summaryrefslogtreecommitdiffstats
path: root/src/parallel_tutorial.pod
blob: 90a3663f49f8b3dda121b353c633ebd495ca94ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
#!/usr/bin/perl -w

# SPDX-FileCopyrightText: 2021-2024 Ole Tange, http://ole.tange.dk and Free Software and Foundation, Inc.
# SPDX-License-Identifier: GFDL-1.3-or-later
# SPDX-License-Identifier: CC-BY-SA-4.0

=head1 GNU Parallel Tutorial

This tutorial shows off much of GNU B<parallel>'s functionality. The
tutorial is meant to learn the options in and syntax of GNU
B<parallel>.  The tutorial is B<not> to show realistic examples from the
real world.

=head2 Reader's guide

If you prefer reading a book buy B<GNU Parallel 2018> at
https://www.lulu.com/shop/ole-tange/gnu-parallel-2018/paperback/product-23558902.html
or download it at: https://doi.org/10.5281/zenodo.1146014

Otherwise start by watching the intro videos for a quick introduction:
https://www.youtube.com/playlist?list=PL284C9FF2488BC6D1

Then browse through the examples (B<man parallel_examples>). That will give
you an idea of what GNU B<parallel> is capable of.

If you want to dive even deeper: spend a couple of hours walking
through the tutorial (B<man parallel_tutorial>). Your command line
will love you for it.

Finally you may want to look at the rest of the manual (B<man
parallel>) if you have special needs not already covered.

If you want to know the design decisions behind GNU B<parallel>, try:
B<man parallel_design>. This is also a good intro if you intend to
change GNU B<parallel>.



=head1 Prerequisites

To run this tutorial you must have the following:

=over 9

=item parallel >= version 20160822

Install the newest version using your package manager (recommended for
security reasons), the way described in README, or with this command:

  $ (wget -O - pi.dk/3 || lynx -source pi.dk/3 || curl pi.dk/3/ || \
     fetch -o - http://pi.dk/3 ) > install.sh
  $ sha1sum install.sh
  12345678 51621b7f 1ee103c0 0783aae4 ef9889f8
  $ md5sum install.sh
  62eada78 703b5500 241b8e50 baf62758
  $ sha512sum install.sh
  160d3159 9480cf5c a101512f 150b7ac0 206a65dc 86f2bb6b bdf1a2bc 96bc6d06
  7f8237c2 0964b67f bccf8a93 332528fa 11e5ab43 2a6226a6 ceb197ab 7f03c061
  $ bash install.sh

This will also install the newest version of the tutorial which you
can see by running this:

  man parallel_tutorial

Most of the tutorial will work on older versions, too.


=item abc-file:

The file can be generated by this command:

  parallel -k echo ::: A B C > abc-file

=item def-file:

The file can be generated by this command:

  parallel -k echo ::: D E F > def-file

=item abc0-file:

The file can be generated by this command:

  perl -e 'printf "A\0B\0C\0"' > abc0-file

=item abc_-file:

The file can be generated by this command:

  perl -e 'printf "A_B_C_"' > abc_-file

=item tsv-file.tsv

The file can be generated by this command:

  perl -e 'printf "f1\tf2\nA\tB\nC\tD\n"' > tsv-file.tsv

=item num8

The file can be generated by this command:

  perl -e 'for(1..8){print "$_\n"}' > num8

=item num128

The file can be generated by this command:

  perl -e 'for(1..128){print "$_\n"}' > num128

=item num30000

The file can be generated by this command:

  perl -e 'for(1..30000){print "$_\n"}' > num30000

=item num1000000

The file can be generated by this command:

  perl -e 'for(1..1000000){print "$_\n"}' > num1000000

=item num_%header

The file can be generated by this command:

  (echo %head1; echo %head2; \
   perl -e 'for(1..10){print "$_\n"}') > num_%header

=item fixedlen

The file can be generated by this command:

  perl -e 'print "HHHHAAABBBCCC"' > fixedlen

=item For remote running: ssh login on 2 servers with no password in
$SERVER1 and $SERVER2 must work.

  SERVER1=server.example.com
  SERVER2=server2.example.net

So you must be able to do this without entering a password:

  ssh $SERVER1 echo works
  ssh $SERVER2 echo works

It can be setup by running B<ssh-keygen -t dsa; ssh-copy-id $SERVER1>
and using an empty passphrase, or you can use B<ssh-agent>.

=back


=head1 Input sources

GNU B<parallel> reads input from input sources. These can be files, the
command line, and stdin (standard input or a pipe).

=head2 A single input source

Input can be read from the command line:

  parallel echo ::: A B C

Output (the order may be different because the jobs are run in
parallel):

  A
  B
  C

The input source can be a file:

  parallel -a abc-file echo

Output: Same as above.

STDIN (standard input) can be the input source:

  cat abc-file | parallel echo

Output: Same as above.


=head2 Multiple input sources

GNU B<parallel> can take multiple input sources given on the command
line. GNU B<parallel> then generates all combinations of the input
sources:

  parallel echo ::: A B C ::: D E F

Output (the order may be different):

  A D
  A E
  A F
  B D
  B E
  B F
  C D
  C E
  C F

The input sources can be files:

  parallel -a abc-file -a def-file echo

Output: Same as above.

STDIN (standard input) can be one of the input sources using B<->:

  cat abc-file | parallel -a - -a def-file echo

Output: Same as above.

Instead of B<-a> files can be given after B<::::>:

  cat abc-file | parallel echo :::: - def-file

Output: Same as above.

::: and :::: can be mixed:

  parallel echo ::: A B C :::: def-file

Output: Same as above.

=head3 Linking arguments from input sources

With B<--link> you can link the input sources and get one argument
from each input source:

  parallel --link echo ::: A B C ::: D E F

Output (the order may be different):

  A D
  B E
  C F

If one of the input sources is too short, its values will wrap:

  parallel --link echo ::: A B C D E ::: F G

Output (the order may be different):

  A F
  B G
  C F
  D G
  E F

For more flexible linking you can use B<:::+> and B<::::+>. They work
like B<:::> and B<::::> except they link the previous input source to
this input source.

This will link ABC to GHI:

  parallel echo :::: abc-file :::+ G H I :::: def-file

Output (the order may be different):

  A G D
  A G E
  A G F
  B H D
  B H E
  B H F
  C I D
  C I E
  C I F

This will link GHI to DEF:

  parallel echo :::: abc-file ::: G H I ::::+ def-file

Output (the order may be different):

  A G D
  A H E
  A I F
  B G D
  B H E
  B I F
  C G D
  C H E
  C I F

If one of the input sources is too short when using B<:::+> or
B<::::+>, the rest will be ignored:

  parallel echo ::: A B C D E :::+ F G

Output (the order may be different):

  A F
  B G


=head2 Changing the argument separator.

GNU B<parallel> can use other separators than B<:::> or B<::::>. This is
typically useful if B<:::> or B<::::> is used in the command to run:

  parallel --arg-sep ,, echo ,, A B C :::: def-file

Output (the order may be different):

  A D
  A E
  A F
  B D
  B E
  B F
  C D
  C E
  C F

Changing the argument file separator:

  parallel --arg-file-sep // echo ::: A B C // def-file

Output: Same as above.


=head2 Changing the argument delimiter

GNU B<parallel> will normally treat a full line as a single argument: It
uses B<\n> as argument delimiter. This can be changed with B<-d>:

  parallel -d _ echo :::: abc_-file

Output (the order may be different):

  A
  B
  C

NUL can be given as B<\0>:

  parallel -d '\0' echo :::: abc0-file

Output: Same as above.

A shorthand for B<-d '\0'> is B<-0> (this will often be used to read files
from B<find ... -print0>):

  parallel -0 echo :::: abc0-file

Output: Same as above.

=head2 End-of-file value for input source

GNU B<parallel> can stop reading when it encounters a certain value:

  parallel -E stop echo ::: A B stop C D

Output:

  A
  B

=head2 Skipping empty lines

Using B<--no-run-if-empty> GNU B<parallel> will skip empty lines.

  (echo 1; echo; echo 2) | parallel --no-run-if-empty echo

Output:

  1
  2


=head1 Building the command line

=head2 No command means arguments are commands

If no command is given after parallel the arguments themselves are
treated as commands:

  parallel ::: ls 'echo foo' pwd

Output (the order may be different):

  [list of files in current dir]
  foo
  [/path/to/current/working/dir]

The command can be a script, a binary or a Bash function if the function is
exported using B<export -f>:

  # Only works in Bash
  my_func() {
    echo in my_func $1
  }
  export -f my_func
  parallel my_func ::: 1 2 3

Output (the order may be different):

  in my_func 1
  in my_func 2
  in my_func 3

=head2 Replacement strings

=head3 The 7 predefined replacement strings

GNU B<parallel> has several replacement strings. If no replacement
strings are used the default is to append B<{}>:

  parallel echo ::: dir/file.ext dir2/file2.ext2

Output:

  dir/file.ext
  dir2/file2.ext2

The default replacement string is B<{}>:

  parallel echo {} ::: dir/file.ext dir2/file2.ext2

Output:

  dir/file.ext
  dir2/file2.ext2

The replacement string B<{.}> removes the extension:

  parallel echo {.} ::: dir/file.ext dir2/file2.ext2

Output:

  dir/file
  dir2/file2

The replacement string B<{/}> removes the path:

  parallel echo {/} ::: dir/file.ext dir2/file2.ext2

Output:

  file.ext
  file2.ext2

The replacement string B<{//}> keeps only the path:

  parallel echo {//} ::: dir/file.ext dir2/file2.ext2

Output:

  dir
  dir2

The replacement string B<{/.}> removes the path and the extension:

  parallel echo {/.} ::: dir/file.ext dir2/file2.ext2

Output:

  file
  file2

The replacement string B<{#}> gives the job number:

  parallel echo {#} ::: A B C

Output (the order may be different):

  1
  2
  3

The replacement string B<{%}> gives the job slot number (between 1 and
number of jobs to run in parallel):

  parallel -j 2 echo {%} ::: A B C

Output (the order may be different and 1 and 2 may be swapped):

  1
  2
  1

=head3 Changing the replacement strings

The replacement string B<{}> can be changed with B<-I>:

  parallel -I ,, echo ,, ::: A/B.C

Output:

  A/B.C

The replacement string B<{.}> can be changed with B<--extensionreplace>:

  parallel --extensionreplace ,, echo ,, ::: A/B.C

Output:

  A/B

The replacement string B<{/}> can be replaced with B<--basenamereplace>:

  parallel --basenamereplace ,, echo ,, ::: A/B.C

Output:

  B.C

The replacement string B<{//}> can be changed with B<--dirnamereplace>:

  parallel --dirnamereplace ,, echo ,, ::: A/B.C

Output:

  A

The replacement string B<{/.}> can be changed with B<--basenameextensionreplace>:

  parallel --basenameextensionreplace ,, echo ,, ::: A/B.C

Output:

  B

The replacement string B<{#}> can be changed with B<--seqreplace>:

  parallel --seqreplace ,, echo ,, ::: A B C

Output (the order may be different):

  1
  2
  3

The replacement string B<{%}> can be changed with B<--slotreplace>:

  parallel -j2 --slotreplace ,, echo ,, ::: A B C

Output (the order may be different and 1 and 2 may be swapped):

  1
  2
  1

=head3 Perl expression replacement string

When predefined replacement strings are not flexible enough a perl
expression can be used instead. One example is to remove two
extensions: foo.tar.gz becomes foo

  parallel echo '{= s:\.[^.]+$::;s:\.[^.]+$::; =}' ::: foo.tar.gz

Output:

  foo

In B<{= =}> you can access all of GNU B<parallel>'s internal functions
and variables. A few are worth mentioning.

B<total_jobs()> returns the total number of jobs:

  parallel echo Job {#} of {= '$_=total_jobs()' =} ::: {1..5}

Output:

  Job 1 of 5
  Job 2 of 5
  Job 3 of 5
  Job 4 of 5
  Job 5 of 5

B<Q(...)> shell quotes the string:

  parallel echo {} shell quoted is {= '$_=Q($_)' =} ::: '*/!#$'

Output:

  */!#$ shell quoted is \*/\!\#\$

B<skip()> skips the job:

  parallel echo {= 'if($_==3) { skip() }' =} ::: {1..5}

Output:

  1
  2
  4
  5

B<@arg> contains the input source variables:

  parallel echo {= 'if($arg[1]==$arg[2]) { skip() }' =} \
    ::: {1..3} ::: {1..3}

Output:

  1 2
  1 3
  2 1
  2 3
  3 1
  3 2

If the strings B<{=> and B<=}> cause problems they can be replaced with B<--parens>:

  parallel --parens ,,,, echo ',, s:\.[^.]+$::;s:\.[^.]+$::; ,,' \
    ::: foo.tar.gz

Output:

  foo

To define a shorthand replacement string use B<--rpl>:

  parallel --rpl '.. s:\.[^.]+$::;s:\.[^.]+$::;' echo '..' \
    ::: foo.tar.gz

Output: Same as above.

If the shorthand starts with B<{> it can be used as a positional
replacement string, too:

  parallel --rpl '{..} s:\.[^.]+$::;s:\.[^.]+$::;' echo '{..}'
    ::: foo.tar.gz

Output: Same as above.

If the shorthand contains matching parenthesis the replacement string
becomes a dynamic replacement string and the string in the parenthesis
can be accessed as $$1. If there are multiple matching parenthesis,
the matched strings can be accessed using $$2, $$3 and so on.

You can think of this as giving arguments to the replacement
string. Here we give the argument B<.tar.gz> to the replacement string
B<{%I<string>}> which removes I<string>:

  parallel --rpl '{%(.+?)} s/$$1$//;' echo {%.tar.gz}.zip ::: foo.tar.gz

Output:

  foo.zip

Here we give the two arguments B<tar.gz> and B<zip> to the replacement
string B<{/I<string1>/I<string2>}> which replaces I<string1> with
I<string2>:

  parallel --rpl '{/(.+?)/(.*?)} s/$$1/$$2/;' echo {/tar.gz/zip} \
    ::: foo.tar.gz

Output:

  foo.zip


GNU B<parallel>'s 7 replacement strings are implemented as this:

  --rpl '{} '
  --rpl '{#} $_=$job->seq()'
  --rpl '{%} $_=$job->slot()'
  --rpl '{/} s:.*/::'
  --rpl '{//} $Global::use{"File::Basename"} ||=
           eval "use File::Basename; 1;"; $_ = dirname($_);'
  --rpl '{/.} s:.*/::; s:\.[^/.]+$::;'
  --rpl '{.} s:\.[^/.]+$::'

=head3 Positional replacement strings

With multiple input sources the argument from the individual input
sources can be accessed with S<< B<{>numberB<}> >>:

  parallel echo {1} and {2} ::: A B ::: C D

Output (the order may be different):

  A and C
  A and D
  B and C
  B and D

The positional replacement strings can also be modified using B</>, B<//>, B</.>, and  B<.>:

  parallel echo /={1/} //={1//} /.={1/.} .={1.} ::: A/B.C D/E.F

Output (the order may be different):

  /=B.C //=A /.=B .=A/B
  /=E.F //=D /.=E .=D/E

If a position is negative, it will refer to the input source counted
from behind:

  parallel echo 1={1} 2={2} 3={3} -1={-1} -2={-2} -3={-3} \
    ::: A B ::: C D ::: E F

Output (the order may be different):

  1=A 2=C 3=E -1=E -2=C -3=A
  1=A 2=C 3=F -1=F -2=C -3=A
  1=A 2=D 3=E -1=E -2=D -3=A
  1=A 2=D 3=F -1=F -2=D -3=A
  1=B 2=C 3=E -1=E -2=C -3=B
  1=B 2=C 3=F -1=F -2=C -3=B
  1=B 2=D 3=E -1=E -2=D -3=B
  1=B 2=D 3=F -1=F -2=D -3=B


=head3 Positional perl expression replacement string

To use a perl expression as a positional replacement string simply
prepend the perl expression with number and space:

  parallel echo '{=2 s:\.[^.]+$::;s:\.[^.]+$::; =} {1}' \
    ::: bar ::: foo.tar.gz

Output:

  foo bar

If a shorthand defined using B<--rpl> starts with B<{> it can be used as
a positional replacement string, too:

  parallel --rpl '{..} s:\.[^.]+$::;s:\.[^.]+$::;' echo '{2..} {1}' \
    ::: bar ::: foo.tar.gz

Output: Same as above.


=head3 Input from columns

The columns in a file can be bound to positional replacement strings
using B<--colsep>. Here the columns are separated by TAB (\t):

  parallel --colsep '\t' echo 1={1} 2={2} :::: tsv-file.tsv

Output (the order may be different):

  1=f1 2=f2
  1=A 2=B
  1=C 2=D

=head3 Header defined replacement strings

With B<--header> GNU B<parallel> will use the first value of the input
source as the name of the replacement string. Only the non-modified
version B<{}> is supported:

  parallel --header : echo f1={f1} f2={f2} ::: f1 A B ::: f2 C D

Output (the order may be different):

  f1=A f2=C
  f1=A f2=D
  f1=B f2=C
  f1=B f2=D

It is useful with B<--colsep> for processing files with TAB separated values:

  parallel --header : --colsep '\t' echo f1={f1} f2={f2} \
    :::: tsv-file.tsv

Output (the order may be different):

  f1=A f2=B
  f1=C f2=D

=head3 More pre-defined replacement strings with --plus

B<--plus> adds the replacement strings B<{+/} {+.} {+..} {+...} {..}  {...}
{/..} {/...} {##}>. The idea being that B<{+foo}> matches the opposite of B<{foo}>
and B<{}> = B<{+/}>/B<{/}> = B<{.}>.B<{+.}> = B<{+/}>/B<{/.}>.B<{+.}> = B<{..}>.B<{+..}> =
B<{+/}>/B<{/..}>.B<{+..}> = B<{...}>.B<{+...}> = B<{+/}>/B<{/...}>.B<{+...}>.

  parallel --plus echo {} ::: dir/sub/file.ex1.ex2.ex3
  parallel --plus echo {+/}/{/} ::: dir/sub/file.ex1.ex2.ex3
  parallel --plus echo {.}.{+.} ::: dir/sub/file.ex1.ex2.ex3
  parallel --plus echo {+/}/{/.}.{+.} ::: dir/sub/file.ex1.ex2.ex3
  parallel --plus echo {..}.{+..} ::: dir/sub/file.ex1.ex2.ex3
  parallel --plus echo {+/}/{/..}.{+..} ::: dir/sub/file.ex1.ex2.ex3
  parallel --plus echo {...}.{+...} ::: dir/sub/file.ex1.ex2.ex3
  parallel --plus echo {+/}/{/...}.{+...} ::: dir/sub/file.ex1.ex2.ex3

Output:

  dir/sub/file.ex1.ex2.ex3

B<{##}> is simply the number of jobs:

  parallel --plus echo Job {#} of {##} ::: {1..5}

Output:

  Job 1 of 5
  Job 2 of 5
  Job 3 of 5
  Job 4 of 5
  Job 5 of 5

=head3 Dynamic replacement strings with --plus

B<--plus> also defines these dynamic replacement strings:

=over 19

=item B<{:-I<string>}>

Default value is I<string> if the argument is empty.

=item B<{:I<number>}>

Substring from I<number> till end of string.

=item B<{:I<number1>:I<number2>}>

Substring from I<number1> to I<number2>.

=item B<{#I<string>}>

If the argument starts with I<string>, remove it.

=item B<{%I<string>}>

If the argument ends with I<string>, remove it.

=item B<{/I<string1>/I<string2>}>

Replace I<string1> with I<string2>.

=item B<{^I<string>}>

If the argument starts with I<string>, upper case it. I<string> must
be a single letter.

=item B<{^^I<string>}>

If the argument contains I<string>, upper case it. I<string> must be a
single letter.

=item B<{,I<string>}>

If the argument starts with I<string>, lower case it. I<string> must
be a single letter.

=item B<{,,I<string>}>

If the argument contains I<string>, lower case it. I<string> must be a
single letter.

=back

They are inspired from B<Bash>:

  unset myvar
  echo ${myvar:-myval}
  parallel --plus echo {:-myval} ::: "$myvar"

  myvar=abcAaAdef
  echo ${myvar:2}
  parallel --plus echo {:2} ::: "$myvar"

  echo ${myvar:2:3}
  parallel --plus echo {:2:3} ::: "$myvar"

  echo ${myvar#bc}
  parallel --plus echo {#bc} ::: "$myvar"
  echo ${myvar#abc}
  parallel --plus echo {#abc} ::: "$myvar"

  echo ${myvar%de}
  parallel --plus echo {%de} ::: "$myvar"
  echo ${myvar%def}
  parallel --plus echo {%def} ::: "$myvar"

  echo ${myvar/def/ghi}
  parallel --plus echo {/def/ghi} ::: "$myvar"

  echo ${myvar^a}
  parallel --plus echo {^a} ::: "$myvar"
  echo ${myvar^^a}
  parallel --plus echo {^^a} ::: "$myvar"

  myvar=AbcAaAdef
  echo ${myvar,A}
  parallel --plus echo '{,A}' ::: "$myvar"
  echo ${myvar,,A}
  parallel --plus echo '{,,A}' ::: "$myvar"

Output:

  myval
  myval
  cAaAdef
  cAaAdef
  cAa
  cAa
  abcAaAdef
  abcAaAdef
  AaAdef
  AaAdef
  abcAaAdef
  abcAaAdef
  abcAaA
  abcAaA
  abcAaAghi
  abcAaAghi
  AbcAaAdef
  AbcAaAdef
  AbcAAAdef
  AbcAAAdef
  abcAaAdef
  abcAaAdef
  abcaaadef
  abcaaadef


=head2 More than one argument

With B<--xargs> GNU B<parallel> will fit as many arguments as possible on a
single line:

  cat num30000 | parallel --xargs echo | wc -l

Output (if you run this under Bash on GNU/Linux):

  2

The 30000 arguments fitted on 2 lines.

The maximal length of a single line can be set with B<-s>. With a maximal
line length of 10000 chars 17 commands will be run:

  cat num30000 | parallel --xargs -s 10000 echo | wc -l

Output:

  17

For better parallelism GNU B<parallel> can distribute the arguments
between all the parallel jobs when end of file is met.

Below GNU B<parallel> reads the last argument when generating the second
job. When GNU B<parallel> reads the last argument, it spreads all the
arguments for the second job over 4 jobs instead, as 4 parallel jobs
are requested.

The first job will be the same as the B<--xargs> example above, but the
second job will be split into 4 evenly sized jobs, resulting in a
total of 5 jobs:

  cat num30000 | parallel --jobs 4 -m echo | wc -l

Output (if you run this under Bash on GNU/Linux):

  5

This is even more visible when running 4 jobs with 10 arguments. The
10 arguments are being spread over 4 jobs:

  parallel --jobs 4 -m echo ::: 1 2 3 4 5 6 7 8 9 10

Output:

  1 2 3
  4 5 6
  7 8 9
  10

A replacement string can be part of a word. B<-m> will not repeat the context:

  parallel --jobs 4 -m echo pre-{}-post ::: A B C D E F G

Output (the order may be different):

  pre-A B-post
  pre-C D-post
  pre-E F-post
  pre-G-post

To repeat the context use B<-X> which otherwise works like B<-m>:

  parallel --jobs 4 -X echo pre-{}-post ::: A B C D E F G

Output (the order may be different):

  pre-A-post pre-B-post
  pre-C-post pre-D-post
  pre-E-post pre-F-post
  pre-G-post

To limit the number of arguments use B<-N>:

  parallel -N3 echo ::: A B C D E F G H

Output (the order may be different):

  A B C
  D E F
  G H

B<-N> also sets the positional replacement strings:

  parallel -N3 echo 1={1} 2={2} 3={3} ::: A B C D E F G H

Output (the order may be different):

  1=A 2=B 3=C
  1=D 2=E 3=F
  1=G 2=H 3=

B<-N0> reads 1 argument but inserts none:

  parallel -N0 echo foo ::: 1 2 3

Output:

  foo
  foo
  foo

=head2 Quoting

Command lines that contain special characters may need to be protected from the shell.

The B<perl> program B<print "@ARGV\n"> basically works like B<echo>.

  perl -e 'print "@ARGV\n"' A

Output:

  A

To run that in parallel the command needs to be quoted:

  parallel perl -e 'print "@ARGV\n"' ::: This wont work

Output:

  [Nothing]

To quote the command use B<-q>:

  parallel -q perl -e 'print "@ARGV\n"' ::: This works

Output (the order may be different):

  This
  works

Or you can quote the critical part using B<\'>:

  parallel perl -e \''print "@ARGV\n"'\' ::: This works, too

Output (the order may be different):

  This
  works,
  too

GNU B<parallel> can also \-quote full lines. Simply run this:

  parallel --shellquote
  Warning: Input is read from the terminal. You either know what you
  Warning: are doing (in which case: YOU ARE AWESOME!) or you forgot
  Warning: ::: or :::: or to pipe data into parallel. If so
  Warning: consider going through the tutorial: man parallel_tutorial
  Warning: Press CTRL-D to exit.
  perl -e 'print "@ARGV\n"'
  [CTRL-D]

Output:

  perl\ -e\ \'print\ \"@ARGV\\n\"\'

This can then be used as the command:

  parallel perl\ -e\ \'print\ \"@ARGV\\n\"\' ::: This also works

Output (the order may be different):

  This
  also
  works


=head2 Trimming space

Space can be trimmed on the arguments using B<--trim>:

  parallel --trim r echo pre-{}-post ::: ' A '

Output:

  pre- A-post

To trim on the left side:

  parallel --trim l echo pre-{}-post ::: ' A '

Output:

  pre-A -post

To trim on the both sides:

  parallel --trim lr echo pre-{}-post ::: ' A '

Output:

  pre-A-post


=head2 Respecting the shell

This tutorial uses Bash as the shell. GNU B<parallel> respects which
shell you are using, so in B<zsh> you can do:

  parallel echo \={} ::: zsh bash ls

Output:

  /usr/bin/zsh
  /bin/bash
  /bin/ls

In B<csh> you can do:

  parallel 'set a="{}"; if( { test -d "$a" } ) echo "$a is a dir"' ::: *

Output:

  [somedir] is a dir

This also becomes useful if you use GNU B<parallel> in a shell script:
GNU B<parallel> will use the same shell as the shell script.


=head1 Controlling the output

The output can prefixed with the argument:

  parallel --tag echo foo-{} ::: A B C

Output (the order may be different):

  A       foo-A
  B       foo-B
  C       foo-C

To prefix it with another string use B<--tagstring>:

  parallel --tagstring {}-bar echo foo-{} ::: A B C

Output (the order may be different):

  A-bar   foo-A
  B-bar   foo-B
  C-bar   foo-C

To see what commands will be run without running them use B<--dryrun>:

  parallel --dryrun echo {} ::: A B C

Output (the order may be different):

  echo A
  echo B
  echo C

To print the command before running them use B<--verbose>:

  parallel --verbose echo {} ::: A B C

Output (the order may be different):

  echo A
  echo B
  A
  echo C
  B
  C

GNU B<parallel> will postpone the output until the command completes:

  parallel -j2 'printf "%s-start\n%s" {} {};
    sleep {};printf "%s\n" -middle;echo {}-end' ::: 4 2 1

Output:

  2-start
  2-middle
  2-end
  1-start
  1-middle
  1-end
  4-start
  4-middle
  4-end

To get the output immediately use B<--ungroup>:

  parallel -j2 --ungroup 'printf "%s-start\n%s" {} {};
    sleep {};printf "%s\n" -middle;echo {}-end' ::: 4 2 1

Output:

  4-start
  42-start
  2-middle
  2-end
  1-start
  1-middle
  1-end
  -middle
  4-end

B<--ungroup> is fast, but can cause half a line from one job to be mixed
with half a line of another job. That has happened in the second line,
where the line '4-middle' is mixed with '2-start'.

To avoid this use B<--linebuffer>:

  parallel -j2 --linebuffer 'printf "%s-start\n%s" {} {};
    sleep {};printf "%s\n" -middle;echo {}-end' ::: 4 2 1

Output:

  4-start
  2-start
  2-middle
  2-end
  1-start
  1-middle
  1-end
  4-middle
  4-end

To force the output in the same order as the arguments use B<--keep-order>/B<-k>:

  parallel -j2 -k 'printf "%s-start\n%s" {} {};
    sleep {};printf "%s\n" -middle;echo {}-end' ::: 4 2 1

Output:

  4-start
  4-middle
  4-end
  2-start
  2-middle
  2-end
  1-start
  1-middle
  1-end


=head2 Saving output into files

GNU B<parallel> can save the output of each job into files:

  parallel --files echo ::: A B C

Output will be similar to this:

  /tmp/pAh6uWuQCg.par
  /tmp/opjhZCzAX4.par
  /tmp/W0AT_Rph2o.par

By default GNU B<parallel> will cache the output in files in B</tmp>. This
can be changed by setting B<$TMPDIR> or B<--tmpdir>:

  parallel --tmpdir /var/tmp --files echo ::: A B C

Output will be similar to this:

  /var/tmp/N_vk7phQRc.par
  /var/tmp/7zA4Ccf3wZ.par
  /var/tmp/LIuKgF_2LP.par

Or:

  TMPDIR=/var/tmp parallel --files echo ::: A B C

Output: Same as above.

The output files can be saved in a structured way using B<--results>:

  parallel --results outdir echo ::: A B C

Output:

  A
  B
  C

These files were also generated containing the standard output
(stdout), standard error (stderr), and the sequence number (seq):

  outdir/1/A/seq
  outdir/1/A/stderr
  outdir/1/A/stdout
  outdir/1/B/seq
  outdir/1/B/stderr
  outdir/1/B/stdout
  outdir/1/C/seq
  outdir/1/C/stderr
  outdir/1/C/stdout

B<--header :> will take the first value as name and use that in the
directory structure. This is useful if you are using multiple input
sources:

  parallel --header : --results outdir echo ::: f1 A B ::: f2 C D

Generated files:

  outdir/f1/A/f2/C/seq
  outdir/f1/A/f2/C/stderr
  outdir/f1/A/f2/C/stdout
  outdir/f1/A/f2/D/seq
  outdir/f1/A/f2/D/stderr
  outdir/f1/A/f2/D/stdout
  outdir/f1/B/f2/C/seq
  outdir/f1/B/f2/C/stderr
  outdir/f1/B/f2/C/stdout
  outdir/f1/B/f2/D/seq
  outdir/f1/B/f2/D/stderr
  outdir/f1/B/f2/D/stdout

The directories are named after the variables and their values.

=head1 Controlling the execution

=head2 Number of simultaneous jobs

The number of concurrent jobs is given with B<--jobs>/B<-j>:

  /usr/bin/time parallel -N0 -j64 sleep 1 :::: num128

With 64 jobs in parallel the 128 B<sleep>s will take 2-8 seconds to run -
depending on how fast your machine is.

By default B<--jobs> is the same as the number of CPU cores. So this:

  /usr/bin/time parallel -N0 sleep 1 :::: num128

should take twice the time of running 2 jobs per CPU core:

  /usr/bin/time parallel -N0 --jobs 200% sleep 1 :::: num128

B<--jobs 0> will run as many jobs in parallel as possible:

  /usr/bin/time parallel -N0 --jobs 0 sleep 1 :::: num128

which should take 1-7 seconds depending on how fast your machine is.

B<--jobs> can read from a file which is re-read when a job finishes:

  echo 50% > my_jobs
  /usr/bin/time parallel -N0 --jobs my_jobs sleep 1 :::: num128 &
  sleep 1
  echo 0 > my_jobs
  wait

The first second only 50% of the CPU cores will run a job. Then B<0> is
put into B<my_jobs> and then the rest of the jobs will be started in
parallel.

Instead of basing the percentage on the number of CPU cores
GNU B<parallel> can base it on the number of CPUs:

  parallel --use-cpus-instead-of-cores -N0 sleep 1 :::: num8

=head2 Shuffle job order

If you have many jobs (e.g. by multiple combinations of input
sources), it can be handy to shuffle the jobs, so you get different
values run. Use B<--shuf> for that:

  parallel --shuf echo ::: 1 2 3 ::: a b c ::: A B C

Output:

  All combinations but different order for each run.

=head2 Interactivity

GNU B<parallel> can ask the user if a command should be run using B<--interactive>:

  parallel --interactive echo ::: 1 2 3

Output:

  echo 1 ?...y
  echo 2 ?...n
  1
  echo 3 ?...y
  3

GNU B<parallel> can be used to put arguments on the command line for an
interactive command such as B<emacs> to edit one file at a time:

  parallel --tty emacs ::: 1 2 3

Or give multiple argument in one go to open multiple files:

  parallel -X --tty vi ::: 1 2 3

=head2 A terminal for every job

Using B<--tmux> GNU B<parallel> can start a terminal for every job run:

  seq 10 20 | parallel --tmux 'echo start {}; sleep {}; echo done {}'

This will tell you to run something similar to:

  tmux -S /tmp/tmsrPrO0 attach

Using normal B<tmux> keystrokes (CTRL-b n or CTRL-b p) you can cycle
between windows of the running jobs. When a job is finished it will
pause for 10 seconds before closing the window.

=head2 Timing

Some jobs do heavy I/O when they start. To avoid a thundering herd GNU
B<parallel> can delay starting new jobs. B<--delay> I<X> will make
sure there is at least I<X> seconds between each start:

  parallel --delay 2.5 echo Starting {}\;date ::: 1 2 3

Output:

  Starting 1
  Thu Aug 15 16:24:33 CEST 2013
  Starting 2
  Thu Aug 15 16:24:35 CEST 2013
  Starting 3
  Thu Aug 15 16:24:38 CEST 2013


If jobs taking more than a certain amount of time are known to fail,
they can be stopped with B<--timeout>. The accuracy of B<--timeout> is
2 seconds:

  parallel --timeout 4.1 sleep {}\; echo {} ::: 2 4 6 8

Output:

  2
  4

GNU B<parallel> can compute the median runtime for jobs and kill those
that take more than 200% of the median runtime:

  parallel --timeout 200% sleep {}\; echo {} ::: 2.1 2.2 3 7 2.3

Output:

  2.1
  2.2
  3
  2.3

=head2 Progress information

Based on the runtime of completed jobs GNU B<parallel> can estimate the
total runtime:

  parallel --eta sleep ::: 1 3 2 2 1 3 3 2 1

Output:

  Computers / CPU cores / Max jobs to run
  1:local / 2 / 2

  Computer:jobs running/jobs completed/%of started jobs/
    Average seconds to complete
  ETA: 2s 0left 1.11avg  local:0/9/100%/1.1s

GNU B<parallel> can give progress information with B<--progress>:

  parallel --progress sleep ::: 1 3 2 2 1 3 3 2 1

Output:

  Computers / CPU cores / Max jobs to run
  1:local / 2 / 2

  Computer:jobs running/jobs completed/%of started jobs/
    Average seconds to complete
  local:0/9/100%/1.1s

A progress bar can be shown with B<--bar>:

  parallel --bar sleep ::: 1 3 2 2 1 3 3 2 1

And a graphic bar can be shown with B<--bar> and B<zenity>:

  seq 1000 | parallel -j10 --bar '(echo -n {};sleep 0.1)' \
    2> >(perl -pe 'BEGIN{$/="\r";$|=1};s/\r/\n/g' |
         zenity --progress --auto-kill --auto-close)

A logfile of the jobs completed so far can be generated with B<--joblog>:

  parallel --joblog /tmp/log exit  ::: 1 2 3 0
  cat /tmp/log

Output:

  Seq Host Starttime      Runtime Send Receive Exitval Signal Command
  1   :    1376577364.974 0.008   0    0       1       0      exit 1
  2   :    1376577364.982 0.013   0    0       2       0      exit 2
  3   :    1376577364.990 0.013   0    0       3       0      exit 3
  4   :    1376577365.003 0.003   0    0       0       0      exit 0

The log contains the job sequence, which host the job was run on, the
start time and run time, how much data was transferred, the exit
value, the signal that killed the job, and finally the command being
run.

With a joblog GNU B<parallel> can be stopped and later pickup where it
left off. It it important that the input of the completed jobs is
unchanged.

  parallel --joblog /tmp/log exit  ::: 1 2 3 0
  cat /tmp/log
  parallel --resume --joblog /tmp/log exit  ::: 1 2 3 0 0 0
  cat /tmp/log

Output:

  Seq Host Starttime      Runtime Send Receive Exitval Signal Command
  1   :    1376580069.544 0.008   0    0       1       0      exit 1
  2   :    1376580069.552 0.009   0    0       2       0      exit 2
  3   :    1376580069.560 0.012   0    0       3       0      exit 3
  4   :    1376580069.571 0.005   0    0       0       0      exit 0

  Seq Host Starttime      Runtime Send Receive Exitval Signal Command
  1   :    1376580069.544 0.008   0    0       1       0      exit 1
  2   :    1376580069.552 0.009   0    0       2       0      exit 2
  3   :    1376580069.560 0.012   0    0       3       0      exit 3
  4   :    1376580069.571 0.005   0    0       0       0      exit 0
  5   :    1376580070.028 0.009   0    0       0       0      exit 0
  6   :    1376580070.038 0.007   0    0       0       0      exit 0

Note how the start time of the last 2 jobs is clearly different from the second run.

With B<--resume-failed> GNU B<parallel> will re-run the jobs that failed:

  parallel --resume-failed --joblog /tmp/log exit  ::: 1 2 3 0 0 0
  cat /tmp/log

Output:

  Seq Host Starttime      Runtime Send Receive Exitval Signal Command
  1   :    1376580069.544 0.008   0    0       1       0      exit 1
  2   :    1376580069.552 0.009   0    0       2       0      exit 2
  3   :    1376580069.560 0.012   0    0       3       0      exit 3
  4   :    1376580069.571 0.005   0    0       0       0      exit 0
  5   :    1376580070.028 0.009   0    0       0       0      exit 0
  6   :    1376580070.038 0.007   0    0       0       0      exit 0
  1   :    1376580154.433 0.010   0    0       1       0      exit 1
  2   :    1376580154.444 0.022   0    0       2       0      exit 2
  3   :    1376580154.466 0.005   0    0       3       0      exit 3

Note how seq 1 2 3 have been repeated because they had exit value
different from 0.

B<--retry-failed> does almost the same as B<--resume-failed>. Where
B<--resume-failed> reads the commands from the command line (and
ignores the commands in the joblog), B<--retry-failed> ignores the
command line and reruns the commands mentioned in the joblog.

  parallel --retry-failed --joblog /tmp/log
  cat /tmp/log

Output:

  Seq Host Starttime      Runtime Send Receive Exitval Signal Command
  1   :    1376580069.544 0.008   0    0       1       0      exit 1
  2   :    1376580069.552 0.009   0    0       2       0      exit 2
  3   :    1376580069.560 0.012   0    0       3       0      exit 3
  4   :    1376580069.571 0.005   0    0       0       0      exit 0
  5   :    1376580070.028 0.009   0    0       0       0      exit 0
  6   :    1376580070.038 0.007   0    0       0       0      exit 0
  1   :    1376580154.433 0.010   0    0       1       0      exit 1
  2   :    1376580154.444 0.022   0    0       2       0      exit 2
  3   :    1376580154.466 0.005   0    0       3       0      exit 3
  1   :    1376580164.633 0.010   0    0       1       0      exit 1
  2   :    1376580164.644 0.022   0    0       2       0      exit 2
  3   :    1376580164.666 0.005   0    0       3       0      exit 3


=head2 Termination

=head3 Unconditional termination

By default GNU B<parallel> will wait for all jobs to finish before exiting.

If you send GNU B<parallel> the B<TERM> signal, GNU B<parallel> will
stop spawning new jobs and wait for the remaining jobs to finish. If
you send GNU B<parallel> the B<TERM> signal again, GNU B<parallel>
will kill all running jobs and exit.

=head3 Termination dependent on job status

For certain jobs there is no need to continue if one of the jobs fails
and has an exit code different from 0. GNU B<parallel> will stop spawning new jobs
with B<--halt soon,fail=1>:

  parallel -j2 --halt soon,fail=1 echo {}\; exit {} ::: 0 0 1 2 3

Output:

  0
  0
  1
  parallel: This job failed:
  echo 1; exit 1
  parallel: Starting no more jobs. Waiting for 1 jobs to finish.
  2

With B<--halt now,fail=1> the running jobs will be killed immediately:

  parallel -j2 --halt now,fail=1 echo {}\; exit {} ::: 0 0 1 2 3

Output:

  0
  0
  1
  parallel: This job failed:
  echo 1; exit 1

If B<--halt> is given a percentage this percentage of the jobs must fail
before GNU B<parallel> stops spawning more jobs:

  parallel -j2 --halt soon,fail=20% echo {}\; exit {} \
    ::: 0 1 2 3 4 5 6 7 8 9

Output:

  0
  1
  parallel: This job failed:
  echo 1; exit 1
  2
  parallel: This job failed:
  echo 2; exit 2
  parallel: Starting no more jobs. Waiting for 1 jobs to finish.
  3
  parallel: This job failed:
  echo 3; exit 3

If you are looking for success instead of failures, you can use
B<success>. This will finish as soon as the first job succeeds:

  parallel -j2 --halt now,success=1 echo {}\; exit {} ::: 1 2 3 0 4 5 6

Output:

  1
  2
  3
  0
  parallel: This job succeeded:
  echo 0; exit 0

GNU B<parallel> can retry the command with B<--retries>. This is useful if a
command fails for unknown reasons now and then.

  parallel -k --retries 3 \
    'echo tried {} >>/tmp/runs; echo completed {}; exit {}' ::: 1 2 0
  cat /tmp/runs

Output:

  completed 1
  completed 2
  completed 0

  tried 1
  tried 2
  tried 1
  tried 2
  tried 1
  tried 2
  tried 0

Note how job 1 and 2 were tried 3 times, but 0 was not retried because it had exit code 0.

=head3 Termination signals (advanced)

Using B<--termseq> you can control which signals are sent when killing
children. Normally children will be killed by sending them B<SIGTERM>,
waiting 200 ms, then another B<SIGTERM>, waiting 100 ms, then another
B<SIGTERM>, waiting 50 ms, then a B<SIGKILL>, finally waiting 25 ms
before giving up. It looks like this:

  show_signals() {
    perl -e 'for(keys %SIG) {
        $SIG{$_} = eval "sub { print \"Got $_\\n\"; }";
      }
      while(1){sleep 1}'
  }
  export -f show_signals
  echo | parallel --termseq TERM,200,TERM,100,TERM,50,KILL,25 \
    -u --timeout 1 show_signals

Output:

  Got TERM
  Got TERM
  Got TERM

Or just:

  echo | parallel -u --timeout 1 show_signals

Output: Same as above.

You can change this to B<SIGINT>, B<SIGTERM>, B<SIGKILL>:

  echo | parallel --termseq INT,200,TERM,100,KILL,25 \
    -u --timeout 1 show_signals

Output:

  Got INT
  Got TERM

The B<SIGKILL> does not show because it cannot be caught, and thus the
child dies.


=head2 Limiting the resources

To avoid overloading systems GNU B<parallel> can look at the system load
before starting another job:

  parallel --load 100% echo load is less than {} job per cpu ::: 1

Output:

  [when then load is less than the number of cpu cores]
  load is less than 1 job per cpu

GNU B<parallel> can also check if the system is swapping.

  parallel --noswap echo the system is not swapping ::: now

Output:

  [when then system is not swapping]
  the system is not swapping now

Some jobs need a lot of memory, and should only be started when there
is enough memory free. Using B<--memfree> GNU B<parallel> can check if
there is enough memory free. Additionally, GNU B<parallel> will kill
off the youngest job if the memory free falls below 50% of the
size. The killed job will put back on the queue and retried later.

  parallel --memfree 1G echo will run if more than 1 GB is ::: free

GNU B<parallel> can run the jobs with a nice value. This will work both
locally and remotely.

  parallel --nice 17 echo this is being run with nice -n ::: 17

Output:

  this is being run with nice -n 17

=head1 Remote execution

GNU B<parallel> can run jobs on remote servers. It uses B<ssh> to
communicate with the remote machines.

=head2 Sshlogin

The most basic sshlogin is B<-S> I<host>:

  parallel -S $SERVER1 echo running on ::: $SERVER1

Output:

  running on [$SERVER1]

To use a different username prepend the server with I<username@>:

  parallel -S username@$SERVER1 echo running on ::: username@$SERVER1

Output:

  running on [username@$SERVER1]

The special sshlogin B<:> is the local machine:

  parallel -S : echo running on ::: the_local_machine

Output:

  running on the_local_machine

If B<ssh> is not in $PATH it can be prepended to $SERVER1:

  parallel -S '/usr/bin/ssh '$SERVER1 echo custom ::: ssh

Output:

  custom ssh

The B<ssh> command can also be given using B<--ssh>:

  parallel --ssh /usr/bin/ssh -S $SERVER1 echo custom ::: ssh

or by setting B<$PARALLEL_SSH>:

  export PARALLEL_SSH=/usr/bin/ssh
  parallel -S $SERVER1 echo custom ::: ssh

Several servers can be given using multiple B<-S>:

  parallel -S $SERVER1 -S $SERVER2 echo ::: running on more hosts

Output (the order may be different):

  running
  on
  more
  hosts

Or they can be separated by B<,>:

  parallel -S $SERVER1,$SERVER2 echo ::: running on more hosts

Output: Same as above.

Or newline:

  # This gives a \n between $SERVER1 and $SERVER2
  SERVERS="`echo $SERVER1; echo $SERVER2`"
  parallel -S "$SERVERS" echo ::: running on more hosts

They can also be read from a file (replace I<user@> with the user on B<$SERVER2>):

  echo $SERVER1 > nodefile
  # Force 4 cores, special ssh-command, username
  echo 4//usr/bin/ssh user@$SERVER2 >> nodefile
  parallel --sshloginfile nodefile echo ::: running on more hosts

Output: Same as above.

Every time a job finished, the B<--sshloginfile> will be re-read, so
it is possible to both add and remove hosts while running.

The special B<--sshloginfile ..> reads from B<~/.parallel/sshloginfile>.

To force GNU B<parallel> to treat a server having a given number of CPU
cores prepend the number of core followed by B</> to the sshlogin:

  parallel -S 4/$SERVER1 echo force {} cpus on server ::: 4

Output:

  force 4 cpus on server

Servers can be put into groups by prepending I<@groupname> to the
server and the group can then be selected by appending I<@groupname> to
the argument if using B<--hostgroup>:

  parallel --hostgroup -S @grp1/$SERVER1 -S @grp2/$SERVER2 echo {} \
    ::: run_on_grp1@grp1 run_on_grp2@grp2

Output:

  run_on_grp1
  run_on_grp2

A host can be in multiple groups by separating the groups with B<+>, and
you can force GNU B<parallel> to limit the groups on which the command
can be run with B<-S> I<@groupname>:

  parallel -S @grp1 -S @grp1+grp2/$SERVER1 -S @grp2/SERVER2 echo {} \
    ::: run_on_grp1 also_grp1

Output:

  run_on_grp1
  also_grp1

=head2 Transferring files

GNU B<parallel> can transfer the files to be processed to the remote
host. It does that using rsync.

  echo This is input_file > input_file
  parallel -S $SERVER1 --transferfile {} cat ::: input_file

Output:

  This is input_file

If the files are processed into another file, the resulting file can be
transferred back:

  echo This is input_file > input_file
  parallel -S $SERVER1 --transferfile {} --return {}.out \
    cat {} ">"{}.out ::: input_file
  cat input_file.out

Output: Same as above.

To remove the input and output file on the remote server use B<--cleanup>:

  echo This is input_file > input_file
  parallel -S $SERVER1 --transferfile {} --return {}.out --cleanup \
    cat {} ">"{}.out ::: input_file
  cat input_file.out

Output: Same as above.

There is a shorthand for B<--transferfile {} --return --cleanup> called B<--trc>:

  echo This is input_file > input_file
  parallel -S $SERVER1 --trc {}.out cat {} ">"{}.out ::: input_file
  cat input_file.out

Output: Same as above.

Some jobs need a common database for all jobs. GNU B<parallel> can
transfer that using B<--basefile> which will transfer the file before the
first job:

  echo common data > common_file
  parallel --basefile common_file -S $SERVER1 \
    cat common_file\; echo {} ::: foo

Output:

  common data
  foo

To remove it from the remote host after the last job use B<--cleanup>.


=head2 Working dir

The default working dir on the remote machines is the login dir. This
can be changed with B<--workdir> I<mydir>.

Files transferred using B<--transferfile> and B<--return> will be relative
to I<mydir> on remote computers, and the command will be executed in
the dir I<mydir>.

The special I<mydir> value B<...> will create working dirs under
B<~/.parallel/tmp> on the remote computers. If B<--cleanup> is given
these dirs will be removed.

The special I<mydir> value B<.> uses the current working dir.  If the
current working dir is beneath your home dir, the value B<.> is
treated as the relative path to your home dir. This means that if your
home dir is different on remote computers (e.g. if your login is
different) the relative path will still be relative to your home dir.

  parallel -S $SERVER1 pwd ::: ""
  parallel --workdir . -S $SERVER1 pwd ::: ""
  parallel --workdir ... -S $SERVER1 pwd ::: ""

Output:

  [the login dir on $SERVER1]
  [current dir relative on $SERVER1]
  [a dir in ~/.parallel/tmp/...]


=head2 Avoid overloading sshd

If many jobs are started on the same server, B<sshd> can be
overloaded. GNU B<parallel> can insert a delay between each job run on
the same server:

  parallel -S $SERVER1 --sshdelay 0.2 echo ::: 1 2 3

Output (the order may be different):

  1
  2
  3

B<sshd> will be less overloaded if using B<--controlmaster>, which will
multiplex ssh connections:

  parallel --controlmaster -S $SERVER1 echo ::: 1 2 3

Output: Same as above.

=head2 Ignore hosts that are down

In clusters with many hosts a few of them are often down. GNU B<parallel>
can ignore those hosts. In this case the host 173.194.32.46 is down:

  parallel --filter-hosts -S 173.194.32.46,$SERVER1 echo ::: bar

Output:

  bar

=head2 Running the same commands on all hosts

GNU B<parallel> can run the same command on all the hosts:

  parallel --onall -S $SERVER1,$SERVER2 echo ::: foo bar

Output (the order may be different):

  foo
  bar
  foo
  bar

Often you will just want to run a single command on all hosts with out
arguments. B<--nonall> is a no argument B<--onall>:

  parallel --nonall -S $SERVER1,$SERVER2 echo foo bar

Output:

  foo bar
  foo bar

When B<--tag> is used with B<--nonall> and B<--onall> the B<--tagstring> is the host:

  parallel --nonall --tag -S $SERVER1,$SERVER2 echo foo bar

Output (the order may be different):

  $SERVER1 foo bar
  $SERVER2 foo bar

B<--jobs> sets the number of servers to log in to in parallel.

=head2 Transferring environment variables and functions

B<env_parallel> is a shell function that transfers all aliases,
functions, variables, and arrays. You active it by running:

  source `which env_parallel.bash`

Replace B<bash> with the shell you use.

Now you can use B<env_parallel> instead of B<parallel> and still have
your environment:

  alias myecho=echo
  myvar="Joe's var is"
  env_parallel -S $SERVER1 'myecho $myvar' ::: green

Output:

  Joe's var is green

The disadvantage is that if your environment is huge B<env_parallel>
will fail.

When B<env_parallel> fails, you can still use B<--env> to tell GNU
B<parallel> to transfer an environment variable to the remote system.

  MYVAR='foo bar'
  export MYVAR
  parallel --env MYVAR -S $SERVER1 echo '$MYVAR' ::: baz

Output:

  foo bar baz

This works for functions, too, if your shell is Bash:

  # This only works in Bash
  my_func() {
    echo in my_func $1
  }
  export -f my_func
  parallel --env my_func -S $SERVER1 my_func ::: baz

Output:

  in my_func baz

GNU B<parallel> can copy all user defined variables and functions to
the remote system. It just needs to record which ones to ignore in
B<~/.parallel/ignored_vars>. Do that by running this once:

  parallel --record-env
  cat ~/.parallel/ignored_vars

Output:

  [list of variables to ignore - including $PATH and $HOME]

Now all other variables and functions defined will be copied when
using B<--env _>.

  # The function is only copied if using Bash
  my_func2() {
    echo in my_func2 $VAR $1
  }
  export -f my_func2
  VAR=foo
  export VAR

  parallel --env _ -S $SERVER1 'echo $VAR; my_func2' ::: bar

Output:

  foo
  in my_func2 foo bar

If you use B<env_parallel> the variables, functions, and aliases do
not even need to be exported to be copied:

  NOT='not exported var'
  alias myecho=echo
  not_ex() {
    myecho in not_exported_func $NOT $1
  }
  env_parallel --env _ -S $SERVER1 'echo $NOT; not_ex' ::: bar

Output:

  not exported var
  in not_exported_func not exported var bar


=head2 Showing what is actually run

B<--verbose> will show the command that would be run on the local
machine.

When using B<--cat>, B<--pipepart>, or when a job is run on a remote
machine, the command is wrapped with helper scripts. B<-vv> shows all
of this.

  parallel -vv --pipepart --block 1M wc :::: num30000

Output:

  <num30000 perl -e 'while(@ARGV) { sysseek(STDIN,shift,0) || die;
  $left = shift; while($read = sysread(STDIN,$buf, ($left > 131072
  ? 131072 : $left))){ $left -= $read; syswrite(STDOUT,$buf); } }'
  0 0 0 168894 | (wc)
    30000   30000  168894

When the command gets more complex, the output is so hard to read,
that it is only useful for debugging:

  my_func3() {
    echo in my_func $1 > $1.out
  }
  export -f my_func3
  parallel -vv --workdir ... --nice 17 --env _ --trc {}.out \
    -S $SERVER1 my_func3 {} ::: abc-file

Output will be similar to:


  ( ssh server -- mkdir -p ./.parallel/tmp/aspire-1928520-1;rsync
  --protocol 30 -rlDzR -essh ./abc-file 
  server:./.parallel/tmp/aspire-1928520-1 );ssh server -- exec perl -e 
  \''@GNU_Parallel=("use","IPC::Open3;","use","MIME::Base64");
  eval"@GNU_Parallel";my$eval=decode_base64(join"",@ARGV);eval$eval;'\'
  c3lzdGVtKCJta2RpciIsIi1wIiwiLS0iLCIucGFyYWxsZWwvdG1wL2FzcGlyZS0xOTI4N
  TsgY2hkaXIgIi5wYXJhbGxlbC90bXAvYXNwaXJlLTE5Mjg1MjAtMSIgfHxwcmludChTVE
  BhcmFsbGVsOiBDYW5ub3QgY2hkaXIgdG8gLnBhcmFsbGVsL3RtcC9hc3BpcmUtMTkyODU
  iKSAmJiBleGl0IDI1NTskRU5WeyJPTERQV0QifT0iL2hvbWUvdGFuZ2UvcHJpdmF0L3Bh
  IjskRU5WeyJQQVJBTExFTF9QSUQifT0iMTkyODUyMCI7JEVOVnsiUEFSQUxMRUxfU0VRI
  0BiYXNoX2Z1bmN0aW9ucz1xdyhteV9mdW5jMyk7IGlmKCRFTlZ7IlNIRUxMIn09fi9jc2
  ByaW50IFNUREVSUiAiQ1NIL1RDU0ggRE8gTk9UIFNVUFBPUlQgbmV3bGluZXMgSU4gVkF
  TL0ZVTkNUSU9OUy4gVW5zZXQgQGJhc2hfZnVuY3Rpb25zXG4iOyBleGVjICJmYWxzZSI7
  YXNoZnVuYyA9ICJteV9mdW5jMygpIHsgIGVjaG8gaW4gbXlfZnVuYyBcJDEgPiBcJDEub
  Xhwb3J0IC1mIG15X2Z1bmMzID4vZGV2L251bGw7IjtAQVJHVj0ibXlfZnVuYzMgYWJjLW
  RzaGVsbD0iJEVOVntTSEVMTH0iOyR0bXBkaXI9Ii90bXAiOyRuaWNlPTE3O2RveyRFTlZ
  MRUxfVE1QfT0kdG1wZGlyLiIvcGFyIi5qb2luIiIsbWFweygwLi45LCJhIi4uInoiLCJB
  KVtyYW5kKDYyKV19KDEuLjUpO313aGlsZSgtZSRFTlZ7UEFSQUxMRUxfVE1QfSk7JFNJ
  fT1zdWJ7JGRvbmU9MTt9OyRwaWQ9Zm9yazt1bmxlc3MoJHBpZCl7c2V0cGdycDtldmFse
  W9yaXR5KDAsMCwkbmljZSl9O2V4ZWMkc2hlbGwsIi1jIiwoJGJhc2hmdW5jLiJAQVJHVi
  JleGVjOiQhXG4iO31kb3skcz0kczwxPzAuMDAxKyRzKjEuMDM6JHM7c2VsZWN0KHVuZGV
  mLHVuZGVmLCRzKTt9dW50aWwoJGRvbmV8fGdldHBwaWQ9PTEpO2tpbGwoU0lHSFVQLC0k
  dW5sZXNzJGRvbmU7d2FpdDtleGl0KCQ/JjEyNz8xMjgrKCQ/JjEyNyk6MSskPz4+OCk=;
  _EXIT_status=$?; mkdir -p ./.; rsync --protocol 30 --rsync-path=cd\
  ./.parallel/tmp/aspire-1928520-1/./.\;\ rsync -rlDzR -essh
  server:./abc-file.out ./.;ssh server -- \(rm\ -f\
  ./.parallel/tmp/aspire-1928520-1/abc-file\;\ sh\ -c\ \'rmdir\
  ./.parallel/tmp/aspire-1928520-1/\ ./.parallel/tmp/\ ./.parallel/\
  2\>/dev/null\'\;rm\ -rf\ ./.parallel/tmp/aspire-1928520-1\;\);ssh
  server -- \(rm\ -f\ ./.parallel/tmp/aspire-1928520-1/abc-file.out\;\
  sh\ -c\ \'rmdir\ ./.parallel/tmp/aspire-1928520-1/\ ./.parallel/tmp/\
  ./.parallel/\ 2\>/dev/null\'\;rm\ -rf\ 
  ./.parallel/tmp/aspire-1928520-1\;\);ssh server -- rm -rf 
  .parallel/tmp/aspire-1928520-1; exit $_EXIT_status;

=head1 Saving output to shell variables (advanced)

GNU B<parset> will set shell variables to the output of GNU
B<parallel>. GNU B<parset> has one important limitation: It cannot be
part of a pipe. In particular this means it cannot read anything from
standard input (stdin) or pipe output to another program.

To use GNU B<parset> prepend command with destination variables:

  parset myvar1,myvar2 echo ::: a b
  echo $myvar1
  echo $myvar2

Output:

  a
  b

If you only give a single variable, it will be treated as an array:

  parset myarray seq {} 5 ::: 1 2 3
  echo "${myarray[1]}"

Output:

  2
  3
  4
  5

The commands to run can be an array:

  cmd=("echo '<<joe  \"double  space\"  cartoon>>'" "pwd")
  parset data ::: "${cmd[@]}"
  echo "${data[0]}"
  echo "${data[1]}"

Output:

  <<joe  "double  space"  cartoon>>
  [current dir]


=head1 Saving to an SQL base (advanced)

GNU B<parallel> can save into an SQL base. Point GNU B<parallel> to a
table and it will put the joblog there together with the variables and
the output each in their own column.

=head2 CSV as SQL base

The simplest is to use a CSV file as the storage table:

  parallel --sqlandworker csv:///%2Ftmp/log.csv \
    seq ::: 10 ::: 12 13 14
  cat /tmp/log.csv

Note how '/' in the path must be written as %2F.

Output will be similar to:

  Seq,Host,Starttime,JobRuntime,Send,Receive,Exitval,_Signal,
    Command,V1,V2,Stdout,Stderr
  1,:,1458254498.254,0.069,0,9,0,0,"seq 10 12",10,12,"10
  11
  12
  ",
  2,:,1458254498.278,0.080,0,12,0,0,"seq 10 13",10,13,"10
  11
  12
  13
  ",
  3,:,1458254498.301,0.083,0,15,0,0,"seq 10 14",10,14,"10
  11
  12
  13
  14
  ",

A proper CSV reader (like LibreOffice or R's read.csv) will read this
format correctly - even with fields containing newlines as above.

If the output is big you may want to put it into files using B<--results>:

  parallel --results outdir --sqlandworker csv:///%2Ftmp/log2.csv \
    seq ::: 10 ::: 12 13 14
  cat /tmp/log2.csv

Output will be similar to:

  Seq,Host,Starttime,JobRuntime,Send,Receive,Exitval,_Signal,
    Command,V1,V2,Stdout,Stderr
  1,:,1458824738.287,0.029,0,9,0,0,
    "seq 10 12",10,12,outdir/1/10/2/12/stdout,outdir/1/10/2/12/stderr
  2,:,1458824738.298,0.025,0,12,0,0,
    "seq 10 13",10,13,outdir/1/10/2/13/stdout,outdir/1/10/2/13/stderr
  3,:,1458824738.309,0.026,0,15,0,0,
    "seq 10 14",10,14,outdir/1/10/2/14/stdout,outdir/1/10/2/14/stderr


=head2 DBURL as table

The CSV file is an example of a DBURL.

GNU B<parallel> uses a DBURL to address the table. A DBURL has this format:

  vendor://[[user][:password]@][host][:port]/[database[/table]

Example:

  mysql://scott:tiger@my.example.com/mydatabase/mytable
  postgresql://scott:tiger@pg.example.com/mydatabase/mytable
  sqlite3:///%2Ftmp%2Fmydatabase/mytable
  csv:///%2Ftmp/log.csv

To refer to B</tmp/mydatabase> with B<sqlite> or B<csv> you need to
encode the B</> as B<%2F>.

Run a job using B<sqlite> on B<mytable> in B</tmp/mydatabase>:

  DBURL=sqlite3:///%2Ftmp%2Fmydatabase
  DBURLTABLE=$DBURL/mytable
  parallel --sqlandworker $DBURLTABLE echo ::: foo bar ::: baz quuz

To see the result:

  sql $DBURL 'SELECT * FROM mytable ORDER BY Seq;'

Output will be similar to:

  Seq|Host|Starttime|JobRuntime|Send|Receive|Exitval|_Signal|
    Command|V1|V2|Stdout|Stderr
  1|:|1451619638.903|0.806||8|0|0|echo foo baz|foo|baz|foo baz
  |
  2|:|1451619639.265|1.54||9|0|0|echo foo quuz|foo|quuz|foo quuz
  |
  3|:|1451619640.378|1.43||8|0|0|echo bar baz|bar|baz|bar baz
  |
  4|:|1451619641.473|0.958||9|0|0|echo bar quuz|bar|quuz|bar quuz
  |

The first columns are well known from B<--joblog>. B<V1> and B<V2> are
data from the input sources. B<Stdout> and B<Stderr> are standard
output and standard error, respectively.

=head2 Using multiple workers

Using an SQL base as storage costs overhead in the order of 1 second
per job.

One of the situations where it makes sense is if you have multiple
workers.

You can then have a single master machine that submits jobs to the SQL
base (but does not do any of the work):

  parallel --sqlmaster $DBURLTABLE echo ::: foo bar ::: baz quuz

On the worker machines you run exactly the same command except you
replace B<--sqlmaster> with B<--sqlworker>.

  parallel --sqlworker $DBURLTABLE echo ::: foo bar ::: baz quuz

To run a master and a worker on the same machine use B<--sqlandworker>
as shown earlier.


=head1 --pipe

The B<--pipe> functionality puts GNU B<parallel> in a different mode:
Instead of treating the data on stdin (standard input) as arguments
for a command to run, the data will be sent to stdin (standard input)
of the command.

The typical situation is:

  command_A | command_B | command_C

where command_B is slow, and you want to speed up command_B.

=head2 Chunk size

By default GNU B<parallel> will start an instance of command_B, read a
chunk of 1 MB, and pass that to the instance. Then start another
instance, read another chunk, and pass that to the second instance.

  cat num1000000 | parallel --pipe wc

Output (the order may be different):

  165668  165668 1048571
  149797  149797 1048579
  149796  149796 1048572
  149797  149797 1048579
  149797  149797 1048579
  149796  149796 1048572
   85349   85349  597444

The size of the chunk is not exactly 1 MB because GNU B<parallel> only
passes full lines - never half a line, thus the blocksize is only
1 MB on average. You can change the block size to 2 MB with B<--block>:

  cat num1000000 | parallel --pipe --block 2M wc

Output (the order may be different):

  315465  315465 2097150
  299593  299593 2097151
  299593  299593 2097151
   85349   85349  597444

GNU B<parallel> treats each line as a record. If the order of records
is unimportant (e.g. you need all lines processed, but you do not care
which is processed first), then you can use B<--roundrobin>. Without
B<--roundrobin> GNU B<parallel> will start a command per block; with
B<--roundrobin> only the requested number of jobs will be started
(B<--jobs>). The records will then be distributed between the running
jobs:

  cat num1000000 | parallel --pipe -j4 --roundrobin wc

Output will be similar to:

  149797  149797 1048579
  299593  299593 2097151
  315465  315465 2097150
  235145  235145 1646016

One of the 4 instances got a single record, 2 instances got 2 full
records each, and one instance got 1 full and 1 partial record.

=head2 Records

GNU B<parallel> sees the input as records. The default record is a single
line.

Using B<-N140000> GNU B<parallel> will read 140000 records at a time:

  cat num1000000 | parallel --pipe -N140000 wc

Output (the order may be different):

  140000  140000  868895
  140000  140000  980000
  140000  140000  980000
  140000  140000  980000
  140000  140000  980000
  140000  140000  980000
  140000  140000  980000
   20000   20000  140001

Note how that the last job could not get the full 140000 lines, but
only 20000 lines.

If a record is 75 lines B<-L> can be used:

  cat num1000000 | parallel --pipe -L75 wc

Output (the order may be different):

  165600  165600 1048095
  149850  149850 1048950
  149775  149775 1048425
  149775  149775 1048425
  149850  149850 1048950
  149775  149775 1048425
   85350   85350  597450
      25      25     176

Note how GNU B<parallel> still reads a block of around 1 MB; but
instead of passing full lines to B<wc> it passes full 75 lines at a
time. This of course does not hold for the last job (which in this
case got 25 lines).

=head2 Fixed length records

Fixed length records can be processed by setting B<--recend ''> and
B<--block I<recordsize>>. A header of size I<n> can be processed with
B<--header .{I<n>}>.

Here is how to process a file with a 4-byte header and a 3-byte record
size:

  cat fixedlen | parallel --pipe --header .{4} --block 3 --recend '' \
    'echo start; cat; echo'

Output:

  start
  HHHHAAA
  start
  HHHHCCC
  start
  HHHHBBB

It may be more efficient to increase B<--block> to a multiplum of the
record size.

=head2 Record separators

GNU B<parallel> uses separators to determine where two records split.

B<--recstart> gives the string that starts a record; B<--recend> gives the
string that ends a record. The default is B<--recend '\n'> (newline).

If both B<--recend> and B<--recstart> are given, then the record will only
split if the recend string is immediately followed by the recstart
string.

Here the B<--recend> is set to B<', '>:

  echo /foo, bar/, /baz, qux/, | \
    parallel -kN1 --recend ', ' --pipe echo JOB{#}\;cat\;echo END

Output:

  JOB1
  /foo, END
  JOB2
  bar/, END
  JOB3
  /baz, END
  JOB4
  qux/,
  END

Here the B<--recstart> is set to B</>:

  echo /foo, bar/, /baz, qux/, | \
    parallel -kN1 --recstart / --pipe echo JOB{#}\;cat\;echo END

Output:

  JOB1
  /foo, barEND
  JOB2
  /, END
  JOB3
  /baz, quxEND
  JOB4
  /,
  END

Here both B<--recend> and B<--recstart> are set:

  echo /foo, bar/, /baz, qux/, | \
    parallel -kN1 --recend ', ' --recstart / --pipe \
    echo JOB{#}\;cat\;echo END

Output:

  JOB1
  /foo, bar/, END
  JOB2
  /baz, qux/,
  END

Note the difference between setting one string and setting both strings.

With B<--regexp> the B<--recend> and B<--recstart> will be treated as
a regular expression:

  echo foo,bar,_baz,__qux, | \
    parallel -kN1 --regexp --recend ,_+ --pipe \
    echo JOB{#}\;cat\;echo END

Output:

  JOB1
  foo,bar,_END
  JOB2
  baz,__END
  JOB3
  qux,
  END

GNU B<parallel> can remove the record separators with
B<--remove-rec-sep>/B<--rrs>:

  echo foo,bar,_baz,__qux, | \
    parallel -kN1 --rrs --regexp --recend ,_+ --pipe \
    echo JOB{#}\;cat\;echo END

Output:

  JOB1
  foo,barEND
  JOB2
  bazEND
  JOB3
  qux,
  END

=head2 Header

If the input data has a header, the header can be repeated for each
job by matching the header with B<--header>. If headers start with
B<%> you can do this:

  cat num_%header | \
    parallel --header '(%.*\n)*' --pipe -N3 echo JOB{#}\;cat

Output (the order may be different):

  JOB1
  %head1
  %head2
  1
  2
  3
  JOB2
  %head1
  %head2
  4
  5
  6
  JOB3
  %head1
  %head2
  7
  8
  9
  JOB4
  %head1
  %head2
  10

If the header is 2 lines, B<--header> 2 will work:

  cat num_%header | parallel --header 2 --pipe -N3 echo JOB{#}\;cat

Output: Same as above.

=head2 --pipepart

B<--pipe> is not very efficient. It maxes out at around 500
MB/s. B<--pipepart> can easily deliver 5 GB/s. But there are a few
limitations. The input has to be a normal file (not a pipe) given by
B<-a> or B<::::> and B<-L>/B<-l>/B<-N> do not work. B<--recend> and
B<--recstart>, however, I<do> work, and records can often be split on
that alone.

  parallel --pipepart -a num1000000 --block 3m wc

Output (the order may be different):

 444443  444444 3000002
 428572  428572 3000004
 126985  126984  888890


=head1 Shebang

=head2 Input data and parallel command in the same file

GNU B<parallel> is often called as this:

  cat input_file | parallel command

With B<--shebang> the I<input_file> and B<parallel> can be combined into the same script.

UNIX shell scripts start with a shebang line like this:

  #!/bin/bash

GNU B<parallel> can do that, too. With B<--shebang> the arguments can be
listed in the file. The B<parallel> command is the first line of the
script:

  #!/usr/bin/parallel --shebang -r echo

  foo
  bar
  baz

Output (the order may be different):

  foo
  bar
  baz

=head2 Parallelizing existing scripts

GNU B<parallel> is often called as this:

  cat input_file | parallel command
  parallel command ::: foo bar

If B<command> is a script, B<parallel> can be combined into a single
file so this will run the script in parallel:

  cat input_file | command
  command foo bar

This B<perl> script B<perl_echo> works like B<echo>:

  #!/usr/bin/perl

  print "@ARGV\n"

It can be called as this:

  parallel perl_echo ::: foo bar

By changing the B<#!>-line it can be run in parallel:

  #!/usr/bin/parallel --shebang-wrap /usr/bin/perl

  print "@ARGV\n"

Thus this will work:

  perl_echo foo bar

Output (the order may be different):

  foo
  bar

This technique can be used for:

=over 9

=item Perl:

  #!/usr/bin/parallel --shebang-wrap /usr/bin/perl
  
  print "Arguments @ARGV\n";


=item Python:

  #!/usr/bin/parallel --shebang-wrap /usr/bin/python
  
  import sys
  print 'Arguments', str(sys.argv)


=item Bash/sh/zsh/Korn shell:

  #!/usr/bin/parallel --shebang-wrap /bin/bash
  
  echo Arguments "$@"


=item csh:

  #!/usr/bin/parallel --shebang-wrap /bin/csh
  
  echo Arguments "$argv"


=item Tcl:

  #!/usr/bin/parallel --shebang-wrap /usr/bin/tclsh
  
  puts "Arguments $argv"


=item R:

  #!/usr/bin/parallel --shebang-wrap /usr/bin/Rscript --vanilla --slave
  
  args <- commandArgs(trailingOnly = TRUE)
  print(paste("Arguments ",args))


=item GNUplot:

  #!/usr/bin/parallel --shebang-wrap ARG={} /usr/bin/gnuplot
  
  print "Arguments ", system('echo $ARG')


=item Ruby:

  #!/usr/bin/parallel --shebang-wrap /usr/bin/ruby
  
  print "Arguments "
  puts ARGV


=item Octave:

  #!/usr/bin/parallel --shebang-wrap /usr/bin/octave
  
  printf ("Arguments");
  arg_list = argv ();
  for i = 1:nargin
    printf (" %s", arg_list{i});
  endfor
  printf ("\n");

=item Common LISP:

  #!/usr/bin/parallel --shebang-wrap /usr/bin/clisp
  
  (format t "~&~S~&" 'Arguments)
  (format t "~&~S~&" *args*)

=item PHP:

  #!/usr/bin/parallel --shebang-wrap /usr/bin/php
  <?php
  echo "Arguments";
  foreach(array_slice($argv,1) as $v)
  {
    echo " $v";
  }
  echo "\n";
  ?>

=item Node.js:

  #!/usr/bin/parallel --shebang-wrap /usr/bin/node

  var myArgs = process.argv.slice(2);
  console.log('Arguments ', myArgs);

=item LUA:

  #!/usr/bin/parallel --shebang-wrap /usr/bin/lua
  
  io.write "Arguments"
  for a = 1, #arg do
    io.write(" ")
    io.write(arg[a])
  end
  print("")

=item C#:

  #!/usr/bin/parallel --shebang-wrap ARGV={} /usr/bin/csharp
  
  var argv = Environment.GetEnvironmentVariable("ARGV");
  print("Arguments "+argv);

=back

=head1 Semaphore

GNU B<parallel> can work as a counting semaphore. This is slower and less
efficient than its normal mode.

A counting semaphore is like a row of toilets. People needing a toilet
can use any toilet, but if there are more people than toilets, they
will have to wait for one of the toilets to become available.

An alias for B<parallel --semaphore> is B<sem>.

B<sem> will follow a person to the toilets, wait until a toilet is
available, leave the person in the toilet and exit.

B<sem --fg> will follow a person to the toilets, wait until a toilet is
available, stay with the person in the toilet and exit when the person
exits.

B<sem --wait> will wait for all persons to leave the toilets.

B<sem> does not have a queue discipline, so the next person is chosen
randomly.

B<-j> sets the number of toilets.

=head2 Mutex

The default is to have only one toilet (this is called a mutex). The
program is started in the background and B<sem> exits immediately. Use
B<--wait> to wait for all B<sem>s to finish:

  sem 'sleep 1; echo The first finished' &&
    echo The first is now running in the background &&
    sem 'sleep 1; echo The second finished' &&
    echo The second is now running in the background
  sem --wait

Output:

  The first is now running in the background
  The first finished
  The second is now running in the background
  The second finished

The command can be run in the foreground with B<--fg>, which will only
exit when the command completes:

  sem --fg 'sleep 1; echo The first finished' &&
    echo The first finished running in the foreground &&
    sem --fg 'sleep 1; echo The second finished' &&
    echo The second finished running in the foreground
  sem --wait

The difference between this and just running the command, is that a
mutex is set, so if other B<sem>s were running in the background only one
would run at a time.

To control which semaphore is used, use
B<--semaphorename>/B<--id>. Run this in one terminal:

  sem --id my_id -u 'echo First started; sleep 10; echo First done'

and simultaneously this in another terminal:

  sem --id my_id -u 'echo Second started; sleep 10; echo Second done'

Note how the second will only be started when the first has finished.

=head2 Counting semaphore

A mutex is like having a single toilet: When it is in use everyone
else will have to wait. A counting semaphore is like having multiple
toilets: Several people can use the toilets, but when they all are in
use, everyone else will have to wait.

B<sem> can emulate a counting semaphore. Use B<--jobs> to set the
number of toilets like this:

  sem --jobs 3 --id my_id -u 'echo Start 1; sleep 5; echo 1 done' &&
  sem --jobs 3 --id my_id -u 'echo Start 2; sleep 6; echo 2 done' &&
  sem --jobs 3 --id my_id -u 'echo Start 3; sleep 7; echo 3 done' &&
  sem --jobs 3 --id my_id -u 'echo Start 4; sleep 8; echo 4 done' &&
  sem --wait --id my_id

Output:

  Start 1
  Start 2
  Start 3
  1 done
  Start 4
  2 done
  3 done
  4 done

=head2 Timeout

With B<--semaphoretimeout> you can force running the command anyway after
a period (positive number) or give up (negative number):

  sem --id foo -u 'echo Slow started; sleep 5; echo Slow ended' &&
  sem --id foo --semaphoretimeout 1 'echo Forced running after 1 sec' &&
  sem --id foo --semaphoretimeout -2 'echo Give up after 2 secs'
  sem --id foo --wait

Output:

  Slow started
  parallel: Warning: Semaphore timed out. Stealing the semaphore.
  Forced running after 1 sec
  parallel: Warning: Semaphore timed out. Exiting.
  Slow ended

Note how the 'Give up' was not run.

=head1 Informational

GNU B<parallel> has some options to give short information about the
configuration.

B<--help> will print a summary of the most important options:

  parallel --help

Output:

  Usage:
  
  parallel [options] [command [arguments]] < list_of_arguments
  parallel [options] [command [arguments]] (::: arguments|:::: argfile(s))...
  cat ... | parallel --pipe [options] [command [arguments]]
  
  -j n            Run n jobs in parallel
  -k              Keep same order
  -X              Multiple arguments with context replace
  --colsep regexp Split input on regexp for positional replacements
  {} {.} {/} {/.} {#} {%} {= perl code =} Replacement strings
  {3} {3.} {3/} {3/.} {=3 perl code =}    Positional replacement strings
  With --plus:    {} = {+/}/{/} = {.}.{+.} = {+/}/{/.}.{+.} = {..}.{+..} =
                  {+/}/{/..}.{+..} = {...}.{+...} = {+/}/{/...}.{+...}
  
  -S sshlogin     Example: foo@server.example.com
  --slf ..        Use ~/.parallel/sshloginfile as the list of sshlogins
  --trc {}.bar    Shorthand for --transfer --return {}.bar --cleanup
  --onall         Run the given command with argument on all sshlogins
  --nonall        Run the given command with no arguments on all sshlogins
  
  --pipe          Split stdin (standard input) to multiple jobs.
  --recend str    Record end separator for --pipe.
  --recstart str  Record start separator for --pipe.
  
  See 'man parallel' for details
  
  Academic tradition requires you to cite works you base your article on.
  When using programs that use GNU Parallel to process data for publication
  please cite:
  
    O. Tange (2011): GNU Parallel - The Command-Line Power Tool,
    ;login: The USENIX Magazine, February 2011:42-47.
  
  This helps funding further development; AND IT WON'T COST YOU A CENT.
  If you pay 10000 EUR you should feel free to use GNU Parallel without citing.

When asking for help, always report the full output of this:

  parallel --version

Output:

  GNU parallel 20230122
  Copyright (C) 2007-2024 Ole Tange, http://ole.tange.dk and Free Software
  Foundation, Inc.
  License GPLv3+: GNU GPL version 3 or later <https://gnu.org/licenses/gpl.html>
  This is free software: you are free to change and redistribute it.
  GNU parallel comes with no warranty.
  
  Web site: https://www.gnu.org/software/parallel
  
  When using programs that use GNU Parallel to process data for publication
  please cite as described in 'parallel --citation'.

In scripts B<--minversion> can be used to ensure the user has at least
this version:

  parallel --minversion 20130722 && \
    echo Your version is at least 20130722.

Output:

  20160322
  Your version is at least 20130722.

If you are using GNU B<parallel> for research the BibTeX citation can be
generated using B<--citation>:

  parallel --citation

Output:

  Academic tradition requires you to cite works you base your article on.
  When using programs that use GNU Parallel to process data for publication
  please cite:
  
  @article{Tange2011a,
    title = {GNU Parallel - The Command-Line Power Tool},
    author = {O. Tange},
    address = {Frederiksberg, Denmark},
    journal = {;login: The USENIX Magazine},
    month = {Feb},
    number = {1},
    volume = {36},
    url = {https://www.gnu.org/s/parallel},
    year = {2011},
    pages = {42-47},
    doi = {10.5281/zenodo.16303}
  }
  
  (Feel free to use \nocite{Tange2011a})
  
  This helps funding further development; AND IT WON'T COST YOU A CENT.
  If you pay 10000 EUR you should feel free to use GNU Parallel without citing.
  
  If you send a copy of your published article to tange@gnu.org, it will be
  mentioned in the release notes of next version of GNU Parallel.
  
With B<--max-line-length-allowed> GNU B<parallel> will report the maximal
size of the command line:

  parallel --max-line-length-allowed

Output (may vary on different systems):

  131071

B<--number-of-cpus> and B<--number-of-cores> run system specific code to
determine the number of CPUs and CPU cores on the system. On
unsupported platforms they will return 1:

  parallel --number-of-cpus
  parallel --number-of-cores

Output (may vary on different systems):

  4
  64

=head1 Profiles

The defaults for GNU B<parallel> can be changed systemwide by putting the
command line options in B</etc/parallel/config>. They can be changed for
a user by putting them in B<~/.parallel/config>.

Profiles work the same way, but have to be referred to with B<--profile>:

  echo '--nice 17' > ~/.parallel/nicetimeout
  echo '--timeout 300%' >> ~/.parallel/nicetimeout
  parallel --profile nicetimeout echo ::: A B C

Output:

  A
  B
  C

Profiles can be combined:

  echo '-vv --dry-run' > ~/.parallel/dryverbose
  parallel --profile dryverbose --profile nicetimeout echo ::: A B C

Output:

  echo A
  echo B
  echo C


=head1 Spread the word

I hope you have learned something from this tutorial.

If you like GNU B<parallel>:

=over 2

=item *

(Re-)walk through the tutorial if you have not done so in the past year
(https://www.gnu.org/software/parallel/parallel_tutorial.html)

=item *

Give a demo at your local user group/your team/your colleagues

=item *

Post the intro videos and the tutorial on Reddit, Mastodon, Diaspora*,
forums, blogs, Identi.ca, Google+, Twitter, Facebook, Linkedin, and
mailing lists

=item *

Request or write a review for your favourite blog or magazine
(especially if you do something cool with GNU B<parallel>)

=item *

Invite me for your next conference

=back

If you use GNU B<parallel> for research:

=over 2

=item *

Please cite GNU B<parallel> in you publications (use B<--citation>)

=back

If GNU B<parallel> saves you money:

=over 2

=item *

(Have your company) donate to FSF or become a member
https://my.fsf.org/donate/

=back

(C) 2013-2024 Ole Tange, GFDLv1.3+ (See
LICENSES/GFDL-1.3-or-later.txt)


=cut