1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
|
/***************************************************************************
* FPEngine.cc -- Routines used for IPv6 OS detection via TCP/IP *
* fingerprinting. * For more information on how this works in Nmap, see *
* https://nmap.org/osdetect/ *
* *
***********************IMPORTANT NMAP LICENSE TERMS************************
*
* The Nmap Security Scanner is (C) 1996-2023 Nmap Software LLC ("The Nmap
* Project"). Nmap is also a registered trademark of the Nmap Project.
*
* This program is distributed under the terms of the Nmap Public Source
* License (NPSL). The exact license text applying to a particular Nmap
* release or source code control revision is contained in the LICENSE
* file distributed with that version of Nmap or source code control
* revision. More Nmap copyright/legal information is available from
* https://nmap.org/book/man-legal.html, and further information on the
* NPSL license itself can be found at https://nmap.org/npsl/ . This
* header summarizes some key points from the Nmap license, but is no
* substitute for the actual license text.
*
* Nmap is generally free for end users to download and use themselves,
* including commercial use. It is available from https://nmap.org.
*
* The Nmap license generally prohibits companies from using and
* redistributing Nmap in commercial products, but we sell a special Nmap
* OEM Edition with a more permissive license and special features for
* this purpose. See https://nmap.org/oem/
*
* If you have received a written Nmap license agreement or contract
* stating terms other than these (such as an Nmap OEM license), you may
* choose to use and redistribute Nmap under those terms instead.
*
* The official Nmap Windows builds include the Npcap software
* (https://npcap.com) for packet capture and transmission. It is under
* separate license terms which forbid redistribution without special
* permission. So the official Nmap Windows builds may not be redistributed
* without special permission (such as an Nmap OEM license).
*
* Source is provided to this software because we believe users have a
* right to know exactly what a program is going to do before they run it.
* This also allows you to audit the software for security holes.
*
* Source code also allows you to port Nmap to new platforms, fix bugs, and add
* new features. You are highly encouraged to submit your changes as a Github PR
* or by email to the dev@nmap.org mailing list for possible incorporation into
* the main distribution. Unless you specify otherwise, it is understood that
* you are offering us very broad rights to use your submissions as described in
* the Nmap Public Source License Contributor Agreement. This is important
* because we fund the project by selling licenses with various terms, and also
* because the inability to relicense code has caused devastating problems for
* other Free Software projects (such as KDE and NASM).
*
* The free version of Nmap is distributed in the hope that it will be
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Warranties,
* indemnification and commercial support are all available through the
* Npcap OEM program--see https://nmap.org/oem/
*
***************************************************************************/
/* $Id$ */
#include "FPEngine.h"
#include "Target.h"
#include "FingerPrintResults.h"
#include "NmapOps.h"
#include "nmap_error.h"
#include "osscan.h"
#include "linear.h"
#include "FPModel.h"
#include "tcpip.h"
#include "string_pool.h"
extern NmapOps o;
#ifdef WIN32
/* Need DnetName2PcapName */
#include "libnetutil/netutil.h"
/* from libdnet's intf-win32.c */
extern "C" int g_has_npcap_loopback;
#endif
#include <math.h>
/******************************************************************************
* Globals. *
******************************************************************************/
/* This is the global network controller. FPHost classes use it to request
* network resources and schedule packet transmissions. */
FPNetworkControl global_netctl;
/******************************************************************************
* Implementation of class FPNetworkControl. *
******************************************************************************/
FPNetworkControl::FPNetworkControl() {
memset(&this->nsp, 0, sizeof(nsock_pool));
memset(&this->pcap_nsi, 0, sizeof(pcap_nsi));
memset(&this->pcap_ev_id, 0, sizeof(nsock_event_id));
this->nsock_init = false;
this->rawsd = -1;
this->probes_sent = 0;
this->responses_recv = 0;
this->probes_timedout = 0;
this->cc_cwnd = 0;
this->cc_ssthresh = 0;
}
FPNetworkControl::~FPNetworkControl() {
if (this->nsock_init) {
nsock_event_cancel(this->nsp, this->pcap_ev_id, 0);
nsock_pool_delete(this->nsp);
this->nsock_init = false;
}
}
/* (Re)-Initialize object's state (default parameter setup and nsock
* initialization). */
void FPNetworkControl::init(const char *ifname, devtype iftype) {
/* Init congestion control parameters */
this->cc_init();
/* If there was a previous nsock pool, delete it */
if (this->pcap_nsi) {
nsock_iod_delete(this->pcap_nsi, NSOCK_PENDING_SILENT);
}
if (this->nsock_init) {
nsock_event_cancel(this->nsp, this->pcap_ev_id, 0);
nsock_pool_delete(this->nsp);
}
/* Create a new nsock pool */
if ((this->nsp = nsock_pool_new(NULL)) == NULL)
fatal("Unable to obtain an Nsock pool");
nmap_set_nsock_logger();
nmap_adjust_loglevel(o.packetTrace());
nsock_pool_set_device(nsp, o.device);
if (o.proxy_chain)
nsock_pool_set_proxychain(this->nsp, o.proxy_chain);
/* Allow broadcast addresses */
nsock_pool_set_broadcast(this->nsp, 1);
/* Allocate an NSI for packet capture */
this->pcap_nsi = nsock_iod_new(this->nsp, NULL);
this->first_pcap_scheduled = false;
/* Flag it as already initialized so we free this nsp next time */
this->nsock_init = true;
/* Obtain raw socket or check that we can obtain an eth descriptor. */
if ((o.sendpref & PACKET_SEND_ETH) && (iftype == devt_ethernet
#ifdef WIN32
|| (g_has_npcap_loopback && iftype == devt_loopback)
#endif
) && ifname != NULL) {
/* We don't need to store the eth handler because FPProbes come with a
* suitable one (FPProbes::getEthernet()), we just attempt to obtain one
* to see if it fails. */
if (eth_open_cached(ifname) == NULL)
fatal("dnet: failed to open device %s", ifname);
this->rawsd = -1;
} else {
#ifdef WIN32
win32_fatal_raw_sockets(ifname);
#endif
if (this->rawsd >= 0)
close(this->rawsd);
rawsd = nmap_raw_socket();
if (rawsd < 0)
pfatal("Couldn't obtain raw socket in %s", __func__);
}
/* De-register existing callers */
while (this->callers.size() > 0) {
this->callers.pop_back();
}
return;
}
/* This function initializes the controller's congestion control parameters.
* The network controller uses TCP's Slow Start and Congestion Avoidance
* algorithms from RFC 5681 (slightly modified for convenience).
*
* As the OS detection process does not open full TCP connections, we can't just
* use ACKs (or the lack of ACKs) to increase or decrease the congestion window
* so we use probe responses. Every time we get a response to an OS detection
* probe, we treat it as if it was a TCP ACK in TCP's congestion control.
*
* Note that the initial Congestion Window is set to the number of timed
* probes that we send to each target. This is necessary since we need to
* know for sure that we can send that many packets in order to transmit them.
* Otherwise, we could fail to deliver the probes 100ms apart. */
int FPNetworkControl::cc_init() {
this->probes_sent = 0;
this->responses_recv = 0;
this->probes_timedout = 0;
this->cc_cwnd = OSSCAN_INITIAL_CWND;
this->cc_ssthresh = OSSCAN_INITIAL_SSTHRESH;
return OP_SUCCESS;
}
/* This method is used to indicate that we have scheduled the transmission of
* one or more packets. This is used in congestion control to determine the
* number of outstanding probes (number of probes sent but not answered yet)
* and therefore, the effective transmission window. @param pkts indicates the
* number of packets that were scheduled. Returns OP_SUCCESS on success and
* OP_FAILURE in case of error. */
int FPNetworkControl::cc_update_sent(int pkts = 1) {
if (pkts <= 0)
return OP_FAILURE;
this->probes_sent+=pkts;
return OP_SUCCESS;
}
/* This method is used to indicate that a drop has occurred. In TCP, drops are
* detected by the absence of an ACK. However, we can't use that, since it is
* very likely that our targets do not respond to some of our OS detection
* probes intentionally. For this reason, we consider that a drop has occurred
* when we receive a response for a probe that has already suffered one
* retransmission (first transmission got dropped in transit, some later
* transmission made it to the host and it responded). So when we detect a drop
* we do the same as TCP, adjust the congestion window and the slow start
* threshold. */
int FPNetworkControl::cc_report_drop() {
/* FROM RFC 5681
When a TCP sender detects segment loss using the retransmission timer
and the given segment has not yet been resent by way of the
retransmission timer, the value of ssthresh MUST be set to no more
than the value given in equation (4):
ssthresh = max (FlightSize / 2, 2*SMSS) (4)
where, as discussed above, FlightSize is the amount of outstanding
data in the network.
On the other hand, when a TCP sender detects segment loss using the
retransmission timer and the given segment has already been
retransmitted by way of the retransmission timer at least once, the
value of ssthresh is held constant.
*/
int probes_outstanding = this->probes_sent - this->responses_recv - this->probes_timedout;
this->cc_ssthresh = (float)MAX(probes_outstanding, OSSCAN_INITIAL_CWND);
this->cc_cwnd = OSSCAN_INITIAL_CWND;
return OP_SUCCESS;
}
/* This method is used to indicate that a response to a previous probe was
* received. For us this is like getting and ACK in TCP congestion control, so
* we update the congestion window (increase by one packet if we are in slow
* start or increase it by a small percentage of a packet if we are in
* congestion avoidance). */
int FPNetworkControl::cc_update_received() {
this->responses_recv++;
/* If we are in Slow Start, increment congestion window by one packet.
* (Note that we treat probe responses the same way TCP CC treats ACKs). */
if (this->cc_cwnd < this->cc_ssthresh) {
this->cc_cwnd += 1;
/* Otherwise we are in Congestion Avoidance and CWND is incremented slowly,
* approximately one packet per RTT */
} else {
this->cc_cwnd = this->cc_cwnd + 1/this->cc_cwnd;
}
if (o.debugging > 3) {
log_write(LOG_PLAIN, "[FPNetworkControl] Congestion Control Parameters: cwnd=%f ssthresh=%f sent=%d recv=%d tout=%d outstanding=%d\n",
this->cc_cwnd, this->cc_ssthresh, this->probes_sent, this->responses_recv, this->probes_timedout,
this->probes_sent - this->responses_recv - this->probes_timedout);
}
return OP_SUCCESS;
}
/* This method is public and can be called by FPHosts to inform the controller
* that a probe has experienced a final timeout. In other words, that no
* response was received for the probe after doing the necessary retransmissions
* and waiting for the RTO. This is used to decrease the number of outstanding
* probes. Otherwise, if no host responded to the probes, the effective
* transmission window could reach zero and prevent new probes from being sent,
* clogging the engine. */
int FPNetworkControl::cc_report_final_timeout() {
this->probes_timedout++;
return OP_SUCCESS;
}
/* This method is used by FPHosts to request permission to transmit a number of
* probes. Permission is granted if the current congestion window allows the
* transmission of new probes. It returns true if permission is granted and
* false if it is denied. */
bool FPNetworkControl::request_slots(size_t num_packets) {
int probes_outstanding = this->probes_sent - this->responses_recv - this->probes_timedout;
if (o.debugging > 3)
log_write(LOG_PLAIN, "[FPNetworkControl] Slot request for %u packets. ProbesOutstanding=%d cwnd=%f ssthresh=%f\n",
(unsigned int)num_packets, probes_outstanding, this->cc_cwnd, this->cc_ssthresh);
/* If we still have room for more outstanding probes, let the caller
* schedule transmissions. */
if ((probes_outstanding + num_packets) <= this->cc_cwnd) {
this->cc_update_sent(num_packets);
return true;
}
return false;
}
/* This method lets FPHosts register themselves in the network controller so
* the controller can call them back every time a packet they are interested
* in is captured.*/
int FPNetworkControl::register_caller(FPHost *newcaller) {
this->callers.push_back(newcaller);
return OP_SUCCESS;
}
/* This method lets FPHosts unregister themselves in the network controller so
* the controller does not call them back again. This is called by hosts that
* have already finished their OS detection. */
int FPNetworkControl::unregister_caller(FPHost *oldcaller) {
for (size_t i = 0; i < this->callers.size(); i++) {
if (this->callers[i] == oldcaller) {
this->callers.erase(this->callers.begin() + i);
return OP_SUCCESS;
}
}
return OP_FAILURE;
}
/* This method gets the controller ready for packet capture. Basically it
* obtains a pcap descriptor from nsock and sets an appropriate BPF filter. */
int FPNetworkControl::setup_sniffer(const char *iface, const char *bpf_filter) {
char pcapdev[128];
int rc;
#ifdef WIN32
/* Nmap normally uses device names obtained through dnet for interfaces, but
Pcap has its own naming system. So the conversion is done here */
if (!DnetName2PcapName(iface, pcapdev, sizeof(pcapdev))) {
/* Oh crap -- couldn't find the corresponding dev apparently. Let's just go
with what we have then ... */
Strncpy(pcapdev, iface, sizeof(pcapdev));
}
#else
Strncpy(pcapdev, iface, sizeof(pcapdev));
#endif
/* Obtain a pcap descriptor */
rc = nsock_pcap_open(this->nsp, this->pcap_nsi, pcapdev, 8192, 0, bpf_filter);
if (rc)
fatal("Error opening capture device %s\n", pcapdev);
/* Store the pcap NSI inside the pool so we can retrieve it inside a callback */
nsock_pool_set_udata(this->nsp, (void *)&(this->pcap_nsi));
return OP_SUCCESS;
}
/* This method makes the controller process pending events (like packet
* transmissions or packet captures). */
void FPNetworkControl::handle_events() {
nmap_adjust_loglevel(o.packetTrace());
nsock_loop(nsp, 50);
}
/* This method lets FPHosts to schedule the transmission of an OS detection
* probe. It takes an FPProbe pointer and the amount of milliseconds the
* controller should wait before injecting the probe into the wire. */
int FPNetworkControl::scheduleProbe(FPProbe *pkt, int in_msecs_time) {
nsock_timer_create(this->nsp, probe_transmission_handler_wrapper, in_msecs_time, (void*)pkt);
return OP_SUCCESS;
}
/* This is the handler for packet transmission. It is called by nsock whenever a timer expires,
* which means that a new packet needs to be transmitted. Note that this method is not
* called directly by Nsock but by the wrapper function probe_transmission_handler_wrapper().
* The reason for that is because C++ does not allow to use class methods as callback
* functions, so this is a small hack to make that happen. */
void FPNetworkControl::probe_transmission_handler(nsock_pool nsp, nsock_event nse, void *arg) {
assert(nsock_pool_get_udata(nsp) != NULL);
nsock_iod nsi_pcap = *((nsock_iod *)nsock_pool_get_udata(nsp));
enum nse_status status = nse_status(nse);
enum nse_type type = nse_type(nse);
FPProbe *myprobe = (FPProbe *)arg;
u8 *buf;
size_t len;
int result;
if (status == NSE_STATUS_SUCCESS) {
switch(type) {
/* Timer events mean that we need to send a packet. */
case NSE_TYPE_TIMER:
/* The first time a packet is sent, we schedule a pcap event. After that
* we don't have to worry since the response reception handler schedules
* a new capture event for each captured packet. */
if (!this->first_pcap_scheduled) {
this->pcap_ev_id = nsock_pcap_read_packet(nsp, nsi_pcap, response_reception_handler_wrapper, -1, NULL);
this->first_pcap_scheduled = true;
}
/* Send the packet*/
for (int decoy = 0; decoy < o.numdecoys; decoy++) {
result = myprobe->changeSourceAddress(&((struct sockaddr_in6 *)&o.decoys[decoy])->sin6_addr);
assert(result == OP_SUCCESS);
assert(myprobe->host != NULL);
buf = myprobe->getPacketBuffer(&len);
if (send_ip_packet(this->rawsd, myprobe->getEthernet(), myprobe->host->getTargetAddress(), buf, len) == -1) {
if (decoy == o.decoyturn) {
myprobe->setFailed();
this->cc_report_final_timeout();
myprobe->host->fail_one_probe();
gh_perror("Unable to send packet in %s", __func__);
}
}
if (decoy == o.decoyturn) {
myprobe->setTimeSent();
}
free(buf);
}
/* Reset the address to the original one if decoys were present and original Address wasn't last one */
if ( o.numdecoys != o.decoyturn+1 ) {
result = myprobe->changeSourceAddress(&((struct sockaddr_in6 *)&o.decoys[o.decoyturn])->sin6_addr);
assert(result == OP_SUCCESS);
}
break;
default:
fatal("Unexpected Nsock event in probe_transmission_handler()");
break;
} /* switch(type) */
} else if (status == NSE_STATUS_EOF) {
if (o.debugging)
log_write(LOG_PLAIN, "probe_transmission_handler(): EOF\n");
} else if (status == NSE_STATUS_ERROR || status == NSE_STATUS_PROXYERROR) {
if (o.debugging)
log_write(LOG_PLAIN, "probe_transmission_handler(): %s failed: %s\n", nse_type2str(type), strerror(socket_errno()));
} else if (status == NSE_STATUS_TIMEOUT) {
if (o.debugging)
log_write(LOG_PLAIN, "probe_transmission_handler(): %s timeout: %s\n", nse_type2str(type), strerror(socket_errno()));
} else if (status == NSE_STATUS_CANCELLED) {
if (o.debugging)
log_write(LOG_PLAIN, "probe_transmission_handler(): %s canceled: %s\n", nse_type2str(type), strerror(socket_errno()));
} else if (status == NSE_STATUS_KILL) {
if (o.debugging)
log_write(LOG_PLAIN, "probe_transmission_handler(): %s killed: %s\n", nse_type2str(type), strerror(socket_errno()));
} else {
if (o.debugging)
log_write(LOG_PLAIN, "probe_transmission_handler(): Unknown status code %d\n", status);
}
return;
}
/* This is the handler for packet capture. It is called by nsock whenever libpcap
* captures a packet from the network interface. This method basically captures
* the packet, extracts its source IP address and tries to find an FPHost that
* is targeting such address. If it does, it passes the packet to that FPHost
* via callback() so the FPHost can determine if the packet is actually the
* response to a FPProbe that it sent before. Note that this method is not
* called directly by Nsock but by the wrapper function
* response_reception_handler_wrapper(). See doc in probe_transmission_handler()
* for details. */
void FPNetworkControl::response_reception_handler(nsock_pool nsp, nsock_event nse, void *arg) {
nsock_iod nsi = nse_iod(nse);
enum nse_status status = nse_status(nse);
enum nse_type type = nse_type(nse);
const u8 *rcvd_pkt = NULL; /* Points to the captured packet */
size_t rcvd_pkt_len = 0; /* Length of the captured packet */
struct timeval pcaptime; /* Time the packet was captured */
struct sockaddr_storage sent_ss;
struct sockaddr_storage rcvd_ss;
struct sockaddr_in *rcvd_ss4 = (struct sockaddr_in *)&rcvd_ss;
struct sockaddr_in6 *rcvd_ss6 = (struct sockaddr_in6 *)&rcvd_ss;
memset(&rcvd_ss, 0, sizeof(struct sockaddr_storage));
IPv4Header ip4;
IPv6Header ip6;
int res = -1;
struct timeval tv;
gettimeofday(&tv, NULL);
if (status == NSE_STATUS_SUCCESS) {
switch(type) {
case NSE_TYPE_PCAP_READ:
/* Schedule a new pcap read operation */
this->pcap_ev_id = nsock_pcap_read_packet(nsp, nsi, response_reception_handler_wrapper, -1, NULL);
/* Get captured packet */
nse_readpcap(nse, NULL, NULL, &rcvd_pkt, &rcvd_pkt_len, NULL, &pcaptime);
/* Extract the packet's source address */
ip4.storeRecvData(rcvd_pkt, rcvd_pkt_len);
if (ip4.validate() != OP_FAILURE && ip4.getVersion() == 4) {
ip4.getSourceAddress(&(rcvd_ss4->sin_addr));
rcvd_ss4->sin_family = AF_INET;
} else {
ip6.storeRecvData(rcvd_pkt, rcvd_pkt_len);
if (ip6.validate() != OP_FAILURE && ip6.getVersion() == 6) {
ip6.getSourceAddress(&(rcvd_ss6->sin6_addr));
rcvd_ss6->sin6_family = AF_INET6;
} else {
/* If we get here it means that the received packet is not
* IPv4 or IPv6 so we just discard it returning. */
return;
}
}
/* Check if we have a caller that expects packets from this sender */
for (size_t i = 0; i < this->callers.size(); i++) {
/* Obtain the target address */
sent_ss = *this->callers[i]->getTargetAddress();
/* Check that the received packet is of the same address family */
if (sent_ss.ss_family != rcvd_ss.ss_family)
continue;
/* Check that the captured packet's source address matches the
* target address. If it matches, pass the received packet
* to the appropriate FPHost object through callback(). */
if (sockaddr_storage_equal(&rcvd_ss, &sent_ss)) {
if ((res = this->callers[i]->callback(rcvd_pkt, rcvd_pkt_len, &tv)) >= 0) {
/* If callback() returns >=0 it means that the packet we've just
* passed was successfully matched with a previous probe. Now
* update the count of received packets (so we can determine how
* many outstanding packets are out there). Note that we only do
* that if callback() returned >0 because 0 is a special case: a
* reply to a retransmitted timed probe that was already replied
* to in the past. We don't want to count replies to the same probe
* more than once, so that's why we only update when res > 0. */
if (res > 0)
this->cc_update_received();
/* When the callback returns more than 1 it means that the packet
* was sent more than once before being answered. This means that
* we experienced congestion (first transmission got dropped), so
* we update our CC parameters to deal with the congestion. */
if (res > 1) {
this->cc_report_drop();
}
}
return;
}
}
break;
default:
fatal("Unexpected Nsock event in response_reception_handler()");
break;
} /* switch(type) */
} else if (status == NSE_STATUS_EOF) {
if (o.debugging)
log_write(LOG_PLAIN, "response_reception_handler(): EOF\n");
} else if (status == NSE_STATUS_ERROR || status == NSE_STATUS_PROXYERROR) {
if (o.debugging)
log_write(LOG_PLAIN, "response_reception_handler(): %s failed: %s\n", nse_type2str(type), strerror(socket_errno()));
} else if (status == NSE_STATUS_TIMEOUT) {
if (o.debugging)
log_write(LOG_PLAIN, "response_reception_handler(): %s timeout: %s\n", nse_type2str(type), strerror(socket_errno()));
} else if (status == NSE_STATUS_CANCELLED) {
if (o.debugging)
log_write(LOG_PLAIN, "response_reception_handler(): %s canceled: %s\n", nse_type2str(type), strerror(socket_errno()));
} else if (status == NSE_STATUS_KILL) {
if (o.debugging)
log_write(LOG_PLAIN, "response_reception_handler(): %s killed: %s\n", nse_type2str(type), strerror(socket_errno()));
} else {
if (o.debugging)
log_write(LOG_PLAIN, "response_reception_handler(): Unknown status code %d\n", status);
}
return;
}
/******************************************************************************
* Implementation of class FPEngine. *
******************************************************************************/
FPEngine::FPEngine() {
this->osgroup_size = OSSCAN_GROUP_SIZE;
}
FPEngine::~FPEngine() {
}
/* Returns a suitable BPF filter for the OS detection. If less than 20 targets
* are passed, the filter contains an explicit list of target addresses. It
* looks similar to this:
*
* dst host fe80::250:56ff:fec0:1 and (src host fe80::20c:29ff:feb0:2316 or src host fe80::20c:29ff:fe9f:5bc2)
*
* When more than 20 targets are passed, a generic filter based on the source
* address is used. The returned filter looks something like:
*
* dst host fe80::250:56ff:fec0:1
*/
const char *FPEngine::bpf_filter(std::vector<Target *> &Targets) {
static char pcap_filter[2048];
/* 20 IPv6 addresses is max (46 byte addy + 14 (" or src host ")) * 20 == 1200 */
char dst_hosts[1220];
int filterlen = 0;
int len = 0;
unsigned int targetno;
memset(pcap_filter, 0, sizeof(pcap_filter));
/* If we have 20 or less targets, build a list of addresses so we can set
* an explicit BPF filter */
if (Targets.size() <= 20) {
for (targetno = 0; targetno < Targets.size(); targetno++) {
len = Snprintf(dst_hosts + filterlen,
sizeof(dst_hosts) - filterlen,
"%ssrc host %s", (targetno == 0)? "" : " or ",
Targets[targetno]->targetipstr());
if (len < 0 || len + filterlen >= (int) sizeof(dst_hosts))
fatal("ran out of space in dst_hosts");
filterlen += len;
}
len = Snprintf(pcap_filter, sizeof(pcap_filter), "dst host %s and (%s)",
Targets[0]->sourceipstr(), dst_hosts);
} else {
len = Snprintf(pcap_filter, sizeof(pcap_filter), "dst host %s", Targets[0]->sourceipstr());
}
if (len < 0 || len >= (int) sizeof(pcap_filter))
fatal("ran out of space in pcap filter");
return pcap_filter;
}
/******************************************************************************
* Implementation of class FPEngine6. *
******************************************************************************/
FPEngine6::FPEngine6() {
}
FPEngine6::~FPEngine6() {
}
/* Not all operating systems allow setting the flow label in outgoing packets;
notably all Unixes other than Linux when using raw sockets. This function
finds out whether the flow labels we set are likely really being sent.
Otherwise, the operating system is probably filling in 0. Compare to the
logic in send_ipv6_packet_eth_or_sd. */
static bool can_set_flow_label(const struct eth_nfo *eth) {
if (eth != NULL)
return true;
#if HAVE_IPV6_IPPROTO_RAW
return true;
#else
return false;
#endif
}
void FPHost6::fill_FPR(FingerPrintResultsIPv6 *FPR) {
unsigned int i;
FPR->begin_time = this->begin_time;
for (i = 0; i < sizeof(this->fp_responses) / sizeof(this->fp_responses[0]); i++) {
const FPResponse *resp;
resp = this->fp_responses[i];
if (resp != NULL) {
FPR->fp_responses[i] = new FPResponse(resp->probe_id, resp->buf, resp->len,
resp->senttime, resp->rcvdtime);
}
}
/* Were we actually able to set the flow label? */
FPR->flow_label = 0;
for (i = 0; i < sizeof(this->fp_probes) / sizeof(this->fp_probes[0]); i++) {
const FPProbe& probe = fp_probes[0];
if (probe.is_set()) {
if (can_set_flow_label(probe.getEthernet()))
FPR->flow_label = OSDETECT_FLOW_LABEL;
break;
}
}
/* Did we fail to send some probe? */
FPR->incomplete = this->incomplete_fp;
}
static IPv6Header *find_ipv6(const PacketElement *pe) {
while (pe != NULL && pe->protocol_id() != HEADER_TYPE_IPv6)
pe = pe->getNextElement();
return (IPv6Header *) pe;
}
static const TCPHeader *find_tcp(const PacketElement *pe) {
while (pe != NULL && pe->protocol_id() != HEADER_TYPE_TCP)
pe = pe->getNextElement();
return (TCPHeader *) pe;
}
static const ICMPv6Header *find_icmpv6(const PacketElement *pe) {
while (pe != NULL && pe->protocol_id() != HEADER_TYPE_ICMPv6)
pe = pe->getNextElement();
return (ICMPv6Header *) pe;
}
static double vectorize_plen(const PacketElement *pe) {
const IPv6Header *ipv6;
ipv6 = find_ipv6(pe);
if (ipv6 == NULL)
return -1;
else
return ipv6->getPayloadLength();
}
static double vectorize_tc(const PacketElement *pe) {
const IPv6Header *ipv6;
ipv6 = find_ipv6(pe);
if (ipv6 == NULL)
return -1;
else
return ipv6->getTrafficClass();
}
/* For reference, the dev@nmap.org email thread which contains the explanations for the
* design decisions of this vectorization method:
* http://seclists.org/nmap-dev/2015/q1/218
*/
static int vectorize_hlim(const PacketElement *pe, int target_distance, enum dist_calc_method method) {
const IPv6Header *ipv6;
int hlim;
int er_lim;
ipv6 = find_ipv6(pe);
if (ipv6 == NULL)
return -1;
hlim = ipv6->getHopLimit();
if (method != DIST_METHOD_NONE) {
if (method == DIST_METHOD_TRACEROUTE || method == DIST_METHOD_ICMP) {
if (target_distance > 0)
hlim += target_distance - 1;
}
er_lim = 5;
} else
er_lim = 20;
if (32 - er_lim <= hlim && hlim <= 32+ 5 )
hlim = 32;
else if (64 - er_lim <= hlim && hlim <= 64+ 5 )
hlim = 64;
else if (128 - er_lim <= hlim && hlim <= 128+ 5 )
hlim = 128;
else if (255 - er_lim <= hlim && hlim <= 255+ 5 )
hlim = 255;
else
hlim = -1;
return hlim;
}
static double vectorize_isr(std::map<std::string, FPPacket>& resps) {
const char * const SEQ_PROBE_NAMES[] = {"S1", "S2", "S3", "S4", "S5", "S6"};
u32 seqs[NELEMS(SEQ_PROBE_NAMES)];
struct timeval times[NELEMS(SEQ_PROBE_NAMES)];
unsigned int i, j;
double sum, t;
j = 0;
for (i = 0; i < NELEMS(SEQ_PROBE_NAMES); i++) {
const char *probe_name;
const FPPacket *fp;
const TCPHeader *tcp;
std::map<std::string, FPPacket>::const_iterator it;
probe_name = SEQ_PROBE_NAMES[i];
it = resps.find(probe_name);
if (it == resps.end())
continue;
fp = &it->second;
tcp = find_tcp(fp->getPacket());
if (tcp == NULL)
continue;
seqs[j] = tcp->getSeq();
times[j] = fp->getTime();
j++;
}
if (j < 2)
return -1;
sum = 0.0;
for (i = 0; i < j - 1; i++)
sum += seqs[i + 1] - seqs[i];
t = TIMEVAL_FSEC_SUBTRACT(times[j - 1], times[0]);
return sum / t;
}
static int vectorize_icmpv6_type(const PacketElement *pe) {
const ICMPv6Header *icmpv6;
icmpv6 = find_icmpv6(pe);
if (icmpv6 == NULL)
return -1;
return icmpv6->getType();
}
static int vectorize_icmpv6_code(const PacketElement *pe) {
const ICMPv6Header *icmpv6;
icmpv6 = find_icmpv6(pe);
if (icmpv6 == NULL)
return -1;
return icmpv6->getCode();
}
static struct feature_node *vectorize(const FingerPrintResultsIPv6 *FPR) {
const char * const IPV6_PROBE_NAMES[] = {"S1", "S2", "S3", "S4", "S5", "S6", "IE1", "IE2", "NS", "U1", "TECN", "T2", "T3", "T4", "T5", "T6", "T7"};
const char * const TCP_PROBE_NAMES[] = {"S1", "S2", "S3", "S4", "S5", "S6", "TECN", "T2", "T3", "T4", "T5", "T6", "T7"};
const char * const ICMPV6_PROBE_NAMES[] = {"IE1", "IE2", "NS"};
unsigned int nr_feature, i, idx;
struct feature_node *features;
std::map<std::string, FPPacket> resps;
for (i = 0; i < NUM_FP_PROBES_IPv6; i++) {
PacketElement *pe;
if (FPR->fp_responses[i] == NULL)
continue;
pe = PacketParser::split(FPR->fp_responses[i]->buf, FPR->fp_responses[i]->len);
assert(pe != NULL);
resps[FPR->fp_responses[i]->probe_id].setPacket(pe);
resps[FPR->fp_responses[i]->probe_id].setTime(&FPR->fp_responses[i]->senttime);
}
nr_feature = get_nr_feature(&FPModel);
features = new feature_node[nr_feature + 1];
for (i = 0; i < nr_feature; i++) {
features[i].index = i + 1;
features[i].value = -1;
}
features[i].index = -1;
idx = 0;
for (i = 0; i < NELEMS(IPV6_PROBE_NAMES); i++) {
const char *probe_name;
probe_name = IPV6_PROBE_NAMES[i];
features[idx++].value = vectorize_plen(resps[probe_name].getPacket());
features[idx++].value = vectorize_tc(resps[probe_name].getPacket());
features[idx++].value = vectorize_hlim(resps[probe_name].getPacket(), FPR->distance, FPR->distance_calculation_method);
}
/* TCP features */
features[idx++].value = vectorize_isr(resps);
for (i = 0; i < NELEMS(TCP_PROBE_NAMES); i++) {
const char *probe_name;
const TCPHeader *tcp;
u16 flags;
u16 mask;
unsigned int j;
int mss;
int sackok;
int wscale;
probe_name = TCP_PROBE_NAMES[i];
mss = -1;
sackok = -1;
wscale = -1;
tcp = find_tcp(resps[probe_name].getPacket());
if (tcp == NULL) {
/* 49 TCP features. */
idx += 49;
continue;
}
features[idx++].value = tcp->getWindow();
flags = tcp->getFlags16();
for (mask = 0x001; mask <= 0x800; mask <<= 1)
features[idx++].value = (flags & mask) != 0;
for (j = 0; j < 16; j++) {
nping_tcp_opt_t opt;
opt = tcp->getOption(j);
if (opt.value == NULL)
break;
features[idx++].value = opt.type;
/* opt.len includes the two (type, len) bytes. */
if (opt.type == TCPOPT_MSS && opt.len == 4 && mss == -1)
mss = ntohs(*(u16 *) opt.value);
else if (opt.type == TCPOPT_SACKOK && opt.len == 2 && sackok == -1)
sackok = 1;
else if (opt.type == TCPOPT_WSCALE && opt.len == 3 && wscale == -1)
wscale = *(u8 *) opt.value;
}
for (; j < 16; j++)
idx++;
for (j = 0; j < 16; j++) {
nping_tcp_opt_t opt;
opt = tcp->getOption(j);
if (opt.value == NULL)
break;
features[idx++].value = opt.len;
}
for (; j < 16; j++)
idx++;
features[idx++].value = mss;
features[idx++].value = sackok;
features[idx++].value = wscale;
if (mss != 0 && mss != -1)
features[idx++].value = (float)tcp->getWindow() / mss;
else
features[idx++].value = -1;
}
/* ICMPv6 features */
for (i = 0; i < NELEMS(ICMPV6_PROBE_NAMES); i++) {
const char *probe_name;
probe_name = ICMPV6_PROBE_NAMES[i];
features[idx++].value = vectorize_icmpv6_type(resps[probe_name].getPacket());
features[idx++].value = vectorize_icmpv6_code(resps[probe_name].getPacket());
}
assert(idx == nr_feature);
if (o.debugging > 2) {
log_write(LOG_PLAIN, "v = {");
for (i = 0; i < nr_feature; i++)
log_write(LOG_PLAIN, "%.16g, ", features[i].value);
log_write(LOG_PLAIN, "};\n");
}
return features;
}
static void apply_scale(struct feature_node *features, unsigned int num_features,
const double (*scale)[2]) {
unsigned int i;
for (i = 0; i < num_features; i++) {
double val = features[i].value;
if (val < 0)
continue;
val = (val + scale[i][0]) * scale[i][1];
features[i].value = val;
}
}
/* (label, prob) pairs for purpose of sorting. */
struct label_prob {
int label;
double prob;
};
int label_prob_cmp(const void *a, const void *b) {
const struct label_prob *la, *lb;
la = (struct label_prob *) a;
lb = (struct label_prob *) b;
/* Sort descending. */
if (la->prob > lb->prob)
return -1;
else if (la->prob < lb->prob)
return 1;
else
return 0;
}
/* Return a measure of how much the given feature vector differs from the other
members of the class given by label.
This can be thought of as the distance from the given feature vector to the
mean of the class in multidimensional space, after scaling. Each dimension is
further scaled by the inverse of the sample variance of that feature. This is
an approximation of the Mahalanobis distance
(https://en.wikipedia.org/wiki/Mahalanobis_distance), which normally uses a
full covariance matrix of the features. If we take the features to be
pairwise independent (which they are not), then the covariance matrix is just
the diagonal matrix containing per-feature variances, leading to the same
calculation as is done below. Using only the per-feature variances rather
than covariance matrices is to save space; it requires only n entries per
class rather than n^2, where n is the length of a feature vector.
It happens often that a feature's variance is undefined (because there is
only one example in the class) or zero (because there are two identical
values for that feature). Both these cases are mapped to zero by train.py,
and we handle them the same way: by using a small default variance. This will
tend to make small differences count a lot (because we probably want this
fingerprint in order to expand the class), while still allowing near-perfect
matches to match. */
static double novelty_of(const struct feature_node *features, int label) {
const double *means, *variances;
int i, nr_feature;
double sum;
nr_feature = get_nr_feature(&FPModel);
assert(0 <= label);
assert(label < nr_feature);
means = FPmean[label];
variances = FPvariance[label];
sum = 0.0;
for (i = 0; i < nr_feature; i++) {
double d, v;
assert(i + 1 == features[i].index);
d = features[i].value - means[i];
v = variances[i];
if (v == 0.0) {
/* No variance? It means that samples were identical. Substitute a default
variance. This will tend to make novelty large in these cases, which
will hopefully encourage for submissions for this class. */
v = 0.01;
}
sum += d * d / v;
}
return sqrt(sum);
}
static void classify(FingerPrintResultsIPv6 *FPR) {
int nr_class, i;
struct feature_node *features;
double *values;
struct label_prob *labels;
nr_class = get_nr_class(&FPModel);
features = vectorize(FPR);
values = new double[nr_class];
labels = new struct label_prob[nr_class];
apply_scale(features, get_nr_feature(&FPModel), FPscale);
predict_values(&FPModel, features, values);
for (i = 0; i < nr_class; i++) {
labels[i].label = i;
labels[i].prob = 1.0 / (1.0 + exp(-values[i]));
}
qsort(labels, nr_class, sizeof(labels[0]), label_prob_cmp);
for (i = 0; i < nr_class && i < MAX_FP_RESULTS; i++) {
FPR->matches[i] = &o.os_labels_ipv6[labels[i].label];
FPR->accuracy[i] = labels[i].prob;
FPR->num_matches = i + 1;
if (labels[i].prob >= 0.90 * labels[0].prob)
FPR->num_perfect_matches = i + 1;
if (o.debugging > 2) {
printf("%7.4f %7.4f %3u %s\n", FPR->accuracy[i] * 100,
novelty_of(features, labels[i].label), labels[i].label, FPR->matches[i]->OS_name);
}
}
if (FPR->num_perfect_matches == 0) {
FPR->overall_results = OSSCAN_NOMATCHES;
} else if (FPR->num_perfect_matches == 1) {
double novelty;
novelty = novelty_of(features, labels[0].label);
if (o.debugging > 1)
log_write(LOG_PLAIN, "Novelty of closest match is %.3f.\n", novelty);
if (novelty < FP_NOVELTY_THRESHOLD) {
FPR->overall_results = OSSCAN_SUCCESS;
} else {
if (o.debugging > 0) {
log_write(LOG_PLAIN, "Novelty of closest match is %.3f > %.3f; ignoring.\n",
novelty, FP_NOVELTY_THRESHOLD);
}
FPR->overall_results = OSSCAN_NOMATCHES;
FPR->num_perfect_matches = 0;
}
} else {
FPR->overall_results = OSSCAN_NOMATCHES;
FPR->num_perfect_matches = 0;
}
delete[] features;
delete[] values;
delete[] labels;
}
/* This method is the core of the FPEngine class. It takes a list of IPv6
* targets that need to be fingerprinted. The method handles the whole
* fingerprinting process, sending probes, collecting responses, analyzing
* results and matching fingerprints. If everything goes well, the internal
* state of the supplied target objects will be modified to reflect the results
* of the */
int FPEngine6::os_scan(std::vector<Target *> &Targets) {
bool osscan_done = false;
const char *bpf_filter = NULL;
std::vector<FPHost6 *> curr_hosts; /* Hosts currently doing OS detection */
std::vector<FPHost6 *> done_hosts; /* Hosts for which we already did OSdetect */
std::vector<FPHost6 *> left_hosts; /* Hosts we have not yet started with */
struct timeval begin_time;
if (o.debugging)
log_write(LOG_PLAIN, "Starting IPv6 OS Scan...\n");
/* Initialize variables, timers, etc. */
gettimeofday(&begin_time, NULL);
global_netctl.init(Targets[0]->deviceName(), Targets[0]->ifType());
for (size_t i = 0; i < Targets.size(); i++) {
if (o.debugging > 3) {
log_write(LOG_PLAIN, "[FPEngine] Allocating FPHost6 for %s %s\n",
Targets[i]->targetipstr(), Targets[i]->sourceipstr());
}
FPHost6 *newhost = new FPHost6(Targets[i], &global_netctl);
newhost->begin_time = begin_time;
fphosts.push_back(newhost);
}
/* Build the BPF filter */
bpf_filter = this->bpf_filter(Targets);
if (o.debugging)
log_write(LOG_PLAIN, "[FPEngine] Interface=%s BPF:%s\n", Targets[0]->deviceName(), bpf_filter);
/* Set up the sniffer */
global_netctl.setup_sniffer(Targets[0]->deviceName(), bpf_filter);
/* Divide the targets into two groups, the ones we are going to start
* processing, and the ones we leave for later. */
for (size_t i = 0; i < Targets.size() && i < this->osgroup_size; i++) {
curr_hosts.push_back(fphosts[i]);
}
for (size_t i = curr_hosts.size(); i < Targets.size(); i++) {
left_hosts.push_back(fphosts[i]);
}
/* Do the OS detection rounds */
while (!osscan_done) {
osscan_done = true; /* It will remain true only when all hosts are .done() */
if (o.debugging > 3) {
log_write(LOG_PLAIN, "[FPEngine] CurrHosts=%d, LeftHosts=%d, DoneHosts=%d\n",
(int) curr_hosts.size(), (int) left_hosts.size(), (int) done_hosts.size());
}
#ifdef WIN32
// Reset system idle timer to avoid going to sleep
SetThreadExecutionState(ES_SYSTEM_REQUIRED);
#endif
/* Go through the list of hosts and ask them to schedule their probes */
for (unsigned int i = 0; i < curr_hosts.size(); i++) {
/* If the host is not done yet, call schedule() to let it schedule
* new probes, retransmissions, etc. */
if (!curr_hosts[i]->done()) {
osscan_done = false;
curr_hosts[i]->schedule();
if (o.debugging > 3)
log_write(LOG_PLAIN, "[FPEngine] CurrHost #%u not done\n", i);
/* If the host is done, take it out of the curr_hosts group and add it
* to the done_hosts group. If we still have hosts left in the left_hosts
* group, take the first one and insert it into curr_hosts. This way we
* always have a full working group of hosts (unless we ran out of hosts,
* of course). */
} else {
if (o.debugging > 3)
log_write(LOG_PLAIN, "[FPEngine] CurrHost #%u done\n", i);
if (o.debugging > 3)
log_write(LOG_PLAIN, "[FPEngine] Moving done host %u to the done_hosts list\n", i);
done_hosts.push_back(curr_hosts[i]);
curr_hosts.erase(curr_hosts.begin() + i);
/* If we still have hosts left, add one to the current group */
if (left_hosts.size() > 0) {
if (o.debugging > 3)
log_write(LOG_PLAIN, "[FPEngine] Inserting one new hosts in the curr_hosts list.\n");
curr_hosts.push_back(left_hosts[0]);
left_hosts.erase(left_hosts.begin());
osscan_done = false;
}
i--; /* Decrement i so we don't miss the host that is now in the
* position of the host we've just removed from the list */
}
}
/* Handle scheduled events */
global_netctl.handle_events();
}
/* Once we've finished with all fphosts, check which ones were correctly
* fingerprinted, and update the Target objects. */
for (size_t i = 0; i < this->fphosts.size(); i++) {
fphosts[i]->finish();
fphosts[i]->fill_FPR((FingerPrintResultsIPv6 *) Targets[i]->FPR);
classify((FingerPrintResultsIPv6 *) Targets[i]->FPR);
}
/* Cleanup and return */
while (this->fphosts.size() > 0) {
FPHost6 *tmp = fphosts.back();
delete tmp;
fphosts.pop_back();
}
if (o.debugging)
log_write(LOG_PLAIN, "IPv6 OS Scan completed.\n");
return OP_SUCCESS;
}
/******************************************************************************
* Implementation of class FPHost. *
******************************************************************************/
FPHost::FPHost() {
this->__reset();
}
FPHost::~FPHost() {
}
void FPHost::__reset() {
this->total_probes = 0;
this->timed_probes = 0;
this->probes_sent = 0;
this->probes_answered = 0;
this->probes_unanswered = 0;
this->incomplete_fp = false;
this->detection_done = false;
this->timedprobes_sent = false;
this->target_host = NULL;
this->netctl = NULL;
this->netctl_registered = false;
this->tcpSeqBase = 0;
this->open_port_tcp = -1;
this->closed_port_tcp = -1;
this->closed_port_udp = -1;
this->tcp_port_base = -1;
this->udp_port_base = -1;
/* Retransmission time-out parameters.
*
* From RFC 2988:
* Until a round-trip time (RTT) measurement has been made for a segment
* sent between the sender and receiver, the sender SHOULD set
* RTO <- 3 seconds */
this->rto = OSSCAN_INITIAL_RTO;
this->rttvar = -1;
this->srtt = -1;
this->begin_time.tv_sec = 0;
this->begin_time.tv_usec = 0;
}
/* Returns the IP address of the target associated with the FPHost in
* struct sockaddr_storage format. */
const struct sockaddr_storage *FPHost::getTargetAddress() {
return this->target_host->TargetSockAddr();
}
/* Marks one probe as unanswerable, making the fingerprint incomplete and
* ineligible for submission */
void FPHost::fail_one_probe() {
this->probes_unanswered++;
this->incomplete_fp = true;
}
/* Accesses the Target object associated with the FPHost to extract the port
* numbers to be used in OS detection. In particular it extracts:
*
* - An open TCP port.
* - A closed TCP port.
* - A closed UDP port.
*
* When not enough information is found in the Target, the necessary port
* numbers are generated randomly. */
int FPHost::choose_osscan_ports() {
Port *tport = NULL;
Port port;
/* Choose an open TCP port: First, check if the host already has a
* FingerPrintResults object that defines an open port. */
if (this->target_host->FPR != NULL && this->target_host->FPR->osscan_opentcpport > 0) {
this->open_port_tcp = this->target_host->FPR->osscan_opentcpport;
/* Otherwise, get the first open port that we've found open */
} else if ((tport = this->target_host->ports.nextPort(NULL, &port, IPPROTO_TCP, PORT_OPEN))) {
this->open_port_tcp = tport->portno;
/* If it is zero, let's try another one if there is one */
if (tport->portno == 0) {
if ((tport = this->target_host->ports.nextPort(tport, &port, IPPROTO_TCP, PORT_OPEN)))
this->open_port_tcp = tport->portno;
}
if (this->target_host->FPR != NULL) {
this->target_host->FPR->osscan_opentcpport = this->open_port_tcp;
}
} else {
/* If we don't have an open port, set it to -1 so we don't send probes that
* target TCP open ports */
this->open_port_tcp = -1;
}
/* Choose a closed TCP port. */
if (this->target_host->FPR != NULL && this->target_host->FPR->osscan_closedtcpport > 0) {
this->closed_port_tcp = this->target_host->FPR->osscan_closedtcpport;
} else if ((tport = this->target_host->ports.nextPort(NULL, &port, IPPROTO_TCP, PORT_CLOSED))) {
this->closed_port_tcp = tport->portno;
/* If it is zero, let's try another one if there is one */
if (tport->portno == 0)
if ((tport = this->target_host->ports.nextPort(tport, &port, IPPROTO_TCP, PORT_CLOSED)))
this->closed_port_tcp = tport->portno;
if (this->target_host->FPR != NULL) {
this->target_host->FPR->osscan_closedtcpport = this->closed_port_tcp;
}
} else if ((tport = this->target_host->ports.nextPort(NULL, &port, IPPROTO_TCP, PORT_UNFILTERED))) {
/* Well, we will settle for unfiltered */
this->closed_port_tcp = tport->portno;
/* But again we'd prefer not to have zero */
if (tport->portno == 0)
if ((tport = this->target_host->ports.nextPort(tport, &port, IPPROTO_TCP, PORT_UNFILTERED)))
this->closed_port_tcp = tport->portno;
} else {
/* If we don't have a closed port, set it to -1 so we don't send probes that
* target TCP closed ports. */
this->closed_port_tcp = -1;
}
/* Closed UDP port */
if (this->target_host->FPR != NULL && this->target_host->FPR->osscan_closedudpport > 0) {
this->closed_port_udp = this->target_host->FPR->osscan_closedudpport;
} else if ((tport = this->target_host->ports.nextPort(NULL, &port, IPPROTO_UDP, PORT_CLOSED))) {
this->closed_port_udp = tport->portno;
/* Not zero, if possible */
if (tport->portno == 0)
if ((tport = this->target_host->ports.nextPort(tport, &port, IPPROTO_UDP, PORT_CLOSED)))
this->closed_port_udp = tport->portno;
if (this->target_host->FPR != NULL) {
this->target_host->FPR->osscan_closedudpport = this->closed_port_udp;
}
} else if ((tport = this->target_host->ports.nextPort(NULL, &port, IPPROTO_UDP, PORT_UNFILTERED))) {
/* Well, we will settle for unfiltered */
this->closed_port_udp = tport->portno;
/* But not zero, please */
if (tport->portno == 0)
if ((tport = this->target_host->ports.nextPort(NULL, &port, IPPROTO_UDP, PORT_UNFILTERED)))
this->closed_port_udp = tport->portno;
} else {
/* Pick one at random. Shrug. */
this->closed_port_udp = (get_random_uint() % 14781) + 30000;
}
this->tcpSeqBase = get_random_u32();
this->tcp_port_base = o.magic_port_set ? o.magic_port : o.magic_port + get_random_u8();
this->udp_port_base = o.magic_port_set ? o.magic_port : o.magic_port + get_random_u8();
this->icmp_seq_counter = 0;
return OP_SUCCESS;
}
/* This method is called whenever we receive a response to a probe. It
* recomputes the host's retransmission timer based on the new RTT measure.
* @param measured_rtt_usecs is the new RTT observation in MICROseconds.
* @param retransmission indicates whether the observed RTT correspond to
* a packet that was transmitted more than once or not. It is used to
* avoid using RTT samples obtained from retransmissions (Karn's algorithm) */
int FPHost::update_RTO(int measured_rtt_usecs, bool retransmission) {
/* RFC 2988: TCP MUST use Karn's algorithm [KP87] for taking RTT samples. That
* is, RTT samples MUST NOT be made using segments that were
* retransmitted (and thus for which it is ambiguous whether the reply
* was for the first instance of the packet or a later instance).*/
if (retransmission == true)
return OP_SUCCESS;
/* RFC 2988: When the first RTT measurement R is made, the host MUST set
*
* SRTT <- R
* RTTVAR <- R/2
* RTO <- SRTT + max (G, K*RTTVAR)
*
* where K = 4, and G is the clock granularity.. */
if (this->srtt == -1 && this->rttvar == -1) {
this->srtt = measured_rtt_usecs;
this->rttvar = measured_rtt_usecs/2;
this->rto = this->srtt + MAX(500000, 4*this->rttvar); /* Assume a granularity of 1/2 sec */
} else {
/* RFC 2988: When a subsequent RTT measurement R' is made, a host MUST set
*
* RTTVAR <- (1 - beta) * RTTVAR + beta * |SRTT - R'|
* SRTT <- (1 - alpha) * SRTT + alpha * R'
*
* The above SHOULD be computed using alpha = 1/8 and beta = 1/4.
* After the computation, a host MUST update
*
* RTO <- SRTT + max (G, K*RTTVAR)
*/
this->rttvar += (ABS(this->srtt - measured_rtt_usecs) - this->rttvar) >> 2;
this->srtt += (measured_rtt_usecs - this->srtt) >> 3;
this->rto = this->srtt + MAX(500000, 4*this->rttvar);
}
/* RFC 2988: Whenever RTO is computed, if it is less than 1 second then the RTO
* SHOULD be rounded up to 1 second.
* [NOTE: In Nmap we find this excessive, so we set a minimum of 100ms
* (100,000 usecs). It may seem aggressive but waiting too long can cause
* the engine to fail to detect drops until many probes later on extremely
* low-latency networks (such as localhost scans). */
if (this->rto < (MIN_RTT_TIMEOUT*1000))
this->rto = (MIN_RTT_TIMEOUT*1000);
return this->rto;
}
/******************************************************************************
* Implementation of class FPHost6. *
******************************************************************************/
FPHost6::FPHost6(Target *tgt, FPNetworkControl *fpnc) {
this->init(tgt, fpnc);
return;
}
FPHost6::~FPHost6() {
this->reset();
}
void FPHost6::reset() {
this->__reset();
for (unsigned int i = 0; i < NUM_FP_PROBES_IPv6; i++) {
this->fp_probes[i].reset();
if (this->fp_responses[i]) {
delete this->fp_responses[i];
this->fp_responses[i] = NULL;
}
}
}
void FPHost6::init(Target *tgt, FPNetworkControl *fpnc) {
this->target_host = tgt;
this->netctl = fpnc;
this->total_probes = 0;
this->timed_probes = 0;
/* Set state in the supplied Target */
if (this->target_host->FPR == NULL)
this->target_host->FPR = new FingerPrintResultsIPv6;
this->target_host->osscanSetFlag(OS_PERF);
/* Choose TCP/UDP ports for the probes. */
this->choose_osscan_ports();
/* Build the list of OS detection probes */
this->build_probe_list();
for (unsigned int i = 0; i < NUM_FP_PROBES_IPv6; i++)
this->fp_responses[i] = NULL;
for (unsigned int i = 0; i < NUM_FP_TIMEDPROBES_IPv6; i++)
this->aux_resp[i] = NULL;
}
/* Get the hop limit encapsulated in an ICMPv6 error reply. Return -1 if it
* can't be found. */
static int get_encapsulated_hoplimit(const PacketElement *pe) {
/* Check that it's IPv6. */
if (pe == NULL || pe->protocol_id() != HEADER_TYPE_IPv6)
return -1;
/* Find the ICMPv6 payload. */
pe = pe->getNextElement();
for (; pe != NULL; pe = pe->getNextElement()) {
if (pe->protocol_id() == HEADER_TYPE_ICMPv6)
break;
}
if (pe == NULL)
return -1;
/* Check that encapsulated is IPv6. */
pe = pe->getNextElement();
if (pe == NULL || pe->protocol_id() != HEADER_TYPE_IPv6)
return -1;
return ((IPv6Header *) pe)->getHopLimit();
}
void FPHost6::finish() {
/* These probes are likely to get an ICMPv6 error (allowing us to calculate
distance. */
const char * const DISTANCE_PROBE_NAMES[] = { "IE2", "U1" };
int distance = -1;
int hoplimit_distance = -1;
enum dist_calc_method distance_calculation_method = DIST_METHOD_NONE;
unsigned int i;
/* Calculate distance based on hop limit difference. */
for (i = 0; i < NELEMS(DISTANCE_PROBE_NAMES); i++) {
const FPProbe *probe;
const FPResponse *resp;
const PacketElement *probe_pe;
PacketElement *resp_pe;
int sent_ttl, rcvd_ttl;
const char *probe_name;
probe_name = DISTANCE_PROBE_NAMES[i];
probe = this->getProbe(probe_name);
resp = this->getResponse(probe_name);
if (probe == NULL || resp == NULL)
continue;
probe_pe = probe->getPacket();
if (probe_pe->protocol_id() != HEADER_TYPE_IPv6)
continue;
sent_ttl = ((IPv6Header *) probe_pe)->getHopLimit();
resp_pe = PacketParser::split(resp->buf, resp->len);
assert(resp_pe != NULL);
rcvd_ttl = get_encapsulated_hoplimit(resp_pe);
if (rcvd_ttl != -1) {
if (o.debugging > 1) {
log_write(LOG_PLAIN, "Hop limit distance from %s probe: %d - %d + 1 == %d\n",
probe_name, sent_ttl, rcvd_ttl, sent_ttl - rcvd_ttl + 1);
}
/* Set only if not already set. */
if (hoplimit_distance == -1)
hoplimit_distance = sent_ttl - rcvd_ttl + 1;
/* Special case: for the U1 probe, mark that we found the port closed. */
if (this->target_host->FPR->osscan_closedudpport == -1 && strcmp(probe_name, "U1") == 0) {
const PacketElement *udp;
u16 portno;
udp = probe_pe->getNextElement();
assert(udp != NULL);
assert(udp->protocol_id() == HEADER_TYPE_UDP);
portno = ((UDPHeader *) udp)->getDestinationPort();
this->target_host->FPR->osscan_closedudpport = portno;
}
}
PacketParser::freePacketChain(resp_pe);
}
if (islocalhost(this->target_host->TargetSockAddr())) {
/* scanning localhost */
distance = 0;
distance_calculation_method = DIST_METHOD_LOCALHOST;
} else if (this->target_host->directlyConnected()) {
/* on the same network segment */
distance = 1;
distance_calculation_method = DIST_METHOD_DIRECT;
} else if (hoplimit_distance != -1) {
distance = hoplimit_distance;
distance_calculation_method = DIST_METHOD_ICMP;
}
this->target_host->distance = this->target_host->FPR->distance = distance;
this->target_host->distance_calculation_method =
this->target_host->FPR->distance_calculation_method =
distance_calculation_method;
}
struct tcp_desc {
const char *id;
u16 win;
u8 flags;
u16 dstport;
u16 urgptr;
const char *opts;
unsigned int optslen;
};
static u8 get_hoplimit() {
if (o.ttl != -1)
return o.ttl;
else
return (get_random_uint() % 23) + 37;
}
static IPv6Header *make_tcp(const struct sockaddr_in6 *src,
const struct sockaddr_in6 *dst,
u32 fl, u16 win, u32 seq, u32 ack, u8 flags, u16 srcport, u16 dstport,
u16 urgptr, const char *opts, unsigned int optslen) {
IPv6Header *ip6;
TCPHeader *tcp;
/* Allocate an instance of the protocol headers */
ip6 = new IPv6Header();
tcp = new TCPHeader();
ip6->setSourceAddress(src->sin6_addr);
ip6->setDestinationAddress(dst->sin6_addr);
ip6->setFlowLabel(fl);
ip6->setHopLimit(get_hoplimit());
ip6->setNextHeader("TCP");
ip6->setNextElement(tcp);
tcp->setWindow(win);
tcp->setSeq(seq);
tcp->setAck(ack);
tcp->setFlags(flags);
tcp->setSourcePort(srcport);
tcp->setDestinationPort(dstport);
tcp->setUrgPointer(urgptr);
tcp->setOptions((u8 *) opts, optslen);
ip6->setPayloadLength(tcp->getLen());
tcp->setSum();
return ip6;
}
/* This method generates the list of OS detection probes to be sent to the
* target. It also sets up the list of responses. It is defined private
* because it is called by the constructor when the class is instantiated. */
int FPHost6::build_probe_list() {
#define OPEN 1
#define CLSD 0
/* TCP Options:
* S1-S6: six sequencing probes.
* TECN: ECN probe.
* T2-T7: other non-sequencing probes.
*
* option 0: WScale (10), Nop, MSS (1460), Timestamp, SackP
* option 1: MSS (1400), WScale (0), SackP, T(0xFFFFFFFF,0x0), EOL
* option 2: T(0xFFFFFFFF, 0x0), Nop, Nop, WScale (5), Nop, MSS (640)
* option 3: SackP, T(0xFFFFFFFF,0x0), WScale (10), EOL
* option 4: MSS (536), SackP, T(0xFFFFFFFF,0x0), WScale (10), EOL
* option 5: MSS (265), SackP, T(0xFFFFFFFF,0x0)
* option 6: WScale (10), Nop, MSS (1460), SackP, Nop, Nop
* option 7-11: WScale (10), Nop, MSS (265), T(0xFFFFFFFF,0x0), SackP
* option 12: WScale (15), Nop, MSS (265), T(0xFFFFFFFF,0x0), SackP */
const struct tcp_desc TCP_DESCS[] = {
{ "S1", 1, 0x02, OPEN, 0,
"\x03\x03\x0A\x01\x02\x04\x05\xb4\x08\x0A\xff\xff\xff\xff\x00\x00\x00\x00\x04\x02", 20 },
{ "S2", 63, 0x02, OPEN, 0,
"\x02\x04\x05\x78\x03\x03\x00\x04\x02\x08\x0A\xff\xff\xff\xff\x00\x00\x00\x00\x00", 20 },
{ "S3", 4, 0x02, OPEN, 0,
"\x08\x0A\xff\xff\xff\xff\x00\x00\x00\x00\x01\x01\x03\x03\x05\x01\x02\x04\x02\x80", 20 },
{ "S4", 4, 0x02, OPEN, 0,
"\x04\x02\x08\x0A\xff\xff\xff\xff\x00\x00\x00\x00\x03\x03\x0A\x00", 16 },
{ "S5", 16, 0x02, OPEN, 0,
"\x02\x04\x02\x18\x04\x02\x08\x0A\xff\xff\xff\xff\x00\x00\x00\x00\x03\x03\x0A\x00", 20 },
{ "S6", 512, 0x02, OPEN, 0,
"\x02\x04\x01\x09\x04\x02\x08\x0A\xff\xff\xff\xff\x00\x00\x00\x00", 16 },
{ "TECN", 3, 0xc2, OPEN, 63477,
"\x03\x03\x0A\x01\x02\x04\x05\xb4\x04\x02\x01\x01", 12 },
{ "T2", 128, 0x00, OPEN, 0,
"\x03\x03\x0A\x01\x02\x04\x01\x09\x08\x0A\xff\xff\xff\xff\x00\x00\x00\x00\x04\x02", 20 },
{ "T3", 256, 0x2b, OPEN, 0,
"\x03\x03\x0A\x01\x02\x04\x01\x09\x08\x0A\xff\xff\xff\xff\x00\x00\x00\x00\x04\x02", 20 },
{ "T4", 1024, 0x10, OPEN, 0,
"\x03\x03\x0A\x01\x02\x04\x01\x09\x08\x0A\xff\xff\xff\xff\x00\x00\x00\x00\x04\x02", 20 },
{ "T5", 31337, 0x02, CLSD, 0,
"\x03\x03\x0A\x01\x02\x04\x01\x09\x08\x0A\xff\xff\xff\xff\x00\x00\x00\x00\x04\x02", 20 },
{ "T6", 32768, 0x10, CLSD, 0,
"\x03\x03\x0A\x01\x02\x04\x01\x09\x08\x0A\xff\xff\xff\xff\x00\x00\x00\x00\x04\x02", 20 },
{ "T7", 65535, 0x29, CLSD, 0,
"\x03\x03\x0f\x01\x02\x04\x01\x09\x08\x0A\xff\xff\xff\xff\x00\x00\x00\x00\x04\x02", 20 },
};
const sockaddr_in6 *ss6 = NULL;
IPv6Header *ip6;
ICMPv6Header *icmp6;
UDPHeader *udp;
DestOptsHeader *dstopts;
RoutingHeader *routing;
HopByHopHeader *hopbyhop1, *hopbyhop2;
RawData *payload;
int i;
char payloadbuf[300];
assert(this->target_host != NULL);
/* Set timed TCP probes */
for (i = 0; i < NUM_FP_PROBES_IPv6_TCP && i < NUM_FP_TIMEDPROBES_IPv6; i++) {
/* If the probe is targeted to a TCP port and we don't have
* any port number for that particular state, skip the probe. */
if (TCP_DESCS[i].dstport == OPEN && this->open_port_tcp < 0)
continue;
if (TCP_DESCS[i].dstport == CLSD && this->closed_port_tcp < 0)
continue;
ip6 = make_tcp((struct sockaddr_in6 *) this->target_host->SourceSockAddr(),
(struct sockaddr_in6 *) this->target_host->TargetSockAddr(),
OSDETECT_FLOW_LABEL, TCP_DESCS[i].win, this->tcpSeqBase + i, get_random_u32(),
TCP_DESCS[i].flags, this->tcp_port_base + i,
TCP_DESCS[i].dstport == OPEN ? this->open_port_tcp : this->closed_port_tcp,
TCP_DESCS[i].urgptr, TCP_DESCS[i].opts, TCP_DESCS[i].optslen);
/* Store the probe in the list so we can send it later */
this->fp_probes[this->total_probes].host = this;
this->fp_probes[this->total_probes].setPacket(ip6);
this->fp_probes[this->total_probes].setProbeID(TCP_DESCS[i].id);
this->fp_probes[this->total_probes].setEthernet(this->target_host->SrcMACAddress(), this->target_host->NextHopMACAddress(), this->target_host->deviceName());
/* Mark as a timed probe. */
this->fp_probes[this->total_probes].setTimed();
this->timed_probes++;
this->total_probes++;
}
/* Set ICMPv6 probes */
memset(payloadbuf, 0, 120);
/* ICMP Probe #1: Echo Request with hop-by-hop options */
/* This one immediately follows the timed seq TCP probes, to allow testing for
shared flow label sequence. */
ip6 = new IPv6Header();
icmp6 = new ICMPv6Header();
hopbyhop1 = new HopByHopHeader();
payload = new RawData();
ss6 = (const sockaddr_in6 *) this->target_host->SourceSockAddr();
ip6->setSourceAddress(ss6->sin6_addr);
ss6 = (const sockaddr_in6 *) this->target_host->TargetSockAddr();
ip6->setDestinationAddress(ss6->sin6_addr);
ip6->setFlowLabel(OSDETECT_FLOW_LABEL);
ip6->setHopLimit(get_hoplimit());
ip6->setNextHeader((u8) HEADER_TYPE_IPv6_HOPOPT);
ip6->setNextElement(hopbyhop1);
hopbyhop1->setNextHeader(HEADER_TYPE_ICMPv6);
hopbyhop1->setNextElement(icmp6);
icmp6->setNextElement(payload);
payload->store((u8 *) payloadbuf, 120);
icmp6->setType(ICMPv6_ECHO);
icmp6->setCode(9); // But is supposed to be 0.
icmp6->setIdentifier(0xabcd);
icmp6->setSequence(this->icmp_seq_counter++);
icmp6->setTargetAddress(ss6->sin6_addr); // Should still contain target's addr
ip6->setPayloadLength();
icmp6->setSum();
this->fp_probes[this->total_probes].host = this;
this->fp_probes[this->total_probes].setPacket(ip6);
this->fp_probes[this->total_probes].setProbeID("IE1");
this->fp_probes[this->total_probes].setEthernet(this->target_host->SrcMACAddress(), this->target_host->NextHopMACAddress(), this->target_host->deviceName());
this->total_probes++;
/* ICMP Probe #2: Echo Request with badly ordered extension headers */
ip6 = new IPv6Header();
hopbyhop1 = new HopByHopHeader();
dstopts = new DestOptsHeader();
routing = new RoutingHeader();
hopbyhop2 = new HopByHopHeader();
icmp6 = new ICMPv6Header();
payload = new RawData();
ss6 = (const sockaddr_in6 *) this->target_host->SourceSockAddr();
ip6->setSourceAddress(ss6->sin6_addr);
ss6 = (const sockaddr_in6 *) this->target_host->TargetSockAddr();
ip6->setDestinationAddress(ss6->sin6_addr);
ip6->setFlowLabel(OSDETECT_FLOW_LABEL);
ip6->setHopLimit(get_hoplimit());
ip6->setNextHeader((u8) HEADER_TYPE_IPv6_HOPOPT);
ip6->setNextElement(hopbyhop1);
hopbyhop1->setNextHeader(HEADER_TYPE_IPv6_OPTS);
hopbyhop1->setNextElement(dstopts);
dstopts->setNextHeader(HEADER_TYPE_IPv6_ROUTE);
dstopts->setNextElement(routing);
routing->setNextHeader(HEADER_TYPE_IPv6_HOPOPT);
routing->setNextElement(hopbyhop2);
hopbyhop2->setNextHeader(HEADER_TYPE_ICMPv6);
hopbyhop2->setNextElement(icmp6);
icmp6->setType(ICMPv6_ECHO);
icmp6->setCode(0);
icmp6->setIdentifier(0xabcd);
icmp6->setSequence(this->icmp_seq_counter++);
icmp6->setTargetAddress(ss6->sin6_addr); // Should still contain target's addr
ip6->setPayloadLength();
icmp6->setSum();
this->fp_probes[this->total_probes].host = this;
this->fp_probes[this->total_probes].setPacket(ip6);
this->fp_probes[this->total_probes].setProbeID("IE2");
this->fp_probes[this->total_probes].setEthernet(this->target_host->SrcMACAddress(), this->target_host->NextHopMACAddress(), this->target_host->deviceName());
this->total_probes++;
/* ICMP Probe #3: Neighbor Solicitation. (only sent to on-link targets) */
if (this->target_host->directlyConnected()
#ifdef WIN32
&& !(g_has_npcap_loopback && this->target_host->ifType() == devt_loopback)
#endif
) {
ip6 = new IPv6Header();
icmp6 = new ICMPv6Header();
ss6 = (const sockaddr_in6 *) this->target_host->SourceSockAddr();
ip6->setSourceAddress(ss6->sin6_addr);
ss6 = (const sockaddr_in6 *) this->target_host->TargetSockAddr();
ip6->setDestinationAddress(ss6->sin6_addr);
ip6->setFlowLabel(OSDETECT_FLOW_LABEL);
/* RFC 2461 section 7.1.1: "A node MUST silently discard any received
Neighbor Solicitation messages that do not satisfy all of the following
validity checks: - The IP Hop Limit field has a value of 255 ... */
ip6->setHopLimit(255);
ip6->setNextHeader("ICMPv6");
ip6->setNextElement(icmp6);
icmp6->setType(ICMPv6_NGHBRSOLICIT);
icmp6->setCode(0);
icmp6->setTargetAddress(ss6->sin6_addr); // Should still contain target's addr
icmp6->setSum();
ip6->setPayloadLength();
this->fp_probes[this->total_probes].host = this;
this->fp_probes[this->total_probes].setPacket(ip6);
this->fp_probes[this->total_probes].setProbeID("NS");
this->fp_probes[this->total_probes].setEthernet(this->target_host->SrcMACAddress(), this->target_host->NextHopMACAddress(), this->target_host->deviceName());
this->total_probes++;
}
/* Set UDP probes */
memset(payloadbuf, 0x43, 300);
ip6 = new IPv6Header();
udp = new UDPHeader();
payload = new RawData();
ss6 = (const sockaddr_in6 *) this->target_host->SourceSockAddr();
ip6->setSourceAddress(ss6->sin6_addr);
ss6 = (const sockaddr_in6 *) this->target_host->TargetSockAddr();
ip6->setDestinationAddress(ss6->sin6_addr);
ip6->setFlowLabel(OSDETECT_FLOW_LABEL);
ip6->setHopLimit(get_hoplimit());
ip6->setNextHeader("UDP");
ip6->setNextElement(udp);
udp->setSourcePort(this->udp_port_base);
udp->setDestinationPort(this->closed_port_udp);
payload->store((u8 *) payloadbuf, 300);
udp->setNextElement(payload);
udp->setTotalLength();
udp->setSum();
ip6->setPayloadLength(udp->getLen());
this->fp_probes[this->total_probes].host = this;
this->fp_probes[this->total_probes].setPacket(ip6);
this->fp_probes[this->total_probes].setProbeID("U1");
this->fp_probes[this->total_probes].setEthernet(this->target_host->SrcMACAddress(), this->target_host->NextHopMACAddress(), this->target_host->deviceName());
this->total_probes++;
/* Set TECN probe */
if ((TCP_DESCS[i].dstport == OPEN && this->open_port_tcp >= 0)
|| (TCP_DESCS[i].dstport == CLSD && this->closed_port_tcp >= 0)) {
ip6 = make_tcp((struct sockaddr_in6 *) this->target_host->SourceSockAddr(),
(struct sockaddr_in6 *) this->target_host->TargetSockAddr(),
OSDETECT_FLOW_LABEL, TCP_DESCS[i].win, this->tcpSeqBase + i, 0,
TCP_DESCS[i].flags, tcp_port_base + i,
TCP_DESCS[i].dstport == OPEN ? this->open_port_tcp : this->closed_port_tcp,
TCP_DESCS[i].urgptr, TCP_DESCS[i].opts, TCP_DESCS[i].optslen);
/* Store the probe in the list so we can send it later */
this->fp_probes[this->total_probes].host = this;
this->fp_probes[this->total_probes].setPacket(ip6);
this->fp_probes[this->total_probes].setProbeID(TCP_DESCS[i].id);
this->fp_probes[this->total_probes].setEthernet(this->target_host->SrcMACAddress(), this->target_host->NextHopMACAddress(), this->target_host->deviceName());
this->total_probes++;
}
i++;
/* Set untimed TCP probes */
for (; i < NUM_FP_PROBES_IPv6_TCP; i++) {
/* If the probe is targeted to a TCP port and we don't have
* any port number for that particular state, skip the probe. */
if (TCP_DESCS[i].dstport == OPEN && this->open_port_tcp < 0)
continue;
if (TCP_DESCS[i].dstport == CLSD && this->closed_port_tcp < 0)
continue;
ip6 = make_tcp((struct sockaddr_in6 *) this->target_host->SourceSockAddr(),
(struct sockaddr_in6 *) this->target_host->TargetSockAddr(),
OSDETECT_FLOW_LABEL, TCP_DESCS[i].win, this->tcpSeqBase + i, get_random_u32(),
TCP_DESCS[i].flags, tcp_port_base + i,
TCP_DESCS[i].dstport == OPEN ? this->open_port_tcp : this->closed_port_tcp,
TCP_DESCS[i].urgptr, TCP_DESCS[i].opts, TCP_DESCS[i].optslen);
/* Store the probe in the list so we can send it later */
this->fp_probes[this->total_probes].host = this;
this->fp_probes[this->total_probes].setPacket(ip6);
this->fp_probes[this->total_probes].setProbeID(TCP_DESCS[i].id);
this->fp_probes[this->total_probes].setEthernet(this->target_host->SrcMACAddress(), this->target_host->NextHopMACAddress(), this->target_host->deviceName());
this->total_probes++;
}
return OP_SUCCESS;
}
/* Indicates whether the OS detection process has finished for this host.
* Note that when "true" is returned the caller cannot assume that the host
* has been accurately fingerprinted, only that the OS detection process
* was carried out. In other words, when true is returned it means that the
* fingerprinting engine sent all OS detection probes, performed the necessary
* retransmission and attempted to capture the target's replies. In order to
* check if the detection was successful (if we actually know what OS the target
* is running), the status() method should be used. */
bool FPHost6::done() {
if (this->probes_sent == this->total_probes) {
if (this->probes_answered + this->probes_unanswered == this->total_probes)
return true;
}
return false;
}
/* Asks the host to schedule the transmission of probes (if they need to do so).
* This method is called repeatedly by the FPEngine to make the host request
* the probe transmissions that it needs. From the hosts point of view, it
* determines if new transmissions need to be scheduled based on the number
* of probes sent, the number of answers received, etc. Also, in order to
* transmit a packet, the network controller must approve it (hosts may not
* be able to send packets any time they want due to congestion control
* restrictions). */
int FPHost6::schedule() {
struct timeval now;
unsigned int timed_probes_answered = 0;
unsigned int timed_probes_timedout = 0;
/* The first time we are asked to schedule a packet, register ourselves in
* the network controller so it can call us back when packets that match our
* target are captured. */
if (this->netctl_registered == false && this->netctl != NULL) {
this->netctl->register_caller(this);
this->netctl_registered = true;
}
/* Make sure we have things to do, otherwise, just return. */
if (this->detection_done || (this->probes_answered + this->probes_unanswered == this->total_probes)) {
/* Update our internal state to indicate we have finished */
if (!this->detection_done)
this->set_done_and_wrap_up();
return OP_SUCCESS;
}
/* If we have not yet sent the timed probes (and we have timed probes to send)
* request permission from the network controller and schedule the transmission
* for all of them, 100ms apart from each other. We don't want all the hosts
* to schedule their transmission for the same exact time so we add a random
* offset (between 0 and 100ms) to the first transmission. All subsequent
* ones are sent 100ms apart from the first. Note that if we did not find
* and open port, then we just don't send the timed probes. */
if (this->timed_probes > 0 && this->timedprobes_sent == false) {
if (o.debugging > 3)
log_write(LOG_PLAIN, "[%s] %u Tx slots requested\n", this->target_host->targetipstr(), this->timed_probes);
if (this->netctl->request_slots(this->timed_probes) == true) {
if (o.debugging > 3)
log_write(LOG_PLAIN, "[%s] Slots granted!\n", this->target_host->targetipstr());
this->timedprobes_sent = true;
int whentostart = get_random_u16()%100;
for (size_t i = 0; i < this->timed_probes; i++) {
this->netctl->scheduleProbe(&(this->fp_probes[i]), whentostart + i*100);
this->probes_sent++;
}
return OP_SUCCESS;
}
if (o.debugging > 3)
log_write(LOG_PLAIN, "[%s] Slots denied.\n", this->target_host->targetipstr());
return OP_FAILURE;
} else if (this->timed_probes > 0 && this->timedprobes_sent && this->fp_probes[this->timed_probes - 1].getTimeSent().tv_sec == 0) {
/* If the sent time for the last timed probe has not been set, it means
* that we haven't sent all the timed probes yet, so we don't schedule
* any other probes, we just wait until our schedule() gets called again.
* We do this because we don't want to mess with the target's stack
* in the middle of our timed probes. Otherwise, we can screw up the
* TCP sequence generation tests, etc. We also get here when timed probes
* suffer a retransmission. In that case, we also stop sending packets
* to our target until we have sent all of them. */
if (o.debugging > 3)
log_write(LOG_PLAIN, "[%s] Waiting for all timed probes to be sent...\n", this->target_host->targetipstr());
return OP_FAILURE;
} else {
/* If we get here it means that either we have sent all the timed probes or
* we don't even have to send them (because no open port was found).
* At this point if we have other probes to transmit, schedule the next one.
* Also, check for timedout probes so we can retransmit one of them. */
if (o.debugging > 3 && this->timed_probes > 0 && this->probes_sent == this->timed_probes)
log_write(LOG_PLAIN, "[%s] All timed probes have been sent.\n", this->target_host->targetipstr());
if (this->probes_sent < this->total_probes) {
if (this->netctl->request_slots(1) == true) {
if (o.debugging > 3)
log_write(LOG_PLAIN, "[%s] Scheduling probe %s\n", this->target_host->targetipstr(), this->fp_probes[this->probes_sent].getProbeID());
this->netctl->scheduleProbe(&(this->fp_probes[this->probes_sent]), 0);
this->probes_sent++;
} else {
if (o.debugging > 3)
log_write(LOG_PLAIN, "[%s] Can't schedule probe %s\n", this->target_host->targetipstr(), this->fp_probes[this->probes_sent].getProbeID());
}
}
/**************************************************************************
* PROBE TIMEOUT HANDLING *
**************************************************************************/
if (o.debugging > 3)
log_write(LOG_PLAIN, "[%s] Checking for regular probe timeouts...\n", this->target_host->targetipstr());
/* Determine if some regular probe (not timed probes) has timedout. In that
* case, choose some outstanding probe to retransmit. */
gettimeofday(&now, NULL);
for (unsigned int i = this->timed_probes; i < this->probes_sent; i++) {
/* Skip probes that have already been answered */
if (this->fp_responses[i]) {
continue;
}
/* Skip probes that we have scheduled but have not been yet transmitted */
if (this->fp_probes[i].getTimeSent().tv_sec == 0)
continue;
/* Skip probes for which we didn't get a response after all
* retransmissions. */
if (this->fp_probes[i].probeFailed()) {
continue;
}
/* Check if the probe timedout */
if (TIMEVAL_SUBTRACT(now, this->fp_probes[i].getTimeSent()) >= this->rto) {
/* If we have reached the maximum number of retransmissions, mark the
* probe as failed. Otherwise, schedule its transmission. */
if (this->fp_probes[i].getRetransmissions() >= o.maxOSTries()) {
if (o.debugging > 3) {
log_write(LOG_PLAIN, "[%s] Probe #%d (%s) failed after %d retransmissions.\n",
this->target_host->targetipstr(), i, this->fp_probes[i].getProbeID(),
this->fp_probes[i].getRetransmissions());
}
this->fp_probes[i].setFailed();
/* Let the network controller know that we don't expect a response
* for the probe anymore so the number of outstanding probes is
* reduced and the effective window is incremented. */
this->netctl->cc_report_final_timeout();
/* Also, increase our unanswered counter so we can later decide
* if the process has finished. */
this->probes_unanswered++;
continue;
/* Otherwise, retransmit the packet.*/
} else {
/* Note that we do not request permission to re-transmit (we don't
* call request_slots(). In TCP one can retransmit timedout
* probes even when CWND is zero, as CWND only applies for new packets. */
if (o.debugging > 3) {
log_write(LOG_PLAIN, "[%s] Retransmitting probe #%d (%s) (retransmitted %d times already).\n",
this->target_host->targetipstr(), i, this->fp_probes[i].getProbeID(),
this->fp_probes[i].getRetransmissions());
}
this->fp_probes[i].incrementRetransmissions();
this->netctl->scheduleProbe(&(this->fp_probes[i]), 0);
break;
}
}
}
/* Now let's check the state of the timed probes. We iterate over the list
* of timed probes to count how many have been answered and how many have
* timed out. If answered + timeout == total_timed_probes, it's time to
* retransmit them. */
/* Make sure we are actually sending timed probes. */
if (this->timed_probes <= 0)
return OP_SUCCESS;
bool timed_failed = false;
if (o.debugging > 3)
log_write(LOG_PLAIN, "[%s] Checking for timed probe timeouts...\n", this->target_host->targetipstr());
for (unsigned int i = 0; i < this->timed_probes; i++) {
assert(this->fp_probes[i].isTimed());
/* Skip probes that have already been answered, but count how many of
* them are there. */
if (this->fp_responses[i]) {
timed_probes_answered++;
continue;
}
/* If there is some timed probe for which we have already scheduled its
* retransmission but it hasn't been sent yet, break the loop. We don't
* have to worry about retransmitting these probes yet.*/
if (this->fp_probes[i].getTimeSent().tv_sec == 0)
return OP_SUCCESS;
/* If we got a total timeout for any of the timed probes, we shouldn't
* attempt more retransmissions. We set a flag to indicate that but we
* still stay in the loop because we want to mark as "failed" any other
* probes we have not yet checked. */
if (this->fp_probes[i].probeFailed()) {
timed_failed = true;
continue;
}
/* Now check if the timed probe has timed out. If it suffered a total
* time out (max retransmissions done and still no answer) then mark
* it as such. Otherwise, count it so we can retransmit the whole
* group of timed probes later if appropriate. */
if (TIMEVAL_SUBTRACT(now, this->fp_probes[i].getTimeSent()) >= this->rto) {
if (o.debugging > 3) {
log_write(LOG_PLAIN, "[%s] timed probe %d (%s) timedout\n",
this->target_host->targetipstr(), i, this->fp_probes[i].getProbeID());
}
if (this->fp_probes[i].getRetransmissions() >= o.maxOSTries()) {
if (o.debugging > 3)
log_write(LOG_PLAIN, "[%s] Timed probe #%d (%s) failed after %d retransmissions.\n", this->target_host->targetipstr(), i, this->fp_probes[i].getProbeID(), this->fp_probes[i].getRetransmissions());
this->fp_probes[i].setFailed();
/* Let the network controller know that we don't expect a response
* for the probe anymore so the number of outstanding probes is
* reduced and the effective window is incremented. */
this->netctl->cc_report_final_timeout();
/* Also, increase our unanswered counter so we can later decide
* if the process has finished. */
this->probes_unanswered++;
} else {
if (o.debugging > 3)
log_write(LOG_PLAIN, "[%s] Timed probe #%d (%s) has timed out (%d retransmissions done).\n", this->target_host->targetipstr(), i, this->fp_probes[i].getProbeID(), this->fp_probes[i].getRetransmissions());
timed_probes_timedout++;
}
}
}
if (o.debugging > 3)
log_write(LOG_PLAIN, "[%s] Timed_probes=%d, answered=%u, timedout=%u\n", this->target_host->targetipstr(), this->timed_probes, timed_probes_answered, timed_probes_timedout);
/* If the probe that has timed out is a "timed probe" it means that
* we need to retransmit all timed probes, not only this one. For
* that, we wait until all timed probes have either timed out or
* been responded. When that happens, we do the following:
* 1) Store the responses we have received the last time we sent
* the timed probes in an aux array (this->aux_resp).
* 2) Clear the responses to the timed probes from the main
* response array (this->fp_responses).
* 3) Schedule the retransmission of all timed probes, 100ms apart. */
if (this->timed_probes > 0 && timed_failed == false && timed_probes_timedout > 0 && (timed_probes_answered + timed_probes_timedout == this->timed_probes)) {
/* Count the number of responses we have now and the number
* of responses we stored in the aux buffer last time. */
unsigned int responses_stored = 0;
unsigned int responses_now = 0;
for (unsigned int j = 0; j < this->timed_probes; j++) {
if (this->aux_resp[j] != NULL)
responses_stored++;
if (this->fp_responses[j] != NULL)
responses_now++;
}
/* If now we have more responses than before, copy our current
* set of responses to the aux array. Otherwise, just
* delete the current set of responses. */
for (unsigned int k = 0; k < this->timed_probes; k++) {
if (responses_now > responses_stored) {
/* Free previous allocations */
if (this->aux_resp[k] != NULL) {
delete this->aux_resp[k];
}
/* Move the current response to the aux array */
this->aux_resp[k] = this->fp_responses[k];
this->fp_responses[k] = NULL;
} else {
delete this->fp_responses[k];
this->fp_responses[k] = NULL;
}
}
/* Update answer count because now we expect new answers to the timed probes. */
assert(((int)this->probes_answered - (int)timed_probes_answered) >= 0);
this->probes_answered-= timed_probes_answered;
if (o.debugging > 3)
log_write(LOG_PLAIN, "[%s] Adjusting answer count: before=%d, after=%d\n", this->target_host->targetipstr(), this->probes_answered + timed_probes_answered, this->probes_answered);
/* Finally do the actual retransmission. Like the first time,
* we schedule them 100ms apart, starting at same random point
* between right now and 99ms. */
int whentostart = get_random_u16()%100;
for (size_t l = 0; l < this->timed_probes; l++) {
this->fp_probes[l].incrementRetransmissions();
this->netctl->scheduleProbe(&(this->fp_probes[l]), whentostart + l*100);
}
if (o.debugging > 3 && this->timed_probes > 0)
log_write(LOG_PLAIN, "[%s] Retransmitting timed probes (rcvd_before=%u, rcvd_now=%u times=%d).\n", this->target_host->targetipstr(), responses_stored, responses_now, this->fp_probes[0].getRetransmissions());
/* Reset our local counters. */
timed_probes_answered = 0;
timed_probes_timedout = 0;
}
}
return OP_FAILURE;
}
/* This method is called when we detect that the OS detection process for this
* host is completed. It basically updates the host's internal state to
* indicate that the processed finished and unregisters the host from the
* network controller so we don't get any more callbacks. Here we also handle
* the special case of the retransmitted "timed probes". When we have to
* retransmit such probes, we usually have two sets of responses: the ones we
* got for the last retransmission, and the ones we got in the best try before
* that. So what we have to do is to decide which set is the best and discard
* the other one.*/
int FPHost6::set_done_and_wrap_up() {
assert(this->probes_answered + this->probes_unanswered == this->total_probes);
/* Inform the network controller that we do not wish to continue
* receiving callbacks (it could happen if the system had some other
* connections established with the target) */
this->netctl->unregister_caller(this);
/* Set up an internal flag to indicate we have finished */
this->detection_done = true;
/* Check the state of the timed probe retransmissions. In particular if we
* retransmitted timed probes, we should have two sets of responses,
* the ones we got last time we retransmitted, and the best set of responses
* we got out of all previous retransmissions but the last one. So now, we
* determine which set is the best and discard the other one. Btw, none of
* these loops run if timed_probes == 0, so it's safe in all cases. */
/* First count the number of responses in each set. */
unsigned int stored = 0;
unsigned int current = 0;
for (unsigned int i = 0; i < this->timed_probes; i++) {
if (this->aux_resp[i] != NULL)
stored++;
if (this->fp_responses[i] != NULL)
current++;
}
/* If we got more responses in a previous try, use them and get rid of
* the current ones. */
if (stored > current) {
for (unsigned int i = 0; i < this->timed_probes; i++) {
if (this->fp_responses[i] != NULL)
delete this->fp_responses[i];
this->fp_responses[i] = this->aux_resp[i];
this->aux_resp[i] = NULL;
}
/* Otherwise, get rid of the stored responses, use the current set */
} else {
for (unsigned int i = 0; i < this->timed_probes; i++) {
if (this->aux_resp[i] != NULL) {
delete this->aux_resp[i];
this->aux_resp[i] = NULL;
}
}
}
return OP_SUCCESS;
}
/* This function is called by the network controller every time a packet of
* interest is captured. A "packet of interest" is a packet whose source
* address matches the IP address of the target associated with the FPHost
* instance. Inside the method, the received packet is processed in order to
* determine if it corresponds to a response to a previous FPProbe sent to
* that target. If the packet is a proper response, it will be stored for
* later processing, as it is part of the target's stack fingerprint. Returns
* a positive integer when the supplied packet could be successfully matched with
* a previously sent probe. The returned value indicates how many times the
* probe was sent before getting a reply: a return value of 1 means that we
* got a normal reply, value two means that we had to retransmit the packet
* once to get the reply, and so on. A return value of zero is a special case
* that indicates that the supplied packet is a response to a timed probed
* for which we already had received a reply in the past. This is necessary
* because we need to indicate the network controller that this is not a normal
* response to a retransmitted probe, and so, it should not be used to alter
* congestion control parameters. A negative return value indicates that the
* supplied packet is not a response to any probe sent by this host. */
int FPHost6::callback(const u8 *pkt, size_t pkt_len, const struct timeval *tv) {
PacketElement *rcvd = NULL;
/* Dummy packet to ensure destruction of rcvd. */
FPPacket dummy;
bool match_found = false;
int times_tx = 0;
/* Make sure we still expect callbacks */
if (this->detection_done)
return -1;
if (o.debugging > 3)
log_write(LOG_PLAIN, "[%s] Captured %lu bytes\n", this->target_host->targetipstr(), (unsigned long)pkt_len);
/* Convert the ugly raw buffer into a nice chain of PacketElement objects, so
* it's easier to parse the captured packet */
if ((rcvd = PacketParser::split(pkt, pkt_len, false)) == NULL)
return -2;
dummy.setPacket(rcvd);
/* Iterate over the list of sent probes and determine if the captured
* packet is a response to one of them. */
for (unsigned int i = 0; i < this->probes_sent; i++) {
/* Skip probes for which we already got a response */
if (this->fp_responses[i])
continue;
/* See if the received packet is a response to a probe */
if (this->fp_probes[i].isResponse(rcvd)) {
struct timeval now, time_sent;
gettimeofday(&now, NULL);
this->fp_responses[i] = new FPResponse(this->fp_probes[i].getProbeID(),
pkt, pkt_len, fp_probes[i].getTimeSent(), *tv);
this->fp_probes[i].incrementReplies();
match_found = true;
/* If the response that we've received is for a timed probe, we
* need to do a special handling. We don't want to report that
* we've received a response after N retransmissions because we
* may have re-sent the packet even if we got a response in the past.
* This happens when one of the timed probes times out and we
* retransmit all of them. We don't want the network controller to
* think there is congestion, so we only return the number of
* retransmissions if we didn't get a response before and we did now. */
if (this->fp_probes[i].isTimed() && this->fp_probes[i].getRetransmissions() > 0 && this->fp_probes[i].getReplies() > 1) {
times_tx = 0; // Special case.
} else {
times_tx = this->fp_probes[i].getRetransmissions()+1;
}
this->probes_answered++;
/* Recompute the Retransmission Timeout based on this new RTT observation. */
time_sent = this->fp_probes[i].getTimeSent();
assert(time_sent.tv_sec > 0);
this->update_RTO(TIMEVAL_SUBTRACT(now, time_sent), this->fp_probes[i].getRetransmissions() != 0);
break;
}
}
if (match_found) {
if (o.packetTrace()) {
log_write(LOG_PLAIN, "RCVD ");
rcvd->print(stdout, LOW_DETAIL);
log_write(LOG_PLAIN, "\n");
}
/* Here, check if with this match we completed the OS detection */
if (this->probes_answered + this->probes_unanswered == this->total_probes) {
/* Update our internal state to indicate we have finished */
this->set_done_and_wrap_up();
}
/* Return the number of times that the packet was transmitted before
* getting the reply. */
return times_tx;
} else {
return -3;
}
}
const FPProbe *FPHost6::getProbe(const char *id) {
unsigned int i;
for (i = 0; i < NUM_FP_PROBES_IPv6; i++) {
if (!this->fp_probes[i].is_set())
continue;
if (strcmp(this->fp_probes[i].getProbeID(), id) == 0)
return &this->fp_probes[i];
}
return NULL;
}
const FPResponse *FPHost6::getResponse(const char *id) {
unsigned int i;
for (i = 0; i < NUM_FP_PROBES_IPv6; i++) {
if (this->fp_responses[i] == NULL)
continue;
if (strcmp(this->fp_responses[i]->probe_id, id) == 0)
return this->fp_responses[i];
}
return NULL;
}
/******************************************************************************
* Implementation of class FPPacket. *
******************************************************************************/
FPPacket::FPPacket() {
this->pkt = NULL;
this->__reset();
}
FPPacket::~FPPacket() {
this->__reset();
}
/* Resets all internal state, freeing any previously stored packets */
void FPPacket::__reset() {
this->link_eth = false;
memset(&(this->eth_hdr), 0, sizeof(struct eth_nfo));
PacketElement *me = this->pkt, *aux = NULL;
while (me != NULL) {
aux = me->getNextElement();
delete me;
me = aux;
}
this->pkt = NULL;
memset(&this->pkt_time, 0, sizeof(struct timeval));
}
/* Returns true if the FPPacket has been associated with a packet (through a
* call to setPacket(). This is equivalent to the following conditional:
* fppacket.getPacket() != NULL */
bool FPPacket::is_set() const {
if (this->pkt != NULL)
return true;
else
return false;
}
/* Associates de FPPacket instance with the first protocol header of a networkj
* packet. Such header may be linked to others through the setNextElement()
* mechanism. Note that FPPacket does NOT make a copy of the contents of the
* supplied pointer, it just stores the memory address. Therefore, the caller
* MUST ensure that the supplied pointer remains valid during the lifetime of
* the FPPacket instance.
*
* After calling this function, the FPPacket takes ownership of pkt and will
* delete pkt in its destructor. */
int FPPacket::setPacket(PacketElement *pkt) {
assert(pkt != NULL);
this->pkt = pkt;
return OP_SUCCESS;
}
/* Returns a newly allocated byte array with packet contents. The caller is
* responsible for freeing the buffer. */
u8 *FPPacket::getPacketBuffer(size_t *pkt_len) const {
u8 *pkt_buff;
pkt_buff = (u8 *)safe_malloc(this->pkt->getLen());
this->pkt->dumpToBinaryBuffer(pkt_buff, this->pkt->getLen());
*pkt_len = (size_t)this->pkt->getLen();
return pkt_buff;
}
/* Returns a pointer to first header of the packet associated with the FPPacket
* instance. Note that this method will return NULL unless a previous call to
* setPacket() has been made. */
const PacketElement *FPPacket::getPacket() const {
return this->pkt;
}
/* Returns the length of the packet associated with the FPPacket instance. Note
* that this method will return zero unless an actual packet was associated
* with the FPPacket object through a call to setPacket(). */
size_t FPPacket::getLength() const {
if (this->pkt != NULL)
return this->pkt->getLen();
else
return 0;
}
/* This method associates some link layer information with the packet. If
* sending at the ethernet level is not required, just call it passing NULL
* values, like this: instance.setEthernet(NULL, NULL, NULL);
* Otherwise, pass the source address, the next hop address and the name of
* the network interface the packet should be injected through. */
int FPPacket::setEthernet(const u8 *src_mac, const u8 *dst_mac, const char *devname) {
if (src_mac == NULL || dst_mac == NULL) {
memset(&(this->eth_hdr), 0, sizeof(struct eth_nfo));
this->link_eth = false;
return OP_FAILURE;
}
memcpy(this->eth_hdr.srcmac, src_mac, 6);
memcpy(this->eth_hdr.dstmac, dst_mac, 6);
this->link_eth = true;
if (devname != NULL) {
strncpy(this->eth_hdr.devname, devname, sizeof(this->eth_hdr.devname)-1);
if ((this->eth_hdr.ethsd = eth_open_cached(devname)) == NULL)
fatal("%s: Failed to open ethernet device (%s)", __func__, devname);
} else {
this->eth_hdr.devname[0] = '\0';
this->eth_hdr.ethsd = NULL;
}
return OP_SUCCESS;
}
/* Returns an eth_nfo structure that contains the necessary parameters to
* allow the transmission of the packet at the Ethernet level. Note that
* such structure is only returned if a previous call to setEthernet() has
* been made. If it hasn't, this means that the packet should be sent at
* the IP layer, and only NULL will be returned. */
const struct eth_nfo *FPPacket::getEthernet() const {
if (this->link_eth == true)
return &(this->eth_hdr);
else
return NULL;
}
/* Sets the internal time holder to the current time. */
int FPPacket::setTime(const struct timeval *tv) {
if (tv != NULL) {
this->pkt_time = *tv;
return 0;
} else {
return gettimeofday(&this->pkt_time, NULL);
}
}
/* Returns the value of the internal time holder */
struct timeval FPPacket::getTime() const {
return this->pkt_time;
}
/* Sets the internal time holder to zero. */
int FPPacket::resetTime() {
memset(&this->pkt_time, 0, sizeof(struct timeval));
return OP_SUCCESS;
}
/******************************************************************************
* Implementation of class FPProbe. *
******************************************************************************/
FPProbe::FPProbe() {
this->probe_id = NULL;
this->host = NULL;
this->reset();
}
FPProbe::~FPProbe() {
}
void FPProbe::reset() {
this->probe_no = 0;
this->retransmissions = 0;
this->times_replied = 0;
this->failed = false;
this->timed = false;
this->probe_id = NULL;
/* Also call FPPacket::__reset() to free any existing packet information */
this->__reset();
}
/* Returns true if the supplied packet is a response to this FPProbe. This
* method handles IPv4, IPv6, ICMPv4, ICMPv6, TCP and UDP. Basically it uses
* PacketParser::is_response(). Check there for a list of matched packets and
* some usage examples.*/
bool FPProbe::isResponse(PacketElement *rcvd) {
/* If we don't have a record of even sending this probe, no packet can be a
response. */
if (this->pkt_time.tv_sec == 0 && this->pkt_time.tv_usec == 0)
return false;
bool is_response = PacketParser::is_response(this->pkt, rcvd);
if (o.debugging > 2 && is_response)
printf("Received response to probe %s\n", this->getProbeID());
return is_response;
}
/* Store this probe's textual identifier. Note that this method makes a copy
* of the supplied string, so you can safely change its contents without
* affecting the object's state. */
int FPProbe::setProbeID(const char *id) {
this->probe_id = string_pool_insert(id);
return OP_SUCCESS;
}
/* Returns a pointer to probe's textual identifier. */
const char *FPProbe::getProbeID() const {
return this->probe_id;
}
/* Returns the number of times the probe has been scheduled for retransmission. */
int FPProbe::getRetransmissions() const {
return this->retransmissions;
}
/* Increment the number of times the probe has been scheduled for retransmission
* by one unit. It returns the current value of the retransmission counter. */
int FPProbe::incrementRetransmissions() {
this->retransmissions++;
return this->retransmissions;
}
/* Returns the number of times the probe has been replied. This applies for
* timed probes, which may be retransmitted even if we got a reply (because
* another timed probe timeout and we had to retransmit all of them to keep
* the timing accurate). */
int FPProbe::getReplies() const {
return this->times_replied;
}
/* Increment the number of times the probe has been replied. It returns the
* current value of the reply counter. */
int FPProbe::incrementReplies() {
this->times_replied++;
return this->times_replied;
}
/* Sets the time at which the probe was sent */
int FPProbe::setTimeSent() {
return this->setTime();
}
/* Returns the time at which te packet was sent */
struct timeval FPProbe::getTimeSent() const {
return this->getTime();
}
/* Sets the time at which the probe was sent to zero. */
int FPProbe::resetTimeSent() {
return this->resetTime();
}
/* Returns true if this FPProbe did not receive any response after all
* necessary retransmissions. When it returns true, callers should not
* attempt to change the state of the FPProbe. */
bool FPProbe::probeFailed() const {
return this->failed;
}
/* This method should be called when the probe has been retransmitted as many
* times as we could and it still timed out without a response. Once this
* method is called, the state is irreversible (unless a call to FPProbe::reset()
* is made, in which case all internal state disappears) */
int FPProbe::setFailed() {
this->failed = true;
return OP_SUCCESS;
}
/* Returns true if the probe is one of the "timed probes". */
bool FPProbe::isTimed() const {
return this->timed;
}
/* Marks the probe as "timed". This is used to indicate that this probe has
* specific timing requirements (it must be sent exactly 100ms after the
* previous probe)., */
int FPProbe::setTimed() {
this->timed = true;
return OP_SUCCESS;
}
/* Changes source address for packet element associated with current FPProbe. */
int FPProbe::changeSourceAddress(struct in6_addr *addr) {
if (!is_set())
return OP_FAILURE;
else{
IPv6Header *ip6 = find_ipv6(getPacket());
if (ip6 != NULL)
return ip6->setSourceAddress(*addr);
}
return OP_FAILURE;
}
/******************************************************************************
* Implementation of class FPResponse. *
******************************************************************************/
FPResponse::FPResponse(const char *probe_id, const u8 *buf, size_t len,
struct timeval senttime, struct timeval rcvdtime) {
this->probe_id = string_pool_insert(probe_id);
this->buf = (u8 *) safe_malloc(len);
memcpy(this->buf, buf, len);
this->len = len;
this->senttime = senttime;
this->rcvdtime = rcvdtime;
}
FPResponse::~FPResponse() {
free(buf);
}
/******************************************************************************
* Nsock handler wrappers. *
******************************************************************************/
/* This handler is a wrapper for the FPNetworkControl::probe_transmission_handler()
* method. We need this because C++ does not allow to use class methods as
* callback functions for things like signal() or the Nsock lib. */
void probe_transmission_handler_wrapper(nsock_pool nsp, nsock_event nse, void *arg) {
global_netctl.probe_transmission_handler(nsp, nse, arg);
return;
}
/* This handler is a wrapper for the FPNetworkControl:response_reception_handler()
* method. We need this because C++ does not allow to use class methods as
* callback functions for things like signal() or the Nsock lib. */
void response_reception_handler_wrapper(nsock_pool nsp, nsock_event nse, void *arg) {
global_netctl.response_reception_handler(nsp, nse, arg);
return;
}
|