summaryrefslogtreecommitdiffstats
path: root/doc/src/sgml/html/ecpg-variables.html
blob: 8f2180928853d19937bae867154a4815da6c14f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title>36.4. Using Host Variables</title><link rel="stylesheet" type="text/css" href="stylesheet.css" /><link rev="made" href="pgsql-docs@lists.postgresql.org" /><meta name="generator" content="DocBook XSL Stylesheets Vsnapshot" /><link rel="prev" href="ecpg-commands.html" title="36.3. Running SQL Commands" /><link rel="next" href="ecpg-dynamic.html" title="36.5. Dynamic SQL" /></head><body id="docContent" class="container-fluid col-10"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="5" align="center">36.4. Using Host Variables</th></tr><tr><td width="10%" align="left"><a accesskey="p" href="ecpg-commands.html" title="36.3. Running SQL Commands">Prev</a> </td><td width="10%" align="left"><a accesskey="u" href="ecpg.html" title="Chapter 36. ECPG — Embedded SQL in C">Up</a></td><th width="60%" align="center">Chapter 36. <span class="application">ECPG</span> — Embedded <acronym class="acronym">SQL</acronym> in C</th><td width="10%" align="right"><a accesskey="h" href="index.html" title="PostgreSQL 15.4 Documentation">Home</a></td><td width="10%" align="right"> <a accesskey="n" href="ecpg-dynamic.html" title="36.5. Dynamic SQL">Next</a></td></tr></table><hr /></div><div class="sect1" id="ECPG-VARIABLES"><div class="titlepage"><div><div><h2 class="title" style="clear: both">36.4. Using Host Variables</h2></div></div></div><div class="toc"><dl class="toc"><dt><span class="sect2"><a href="ecpg-variables.html#ECPG-VARIABLES-OVERVIEW">36.4.1. Overview</a></span></dt><dt><span class="sect2"><a href="ecpg-variables.html#ECPG-DECLARE-SECTIONS">36.4.2. Declare Sections</a></span></dt><dt><span class="sect2"><a href="ecpg-variables.html#ECPG-RETRIEVING">36.4.3. Retrieving Query Results</a></span></dt><dt><span class="sect2"><a href="ecpg-variables.html#ECPG-VARIABLES-TYPE-MAPPING">36.4.4. Type Mapping</a></span></dt><dt><span class="sect2"><a href="ecpg-variables.html#ECPG-VARIABLES-NONPRIMITIVE-SQL">36.4.5. Handling Nonprimitive SQL Data Types</a></span></dt><dt><span class="sect2"><a href="ecpg-variables.html#ECPG-INDICATORS">36.4.6. Indicators</a></span></dt></dl></div><p>
   In <a class="xref" href="ecpg-commands.html" title="36.3. Running SQL Commands">Section 36.3</a> you saw how you can execute SQL
   statements from an embedded SQL program.  Some of those statements
   only used fixed values and did not provide a way to insert
   user-supplied values into statements or have the program process
   the values returned by the query.  Those kinds of statements are
   not really useful in real applications.  This section explains in
   detail how you can pass data between your C program and the
   embedded SQL statements using a simple mechanism called
   <em class="firstterm">host variables</em>. In an embedded SQL program we
   consider the SQL statements to be <em class="firstterm">guests</em> in the C
   program code which is the <em class="firstterm">host language</em>. Therefore
   the variables of the C program are called <em class="firstterm">host
   variables</em>.
  </p><p>
   Another way to exchange values between PostgreSQL backends and ECPG
   applications is the use of SQL descriptors, described
   in <a class="xref" href="ecpg-descriptors.html" title="36.7. Using Descriptor Areas">Section 36.7</a>.
  </p><div class="sect2" id="ECPG-VARIABLES-OVERVIEW"><div class="titlepage"><div><div><h3 class="title">36.4.1. Overview</h3></div></div></div><p>
    Passing data between the C program and the SQL statements is
    particularly simple in embedded SQL.  Instead of having the
    program paste the data into the statement, which entails various
    complications, such as properly quoting the value, you can simply
    write the name of a C variable into the SQL statement, prefixed by
    a colon.  For example:
</p><pre class="programlisting">
EXEC SQL INSERT INTO sometable VALUES (:v1, 'foo', :v2);
</pre><p>
    This statement refers to two C variables named
    <code class="varname">v1</code> and <code class="varname">v2</code> and also uses a
    regular SQL string literal, to illustrate that you are not
    restricted to use one kind of data or the other.
   </p><p>
    This style of inserting C variables in SQL statements works
    anywhere a value expression is expected in an SQL statement.
   </p></div><div class="sect2" id="ECPG-DECLARE-SECTIONS"><div class="titlepage"><div><div><h3 class="title">36.4.2. Declare Sections</h3></div></div></div><p>
    To pass data from the program to the database, for example as
    parameters in a query, or to pass data from the database back to
    the program, the C variables that are intended to contain this
    data need to be declared in specially marked sections, so the
    embedded SQL preprocessor is made aware of them.
   </p><p>
    This section starts with:
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
</pre><p>
    and ends with:
</p><pre class="programlisting">
EXEC SQL END DECLARE SECTION;
</pre><p>
    Between those lines, there must be normal C variable declarations,
    such as:
</p><pre class="programlisting">
int   x = 4;
char  foo[16], bar[16];
</pre><p>
    As you can see, you can optionally assign an initial value to the variable.
    The variable's scope is determined by the location of its declaring
    section within the program.
    You can also declare variables with the following syntax which implicitly
    creates a declare section:
</p><pre class="programlisting">
EXEC SQL int i = 4;
</pre><p>
    You can have as many declare sections in a program as you like.
   </p><p>
    The declarations are also echoed to the output file as normal C
    variables, so there's no need to declare them again.  Variables
    that are not intended to be used in SQL commands can be declared
    normally outside these special sections.
   </p><p>
    The definition of a structure or union also must be listed inside
    a <code class="literal">DECLARE</code> section. Otherwise the preprocessor cannot
    handle these types since it does not know the definition.
   </p></div><div class="sect2" id="ECPG-RETRIEVING"><div class="titlepage"><div><div><h3 class="title">36.4.3. Retrieving Query Results</h3></div></div></div><p>
    Now you should be able to pass data generated by your program into
    an SQL command.  But how do you retrieve the results of a query?
    For that purpose, embedded SQL provides special variants of the
    usual commands <code class="command">SELECT</code> and
    <code class="command">FETCH</code>.  These commands have a special
    <code class="literal">INTO</code> clause that specifies which host variables
    the retrieved values are to be stored in.
    <code class="command">SELECT</code> is used for a query that returns only
    single row, and <code class="command">FETCH</code> is used for a query that
    returns multiple rows, using a cursor.
   </p><p>
    Here is an example:
</p><pre class="programlisting">
/*
 * assume this table:
 * CREATE TABLE test1 (a int, b varchar(50));
 */

EXEC SQL BEGIN DECLARE SECTION;
int v1;
VARCHAR v2;
EXEC SQL END DECLARE SECTION;

 ...

EXEC SQL SELECT a, b INTO :v1, :v2 FROM test;
</pre><p>
    So the <code class="literal">INTO</code> clause appears between the select
    list and the <code class="literal">FROM</code> clause.  The number of
    elements in the select list and the list after
    <code class="literal">INTO</code> (also called the target list) must be
    equal.
   </p><p>
    Here is an example using the command <code class="command">FETCH</code>:
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
int v1;
VARCHAR v2;
EXEC SQL END DECLARE SECTION;

 ...

EXEC SQL DECLARE foo CURSOR FOR SELECT a, b FROM test;

 ...

do
{
    ...
    EXEC SQL FETCH NEXT FROM foo INTO :v1, :v2;
    ...
} while (...);
</pre><p>
    Here the <code class="literal">INTO</code> clause appears after all the
    normal clauses.
   </p></div><div class="sect2" id="ECPG-VARIABLES-TYPE-MAPPING"><div class="titlepage"><div><div><h3 class="title">36.4.4. Type Mapping</h3></div></div></div><p>
    When ECPG applications exchange values between the PostgreSQL
    server and the C application, such as when retrieving query
    results from the server or executing SQL statements with input
    parameters, the values need to be converted between PostgreSQL
    data types and host language variable types (C language data
    types, concretely).  One of the main points of ECPG is that it
    takes care of this automatically in most cases.
   </p><p>
    In this respect, there are two kinds of data types: Some simple
    PostgreSQL data types, such as <code class="type">integer</code>
    and <code class="type">text</code>, can be read and written by the application
    directly.  Other PostgreSQL data types, such
    as <code class="type">timestamp</code> and <code class="type">numeric</code> can only be
    accessed through special library functions; see
    <a class="xref" href="ecpg-variables.html#ECPG-SPECIAL-TYPES" title="36.4.4.2. Accessing Special Data Types">Section 36.4.4.2</a>.
   </p><p>
    <a class="xref" href="ecpg-variables.html#ECPG-DATATYPE-HOSTVARS-TABLE" title="Table 36.1. Mapping Between PostgreSQL Data Types and C Variable Types">Table 36.1</a> shows which PostgreSQL
    data types correspond to which C data types.  When you wish to
    send or receive a value of a given PostgreSQL data type, you
    should declare a C variable of the corresponding C data type in
    the declare section.
   </p><div class="table" id="ECPG-DATATYPE-HOSTVARS-TABLE"><p class="title"><strong>Table 36.1. Mapping Between PostgreSQL Data Types and C Variable Types</strong></p><div class="table-contents"><table class="table" summary="Mapping Between PostgreSQL Data Types and C Variable Types" border="1"><colgroup><col /><col /></colgroup><thead><tr><th>PostgreSQL data type</th><th>Host variable type</th></tr></thead><tbody><tr><td><code class="type">smallint</code></td><td><code class="type">short</code></td></tr><tr><td><code class="type">integer</code></td><td><code class="type">int</code></td></tr><tr><td><code class="type">bigint</code></td><td><code class="type">long long int</code></td></tr><tr><td><code class="type">decimal</code></td><td><code class="type">decimal</code><a href="#ftn.ECPG-DATATYPE-TABLE-FN" class="footnote"><sup class="footnote" id="ECPG-DATATYPE-TABLE-FN">[a]</sup></a></td></tr><tr><td><code class="type">numeric</code></td><td><code class="type">numeric</code><a href="ecpg-variables.html#ftn.ECPG-DATATYPE-TABLE-FN" class="footnoteref"><sup class="footnoteref">[a]</sup></a></td></tr><tr><td><code class="type">real</code></td><td><code class="type">float</code></td></tr><tr><td><code class="type">double precision</code></td><td><code class="type">double</code></td></tr><tr><td><code class="type">smallserial</code></td><td><code class="type">short</code></td></tr><tr><td><code class="type">serial</code></td><td><code class="type">int</code></td></tr><tr><td><code class="type">bigserial</code></td><td><code class="type">long long int</code></td></tr><tr><td><code class="type">oid</code></td><td><code class="type">unsigned int</code></td></tr><tr><td><code class="type">character(<em class="replaceable"><code>n</code></em>)</code>, <code class="type">varchar(<em class="replaceable"><code>n</code></em>)</code>, <code class="type">text</code></td><td><code class="type">char[<em class="replaceable"><code>n</code></em>+1]</code>, <code class="type">VARCHAR[<em class="replaceable"><code>n</code></em>+1]</code></td></tr><tr><td><code class="type">name</code></td><td><code class="type">char[NAMEDATALEN]</code></td></tr><tr><td><code class="type">timestamp</code></td><td><code class="type">timestamp</code><a href="ecpg-variables.html#ftn.ECPG-DATATYPE-TABLE-FN" class="footnoteref"><sup class="footnoteref">[a]</sup></a></td></tr><tr><td><code class="type">interval</code></td><td><code class="type">interval</code><a href="ecpg-variables.html#ftn.ECPG-DATATYPE-TABLE-FN" class="footnoteref"><sup class="footnoteref">[a]</sup></a></td></tr><tr><td><code class="type">date</code></td><td><code class="type">date</code><a href="ecpg-variables.html#ftn.ECPG-DATATYPE-TABLE-FN" class="footnoteref"><sup class="footnoteref">[a]</sup></a></td></tr><tr><td><code class="type">boolean</code></td><td><code class="type">bool</code><a href="#ftn.id-1.7.5.10.7.5.2.2.17.2.2" class="footnote"><sup class="footnote" id="id-1.7.5.10.7.5.2.2.17.2.2">[b]</sup></a></td></tr><tr><td><code class="type">bytea</code></td><td><code class="type">char *</code>, <code class="type">bytea[<em class="replaceable"><code>n</code></em>]</code></td></tr></tbody><tbody class="footnotes"><tr><td colspan="2"><div id="ftn.ECPG-DATATYPE-TABLE-FN" class="footnote"><p><a href="#ECPG-DATATYPE-TABLE-FN" class="para"><sup class="para">[a] </sup></a>This type can only be accessed through special library functions; see <a class="xref" href="ecpg-variables.html#ECPG-SPECIAL-TYPES" title="36.4.4.2. Accessing Special Data Types">Section 36.4.4.2</a>.</p></div><div id="ftn.id-1.7.5.10.7.5.2.2.17.2.2" class="footnote"><p><a href="#id-1.7.5.10.7.5.2.2.17.2.2" class="para"><sup class="para">[b] </sup></a>declared in <code class="filename">ecpglib.h</code> if not native</p></div></td></tr></tbody></table></div></div><br class="table-break" /><div class="sect3" id="ECPG-CHAR"><div class="titlepage"><div><div><h4 class="title">36.4.4.1. Handling Character Strings</h4></div></div></div><p>
     To handle SQL character string data types, such
     as <code class="type">varchar</code> and <code class="type">text</code>, there are two
     possible ways to declare the host variables.
    </p><p>
     One way is using <code class="type">char[]</code>, an array
     of <code class="type">char</code>, which is the most common way to handle
     character data in C.
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
    char str[50];
EXEC SQL END DECLARE SECTION;
</pre><p>
     Note that you have to take care of the length yourself.  If you
     use this host variable as the target variable of a query which
     returns a string with more than 49 characters, a buffer overflow
     occurs.
    </p><p>
     The other way is using the <code class="type">VARCHAR</code> type, which is a
     special type provided by ECPG.  The definition on an array of
     type <code class="type">VARCHAR</code> is converted into a
     named <code class="type">struct</code> for every variable. A declaration like:
</p><pre class="programlisting">
VARCHAR var[180];
</pre><p>
     is converted into:
</p><pre class="programlisting">
struct varchar_var { int len; char arr[180]; } var;
</pre><p>
     The member <code class="structfield">arr</code> hosts the string
     including a terminating zero byte.  Thus, to store a string in
     a <code class="type">VARCHAR</code> host variable, the host variable has to be
     declared with the length including the zero byte terminator.  The
     member <code class="structfield">len</code> holds the length of the
     string stored in the <code class="structfield">arr</code> without the
     terminating zero byte.  When a host variable is used as input for
     a query, if <code class="literal">strlen(arr)</code>
     and <code class="structfield">len</code> are different, the shorter one
     is used.
    </p><p>
     <code class="type">VARCHAR</code> can be written in upper or lower case, but
     not in mixed case.
    </p><p>
     <code class="type">char</code> and <code class="type">VARCHAR</code> host variables can
     also hold values of other SQL types, which will be stored in
     their string forms.
    </p></div><div class="sect3" id="ECPG-SPECIAL-TYPES"><div class="titlepage"><div><div><h4 class="title">36.4.4.2. Accessing Special Data Types</h4></div></div></div><p>
     ECPG contains some special types that help you to interact easily
     with some special data types from the PostgreSQL server. In
     particular, it has implemented support for the
     <code class="type">numeric</code>, <code class="type">decimal</code>, <code class="type">date</code>, <code class="type">timestamp</code>,
     and <code class="type">interval</code> types.  These data types cannot usefully be
     mapped to primitive host variable types (such
     as <code class="type">int</code>, <code class="type">long long int</code>,
     or <code class="type">char[]</code>), because they have a complex internal
     structure.  Applications deal with these types by declaring host
     variables in special types and accessing them using functions in
     the pgtypes library.  The pgtypes library, described in detail
     in <a class="xref" href="ecpg-pgtypes.html" title="36.6. pgtypes Library">Section 36.6</a> contains basic functions to deal
     with those types, such that you do not need to send a query to
     the SQL server just for adding an interval to a time stamp for
     example.
    </p><p>
     The follow subsections describe these special data types. For
     more details about pgtypes library functions,
     see <a class="xref" href="ecpg-pgtypes.html" title="36.6. pgtypes Library">Section 36.6</a>.
    </p><div class="sect4" id="id-1.7.5.10.7.7.4"><div class="titlepage"><div><div><h5 class="title">36.4.4.2.1. timestamp, date</h5></div></div></div><p>
      Here is a pattern for handling <code class="type">timestamp</code> variables
      in the ECPG host application.
     </p><p>
      First, the program has to include the header file for the
      <code class="type">timestamp</code> type:
</p><pre class="programlisting">
#include &lt;pgtypes_timestamp.h&gt;
</pre><p>
     </p><p>
      Next, declare a host variable as type <code class="type">timestamp</code> in
      the declare section:
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
timestamp ts;
EXEC SQL END DECLARE SECTION;
</pre><p>
     </p><p>
      And after reading a value into the host variable, process it
      using pgtypes library functions. In following example, the
      <code class="type">timestamp</code> value is converted into text (ASCII) form
      with the <code class="function">PGTYPEStimestamp_to_asc()</code>
      function:
</p><pre class="programlisting">
EXEC SQL SELECT now()::timestamp INTO :ts;

printf("ts = %s\n", PGTYPEStimestamp_to_asc(ts));
</pre><p>
      This example will show some result like following:
</p><pre class="screen">
ts = 2010-06-27 18:03:56.949343
</pre><p>
     </p><p>
      In addition, the DATE type can be handled in the same way. The
      program has to include <code class="filename">pgtypes_date.h</code>, declare a host variable
      as the date type and convert a DATE value into a text form using
      <code class="function">PGTYPESdate_to_asc()</code> function. For more details about the
      pgtypes library functions, see <a class="xref" href="ecpg-pgtypes.html" title="36.6. pgtypes Library">Section 36.6</a>.
     </p></div><div class="sect4" id="ECPG-TYPE-INTERVAL"><div class="titlepage"><div><div><h5 class="title">36.4.4.2.2. interval</h5></div></div></div><p>
      The handling of the <code class="type">interval</code> type is also similar
      to the <code class="type">timestamp</code> and <code class="type">date</code> types.  It
      is required, however, to allocate memory for
      an <code class="type">interval</code> type value explicitly.  In other words,
      the memory space for the variable has to be allocated in the
      heap memory, not in the stack memory.
     </p><p>
      Here is an example program:
</p><pre class="programlisting">
#include &lt;stdio.h&gt;
#include &lt;stdlib.h&gt;
#include &lt;pgtypes_interval.h&gt;

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
    interval *in;
EXEC SQL END DECLARE SECTION;

    EXEC SQL CONNECT TO testdb;
    EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

    in = PGTYPESinterval_new();
    EXEC SQL SELECT '1 min'::interval INTO :in;
    printf("interval = %s\n", PGTYPESinterval_to_asc(in));
    PGTYPESinterval_free(in);

    EXEC SQL COMMIT;
    EXEC SQL DISCONNECT ALL;
    return 0;
}
</pre><p>
     </p></div><div class="sect4" id="ECPG-TYPE-NUMERIC-DECIMAL"><div class="titlepage"><div><div><h5 class="title">36.4.4.2.3. numeric, decimal</h5></div></div></div><p>
      The handling of the <code class="type">numeric</code>
      and <code class="type">decimal</code> types is similar to the
      <code class="type">interval</code> type: It requires defining a pointer,
      allocating some memory space on the heap, and accessing the
      variable using the pgtypes library functions.  For more details
      about the pgtypes library functions,
      see <a class="xref" href="ecpg-pgtypes.html" title="36.6. pgtypes Library">Section 36.6</a>.
     </p><p>
      No functions are provided specifically for
      the <code class="type">decimal</code> type.  An application has to convert it
      to a <code class="type">numeric</code> variable using a pgtypes library
      function to do further processing.
     </p><p>
      Here is an example program handling <code class="type">numeric</code>
      and <code class="type">decimal</code> type variables.
</p><pre class="programlisting">
#include &lt;stdio.h&gt;
#include &lt;stdlib.h&gt;
#include &lt;pgtypes_numeric.h&gt;

EXEC SQL WHENEVER SQLERROR STOP;

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
    numeric *num;
    numeric *num2;
    decimal *dec;
EXEC SQL END DECLARE SECTION;

    EXEC SQL CONNECT TO testdb;
    EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

    num = PGTYPESnumeric_new();
    dec = PGTYPESdecimal_new();

    EXEC SQL SELECT 12.345::numeric(4,2), 23.456::decimal(4,2) INTO :num, :dec;

    printf("numeric = %s\n", PGTYPESnumeric_to_asc(num, 0));
    printf("numeric = %s\n", PGTYPESnumeric_to_asc(num, 1));
    printf("numeric = %s\n", PGTYPESnumeric_to_asc(num, 2));

    /* Convert decimal to numeric to show a decimal value. */
    num2 = PGTYPESnumeric_new();
    PGTYPESnumeric_from_decimal(dec, num2);

    printf("decimal = %s\n", PGTYPESnumeric_to_asc(num2, 0));
    printf("decimal = %s\n", PGTYPESnumeric_to_asc(num2, 1));
    printf("decimal = %s\n", PGTYPESnumeric_to_asc(num2, 2));

    PGTYPESnumeric_free(num2);
    PGTYPESdecimal_free(dec);
    PGTYPESnumeric_free(num);

    EXEC SQL COMMIT;
    EXEC SQL DISCONNECT ALL;
    return 0;
}
</pre><p>
     </p></div><div class="sect4" id="id-1.7.5.10.7.7.7"><div class="titlepage"><div><div><h5 class="title">36.4.4.2.4. bytea</h5></div></div></div><p>
      The handling of the <code class="type">bytea</code> type is similar to
      that of <code class="type">VARCHAR</code>. The definition on an array of type
      <code class="type">bytea</code> is converted into a named struct for every
      variable. A declaration like:
</p><pre class="programlisting">
bytea var[180];
</pre><p>
     is converted into:
</p><pre class="programlisting">
struct bytea_var { int len; char arr[180]; } var;
</pre><p>
      The member <code class="structfield">arr</code> hosts binary format
      data. It can also handle <code class="literal">'\0'</code> as part of
      data, unlike <code class="type">VARCHAR</code>.
      The data is converted from/to hex format and sent/received by
      ecpglib.
     </p><div class="note"><h3 class="title">Note</h3><p>
       <code class="type">bytea</code> variable can be used only when
       <a class="xref" href="runtime-config-client.html#GUC-BYTEA-OUTPUT">bytea_output</a> is set to <code class="literal">hex</code>.
      </p></div></div></div><div class="sect3" id="ECPG-VARIABLES-NONPRIMITIVE-C"><div class="titlepage"><div><div><h4 class="title">36.4.4.3. Host Variables with Nonprimitive Types</h4></div></div></div><p>
     As a host variable you can also use arrays, typedefs, structs, and
     pointers.
    </p><div class="sect4" id="ECPG-VARIABLES-ARRAYS"><div class="titlepage"><div><div><h5 class="title">36.4.4.3.1. Arrays</h5></div></div></div><p>
      There are two use cases for arrays as host variables.  The first
      is a way to store some text string in <code class="type">char[]</code>
      or <code class="type">VARCHAR[]</code>, as
      explained in <a class="xref" href="ecpg-variables.html#ECPG-CHAR" title="36.4.4.1. Handling Character Strings">Section 36.4.4.1</a>.  The second use case is to
      retrieve multiple rows from a query result without using a
      cursor.  Without an array, to process a query result consisting
      of multiple rows, it is required to use a cursor and
      the <code class="command">FETCH</code> command.  But with array host
      variables, multiple rows can be received at once.  The length of
      the array has to be defined to be able to accommodate all rows,
      otherwise a buffer overflow will likely occur.
     </p><p>
      Following example scans the <code class="literal">pg_database</code>
      system table and shows all OIDs and names of the available
      databases:
</p><pre class="programlisting">
int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
    int dbid[8];
    char dbname[8][16];
    int i;
EXEC SQL END DECLARE SECTION;

    memset(dbname, 0, sizeof(char)* 16 * 8);
    memset(dbid, 0, sizeof(int) * 8);

    EXEC SQL CONNECT TO testdb;
    EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

    /* Retrieve multiple rows into arrays at once. */
    EXEC SQL SELECT oid,datname INTO :dbid, :dbname FROM pg_database;

    for (i = 0; i &lt; 8; i++)
        printf("oid=%d, dbname=%s\n", dbid[i], dbname[i]);

    EXEC SQL COMMIT;
    EXEC SQL DISCONNECT ALL;
    return 0;
}
</pre><p>

    This example shows following result. (The exact values depend on
    local circumstances.)
</p><pre class="screen">
oid=1, dbname=template1
oid=11510, dbname=template0
oid=11511, dbname=postgres
oid=313780, dbname=testdb
oid=0, dbname=
oid=0, dbname=
oid=0, dbname=
</pre><p>
     </p></div><div class="sect4" id="ECPG-VARIABLES-STRUCT"><div class="titlepage"><div><div><h5 class="title">36.4.4.3.2. Structures</h5></div></div></div><p>
      A structure whose member names match the column names of a query
      result, can be used to retrieve multiple columns at once.  The
      structure enables handling multiple column values in a single
      host variable.
     </p><p>
      The following example retrieves OIDs, names, and sizes of the
      available databases from the <code class="literal">pg_database</code>
      system table and using
      the <code class="function">pg_database_size()</code> function.  In this
      example, a structure variable <code class="varname">dbinfo_t</code> with
      members whose names match each column in
      the <code class="literal">SELECT</code> result is used to retrieve one
      result row without putting multiple host variables in
      the <code class="literal">FETCH</code> statement.
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
    typedef struct
    {
       int oid;
       char datname[65];
       long long int size;
    } dbinfo_t;

    dbinfo_t dbval;
EXEC SQL END DECLARE SECTION;

    memset(&amp;dbval, 0, sizeof(dbinfo_t));

    EXEC SQL DECLARE cur1 CURSOR FOR SELECT oid, datname, pg_database_size(oid) AS size FROM pg_database;
    EXEC SQL OPEN cur1;

    /* when end of result set reached, break out of while loop */
    EXEC SQL WHENEVER NOT FOUND DO BREAK;

    while (1)
    {
        /* Fetch multiple columns into one structure. */
        EXEC SQL FETCH FROM cur1 INTO :dbval;

        /* Print members of the structure. */
        printf("oid=%d, datname=%s, size=%lld\n", dbval.oid, dbval.datname, dbval.size);
    }

    EXEC SQL CLOSE cur1;
</pre><p>
     </p><p>
      This example shows following result. (The exact values depend on
      local circumstances.)
</p><pre class="screen">
oid=1, datname=template1, size=4324580
oid=11510, datname=template0, size=4243460
oid=11511, datname=postgres, size=4324580
oid=313780, datname=testdb, size=8183012
</pre><p>
     </p><p>
      Structure host variables <span class="quote"><span class="quote">absorb</span></span> as many columns
      as the structure as fields.  Additional columns can be assigned
      to other host variables. For example, the above program could
      also be restructured like this, with the <code class="varname">size</code>
      variable outside the structure:
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
    typedef struct
    {
       int oid;
       char datname[65];
    } dbinfo_t;

    dbinfo_t dbval;
    long long int size;
EXEC SQL END DECLARE SECTION;

    memset(&amp;dbval, 0, sizeof(dbinfo_t));

    EXEC SQL DECLARE cur1 CURSOR FOR SELECT oid, datname, pg_database_size(oid) AS size FROM pg_database;
    EXEC SQL OPEN cur1;

    /* when end of result set reached, break out of while loop */
    EXEC SQL WHENEVER NOT FOUND DO BREAK;

    while (1)
    {
        /* Fetch multiple columns into one structure. */
        EXEC SQL FETCH FROM cur1 INTO :dbval, :size;

        /* Print members of the structure. */
        printf("oid=%d, datname=%s, size=%lld\n", dbval.oid, dbval.datname, size);
    }

    EXEC SQL CLOSE cur1;
</pre><p>
     </p></div><div class="sect4" id="id-1.7.5.10.7.8.5"><div class="titlepage"><div><div><h5 class="title">36.4.4.3.3. Typedefs</h5></div></div></div><p>
      Use the <code class="literal">typedef</code> keyword to map new types to already
      existing types.
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
    typedef char mychartype[40];
    typedef long serial_t;
EXEC SQL END DECLARE SECTION;
</pre><p>
      Note that you could also use:
</p><pre class="programlisting">
EXEC SQL TYPE serial_t IS long;
</pre><p>
      This declaration does not need to be part of a declare section.
     </p></div><div class="sect4" id="id-1.7.5.10.7.8.6"><div class="titlepage"><div><div><h5 class="title">36.4.4.3.4. Pointers</h5></div></div></div><p>
      You can declare pointers to the most common types. Note however
      that you cannot use pointers as target variables of queries
      without auto-allocation. See <a class="xref" href="ecpg-descriptors.html" title="36.7. Using Descriptor Areas">Section 36.7</a>
      for more information on auto-allocation.
     </p><p>
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
    int   *intp;
    char **charp;
EXEC SQL END DECLARE SECTION;
</pre><p>
     </p></div></div></div><div class="sect2" id="ECPG-VARIABLES-NONPRIMITIVE-SQL"><div class="titlepage"><div><div><h3 class="title">36.4.5. Handling Nonprimitive SQL Data Types</h3></div></div></div><p>
    This section contains information on how to handle nonscalar and
    user-defined SQL-level data types in ECPG applications.  Note that
    this is distinct from the handling of host variables of
    nonprimitive types, described in the previous section.
   </p><div class="sect3" id="id-1.7.5.10.8.3"><div class="titlepage"><div><div><h4 class="title">36.4.5.1. Arrays</h4></div></div></div><p>
     Multi-dimensional SQL-level arrays are not directly supported in ECPG.
     One-dimensional SQL-level arrays can be mapped into C array host
     variables and vice-versa.  However, when creating a statement ecpg does
     not know the types of the columns, so that it cannot check if a C array
     is input into a corresponding SQL-level array.  When processing the
     output of an SQL statement, ecpg has the necessary information and thus
     checks if both are arrays.
    </p><p>
     If a query accesses <span class="emphasis"><em>elements</em></span> of an array
     separately, then this avoids the use of arrays in ECPG.  Then, a
     host variable with a type that can be mapped to the element type
     should be used.  For example, if a column type is array of
     <code class="type">integer</code>, a host variable of type <code class="type">int</code>
     can be used.  Also if the element type is <code class="type">varchar</code>
     or <code class="type">text</code>, a host variable of type <code class="type">char[]</code>
     or <code class="type">VARCHAR[]</code> can be used.
    </p><p>
     Here is an example.  Assume the following table:
</p><pre class="programlisting">
CREATE TABLE t3 (
    ii integer[]
);

testdb=&gt; SELECT * FROM t3;
     ii
-------------
 {1,2,3,4,5}
(1 row)
</pre><p>

     The following example program retrieves the 4th element of the
     array and stores it into a host variable of
     type <code class="type">int</code>:
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
int ii;
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE cur1 CURSOR FOR SELECT ii[4] FROM t3;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
    EXEC SQL FETCH FROM cur1 INTO :ii ;
    printf("ii=%d\n", ii);
}

EXEC SQL CLOSE cur1;
</pre><p>

     This example shows the following result:
</p><pre class="screen">
ii=4
</pre><p>
    </p><p>
     To map multiple array elements to the multiple elements in an
     array type host variables each element of array column and each
     element of the host variable array have to be managed separately,
     for example:
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
int ii_a[8];
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE cur1 CURSOR FOR SELECT ii[1], ii[2], ii[3], ii[4] FROM t3;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
    EXEC SQL FETCH FROM cur1 INTO :ii_a[0], :ii_a[1], :ii_a[2], :ii_a[3];
    ...
}
</pre><p>
    </p><p>
     Note again that
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
int ii_a[8];
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE cur1 CURSOR FOR SELECT ii FROM t3;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
    /* WRONG */
    EXEC SQL FETCH FROM cur1 INTO :ii_a;
    ...
}
</pre><p>
     would not work correctly in this case, because you cannot map an
     array type column to an array host variable directly.
    </p><p>
     Another workaround is to store arrays in their external string
     representation in host variables of type <code class="type">char[]</code>
     or <code class="type">VARCHAR[]</code>.  For more details about this
     representation, see <a class="xref" href="arrays.html#ARRAYS-INPUT" title="8.15.2. Array Value Input">Section 8.15.2</a>.  Note that
     this means that the array cannot be accessed naturally as an
     array in the host program (without further processing that parses
     the text representation).
    </p></div><div class="sect3" id="id-1.7.5.10.8.4"><div class="titlepage"><div><div><h4 class="title">36.4.5.2. Composite Types</h4></div></div></div><p>
     Composite types are not directly supported in ECPG, but an easy workaround is possible.
  The
     available workarounds are similar to the ones described for
     arrays above: Either access each attribute separately or use the
     external string representation.
    </p><p>
     For the following examples, assume the following type and table:
</p><pre class="programlisting">
CREATE TYPE comp_t AS (intval integer, textval varchar(32));
CREATE TABLE t4 (compval comp_t);
INSERT INTO t4 VALUES ( (256, 'PostgreSQL') );
</pre><p>

     The most obvious solution is to access each attribute separately.
     The following program retrieves data from the example table by
     selecting each attribute of the type <code class="type">comp_t</code>
     separately:
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
int intval;
varchar textval[33];
EXEC SQL END DECLARE SECTION;

/* Put each element of the composite type column in the SELECT list. */
EXEC SQL DECLARE cur1 CURSOR FOR SELECT (compval).intval, (compval).textval FROM t4;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
    /* Fetch each element of the composite type column into host variables. */
    EXEC SQL FETCH FROM cur1 INTO :intval, :textval;

    printf("intval=%d, textval=%s\n", intval, textval.arr);
}

EXEC SQL CLOSE cur1;
</pre><p>
    </p><p>
     To enhance this example, the host variables to store values in
     the <code class="command">FETCH</code> command can be gathered into one
     structure.  For more details about the host variable in the
     structure form, see <a class="xref" href="ecpg-variables.html#ECPG-VARIABLES-STRUCT" title="36.4.4.3.2. Structures">Section 36.4.4.3.2</a>.
     To switch to the structure, the example can be modified as below.
     The two host variables, <code class="varname">intval</code>
     and <code class="varname">textval</code>, become members of
     the <code class="structname">comp_t</code> structure, and the structure
     is specified on the <code class="command">FETCH</code> command.
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
typedef struct
{
    int intval;
    varchar textval[33];
} comp_t;

comp_t compval;
EXEC SQL END DECLARE SECTION;

/* Put each element of the composite type column in the SELECT list. */
EXEC SQL DECLARE cur1 CURSOR FOR SELECT (compval).intval, (compval).textval FROM t4;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
    /* Put all values in the SELECT list into one structure. */
    EXEC SQL FETCH FROM cur1 INTO :compval;

    printf("intval=%d, textval=%s\n", compval.intval, compval.textval.arr);
}

EXEC SQL CLOSE cur1;
</pre><p>

     Although a structure is used in the <code class="command">FETCH</code>
     command, the attribute names in the <code class="command">SELECT</code>
     clause are specified one by one.  This can be enhanced by using
     a <code class="literal">*</code> to ask for all attributes of the composite
     type value.
</p><pre class="programlisting">
...
EXEC SQL DECLARE cur1 CURSOR FOR SELECT (compval).* FROM t4;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
    /* Put all values in the SELECT list into one structure. */
    EXEC SQL FETCH FROM cur1 INTO :compval;

    printf("intval=%d, textval=%s\n", compval.intval, compval.textval.arr);
}
...
</pre><p>
     This way, composite types can be mapped into structures almost
     seamlessly, even though ECPG does not understand the composite
     type itself.
    </p><p>
     Finally, it is also possible to store composite type values in
     their external string representation in host variables of
     type <code class="type">char[]</code> or <code class="type">VARCHAR[]</code>.  But that
     way, it is not easily possible to access the fields of the value
     from the host program.
    </p></div><div class="sect3" id="id-1.7.5.10.8.5"><div class="titlepage"><div><div><h4 class="title">36.4.5.3. User-Defined Base Types</h4></div></div></div><p>
     New user-defined base types are not directly supported by ECPG.
     You can use the external string representation and host variables
     of type <code class="type">char[]</code> or <code class="type">VARCHAR[]</code>, and this
     solution is indeed appropriate and sufficient for many types.
    </p><p>
     Here is an example using the data type <code class="type">complex</code> from
     the example in <a class="xref" href="xtypes.html" title="38.13. User-Defined Types">Section 38.13</a>.  The external string
     representation of that type is <code class="literal">(%f,%f)</code>,
     which is defined in the
     functions <code class="function">complex_in()</code>
     and <code class="function">complex_out()</code> functions
     in <a class="xref" href="xtypes.html" title="38.13. User-Defined Types">Section 38.13</a>.  The following example inserts the
     complex type values <code class="literal">(1,1)</code>
     and <code class="literal">(3,3)</code> into the
     columns <code class="literal">a</code> and <code class="literal">b</code>, and select
     them from the table after that.

</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
    varchar a[64];
    varchar b[64];
EXEC SQL END DECLARE SECTION;

    EXEC SQL INSERT INTO test_complex VALUES ('(1,1)', '(3,3)');

    EXEC SQL DECLARE cur1 CURSOR FOR SELECT a, b FROM test_complex;
    EXEC SQL OPEN cur1;

    EXEC SQL WHENEVER NOT FOUND DO BREAK;

    while (1)
    {
        EXEC SQL FETCH FROM cur1 INTO :a, :b;
        printf("a=%s, b=%s\n", a.arr, b.arr);
    }

    EXEC SQL CLOSE cur1;
</pre><p>

     This example shows following result:
</p><pre class="screen">
a=(1,1), b=(3,3)
</pre><p>
   </p><p>
     Another workaround is avoiding the direct use of the user-defined
     types in ECPG and instead create a function or cast that converts
     between the user-defined type and a primitive type that ECPG can
     handle.  Note, however, that type casts, especially implicit
     ones, should be introduced into the type system very carefully.
    </p><p>
     For example,
</p><pre class="programlisting">
CREATE FUNCTION create_complex(r double, i double) RETURNS complex
LANGUAGE SQL
IMMUTABLE
AS $$ SELECT $1 * complex '(1,0')' + $2 * complex '(0,1)' $$;
</pre><p>
    After this definition, the following
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
double a, b, c, d;
EXEC SQL END DECLARE SECTION;

a = 1;
b = 2;
c = 3;
d = 4;

EXEC SQL INSERT INTO test_complex VALUES (create_complex(:a, :b), create_complex(:c, :d));
</pre><p>
    has the same effect as
</p><pre class="programlisting">
EXEC SQL INSERT INTO test_complex VALUES ('(1,2)', '(3,4)');
</pre><p>
    </p></div></div><div class="sect2" id="ECPG-INDICATORS"><div class="titlepage"><div><div><h3 class="title">36.4.6. Indicators</h3></div></div></div><p>
    The examples above do not handle null values.  In fact, the
    retrieval examples will raise an error if they fetch a null value
    from the database.  To be able to pass null values to the database
    or retrieve null values from the database, you need to append a
    second host variable specification to each host variable that
    contains data.  This second host variable is called the
    <em class="firstterm">indicator</em> and contains a flag that tells
    whether the datum is null, in which case the value of the real
    host variable is ignored.  Here is an example that handles the
    retrieval of null values correctly:
</p><pre class="programlisting">
EXEC SQL BEGIN DECLARE SECTION;
VARCHAR val;
int val_ind;
EXEC SQL END DECLARE SECTION:

 ...

EXEC SQL SELECT b INTO :val :val_ind FROM test1;
</pre><p>
    The indicator variable <code class="varname">val_ind</code> will be zero if
    the value was not null, and it will be negative if the value was
    null.  (See <a class="xref" href="ecpg-oracle-compat.html" title="36.16. Oracle Compatibility Mode">Section 36.16</a> to enable
    Oracle-specific behavior.)
   </p><p>
    The indicator has another function: if the indicator value is
    positive, it means that the value is not null, but it was
    truncated when it was stored in the host variable.
   </p><p>
    If the argument <code class="literal">-r no_indicator</code> is passed to
    the preprocessor <code class="command">ecpg</code>, it works in
    <span class="quote"><span class="quote">no-indicator</span></span> mode. In no-indicator mode, if no
    indicator variable is specified, null values are signaled (on
    input and output) for character string types as empty string and
    for integer types as the lowest possible value for type (for
    example, <code class="symbol">INT_MIN</code> for <code class="type">int</code>).
   </p></div></div><div class="navfooter"><hr /><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ecpg-commands.html" title="36.3. Running SQL Commands">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="ecpg.html" title="Chapter 36. ECPG — Embedded SQL in C">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="ecpg-dynamic.html" title="36.5. Dynamic SQL">Next</a></td></tr><tr><td width="40%" align="left" valign="top">36.3. Running SQL Commands </td><td width="20%" align="center"><a accesskey="h" href="index.html" title="PostgreSQL 15.4 Documentation">Home</a></td><td width="40%" align="right" valign="top"> 36.5. Dynamic SQL</td></tr></table></div></body></html>