to *ctx.
   */

  cf_sha256_context ours = *ctx;
  cf_sha256_digest_final(&ours, hash);
}

void cf_sha256_digest_final(cf_sha256_context *ctx, uint8_t hash[CF_SHA256_HASHSZ])
{
  uint64_t digested_bytes = ctx->blocks;
  digested_bytes = digested_bytes * CF_SHA256_BLOCKSZ + ctx->npartial;
  uint64_t digested_bits = digested_bytes * 8;

  size_t padbytes = CF_SHA256_BLOCKSZ - ((digested_bytes + 8) % CF_SHA256_BLOCKSZ);

  /* Hash 0x80 00 ... block first. */
  cf_blockwise_acc_pad(ctx->partial, &ctx->npartial, sizeof ctx->partial,
                       0x80, 0x00, 0x00, padbytes,
                       sha256_update_block, ctx);

  /* Now hash length. */
  uint8_t buf[8];
  write64_be(digested_bits, buf);
  cf_sha256_update(ctx, buf, 8);

  /* We ought to have got our padding calculation right! */
  assert(ctx->npartial == 0);

  write32_be(ctx->H[0], hash + 0);
  write32_be(ctx->H[1], hash + 4);
  write32_be(ctx->H[2], hash + 8);
  write32_be(ctx->H[3], hash + 12);
  write32_be(ctx->H[4], hash + 16);
  write32_be(ctx->H[5], hash + 20);
  write32_be(ctx->H[6], hash + 24);
  write32_be(ctx->H[7], hash + 28);
  
  memset(ctx, 0, sizeof *ctx);
}

void cf_sha224_digest(const cf_sha256_context *ctx, uint8_t hash[CF_SHA224_HASHSZ])
{
  uint8_t full[CF_SHA256_HASHSZ];
  cf_sha256_digest(ctx, full);
  memcpy(hash, full, CF_SHA224_HASHSZ);
}

void cf_sha224_digest_final(cf_sha256_context *ctx, uint8_t hash[CF_SHA224_HASHSZ])
{
  uint8_t full[CF_SHA256_HASHSZ];
  cf_sha256_digest_final(ctx, full);
  memcpy(hash, full, CF_SHA224_HASHSZ);
}

const cf_chash cf_sha224 = {
  .hashsz = CF_SHA224_HASHSZ,
  .blocksz = CF_SHA256_BLOCKSZ,
  .init = (cf_chash_init) cf_sha224_init,
  .update = (cf_chash_update) cf_sha224_update,
  .digest = (cf_chash_digest) cf_sha224_digest
};

const cf_chash cf_sha256 = {
  .hashsz = CF_SHA256_HASHSZ,
  .blocksz = CF_SHA256_BLOCKSZ,
  .init = (cf_chash_init) cf_sha256_init,
  .update = (cf_chash_update) cf_sha256_update,
  .digest = (cf_chash_digest) cf_sha256_digest
};