1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
|
<!-- doc/src/sgml/xfunc.sgml -->
<sect1 id="xfunc">
<title>User-Defined Functions</title>
<indexterm zone="xfunc">
<primary>function</primary>
<secondary>user-defined</secondary>
</indexterm>
<para>
<productname>PostgreSQL</productname> provides four kinds of
functions:
<itemizedlist>
<listitem>
<para>
query language functions (functions written in
<acronym>SQL</acronym>) (<xref linkend="xfunc-sql"/>)
</para>
</listitem>
<listitem>
<para>
procedural language functions (functions written in, for
example, <application>PL/pgSQL</application> or <application>PL/Tcl</application>)
(<xref linkend="xfunc-pl"/>)
</para>
</listitem>
<listitem>
<para>
internal functions (<xref linkend="xfunc-internal"/>)
</para>
</listitem>
<listitem>
<para>
C-language functions (<xref linkend="xfunc-c"/>)
</para>
</listitem>
</itemizedlist>
</para>
<para>
Every kind
of function can take base types, composite types, or
combinations of these as arguments (parameters). In addition,
every kind of function can return a base type or
a composite type. Functions can also be defined to return
sets of base or composite values.
</para>
<para>
Many kinds of functions can take or return certain pseudo-types
(such as polymorphic types), but the available facilities vary.
Consult the description of each kind of function for more details.
</para>
<para>
It's easiest to define <acronym>SQL</acronym>
functions, so we'll start by discussing those.
Most of the concepts presented for <acronym>SQL</acronym> functions
will carry over to the other types of functions.
</para>
<para>
Throughout this chapter, it can be useful to look at the reference
page of the <link linkend="sql-createfunction"><command>CREATE
FUNCTION</command></link> command to
understand the examples better. Some examples from this chapter
can be found in <filename>funcs.sql</filename> and
<filename>funcs.c</filename> in the <filename>src/tutorial</filename>
directory in the <productname>PostgreSQL</productname> source
distribution.
</para>
</sect1>
<sect1 id="xproc">
<title>User-Defined Procedures</title>
<indexterm zone="xproc">
<primary>procedure</primary>
<secondary>user-defined</secondary>
</indexterm>
<para>
A procedure is a database object similar to a function.
The key differences are:
<itemizedlist>
<listitem>
<para>
Procedures are defined with
the <link linkend="sql-createprocedure"><command>CREATE
PROCEDURE</command></link> command, not <command>CREATE
FUNCTION</command>.
</para>
</listitem>
<listitem>
<para>
Procedures do not return a function value; hence <command>CREATE
PROCEDURE</command> lacks a <literal>RETURNS</literal> clause.
However, procedures can instead return data to their callers via
output parameters.
</para>
</listitem>
<listitem>
<para>
While a function is called as part of a query or DML command, a
procedure is called in isolation using
the <link linkend="sql-call"><command>CALL</command></link> command.
</para>
</listitem>
<listitem>
<para>
A procedure can commit or roll back transactions during its
execution (then automatically beginning a new transaction), so long
as the invoking <command>CALL</command> command is not part of an
explicit transaction block. A function cannot do that.
</para>
</listitem>
<listitem>
<para>
Certain function attributes, such as strictness, don't apply to
procedures. Those attributes control how the function is
used in a query, which isn't relevant to procedures.
</para>
</listitem>
</itemizedlist>
</para>
<para>
The explanations in the following sections about how to define
user-defined functions apply to procedures as well, except for the
points made above.
</para>
<para>
Collectively, functions and procedures are also known
as <firstterm>routines</firstterm><indexterm><primary>routine</primary></indexterm>.
There are commands such as <link linkend="sql-alterroutine"><command>ALTER ROUTINE</command></link>
and <link linkend="sql-droproutine"><command>DROP ROUTINE</command></link> that can operate on functions and
procedures without having to know which kind it is. Note, however, that
there is no <literal>CREATE ROUTINE</literal> command.
</para>
</sect1>
<sect1 id="xfunc-sql">
<title>Query Language (<acronym>SQL</acronym>) Functions</title>
<indexterm zone="xfunc-sql">
<primary>function</primary>
<secondary>user-defined</secondary>
<tertiary>in SQL</tertiary>
</indexterm>
<para>
SQL functions execute an arbitrary list of SQL statements, returning
the result of the last query in the list.
In the simple (non-set)
case, the first row of the last query's result will be returned.
(Bear in mind that <quote>the first row</quote> of a multirow
result is not well-defined unless you use <literal>ORDER BY</literal>.)
If the last query happens
to return no rows at all, the null value will be returned.
</para>
<para>
Alternatively, an SQL function can be declared to return a set (that is,
multiple rows) by specifying the function's return type as <literal>SETOF
<replaceable>sometype</replaceable></literal>, or equivalently by declaring it as
<literal>RETURNS TABLE(<replaceable>columns</replaceable>)</literal>. In this case
all rows of the last query's result are returned. Further details appear
below.
</para>
<para>
The body of an SQL function must be a list of SQL
statements separated by semicolons. A semicolon after the last
statement is optional. Unless the function is declared to return
<type>void</type>, the last statement must be a <command>SELECT</command>,
or an <command>INSERT</command>, <command>UPDATE</command>, or <command>DELETE</command>
that has a <literal>RETURNING</literal> clause.
</para>
<para>
Any collection of commands in the <acronym>SQL</acronym>
language can be packaged together and defined as a function.
Besides <command>SELECT</command> queries, the commands can include data
modification queries (<command>INSERT</command>,
<command>UPDATE</command>, <command>DELETE</command>, and
<command>MERGE</command>), as well as
other SQL commands. (You cannot use transaction control commands, e.g.,
<command>COMMIT</command>, <command>SAVEPOINT</command>, and some utility
commands, e.g., <literal>VACUUM</literal>, in <acronym>SQL</acronym> functions.)
However, the final command
must be a <command>SELECT</command> or have a <literal>RETURNING</literal>
clause that returns whatever is
specified as the function's return type. Alternatively, if you
want to define an SQL function that performs actions but has no
useful value to return, you can define it as returning <type>void</type>.
For example, this function removes rows with negative salaries from
the <literal>emp</literal> table:
<screen>
CREATE FUNCTION clean_emp() RETURNS void AS '
DELETE FROM emp
WHERE salary < 0;
' LANGUAGE SQL;
SELECT clean_emp();
clean_emp
-----------
(1 row)
</screen>
</para>
<para>
You can also write this as a procedure, thus avoiding the issue of the
return type. For example:
<screen>
CREATE PROCEDURE clean_emp() AS '
DELETE FROM emp
WHERE salary < 0;
' LANGUAGE SQL;
CALL clean_emp();
</screen>
In simple cases like this, the difference between a function returning
<type>void</type> and a procedure is mostly stylistic. However,
procedures offer additional functionality such as transaction control
that is not available in functions. Also, procedures are SQL standard
whereas returning <type>void</type> is a PostgreSQL extension.
</para>
<note>
<para>
The entire body of an SQL function is parsed before any of it is
executed. While an SQL function can contain commands that alter
the system catalogs (e.g., <command>CREATE TABLE</command>), the effects
of such commands will not be visible during parse analysis of
later commands in the function. Thus, for example,
<literal>CREATE TABLE foo (...); INSERT INTO foo VALUES(...);</literal>
will not work as desired if packaged up into a single SQL function,
since <structname>foo</structname> won't exist yet when the <command>INSERT</command>
command is parsed. It's recommended to use <application>PL/pgSQL</application>
instead of an SQL function in this type of situation.
</para>
</note>
<para>
The syntax of the <command>CREATE FUNCTION</command> command requires
the function body to be written as a string constant. It is usually
most convenient to use dollar quoting (see <xref
linkend="sql-syntax-dollar-quoting"/>) for the string constant.
If you choose to use regular single-quoted string constant syntax,
you must double single quote marks (<literal>'</literal>) and backslashes
(<literal>\</literal>) (assuming escape string syntax) in the body of
the function (see <xref linkend="sql-syntax-strings"/>).
</para>
<sect2 id="xfunc-sql-function-arguments">
<title>Arguments for <acronym>SQL</acronym> Functions</title>
<indexterm>
<primary>function</primary>
<secondary>named argument</secondary>
</indexterm>
<para>
Arguments of an SQL function can be referenced in the function
body using either names or numbers. Examples of both methods appear
below.
</para>
<para>
To use a name, declare the function argument as having a name, and
then just write that name in the function body. If the argument name
is the same as any column name in the current SQL command within the
function, the column name will take precedence. To override this,
qualify the argument name with the name of the function itself, that is
<literal><replaceable>function_name</replaceable>.<replaceable>argument_name</replaceable></literal>.
(If this would conflict with a qualified column name, again the column
name wins. You can avoid the ambiguity by choosing a different alias for
the table within the SQL command.)
</para>
<para>
In the older numeric approach, arguments are referenced using the syntax
<literal>$<replaceable>n</replaceable></literal>: <literal>$1</literal> refers to the first input
argument, <literal>$2</literal> to the second, and so on. This will work
whether or not the particular argument was declared with a name.
</para>
<para>
If an argument is of a composite type, then the dot notation,
e.g., <literal><replaceable>argname</replaceable>.<replaceable>fieldname</replaceable></literal> or
<literal>$1.<replaceable>fieldname</replaceable></literal>, can be used to access attributes of the
argument. Again, you might need to qualify the argument's name with the
function name to make the form with an argument name unambiguous.
</para>
<para>
SQL function arguments can only be used as data values,
not as identifiers. Thus for example this is reasonable:
<programlisting>
INSERT INTO mytable VALUES ($1);
</programlisting>
but this will not work:
<programlisting>
INSERT INTO $1 VALUES (42);
</programlisting>
</para>
<note>
<para>
The ability to use names to reference SQL function arguments was added
in <productname>PostgreSQL</productname> 9.2. Functions to be used in
older servers must use the <literal>$<replaceable>n</replaceable></literal> notation.
</para>
</note>
</sect2>
<sect2 id="xfunc-sql-base-functions">
<title><acronym>SQL</acronym> Functions on Base Types</title>
<para>
The simplest possible <acronym>SQL</acronym> function has no arguments and
simply returns a base type, such as <type>integer</type>:
<screen>
CREATE FUNCTION one() RETURNS integer AS $$
SELECT 1 AS result;
$$ LANGUAGE SQL;
-- Alternative syntax for string literal:
CREATE FUNCTION one() RETURNS integer AS '
SELECT 1 AS result;
' LANGUAGE SQL;
SELECT one();
one
-----
1
</screen>
</para>
<para>
Notice that we defined a column alias within the function body for the result of the function
(with the name <literal>result</literal>), but this column alias is not visible
outside the function. Hence, the result is labeled <literal>one</literal>
instead of <literal>result</literal>.
</para>
<para>
It is almost as easy to define <acronym>SQL</acronym> functions
that take base types as arguments:
<screen>
CREATE FUNCTION add_em(x integer, y integer) RETURNS integer AS $$
SELECT x + y;
$$ LANGUAGE SQL;
SELECT add_em(1, 2) AS answer;
answer
--------
3
</screen>
</para>
<para>
Alternatively, we could dispense with names for the arguments and
use numbers:
<screen>
CREATE FUNCTION add_em(integer, integer) RETURNS integer AS $$
SELECT $1 + $2;
$$ LANGUAGE SQL;
SELECT add_em(1, 2) AS answer;
answer
--------
3
</screen>
</para>
<para>
Here is a more useful function, which might be used to debit a
bank account:
<programlisting>
CREATE FUNCTION tf1 (accountno integer, debit numeric) RETURNS numeric AS $$
UPDATE bank
SET balance = balance - debit
WHERE accountno = tf1.accountno;
SELECT 1;
$$ LANGUAGE SQL;
</programlisting>
A user could execute this function to debit account 17 by $100.00 as
follows:
<programlisting>
SELECT tf1(17, 100.0);
</programlisting>
</para>
<para>
In this example, we chose the name <literal>accountno</literal> for the first
argument, but this is the same as the name of a column in the
<literal>bank</literal> table. Within the <command>UPDATE</command> command,
<literal>accountno</literal> refers to the column <literal>bank.accountno</literal>,
so <literal>tf1.accountno</literal> must be used to refer to the argument.
We could of course avoid this by using a different name for the argument.
</para>
<para>
In practice one would probably like a more useful result from the
function than a constant 1, so a more likely definition
is:
<programlisting>
CREATE FUNCTION tf1 (accountno integer, debit numeric) RETURNS numeric AS $$
UPDATE bank
SET balance = balance - debit
WHERE accountno = tf1.accountno;
SELECT balance FROM bank WHERE accountno = tf1.accountno;
$$ LANGUAGE SQL;
</programlisting>
which adjusts the balance and returns the new balance.
The same thing could be done in one command using <literal>RETURNING</literal>:
<programlisting>
CREATE FUNCTION tf1 (accountno integer, debit numeric) RETURNS numeric AS $$
UPDATE bank
SET balance = balance - debit
WHERE accountno = tf1.accountno
RETURNING balance;
$$ LANGUAGE SQL;
</programlisting>
</para>
<para>
If the final <literal>SELECT</literal> or <literal>RETURNING</literal>
clause in an <acronym>SQL</acronym> function does not return exactly
the function's declared result
type, <productname>PostgreSQL</productname> will automatically cast
the value to the required type, if that is possible with an implicit
or assignment cast. Otherwise, you must write an explicit cast.
For example, suppose we wanted the
previous <function>add_em</function> function to return
type <type>float8</type> instead. It's sufficient to write
<programlisting>
CREATE FUNCTION add_em(integer, integer) RETURNS float8 AS $$
SELECT $1 + $2;
$$ LANGUAGE SQL;
</programlisting>
since the <type>integer</type> sum can be implicitly cast
to <type>float8</type>.
(See <xref linkend="typeconv"/> or <xref linkend="sql-createcast"/>
for more about casts.)
</para>
</sect2>
<sect2 id="xfunc-sql-composite-functions">
<title><acronym>SQL</acronym> Functions on Composite Types</title>
<para>
When writing functions with arguments of composite types, we must not
only specify which argument we want but also the desired attribute
(field) of that argument. For example, suppose that
<type>emp</type> is a table containing employee data, and therefore
also the name of the composite type of each row of the table. Here
is a function <function>double_salary</function> that computes what someone's
salary would be if it were doubled:
<screen>
CREATE TABLE emp (
name text,
salary numeric,
age integer,
cubicle point
);
INSERT INTO emp VALUES ('Bill', 4200, 45, '(2,1)');
CREATE FUNCTION double_salary(emp) RETURNS numeric AS $$
SELECT $1.salary * 2 AS salary;
$$ LANGUAGE SQL;
SELECT name, double_salary(emp.*) AS dream
FROM emp
WHERE emp.cubicle ~= point '(2,1)';
name | dream
------+-------
Bill | 8400
</screen>
</para>
<para>
Notice the use of the syntax <literal>$1.salary</literal>
to select one field of the argument row value. Also notice
how the calling <command>SELECT</command> command
uses <replaceable>table_name</replaceable><literal>.*</literal> to select
the entire current row of a table as a composite value. The table
row can alternatively be referenced using just the table name,
like this:
<screen>
SELECT name, double_salary(emp) AS dream
FROM emp
WHERE emp.cubicle ~= point '(2,1)';
</screen>
but this usage is deprecated since it's easy to get confused.
(See <xref linkend="rowtypes-usage"/> for details about these
two notations for the composite value of a table row.)
</para>
<para>
Sometimes it is handy to construct a composite argument value
on-the-fly. This can be done with the <literal>ROW</literal> construct.
For example, we could adjust the data being passed to the function:
<screen>
SELECT name, double_salary(ROW(name, salary*1.1, age, cubicle)) AS dream
FROM emp;
</screen>
</para>
<para>
It is also possible to build a function that returns a composite type.
This is an example of a function
that returns a single <type>emp</type> row:
<programlisting>
CREATE FUNCTION new_emp() RETURNS emp AS $$
SELECT text 'None' AS name,
1000.0 AS salary,
25 AS age,
point '(2,2)' AS cubicle;
$$ LANGUAGE SQL;
</programlisting>
In this example we have specified each of the attributes
with a constant value, but any computation
could have been substituted for these constants.
</para>
<para>
Note two important things about defining the function:
<itemizedlist>
<listitem>
<para>
The select list order in the query must be exactly the same as
that in which the columns appear in the composite type.
(Naming the columns, as we did above,
is irrelevant to the system.)
</para>
</listitem>
<listitem>
<para>
We must ensure each expression's type can be cast to that of
the corresponding column of the composite type.
Otherwise we'll get errors like this:
<screen>
<computeroutput>
ERROR: return type mismatch in function declared to return emp
DETAIL: Final statement returns text instead of point at column 4.
</computeroutput>
</screen>
As with the base-type case, the system will not insert explicit
casts automatically, only implicit or assignment casts.
</para>
</listitem>
</itemizedlist>
</para>
<para>
A different way to define the same function is:
<programlisting>
CREATE FUNCTION new_emp() RETURNS emp AS $$
SELECT ROW('None', 1000.0, 25, '(2,2)')::emp;
$$ LANGUAGE SQL;
</programlisting>
Here we wrote a <command>SELECT</command> that returns just a single
column of the correct composite type. This isn't really better
in this situation, but it is a handy alternative in some cases
— for example, if we need to compute the result by calling
another function that returns the desired composite value.
Another example is that if we are trying to write a function that
returns a domain over composite, rather than a plain composite type,
it is always necessary to write it as returning a single column,
since there is no way to cause a coercion of the whole row result.
</para>
<para>
We could call this function directly either by using it in
a value expression:
<screen>
SELECT new_emp();
new_emp
--------------------------
(None,1000.0,25,"(2,2)")
</screen>
or by calling it as a table function:
<screen>
SELECT * FROM new_emp();
name | salary | age | cubicle
------+--------+-----+---------
None | 1000.0 | 25 | (2,2)
</screen>
The second way is described more fully in <xref
linkend="xfunc-sql-table-functions"/>.
</para>
<para>
When you use a function that returns a composite type,
you might want only one field (attribute) from its result.
You can do that with syntax like this:
<screen>
SELECT (new_emp()).name;
name
------
None
</screen>
The extra parentheses are needed to keep the parser from getting
confused. If you try to do it without them, you get something like this:
<screen>
SELECT new_emp().name;
ERROR: syntax error at or near "."
LINE 1: SELECT new_emp().name;
^
</screen>
</para>
<para>
Another option is to use functional notation for extracting an attribute:
<screen>
SELECT name(new_emp());
name
------
None
</screen>
As explained in <xref linkend="rowtypes-usage"/>, the field notation and
functional notation are equivalent.
</para>
<para>
Another way to use a function returning a composite type is to pass the
result to another function that accepts the correct row type as input:
<screen>
CREATE FUNCTION getname(emp) RETURNS text AS $$
SELECT $1.name;
$$ LANGUAGE SQL;
SELECT getname(new_emp());
getname
---------
None
(1 row)
</screen>
</para>
</sect2>
<sect2 id="xfunc-output-parameters">
<title><acronym>SQL</acronym> Functions with Output Parameters</title>
<indexterm>
<primary>function</primary>
<secondary>output parameter</secondary>
</indexterm>
<para>
An alternative way of describing a function's results is to define it
with <firstterm>output parameters</firstterm>, as in this example:
<screen>
CREATE FUNCTION add_em (IN x int, IN y int, OUT sum int)
AS 'SELECT x + y'
LANGUAGE SQL;
SELECT add_em(3,7);
add_em
--------
10
(1 row)
</screen>
This is not essentially different from the version of <literal>add_em</literal>
shown in <xref linkend="xfunc-sql-base-functions"/>. The real value of
output parameters is that they provide a convenient way of defining
functions that return several columns. For example,
<screen>
CREATE FUNCTION sum_n_product (x int, y int, OUT sum int, OUT product int)
AS 'SELECT x + y, x * y'
LANGUAGE SQL;
SELECT * FROM sum_n_product(11,42);
sum | product
-----+---------
53 | 462
(1 row)
</screen>
What has essentially happened here is that we have created an anonymous
composite type for the result of the function. The above example has
the same end result as
<screen>
CREATE TYPE sum_prod AS (sum int, product int);
CREATE FUNCTION sum_n_product (int, int) RETURNS sum_prod
AS 'SELECT $1 + $2, $1 * $2'
LANGUAGE SQL;
</screen>
but not having to bother with the separate composite type definition
is often handy. Notice that the names attached to the output parameters
are not just decoration, but determine the column names of the anonymous
composite type. (If you omit a name for an output parameter, the
system will choose a name on its own.)
</para>
<para>
Notice that output parameters are not included in the calling argument
list when invoking such a function from SQL. This is because
<productname>PostgreSQL</productname> considers only the input
parameters to define the function's calling signature. That means
also that only the input parameters matter when referencing the function
for purposes such as dropping it. We could drop the above function
with either of
<screen>
DROP FUNCTION sum_n_product (x int, y int, OUT sum int, OUT product int);
DROP FUNCTION sum_n_product (int, int);
</screen>
</para>
<para>
Parameters can be marked as <literal>IN</literal> (the default),
<literal>OUT</literal>, <literal>INOUT</literal>, or <literal>VARIADIC</literal>.
An <literal>INOUT</literal>
parameter serves as both an input parameter (part of the calling
argument list) and an output parameter (part of the result record type).
<literal>VARIADIC</literal> parameters are input parameters, but are treated
specially as described below.
</para>
</sect2>
<sect2 id="xfunc-output-parameters-proc">
<title><acronym>SQL</acronym> Procedures with Output Parameters</title>
<indexterm>
<primary>procedures</primary>
<secondary>output parameter</secondary>
</indexterm>
<para>
Output parameters are also supported in procedures, but they work a bit
differently from functions. In <command>CALL</command> commands,
output parameters must be included in the argument list.
For example, the bank account debiting routine from earlier could be
written like this:
<programlisting>
CREATE PROCEDURE tp1 (accountno integer, debit numeric, OUT new_balance numeric) AS $$
UPDATE bank
SET balance = balance - debit
WHERE accountno = tp1.accountno
RETURNING balance;
$$ LANGUAGE SQL;
</programlisting>
To call this procedure, an argument matching the <literal>OUT</literal>
parameter must be included. It's customary to write
<literal>NULL</literal>:
<programlisting>
CALL tp1(17, 100.0, NULL);
</programlisting>
If you write something else, it must be an expression that is implicitly
coercible to the declared type of the parameter, just as for input
parameters. Note however that such an expression will not be evaluated.
</para>
<para>
When calling a procedure from <application>PL/pgSQL</application>,
instead of writing <literal>NULL</literal> you must write a variable
that will receive the procedure's output. See <xref
linkend="plpgsql-statements-calling-procedure"/> for details.
</para>
</sect2>
<sect2 id="xfunc-sql-variadic-functions">
<title><acronym>SQL</acronym> Functions with Variable Numbers of Arguments</title>
<indexterm>
<primary>function</primary>
<secondary>variadic</secondary>
</indexterm>
<indexterm>
<primary>variadic function</primary>
</indexterm>
<para>
<acronym>SQL</acronym> functions can be declared to accept
variable numbers of arguments, so long as all the <quote>optional</quote>
arguments are of the same data type. The optional arguments will be
passed to the function as an array. The function is declared by
marking the last parameter as <literal>VARIADIC</literal>; this parameter
must be declared as being of an array type. For example:
<screen>
CREATE FUNCTION mleast(VARIADIC arr numeric[]) RETURNS numeric AS $$
SELECT min($1[i]) FROM generate_subscripts($1, 1) g(i);
$$ LANGUAGE SQL;
SELECT mleast(10, -1, 5, 4.4);
mleast
--------
-1
(1 row)
</screen>
Effectively, all the actual arguments at or beyond the
<literal>VARIADIC</literal> position are gathered up into a one-dimensional
array, as if you had written
<screen>
SELECT mleast(ARRAY[10, -1, 5, 4.4]); -- doesn't work
</screen>
You can't actually write that, though — or at least, it will
not match this function definition. A parameter marked
<literal>VARIADIC</literal> matches one or more occurrences of its element
type, not of its own type.
</para>
<para>
Sometimes it is useful to be able to pass an already-constructed array
to a variadic function; this is particularly handy when one variadic
function wants to pass on its array parameter to another one. Also,
this is the only secure way to call a variadic function found in a schema
that permits untrusted users to create objects; see
<xref linkend="typeconv-func"/>. You can do this by
specifying <literal>VARIADIC</literal> in the call:
<screen>
SELECT mleast(VARIADIC ARRAY[10, -1, 5, 4.4]);
</screen>
This prevents expansion of the function's variadic parameter into its
element type, thereby allowing the array argument value to match
normally. <literal>VARIADIC</literal> can only be attached to the last
actual argument of a function call.
</para>
<para>
Specifying <literal>VARIADIC</literal> in the call is also the only way to
pass an empty array to a variadic function, for example:
<screen>
SELECT mleast(VARIADIC ARRAY[]::numeric[]);
</screen>
Simply writing <literal>SELECT mleast()</literal> does not work because a
variadic parameter must match at least one actual argument.
(You could define a second function also named <literal>mleast</literal>,
with no parameters, if you wanted to allow such calls.)
</para>
<para>
The array element parameters generated from a variadic parameter are
treated as not having any names of their own. This means it is not
possible to call a variadic function using named arguments (<xref
linkend="sql-syntax-calling-funcs"/>), except when you specify
<literal>VARIADIC</literal>. For example, this will work:
<screen>
SELECT mleast(VARIADIC arr => ARRAY[10, -1, 5, 4.4]);
</screen>
but not these:
<screen>
SELECT mleast(arr => 10);
SELECT mleast(arr => ARRAY[10, -1, 5, 4.4]);
</screen>
</para>
</sect2>
<sect2 id="xfunc-sql-parameter-defaults">
<title><acronym>SQL</acronym> Functions with Default Values for Arguments</title>
<indexterm>
<primary>function</primary>
<secondary>default values for arguments</secondary>
</indexterm>
<para>
Functions can be declared with default values for some or all input
arguments. The default values are inserted whenever the function is
called with insufficiently many actual arguments. Since arguments
can only be omitted from the end of the actual argument list, all
parameters after a parameter with a default value have to have
default values as well. (Although the use of named argument notation
could allow this restriction to be relaxed, it's still enforced so that
positional argument notation works sensibly.) Whether or not you use it,
this capability creates a need for precautions when calling functions in
databases where some users mistrust other users; see
<xref linkend="typeconv-func"/>.
</para>
<para>
For example:
<screen>
CREATE FUNCTION foo(a int, b int DEFAULT 2, c int DEFAULT 3)
RETURNS int
LANGUAGE SQL
AS $$
SELECT $1 + $2 + $3;
$$;
SELECT foo(10, 20, 30);
foo
-----
60
(1 row)
SELECT foo(10, 20);
foo
-----
33
(1 row)
SELECT foo(10);
foo
-----
15
(1 row)
SELECT foo(); -- fails since there is no default for the first argument
ERROR: function foo() does not exist
</screen>
The <literal>=</literal> sign can also be used in place of the
key word <literal>DEFAULT</literal>.
</para>
</sect2>
<sect2 id="xfunc-sql-table-functions">
<title><acronym>SQL</acronym> Functions as Table Sources</title>
<para>
All SQL functions can be used in the <literal>FROM</literal> clause of a query,
but it is particularly useful for functions returning composite types.
If the function is defined to return a base type, the table function
produces a one-column table. If the function is defined to return
a composite type, the table function produces a column for each attribute
of the composite type.
</para>
<para>
Here is an example:
<screen>
CREATE TABLE foo (fooid int, foosubid int, fooname text);
INSERT INTO foo VALUES (1, 1, 'Joe');
INSERT INTO foo VALUES (1, 2, 'Ed');
INSERT INTO foo VALUES (2, 1, 'Mary');
CREATE FUNCTION getfoo(int) RETURNS foo AS $$
SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;
SELECT *, upper(fooname) FROM getfoo(1) AS t1;
fooid | foosubid | fooname | upper
-------+----------+---------+-------
1 | 1 | Joe | JOE
(1 row)
</screen>
As the example shows, we can work with the columns of the function's
result just the same as if they were columns of a regular table.
</para>
<para>
Note that we only got one row out of the function. This is because
we did not use <literal>SETOF</literal>. That is described in the next section.
</para>
</sect2>
<sect2 id="xfunc-sql-functions-returning-set">
<title><acronym>SQL</acronym> Functions Returning Sets</title>
<indexterm>
<primary>function</primary>
<secondary>with SETOF</secondary>
</indexterm>
<para>
When an SQL function is declared as returning <literal>SETOF
<replaceable>sometype</replaceable></literal>, the function's final
query is executed to completion, and each row it
outputs is returned as an element of the result set.
</para>
<para>
This feature is normally used when calling the function in the <literal>FROM</literal>
clause. In this case each row returned by the function becomes
a row of the table seen by the query. For example, assume that
table <literal>foo</literal> has the same contents as above, and we say:
<programlisting>
CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS $$
SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;
SELECT * FROM getfoo(1) AS t1;
</programlisting>
Then we would get:
<screen>
fooid | foosubid | fooname
-------+----------+---------
1 | 1 | Joe
1 | 2 | Ed
(2 rows)
</screen>
</para>
<para>
It is also possible to return multiple rows with the columns defined by
output parameters, like this:
<programlisting>
CREATE TABLE tab (y int, z int);
INSERT INTO tab VALUES (1, 2), (3, 4), (5, 6), (7, 8);
CREATE FUNCTION sum_n_product_with_tab (x int, OUT sum int, OUT product int)
RETURNS SETOF record
AS $$
SELECT $1 + tab.y, $1 * tab.y FROM tab;
$$ LANGUAGE SQL;
SELECT * FROM sum_n_product_with_tab(10);
sum | product
-----+---------
11 | 10
13 | 30
15 | 50
17 | 70
(4 rows)
</programlisting>
The key point here is that you must write <literal>RETURNS SETOF record</literal>
to indicate that the function returns multiple rows instead of just one.
If there is only one output parameter, write that parameter's type
instead of <type>record</type>.
</para>
<para>
It is frequently useful to construct a query's result by invoking a
set-returning function multiple times, with the parameters for each
invocation coming from successive rows of a table or subquery. The
preferred way to do this is to use the <literal>LATERAL</literal> key word,
which is described in <xref linkend="queries-lateral"/>.
Here is an example using a set-returning function to enumerate
elements of a tree structure:
<screen>
SELECT * FROM nodes;
name | parent
-----------+--------
Top |
Child1 | Top
Child2 | Top
Child3 | Top
SubChild1 | Child1
SubChild2 | Child1
(6 rows)
CREATE FUNCTION listchildren(text) RETURNS SETOF text AS $$
SELECT name FROM nodes WHERE parent = $1
$$ LANGUAGE SQL STABLE;
SELECT * FROM listchildren('Top');
listchildren
--------------
Child1
Child2
Child3
(3 rows)
SELECT name, child FROM nodes, LATERAL listchildren(name) AS child;
name | child
--------+-----------
Top | Child1
Top | Child2
Top | Child3
Child1 | SubChild1
Child1 | SubChild2
(5 rows)
</screen>
This example does not do anything that we couldn't have done with a
simple join, but in more complex calculations the option to put
some of the work into a function can be quite convenient.
</para>
<para>
Functions returning sets can also be called in the select list
of a query. For each row that the query
generates by itself, the set-returning function is invoked, and an output
row is generated for each element of the function's result set.
The previous example could also be done with queries like
these:
<screen>
SELECT listchildren('Top');
listchildren
--------------
Child1
Child2
Child3
(3 rows)
SELECT name, listchildren(name) FROM nodes;
name | listchildren
--------+--------------
Top | Child1
Top | Child2
Top | Child3
Child1 | SubChild1
Child1 | SubChild2
(5 rows)
</screen>
In the last <command>SELECT</command>,
notice that no output row appears for <literal>Child2</literal>, <literal>Child3</literal>, etc.
This happens because <function>listchildren</function> returns an empty set
for those arguments, so no result rows are generated. This is the same
behavior as we got from an inner join to the function result when using
the <literal>LATERAL</literal> syntax.
</para>
<para>
<productname>PostgreSQL</productname>'s behavior for a set-returning function in a
query's select list is almost exactly the same as if the set-returning
function had been written in a <literal>LATERAL FROM</literal>-clause item
instead. For example,
<programlisting>
SELECT x, generate_series(1,5) AS g FROM tab;
</programlisting>
is almost equivalent to
<programlisting>
SELECT x, g FROM tab, LATERAL generate_series(1,5) AS g;
</programlisting>
It would be exactly the same, except that in this specific example,
the planner could choose to put <structname>g</structname> on the outside of the
nested-loop join, since <structname>g</structname> has no actual lateral dependency
on <structname>tab</structname>. That would result in a different output row
order. Set-returning functions in the select list are always evaluated
as though they are on the inside of a nested-loop join with the rest of
the <literal>FROM</literal> clause, so that the function(s) are run to
completion before the next row from the <literal>FROM</literal> clause is
considered.
</para>
<para>
If there is more than one set-returning function in the query's select
list, the behavior is similar to what you get from putting the functions
into a single <literal>LATERAL ROWS FROM( ... )</literal> <literal>FROM</literal>-clause
item. For each row from the underlying query, there is an output row
using the first result from each function, then an output row using the
second result, and so on. If some of the set-returning functions
produce fewer outputs than others, null values are substituted for the
missing data, so that the total number of rows emitted for one
underlying row is the same as for the set-returning function that
produced the most outputs. Thus the set-returning functions
run <quote>in lockstep</quote> until they are all exhausted, and then
execution continues with the next underlying row.
</para>
<para>
Set-returning functions can be nested in a select list, although that is
not allowed in <literal>FROM</literal>-clause items. In such cases, each level
of nesting is treated separately, as though it were
a separate <literal>LATERAL ROWS FROM( ... )</literal> item. For example, in
<programlisting>
SELECT srf1(srf2(x), srf3(y)), srf4(srf5(z)) FROM tab;
</programlisting>
the set-returning functions <function>srf2</function>, <function>srf3</function>,
and <function>srf5</function> would be run in lockstep for each row
of <structname>tab</structname>, and then <function>srf1</function> and <function>srf4</function>
would be applied in lockstep to each row produced by the lower
functions.
</para>
<para>
Set-returning functions cannot be used within conditional-evaluation
constructs, such as <literal>CASE</literal> or <literal>COALESCE</literal>. For
example, consider
<programlisting>
SELECT x, CASE WHEN x > 0 THEN generate_series(1, 5) ELSE 0 END FROM tab;
</programlisting>
It might seem that this should produce five repetitions of input rows
that have <literal>x > 0</literal>, and a single repetition of those that do
not; but actually, because <function>generate_series(1, 5)</function> would be
run in an implicit <literal>LATERAL FROM</literal> item before
the <literal>CASE</literal> expression is ever evaluated, it would produce five
repetitions of every input row. To reduce confusion, such cases produce
a parse-time error instead.
</para>
<note>
<para>
If a function's last command is <command>INSERT</command>, <command>UPDATE</command>,
or <command>DELETE</command> with <literal>RETURNING</literal>, that command will
always be executed to completion, even if the function is not declared
with <literal>SETOF</literal> or the calling query does not fetch all the
result rows. Any extra rows produced by the <literal>RETURNING</literal>
clause are silently dropped, but the commanded table modifications
still happen (and are all completed before returning from the function).
</para>
</note>
<note>
<para>
Before <productname>PostgreSQL</productname> 10, putting more than one
set-returning function in the same select list did not behave very
sensibly unless they always produced equal numbers of rows. Otherwise,
what you got was a number of output rows equal to the least common
multiple of the numbers of rows produced by the set-returning
functions. Also, nested set-returning functions did not work as
described above; instead, a set-returning function could have at most
one set-returning argument, and each nest of set-returning functions
was run independently. Also, conditional execution (set-returning
functions inside <literal>CASE</literal> etc.) was previously allowed,
complicating things even more.
Use of the <literal>LATERAL</literal> syntax is recommended when writing
queries that need to work in older <productname>PostgreSQL</productname> versions,
because that will give consistent results across different versions.
If you have a query that is relying on conditional execution of a
set-returning function, you may be able to fix it by moving the
conditional test into a custom set-returning function. For example,
<programlisting>
SELECT x, CASE WHEN y > 0 THEN generate_series(1, z) ELSE 5 END FROM tab;
</programlisting>
could become
<programlisting>
CREATE FUNCTION case_generate_series(cond bool, start int, fin int, els int)
RETURNS SETOF int AS $$
BEGIN
IF cond THEN
RETURN QUERY SELECT generate_series(start, fin);
ELSE
RETURN QUERY SELECT els;
END IF;
END$$ LANGUAGE plpgsql;
SELECT x, case_generate_series(y > 0, 1, z, 5) FROM tab;
</programlisting>
This formulation will work the same in all versions
of <productname>PostgreSQL</productname>.
</para>
</note>
</sect2>
<sect2 id="xfunc-sql-functions-returning-table">
<title><acronym>SQL</acronym> Functions Returning <literal>TABLE</literal></title>
<indexterm>
<primary>function</primary>
<secondary>RETURNS TABLE</secondary>
</indexterm>
<para>
There is another way to declare a function as returning a set,
which is to use the syntax
<literal>RETURNS TABLE(<replaceable>columns</replaceable>)</literal>.
This is equivalent to using one or more <literal>OUT</literal> parameters plus
marking the function as returning <literal>SETOF record</literal> (or
<literal>SETOF</literal> a single output parameter's type, as appropriate).
This notation is specified in recent versions of the SQL standard, and
thus may be more portable than using <literal>SETOF</literal>.
</para>
<para>
For example, the preceding sum-and-product example could also be
done this way:
<programlisting>
CREATE FUNCTION sum_n_product_with_tab (x int)
RETURNS TABLE(sum int, product int) AS $$
SELECT $1 + tab.y, $1 * tab.y FROM tab;
$$ LANGUAGE SQL;
</programlisting>
It is not allowed to use explicit <literal>OUT</literal> or <literal>INOUT</literal>
parameters with the <literal>RETURNS TABLE</literal> notation — you must
put all the output columns in the <literal>TABLE</literal> list.
</para>
</sect2>
<sect2 id="xfunc-sql-polymorphic-functions">
<title>Polymorphic <acronym>SQL</acronym> Functions</title>
<para>
<acronym>SQL</acronym> functions can be declared to accept and
return the polymorphic types described in <xref
linkend="extend-types-polymorphic"/>. Here is a polymorphic
function <function>make_array</function> that builds up an array
from two arbitrary data type elements:
<screen>
CREATE FUNCTION make_array(anyelement, anyelement) RETURNS anyarray AS $$
SELECT ARRAY[$1, $2];
$$ LANGUAGE SQL;
SELECT make_array(1, 2) AS intarray, make_array('a'::text, 'b') AS textarray;
intarray | textarray
----------+-----------
{1,2} | {a,b}
(1 row)
</screen>
</para>
<para>
Notice the use of the typecast <literal>'a'::text</literal>
to specify that the argument is of type <type>text</type>. This is
required if the argument is just a string literal, since otherwise
it would be treated as type
<type>unknown</type>, and array of <type>unknown</type> is not a valid
type.
Without the typecast, you will get errors like this:
<screen>
ERROR: could not determine polymorphic type because input has type unknown
</screen>
</para>
<para>
With <function>make_array</function> declared as above, you must
provide two arguments that are of exactly the same data type; the
system will not attempt to resolve any type differences. Thus for
example this does not work:
<screen>
SELECT make_array(1, 2.5) AS numericarray;
ERROR: function make_array(integer, numeric) does not exist
</screen>
An alternative approach is to use the <quote>common</quote> family of
polymorphic types, which allows the system to try to identify a
suitable common type:
<screen>
CREATE FUNCTION make_array2(anycompatible, anycompatible)
RETURNS anycompatiblearray AS $$
SELECT ARRAY[$1, $2];
$$ LANGUAGE SQL;
SELECT make_array2(1, 2.5) AS numericarray;
numericarray
--------------
{1,2.5}
(1 row)
</screen>
Because the rules for common type resolution default to choosing
type <type>text</type> when all inputs are of unknown types, this
also works:
<screen>
SELECT make_array2('a', 'b') AS textarray;
textarray
-----------
{a,b}
(1 row)
</screen>
</para>
<para>
It is permitted to have polymorphic arguments with a fixed
return type, but the converse is not. For example:
<screen>
CREATE FUNCTION is_greater(anyelement, anyelement) RETURNS boolean AS $$
SELECT $1 > $2;
$$ LANGUAGE SQL;
SELECT is_greater(1, 2);
is_greater
------------
f
(1 row)
CREATE FUNCTION invalid_func() RETURNS anyelement AS $$
SELECT 1;
$$ LANGUAGE SQL;
ERROR: cannot determine result data type
DETAIL: A result of type anyelement requires at least one input of type anyelement, anyarray, anynonarray, anyenum, or anyrange.
</screen>
</para>
<para>
Polymorphism can be used with functions that have output arguments.
For example:
<screen>
CREATE FUNCTION dup (f1 anyelement, OUT f2 anyelement, OUT f3 anyarray)
AS 'select $1, array[$1,$1]' LANGUAGE SQL;
SELECT * FROM dup(22);
f2 | f3
----+---------
22 | {22,22}
(1 row)
</screen>
</para>
<para>
Polymorphism can also be used with variadic functions.
For example:
<screen>
CREATE FUNCTION anyleast (VARIADIC anyarray) RETURNS anyelement AS $$
SELECT min($1[i]) FROM generate_subscripts($1, 1) g(i);
$$ LANGUAGE SQL;
SELECT anyleast(10, -1, 5, 4);
anyleast
----------
-1
(1 row)
SELECT anyleast('abc'::text, 'def');
anyleast
----------
abc
(1 row)
CREATE FUNCTION concat_values(text, VARIADIC anyarray) RETURNS text AS $$
SELECT array_to_string($2, $1);
$$ LANGUAGE SQL;
SELECT concat_values('|', 1, 4, 2);
concat_values
---------------
1|4|2
(1 row)
</screen>
</para>
</sect2>
<sect2>
<title><acronym>SQL</acronym> Functions with Collations</title>
<indexterm>
<primary>collation</primary>
<secondary>in SQL functions</secondary>
</indexterm>
<para>
When an SQL function has one or more parameters of collatable data types,
a collation is identified for each function call depending on the
collations assigned to the actual arguments, as described in <xref
linkend="collation"/>. If a collation is successfully identified
(i.e., there are no conflicts of implicit collations among the arguments)
then all the collatable parameters are treated as having that collation
implicitly. This will affect the behavior of collation-sensitive
operations within the function. For example, using the
<function>anyleast</function> function described above, the result of
<programlisting>
SELECT anyleast('abc'::text, 'ABC');
</programlisting>
will depend on the database's default collation. In <literal>C</literal> locale
the result will be <literal>ABC</literal>, but in many other locales it will
be <literal>abc</literal>. The collation to use can be forced by adding
a <literal>COLLATE</literal> clause to any of the arguments, for example
<programlisting>
SELECT anyleast('abc'::text, 'ABC' COLLATE "C");
</programlisting>
Alternatively, if you wish a function to operate with a particular
collation regardless of what it is called with, insert
<literal>COLLATE</literal> clauses as needed in the function definition.
This version of <function>anyleast</function> would always use <literal>en_US</literal>
locale to compare strings:
<programlisting>
CREATE FUNCTION anyleast (VARIADIC anyarray) RETURNS anyelement AS $$
SELECT min($1[i] COLLATE "en_US") FROM generate_subscripts($1, 1) g(i);
$$ LANGUAGE SQL;
</programlisting>
But note that this will throw an error if applied to a non-collatable
data type.
</para>
<para>
If no common collation can be identified among the actual arguments,
then an SQL function treats its parameters as having their data types'
default collation (which is usually the database's default collation,
but could be different for parameters of domain types).
</para>
<para>
The behavior of collatable parameters can be thought of as a limited
form of polymorphism, applicable only to textual data types.
</para>
</sect2>
</sect1>
<sect1 id="xfunc-overload">
<title>Function Overloading</title>
<indexterm zone="xfunc-overload">
<primary>overloading</primary>
<secondary>functions</secondary>
</indexterm>
<para>
More than one function can be defined with the same SQL name, so long
as the arguments they take are different. In other words,
function names can be <firstterm>overloaded</firstterm>. Whether or not
you use it, this capability entails security precautions when calling
functions in databases where some users mistrust other users; see
<xref linkend="typeconv-func"/>. When a query is executed, the server
will determine which function to call from the data types and the number
of the provided arguments. Overloading can also be used to simulate
functions with a variable number of arguments, up to a finite maximum
number.
</para>
<para>
When creating a family of overloaded functions, one should be
careful not to create ambiguities. For instance, given the
functions:
<programlisting>
CREATE FUNCTION test(int, real) RETURNS ...
CREATE FUNCTION test(smallint, double precision) RETURNS ...
</programlisting>
it is not immediately clear which function would be called with
some trivial input like <literal>test(1, 1.5)</literal>. The
currently implemented resolution rules are described in
<xref linkend="typeconv"/>, but it is unwise to design a system that subtly
relies on this behavior.
</para>
<para>
A function that takes a single argument of a composite type should
generally not have the same name as any attribute (field) of that type.
Recall that <literal><replaceable>attribute</replaceable>(<replaceable>table</replaceable>)</literal>
is considered equivalent
to <literal><replaceable>table</replaceable>.<replaceable>attribute</replaceable></literal>.
In the case that there is an
ambiguity between a function on a composite type and an attribute of
the composite type, the attribute will always be used. It is possible
to override that choice by schema-qualifying the function name
(that is, <literal><replaceable>schema</replaceable>.<replaceable>func</replaceable>(<replaceable>table</replaceable>)
</literal>) but it's better to
avoid the problem by not choosing conflicting names.
</para>
<para>
Another possible conflict is between variadic and non-variadic functions.
For instance, it is possible to create both <literal>foo(numeric)</literal> and
<literal>foo(VARIADIC numeric[])</literal>. In this case it is unclear which one
should be matched to a call providing a single numeric argument, such as
<literal>foo(10.1)</literal>. The rule is that the function appearing
earlier in the search path is used, or if the two functions are in the
same schema, the non-variadic one is preferred.
</para>
<para>
When overloading C-language functions, there is an additional
constraint: The C name of each function in the family of
overloaded functions must be different from the C names of all
other functions, either internal or dynamically loaded. If this
rule is violated, the behavior is not portable. You might get a
run-time linker error, or one of the functions will get called
(usually the internal one). The alternative form of the
<literal>AS</literal> clause for the SQL <command>CREATE
FUNCTION</command> command decouples the SQL function name from
the function name in the C source code. For instance:
<programlisting>
CREATE FUNCTION test(int) RETURNS int
AS '<replaceable>filename</replaceable>', 'test_1arg'
LANGUAGE C;
CREATE FUNCTION test(int, int) RETURNS int
AS '<replaceable>filename</replaceable>', 'test_2arg'
LANGUAGE C;
</programlisting>
The names of the C functions here reflect one of many possible conventions.
</para>
</sect1>
<sect1 id="xfunc-volatility">
<title>Function Volatility Categories</title>
<indexterm zone="xfunc-volatility">
<primary>volatility</primary>
<secondary>functions</secondary>
</indexterm>
<indexterm zone="xfunc-volatility">
<primary>VOLATILE</primary>
</indexterm>
<indexterm zone="xfunc-volatility">
<primary>STABLE</primary>
</indexterm>
<indexterm zone="xfunc-volatility">
<primary>IMMUTABLE</primary>
</indexterm>
<para>
Every function has a <firstterm>volatility</firstterm> classification, with
the possibilities being <literal>VOLATILE</literal>, <literal>STABLE</literal>, or
<literal>IMMUTABLE</literal>. <literal>VOLATILE</literal> is the default if the
<link linkend="sql-createfunction"><command>CREATE FUNCTION</command></link>
command does not specify a category. The volatility category is a
promise to the optimizer about the behavior of the function:
<itemizedlist>
<listitem>
<para>
A <literal>VOLATILE</literal> function can do anything, including modifying
the database. It can return different results on successive calls with
the same arguments. The optimizer makes no assumptions about the
behavior of such functions. A query using a volatile function will
re-evaluate the function at every row where its value is needed.
</para>
</listitem>
<listitem>
<para>
A <literal>STABLE</literal> function cannot modify the database and is
guaranteed to return the same results given the same arguments
for all rows within a single statement. This category allows the
optimizer to optimize multiple calls of the function to a single
call. In particular, it is safe to use an expression containing
such a function in an index scan condition. (Since an index scan
will evaluate the comparison value only once, not once at each
row, it is not valid to use a <literal>VOLATILE</literal> function in an
index scan condition.)
</para>
</listitem>
<listitem>
<para>
An <literal>IMMUTABLE</literal> function cannot modify the database and is
guaranteed to return the same results given the same arguments forever.
This category allows the optimizer to pre-evaluate the function when
a query calls it with constant arguments. For example, a query like
<literal>SELECT ... WHERE x = 2 + 2</literal> can be simplified on sight to
<literal>SELECT ... WHERE x = 4</literal>, because the function underlying
the integer addition operator is marked <literal>IMMUTABLE</literal>.
</para>
</listitem>
</itemizedlist>
</para>
<para>
For best optimization results, you should label your functions with the
strictest volatility category that is valid for them.
</para>
<para>
Any function with side-effects <emphasis>must</emphasis> be labeled
<literal>VOLATILE</literal>, so that calls to it cannot be optimized away.
Even a function with no side-effects needs to be labeled
<literal>VOLATILE</literal> if its value can change within a single query;
some examples are <literal>random()</literal>, <literal>currval()</literal>,
<literal>timeofday()</literal>.
</para>
<para>
Another important example is that the <function>current_timestamp</function>
family of functions qualify as <literal>STABLE</literal>, since their values do
not change within a transaction.
</para>
<para>
There is relatively little difference between <literal>STABLE</literal> and
<literal>IMMUTABLE</literal> categories when considering simple interactive
queries that are planned and immediately executed: it doesn't matter
a lot whether a function is executed once during planning or once during
query execution startup. But there is a big difference if the plan is
saved and reused later. Labeling a function <literal>IMMUTABLE</literal> when
it really isn't might allow it to be prematurely folded to a constant during
planning, resulting in a stale value being re-used during subsequent uses
of the plan. This is a hazard when using prepared statements or when
using function languages that cache plans (such as
<application>PL/pgSQL</application>).
</para>
<para>
For functions written in SQL or in any of the standard procedural
languages, there is a second important property determined by the
volatility category, namely the visibility of any data changes that have
been made by the SQL command that is calling the function. A
<literal>VOLATILE</literal> function will see such changes, a <literal>STABLE</literal>
or <literal>IMMUTABLE</literal> function will not. This behavior is implemented
using the snapshotting behavior of MVCC (see <xref linkend="mvcc"/>):
<literal>STABLE</literal> and <literal>IMMUTABLE</literal> functions use a snapshot
established as of the start of the calling query, whereas
<literal>VOLATILE</literal> functions obtain a fresh snapshot at the start of
each query they execute.
</para>
<note>
<para>
Functions written in C can manage snapshots however they want, but it's
usually a good idea to make C functions work this way too.
</para>
</note>
<para>
Because of this snapshotting behavior,
a function containing only <command>SELECT</command> commands can safely be
marked <literal>STABLE</literal>, even if it selects from tables that might be
undergoing modifications by concurrent queries.
<productname>PostgreSQL</productname> will execute all commands of a
<literal>STABLE</literal> function using the snapshot established for the
calling query, and so it will see a fixed view of the database throughout
that query.
</para>
<para>
The same snapshotting behavior is used for <command>SELECT</command> commands
within <literal>IMMUTABLE</literal> functions. It is generally unwise to select
from database tables within an <literal>IMMUTABLE</literal> function at all,
since the immutability will be broken if the table contents ever change.
However, <productname>PostgreSQL</productname> does not enforce that you
do not do that.
</para>
<para>
A common error is to label a function <literal>IMMUTABLE</literal> when its
results depend on a configuration parameter. For example, a function
that manipulates timestamps might well have results that depend on the
<xref linkend="guc-timezone"/> setting. For safety, such functions should
be labeled <literal>STABLE</literal> instead.
</para>
<note>
<para>
<productname>PostgreSQL</productname> requires that <literal>STABLE</literal>
and <literal>IMMUTABLE</literal> functions contain no SQL commands other
than <command>SELECT</command> to prevent data modification.
(This is not a completely bulletproof test, since such functions could
still call <literal>VOLATILE</literal> functions that modify the database.
If you do that, you will find that the <literal>STABLE</literal> or
<literal>IMMUTABLE</literal> function does not notice the database changes
applied by the called function, since they are hidden from its snapshot.)
</para>
</note>
</sect1>
<sect1 id="xfunc-pl">
<title>Procedural Language Functions</title>
<para>
<productname>PostgreSQL</productname> allows user-defined functions
to be written in other languages besides SQL and C. These other
languages are generically called <firstterm>procedural
languages</firstterm> (<acronym>PL</acronym>s).
Procedural languages aren't built into the
<productname>PostgreSQL</productname> server; they are offered
by loadable modules.
See <xref linkend="xplang"/> and following chapters for more
information.
</para>
</sect1>
<sect1 id="xfunc-internal">
<title>Internal Functions</title>
<indexterm zone="xfunc-internal"><primary>function</primary><secondary>internal</secondary></indexterm>
<para>
Internal functions are functions written in C that have been statically
linked into the <productname>PostgreSQL</productname> server.
The <quote>body</quote> of the function definition
specifies the C-language name of the function, which need not be the
same as the name being declared for SQL use.
(For reasons of backward compatibility, an empty body
is accepted as meaning that the C-language function name is the
same as the SQL name.)
</para>
<para>
Normally, all internal functions present in the
server are declared during the initialization of the database cluster
(see <xref linkend="creating-cluster"/>),
but a user could use <command>CREATE FUNCTION</command>
to create additional alias names for an internal function.
Internal functions are declared in <command>CREATE FUNCTION</command>
with language name <literal>internal</literal>. For instance, to
create an alias for the <function>sqrt</function> function:
<programlisting>
CREATE FUNCTION square_root(double precision) RETURNS double precision
AS 'dsqrt'
LANGUAGE internal
STRICT;
</programlisting>
(Most internal functions expect to be declared <quote>strict</quote>.)
</para>
<note>
<para>
Not all <quote>predefined</quote> functions are
<quote>internal</quote> in the above sense. Some predefined
functions are written in SQL.
</para>
</note>
</sect1>
<sect1 id="xfunc-c">
<title>C-Language Functions</title>
<indexterm zone="xfunc-c">
<primary>function</primary>
<secondary>user-defined</secondary>
<tertiary>in C</tertiary>
</indexterm>
<para>
User-defined functions can be written in C (or a language that can
be made compatible with C, such as C++). Such functions are
compiled into dynamically loadable objects (also called shared
libraries) and are loaded by the server on demand. The dynamic
loading feature is what distinguishes <quote>C language</quote> functions
from <quote>internal</quote> functions — the actual coding conventions
are essentially the same for both. (Hence, the standard internal
function library is a rich source of coding examples for user-defined
C functions.)
</para>
<para>
Currently only one calling convention is used for C functions
(<quote>version 1</quote>). Support for that calling convention is
indicated by writing a <literal>PG_FUNCTION_INFO_V1()</literal> macro
call for the function, as illustrated below.
</para>
<sect2 id="xfunc-c-dynload">
<title>Dynamic Loading</title>
<indexterm zone="xfunc-c-dynload">
<primary>dynamic loading</primary>
</indexterm>
<para>
The first time a user-defined function in a particular
loadable object file is called in a session,
the dynamic loader loads that object file into memory so that the
function can be called. The <command>CREATE FUNCTION</command>
for a user-defined C function must therefore specify two pieces of
information for the function: the name of the loadable
object file, and the C name (link symbol) of the specific function to call
within that object file. If the C name is not explicitly specified then
it is assumed to be the same as the SQL function name.
</para>
<para>
The following algorithm is used to locate the shared object file
based on the name given in the <command>CREATE FUNCTION</command>
command:
<orderedlist>
<listitem>
<para>
If the name is an absolute path, the given file is loaded.
</para>
</listitem>
<listitem>
<para>
If the name starts with the string <literal>$libdir</literal>,
that part is replaced by the <productname>PostgreSQL</productname> package
library directory
name, which is determined at build time.<indexterm><primary>$libdir</primary></indexterm>
</para>
</listitem>
<listitem>
<para>
If the name does not contain a directory part, the file is
searched for in the path specified by the configuration variable
<xref linkend="guc-dynamic-library-path"/>.<indexterm><primary>dynamic_library_path</primary></indexterm>
</para>
</listitem>
<listitem>
<para>
Otherwise (the file was not found in the path, or it contains a
non-absolute directory part), the dynamic loader will try to
take the name as given, which will most likely fail. (It is
unreliable to depend on the current working directory.)
</para>
</listitem>
</orderedlist>
If this sequence does not work, the platform-specific shared
library file name extension (often <filename>.so</filename>) is
appended to the given name and this sequence is tried again. If
that fails as well, the load will fail.
</para>
<para>
It is recommended to locate shared libraries either relative to
<literal>$libdir</literal> or through the dynamic library path.
This simplifies version upgrades if the new installation is at a
different location. The actual directory that
<literal>$libdir</literal> stands for can be found out with the
command <literal>pg_config --pkglibdir</literal>.
</para>
<para>
The user ID the <productname>PostgreSQL</productname> server runs
as must be able to traverse the path to the file you intend to
load. Making the file or a higher-level directory not readable
and/or not executable by the <systemitem>postgres</systemitem>
user is a common mistake.
</para>
<para>
In any case, the file name that is given in the
<command>CREATE FUNCTION</command> command is recorded literally
in the system catalogs, so if the file needs to be loaded again
the same procedure is applied.
</para>
<note>
<para>
<productname>PostgreSQL</productname> will not compile a C function
automatically. The object file must be compiled before it is referenced
in a <command>CREATE
FUNCTION</command> command. See <xref linkend="dfunc"/> for additional
information.
</para>
</note>
<indexterm zone="xfunc-c-dynload">
<primary>magic block</primary>
</indexterm>
<para>
To ensure that a dynamically loaded object file is not loaded into an
incompatible server, <productname>PostgreSQL</productname> checks that the
file contains a <quote>magic block</quote> with the appropriate contents.
This allows the server to detect obvious incompatibilities, such as code
compiled for a different major version of
<productname>PostgreSQL</productname>. To include a magic block,
write this in one (and only one) of the module source files, after having
included the header <filename>fmgr.h</filename>:
<programlisting>
PG_MODULE_MAGIC;
</programlisting>
</para>
<para>
After it is used for the first time, a dynamically loaded object
file is retained in memory. Future calls in the same session to
the function(s) in that file will only incur the small overhead of
a symbol table lookup. If you need to force a reload of an object
file, for example after recompiling it, begin a fresh session.
</para>
<indexterm zone="xfunc-c-dynload">
<primary>_PG_init</primary>
</indexterm>
<indexterm zone="xfunc-c-dynload">
<primary>library initialization function</primary>
</indexterm>
<para>
Optionally, a dynamically loaded file can contain an initialization
function. If the file includes a function named
<function>_PG_init</function>, that function will be called immediately after
loading the file. The function receives no parameters and should
return void. There is presently no way to unload a dynamically loaded file.
</para>
</sect2>
<sect2 id="xfunc-c-basetype">
<title>Base Types in C-Language Functions</title>
<indexterm zone="xfunc-c-basetype">
<primary>data type</primary>
<secondary>internal organization</secondary>
</indexterm>
<para>
To know how to write C-language functions, you need to know how
<productname>PostgreSQL</productname> internally represents base
data types and how they can be passed to and from functions.
Internally, <productname>PostgreSQL</productname> regards a base
type as a <quote>blob of memory</quote>. The user-defined
functions that you define over a type in turn define the way that
<productname>PostgreSQL</productname> can operate on it. That
is, <productname>PostgreSQL</productname> will only store and
retrieve the data from disk and use your user-defined functions
to input, process, and output the data.
</para>
<para>
Base types can have one of three internal formats:
<itemizedlist>
<listitem>
<para>
pass by value, fixed-length
</para>
</listitem>
<listitem>
<para>
pass by reference, fixed-length
</para>
</listitem>
<listitem>
<para>
pass by reference, variable-length
</para>
</listitem>
</itemizedlist>
</para>
<para>
By-value types can only be 1, 2, or 4 bytes in length
(also 8 bytes, if <literal>sizeof(Datum)</literal> is 8 on your machine).
You should be careful to define your types such that they will be the
same size (in bytes) on all architectures. For example, the
<literal>long</literal> type is dangerous because it is 4 bytes on some
machines and 8 bytes on others, whereas <type>int</type> type is 4 bytes
on most Unix machines. A reasonable implementation of the
<type>int4</type> type on Unix machines might be:
<programlisting>
/* 4-byte integer, passed by value */
typedef int int4;
</programlisting>
(The actual PostgreSQL C code calls this type <type>int32</type>, because
it is a convention in C that <type>int<replaceable>XX</replaceable></type>
means <replaceable>XX</replaceable> <emphasis>bits</emphasis>. Note
therefore also that the C type <type>int8</type> is 1 byte in size. The
SQL type <type>int8</type> is called <type>int64</type> in C. See also
<xref linkend="xfunc-c-type-table"/>.)
</para>
<para>
On the other hand, fixed-length types of any size can
be passed by-reference. For example, here is a sample
implementation of a <productname>PostgreSQL</productname> type:
<programlisting>
/* 16-byte structure, passed by reference */
typedef struct
{
double x, y;
} Point;
</programlisting>
Only pointers to such types can be used when passing
them in and out of <productname>PostgreSQL</productname> functions.
To return a value of such a type, allocate the right amount of
memory with <literal>palloc</literal>, fill in the allocated memory,
and return a pointer to it. (Also, if you just want to return the
same value as one of your input arguments that's of the same data type,
you can skip the extra <literal>palloc</literal> and just return the
pointer to the input value.)
</para>
<para>
Finally, all variable-length types must also be passed
by reference. All variable-length types must begin
with an opaque length field of exactly 4 bytes, which will be set
by <symbol>SET_VARSIZE</symbol>; never set this field directly! All data to
be stored within that type must be located in the memory
immediately following that length field. The
length field contains the total length of the structure,
that is, it includes the size of the length field
itself.
</para>
<para>
Another important point is to avoid leaving any uninitialized bits
within data type values; for example, take care to zero out any
alignment padding bytes that might be present in structs. Without
this, logically-equivalent constants of your data type might be
seen as unequal by the planner, leading to inefficient (though not
incorrect) plans.
</para>
<warning>
<para>
<emphasis>Never</emphasis> modify the contents of a pass-by-reference input
value. If you do so you are likely to corrupt on-disk data, since
the pointer you are given might point directly into a disk buffer.
The sole exception to this rule is explained in
<xref linkend="xaggr"/>.
</para>
</warning>
<para>
As an example, we can define the type <type>text</type> as
follows:
<programlisting>
typedef struct {
int32 length;
char data[FLEXIBLE_ARRAY_MEMBER];
} text;
</programlisting>
The <literal>[FLEXIBLE_ARRAY_MEMBER]</literal> notation means that the actual
length of the data part is not specified by this declaration.
</para>
<para>
When manipulating
variable-length types, we must be careful to allocate
the correct amount of memory and set the length field correctly.
For example, if we wanted to store 40 bytes in a <structname>text</structname>
structure, we might use a code fragment like this:
<programlisting><![CDATA[
#include "postgres.h"
...
char buffer[40]; /* our source data */
...
text *destination = (text *) palloc(VARHDRSZ + 40);
SET_VARSIZE(destination, VARHDRSZ + 40);
memcpy(destination->data, buffer, 40);
...
]]>
</programlisting>
<literal>VARHDRSZ</literal> is the same as <literal>sizeof(int32)</literal>, but
it's considered good style to use the macro <literal>VARHDRSZ</literal>
to refer to the size of the overhead for a variable-length type.
Also, the length field <emphasis>must</emphasis> be set using the
<literal>SET_VARSIZE</literal> macro, not by simple assignment.
</para>
<para>
<xref linkend="xfunc-c-type-table"/> shows the C types
corresponding to many of the built-in SQL data types
of <productname>PostgreSQL</productname>.
The <quote>Defined In</quote> column gives the header file that
needs to be included to get the type definition. (The actual
definition might be in a different file that is included by the
listed file. It is recommended that users stick to the defined
interface.) Note that you should always include
<filename>postgres.h</filename> first in any source file of server
code, because it declares a number of things that you will need
anyway, and because including other headers first can cause
portability issues.
</para>
<table tocentry="1" id="xfunc-c-type-table">
<title>Equivalent C Types for Built-in SQL Types</title>
<tgroup cols="3">
<colspec colname="col1" colwidth="1*"/>
<colspec colname="col2" colwidth="1*"/>
<colspec colname="col3" colwidth="2*"/>
<thead>
<row>
<entry>
SQL Type
</entry>
<entry>
C Type
</entry>
<entry>
Defined In
</entry>
</row>
</thead>
<tbody>
<row>
<entry><type>boolean</type></entry>
<entry><type>bool</type></entry>
<entry><filename>postgres.h</filename> (maybe compiler built-in)</entry>
</row>
<row>
<entry><type>box</type></entry>
<entry><type>BOX*</type></entry>
<entry><filename>utils/geo_decls.h</filename></entry>
</row>
<row>
<entry><type>bytea</type></entry>
<entry><type>bytea*</type></entry>
<entry><filename>postgres.h</filename></entry>
</row>
<row>
<entry><type>"char"</type></entry>
<entry><type>char</type></entry>
<entry>(compiler built-in)</entry>
</row>
<row>
<entry><type>character</type></entry>
<entry><type>BpChar*</type></entry>
<entry><filename>postgres.h</filename></entry>
</row>
<row>
<entry><type>cid</type></entry>
<entry><type>CommandId</type></entry>
<entry><filename>postgres.h</filename></entry>
</row>
<row>
<entry><type>date</type></entry>
<entry><type>DateADT</type></entry>
<entry><filename>utils/date.h</filename></entry>
</row>
<row>
<entry><type>float4</type> (<type>real</type>)</entry>
<entry><type>float4</type></entry>
<entry><filename>postgres.h</filename></entry>
</row>
<row>
<entry><type>float8</type> (<type>double precision</type>)</entry>
<entry><type>float8</type></entry>
<entry><filename>postgres.h</filename></entry>
</row>
<row>
<entry><type>int2</type> (<type>smallint</type>)</entry>
<entry><type>int16</type></entry>
<entry><filename>postgres.h</filename></entry>
</row>
<row>
<entry><type>int4</type> (<type>integer</type>)</entry>
<entry><type>int32</type></entry>
<entry><filename>postgres.h</filename></entry>
</row>
<row>
<entry><type>int8</type> (<type>bigint</type>)</entry>
<entry><type>int64</type></entry>
<entry><filename>postgres.h</filename></entry>
</row>
<row>
<entry><type>interval</type></entry>
<entry><type>Interval*</type></entry>
<entry><filename>datatype/timestamp.h</filename></entry>
</row>
<row>
<entry><type>lseg</type></entry>
<entry><type>LSEG*</type></entry>
<entry><filename>utils/geo_decls.h</filename></entry>
</row>
<row>
<entry><type>name</type></entry>
<entry><type>Name</type></entry>
<entry><filename>postgres.h</filename></entry>
</row>
<row>
<entry><type>numeric</type></entry>
<entry><type>Numeric</type></entry>
<entry><filename>utils/numeric.h</filename></entry>
</row>
<row>
<entry><type>oid</type></entry>
<entry><type>Oid</type></entry>
<entry><filename>postgres.h</filename></entry>
</row>
<row>
<entry><type>oidvector</type></entry>
<entry><type>oidvector*</type></entry>
<entry><filename>postgres.h</filename></entry>
</row>
<row>
<entry><type>path</type></entry>
<entry><type>PATH*</type></entry>
<entry><filename>utils/geo_decls.h</filename></entry>
</row>
<row>
<entry><type>point</type></entry>
<entry><type>POINT*</type></entry>
<entry><filename>utils/geo_decls.h</filename></entry>
</row>
<row>
<entry><type>regproc</type></entry>
<entry><type>RegProcedure</type></entry>
<entry><filename>postgres.h</filename></entry>
</row>
<row>
<entry><type>text</type></entry>
<entry><type>text*</type></entry>
<entry><filename>postgres.h</filename></entry>
</row>
<row>
<entry><type>tid</type></entry>
<entry><type>ItemPointer</type></entry>
<entry><filename>storage/itemptr.h</filename></entry>
</row>
<row>
<entry><type>time</type></entry>
<entry><type>TimeADT</type></entry>
<entry><filename>utils/date.h</filename></entry>
</row>
<row>
<entry><type>time with time zone</type></entry>
<entry><type>TimeTzADT</type></entry>
<entry><filename>utils/date.h</filename></entry>
</row>
<row>
<entry><type>timestamp</type></entry>
<entry><type>Timestamp</type></entry>
<entry><filename>datatype/timestamp.h</filename></entry>
</row>
<row>
<entry><type>timestamp with time zone</type></entry>
<entry><type>TimestampTz</type></entry>
<entry><filename>datatype/timestamp.h</filename></entry>
</row>
<row>
<entry><type>varchar</type></entry>
<entry><type>VarChar*</type></entry>
<entry><filename>postgres.h</filename></entry>
</row>
<row>
<entry><type>xid</type></entry>
<entry><type>TransactionId</type></entry>
<entry><filename>postgres.h</filename></entry>
</row>
</tbody>
</tgroup>
</table>
<para>
Now that we've gone over all of the possible structures
for base types, we can show some examples of real functions.
</para>
</sect2>
<sect2>
<title>Version 1 Calling Conventions</title>
<para>
The version-1 calling convention relies on macros to suppress most
of the complexity of passing arguments and results. The C declaration
of a version-1 function is always:
<programlisting>
Datum funcname(PG_FUNCTION_ARGS)
</programlisting>
In addition, the macro call:
<programlisting>
PG_FUNCTION_INFO_V1(funcname);
</programlisting>
must appear in the same source file. (Conventionally, it's
written just before the function itself.) This macro call is not
needed for <literal>internal</literal>-language functions, since
<productname>PostgreSQL</productname> assumes that all internal functions
use the version-1 convention. It is, however, required for
dynamically-loaded functions.
</para>
<para>
In a version-1 function, each actual argument is fetched using a
<function>PG_GETARG_<replaceable>xxx</replaceable>()</function>
macro that corresponds to the argument's data type. (In non-strict
functions there needs to be a previous check about argument null-ness
using <function>PG_ARGISNULL()</function>; see below.)
The result is returned using a
<function>PG_RETURN_<replaceable>xxx</replaceable>()</function>
macro for the return type.
<function>PG_GETARG_<replaceable>xxx</replaceable>()</function>
takes as its argument the number of the function argument to
fetch, where the count starts at 0.
<function>PG_RETURN_<replaceable>xxx</replaceable>()</function>
takes as its argument the actual value to return.
</para>
<para>
Here are some examples using the version-1 calling convention:
</para>
<programlisting><![CDATA[
#include "postgres.h"
#include <string.h>
#include "fmgr.h"
#include "utils/geo_decls.h"
PG_MODULE_MAGIC;
/* by value */
PG_FUNCTION_INFO_V1(add_one);
Datum
add_one(PG_FUNCTION_ARGS)
{
int32 arg = PG_GETARG_INT32(0);
PG_RETURN_INT32(arg + 1);
}
/* by reference, fixed length */
PG_FUNCTION_INFO_V1(add_one_float8);
Datum
add_one_float8(PG_FUNCTION_ARGS)
{
/* The macros for FLOAT8 hide its pass-by-reference nature. */
float8 arg = PG_GETARG_FLOAT8(0);
PG_RETURN_FLOAT8(arg + 1.0);
}
PG_FUNCTION_INFO_V1(makepoint);
Datum
makepoint(PG_FUNCTION_ARGS)
{
/* Here, the pass-by-reference nature of Point is not hidden. */
Point *pointx = PG_GETARG_POINT_P(0);
Point *pointy = PG_GETARG_POINT_P(1);
Point *new_point = (Point *) palloc(sizeof(Point));
new_point->x = pointx->x;
new_point->y = pointy->y;
PG_RETURN_POINT_P(new_point);
}
/* by reference, variable length */
PG_FUNCTION_INFO_V1(copytext);
Datum
copytext(PG_FUNCTION_ARGS)
{
text *t = PG_GETARG_TEXT_PP(0);
/*
* VARSIZE_ANY_EXHDR is the size of the struct in bytes, minus the
* VARHDRSZ or VARHDRSZ_SHORT of its header. Construct the copy with a
* full-length header.
*/
text *new_t = (text *) palloc(VARSIZE_ANY_EXHDR(t) + VARHDRSZ);
SET_VARSIZE(new_t, VARSIZE_ANY_EXHDR(t) + VARHDRSZ);
/*
* VARDATA is a pointer to the data region of the new struct. The source
* could be a short datum, so retrieve its data through VARDATA_ANY.
*/
memcpy((void *) VARDATA(new_t), /* destination */
(void *) VARDATA_ANY(t), /* source */
VARSIZE_ANY_EXHDR(t)); /* how many bytes */
PG_RETURN_TEXT_P(new_t);
}
PG_FUNCTION_INFO_V1(concat_text);
Datum
concat_text(PG_FUNCTION_ARGS)
{
text *arg1 = PG_GETARG_TEXT_PP(0);
text *arg2 = PG_GETARG_TEXT_PP(1);
int32 arg1_size = VARSIZE_ANY_EXHDR(arg1);
int32 arg2_size = VARSIZE_ANY_EXHDR(arg2);
int32 new_text_size = arg1_size + arg2_size + VARHDRSZ;
text *new_text = (text *) palloc(new_text_size);
SET_VARSIZE(new_text, new_text_size);
memcpy(VARDATA(new_text), VARDATA_ANY(arg1), arg1_size);
memcpy(VARDATA(new_text) + arg1_size, VARDATA_ANY(arg2), arg2_size);
PG_RETURN_TEXT_P(new_text);
}
]]>
</programlisting>
<para>
Supposing that the above code has been prepared in file
<filename>funcs.c</filename> and compiled into a shared object,
we could define the functions to <productname>PostgreSQL</productname>
with commands like this:
</para>
<programlisting>
CREATE FUNCTION add_one(integer) RETURNS integer
AS '<replaceable>DIRECTORY</replaceable>/funcs', 'add_one'
LANGUAGE C STRICT;
-- note overloading of SQL function name "add_one"
CREATE FUNCTION add_one(double precision) RETURNS double precision
AS '<replaceable>DIRECTORY</replaceable>/funcs', 'add_one_float8'
LANGUAGE C STRICT;
CREATE FUNCTION makepoint(point, point) RETURNS point
AS '<replaceable>DIRECTORY</replaceable>/funcs', 'makepoint'
LANGUAGE C STRICT;
CREATE FUNCTION copytext(text) RETURNS text
AS '<replaceable>DIRECTORY</replaceable>/funcs', 'copytext'
LANGUAGE C STRICT;
CREATE FUNCTION concat_text(text, text) RETURNS text
AS '<replaceable>DIRECTORY</replaceable>/funcs', 'concat_text'
LANGUAGE C STRICT;
</programlisting>
<para>
Here, <replaceable>DIRECTORY</replaceable> stands for the
directory of the shared library file (for instance the
<productname>PostgreSQL</productname> tutorial directory, which
contains the code for the examples used in this section).
(Better style would be to use just <literal>'funcs'</literal> in the
<literal>AS</literal> clause, after having added
<replaceable>DIRECTORY</replaceable> to the search path. In any
case, we can omit the system-specific extension for a shared
library, commonly <literal>.so</literal>.)
</para>
<para>
Notice that we have specified the functions as <quote>strict</quote>,
meaning that
the system should automatically assume a null result if any input
value is null. By doing this, we avoid having to check for null inputs
in the function code. Without this, we'd have to check for null values
explicitly, using <function>PG_ARGISNULL()</function>.
</para>
<para>
The macro <function>PG_ARGISNULL(<replaceable>n</replaceable>)</function>
allows a function to test whether each input is null. (Of course, doing
this is only necessary in functions not declared <quote>strict</quote>.)
As with the
<function>PG_GETARG_<replaceable>xxx</replaceable>()</function> macros,
the input arguments are counted beginning at zero. Note that one
should refrain from executing
<function>PG_GETARG_<replaceable>xxx</replaceable>()</function> until
one has verified that the argument isn't null.
To return a null result, execute <function>PG_RETURN_NULL()</function>;
this works in both strict and nonstrict functions.
</para>
<para>
At first glance, the version-1 coding conventions might appear
to be just pointless obscurantism, compared to using
plain <literal>C</literal> calling conventions. They do however allow
us to deal with <literal>NULL</literal>able arguments/return values,
and <quote>toasted</quote> (compressed or out-of-line) values.
</para>
<para>
Other options provided by the version-1 interface are two
variants of the
<function>PG_GETARG_<replaceable>xxx</replaceable>()</function>
macros. The first of these,
<function>PG_GETARG_<replaceable>xxx</replaceable>_COPY()</function>,
guarantees to return a copy of the specified argument that is
safe for writing into. (The normal macros will sometimes return a
pointer to a value that is physically stored in a table, which
must not be written to. Using the
<function>PG_GETARG_<replaceable>xxx</replaceable>_COPY()</function>
macros guarantees a writable result.)
The second variant consists of the
<function>PG_GETARG_<replaceable>xxx</replaceable>_SLICE()</function>
macros which take three arguments. The first is the number of the
function argument (as above). The second and third are the offset and
length of the segment to be returned. Offsets are counted from
zero, and a negative length requests that the remainder of the
value be returned. These macros provide more efficient access to
parts of large values in the case where they have storage type
<quote>external</quote>. (The storage type of a column can be specified using
<literal>ALTER TABLE <replaceable>tablename</replaceable> ALTER
COLUMN <replaceable>colname</replaceable> SET STORAGE
<replaceable>storagetype</replaceable></literal>. <replaceable>storagetype</replaceable> is one of
<literal>plain</literal>, <literal>external</literal>, <literal>extended</literal>,
or <literal>main</literal>.)
</para>
<para>
Finally, the version-1 function call conventions make it possible
to return set results (<xref linkend="xfunc-c-return-set"/>) and
implement trigger functions (<xref linkend="triggers"/>) and
procedural-language call handlers (<xref
linkend="plhandler"/>). For more details
see <filename>src/backend/utils/fmgr/README</filename> in the
source distribution.
</para>
</sect2>
<sect2>
<title>Writing Code</title>
<para>
Before we turn to the more advanced topics, we should discuss
some coding rules for <productname>PostgreSQL</productname>
C-language functions. While it might be possible to load functions
written in languages other than C into
<productname>PostgreSQL</productname>, this is usually difficult
(when it is possible at all) because other languages, such as
C++, FORTRAN, or Pascal often do not follow the same calling
convention as C. That is, other languages do not pass argument
and return values between functions in the same way. For this
reason, we will assume that your C-language functions are
actually written in C.
</para>
<para>
The basic rules for writing and building C functions are as follows:
<itemizedlist>
<listitem>
<para>
Use <literal>pg_config
--includedir-server</literal><indexterm><primary>pg_config</primary><secondary>with user-defined C functions</secondary></indexterm>
to find out where the <productname>PostgreSQL</productname> server header
files are installed on your system (or the system that your
users will be running on).
</para>
</listitem>
<listitem>
<para>
Compiling and linking your code so that it can be dynamically
loaded into <productname>PostgreSQL</productname> always
requires special flags. See <xref linkend="dfunc"/> for a
detailed explanation of how to do it for your particular
operating system.
</para>
</listitem>
<listitem>
<para>
Remember to define a <quote>magic block</quote> for your shared library,
as described in <xref linkend="xfunc-c-dynload"/>.
</para>
</listitem>
<listitem>
<para>
When allocating memory, use the
<productname>PostgreSQL</productname> functions
<function>palloc</function><indexterm><primary>palloc</primary></indexterm> and <function>pfree</function><indexterm><primary>pfree</primary></indexterm>
instead of the corresponding C library functions
<function>malloc</function> and <function>free</function>.
The memory allocated by <function>palloc</function> will be
freed automatically at the end of each transaction, preventing
memory leaks.
</para>
</listitem>
<listitem>
<para>
Always zero the bytes of your structures using <function>memset</function>
(or allocate them with <function>palloc0</function> in the first place).
Even if you assign to each field of your structure, there might be
alignment padding (holes in the structure) that contain
garbage values. Without this, it's difficult to
support hash indexes or hash joins, as you must pick out only
the significant bits of your data structure to compute a hash.
The planner also sometimes relies on comparing constants via
bitwise equality, so you can get undesirable planning results if
logically-equivalent values aren't bitwise equal.
</para>
</listitem>
<listitem>
<para>
Most of the internal <productname>PostgreSQL</productname>
types are declared in <filename>postgres.h</filename>, while
the function manager interfaces
(<symbol>PG_FUNCTION_ARGS</symbol>, etc.) are in
<filename>fmgr.h</filename>, so you will need to include at
least these two files. For portability reasons it's best to
include <filename>postgres.h</filename> <emphasis>first</emphasis>,
before any other system or user header files. Including
<filename>postgres.h</filename> will also include
<filename>elog.h</filename> and <filename>palloc.h</filename>
for you.
</para>
</listitem>
<listitem>
<para>
Symbol names defined within object files must not conflict
with each other or with symbols defined in the
<productname>PostgreSQL</productname> server executable. You
will have to rename your functions or variables if you get
error messages to this effect.
</para>
</listitem>
</itemizedlist>
</para>
</sect2>
&dfunc;
<sect2>
<title>Composite-Type Arguments</title>
<para>
Composite types do not have a fixed layout like C structures.
Instances of a composite type can contain null fields. In
addition, composite types that are part of an inheritance
hierarchy can have different fields than other members of the
same inheritance hierarchy. Therefore,
<productname>PostgreSQL</productname> provides a function
interface for accessing fields of composite types from C.
</para>
<para>
Suppose we want to write a function to answer the query:
<programlisting>
SELECT name, c_overpaid(emp, 1500) AS overpaid
FROM emp
WHERE name = 'Bill' OR name = 'Sam';
</programlisting>
Using the version-1 calling conventions, we can define
<function>c_overpaid</function> as:
<programlisting><![CDATA[
#include "postgres.h"
#include "executor/executor.h" /* for GetAttributeByName() */
PG_MODULE_MAGIC;
PG_FUNCTION_INFO_V1(c_overpaid);
Datum
c_overpaid(PG_FUNCTION_ARGS)
{
HeapTupleHeader t = PG_GETARG_HEAPTUPLEHEADER(0);
int32 limit = PG_GETARG_INT32(1);
bool isnull;
Datum salary;
salary = GetAttributeByName(t, "salary", &isnull);
if (isnull)
PG_RETURN_BOOL(false);
/* Alternatively, we might prefer to do PG_RETURN_NULL() for null salary. */
PG_RETURN_BOOL(DatumGetInt32(salary) > limit);
}
]]>
</programlisting>
</para>
<para>
<function>GetAttributeByName</function> is the
<productname>PostgreSQL</productname> system function that
returns attributes out of the specified row. It has
three arguments: the argument of type <type>HeapTupleHeader</type> passed
into
the function, the name of the desired attribute, and a
return parameter that tells whether the attribute
is null. <function>GetAttributeByName</function> returns a <type>Datum</type>
value that you can convert to the proper data type by using the
appropriate <function>DatumGet<replaceable>XXX</replaceable>()</function>
macro. Note that the return value is meaningless if the null flag is
set; always check the null flag before trying to do anything with the
result.
</para>
<para>
There is also <function>GetAttributeByNum</function>, which selects
the target attribute by column number instead of name.
</para>
<para>
The following command declares the function
<function>c_overpaid</function> in SQL:
<programlisting>
CREATE FUNCTION c_overpaid(emp, integer) RETURNS boolean
AS '<replaceable>DIRECTORY</replaceable>/funcs', 'c_overpaid'
LANGUAGE C STRICT;
</programlisting>
Notice we have used <literal>STRICT</literal> so that we did not have to
check whether the input arguments were NULL.
</para>
</sect2>
<sect2>
<title>Returning Rows (Composite Types)</title>
<para>
To return a row or composite-type value from a C-language
function, you can use a special API that provides macros and
functions to hide most of the complexity of building composite
data types. To use this API, the source file must include:
<programlisting>
#include "funcapi.h"
</programlisting>
</para>
<para>
There are two ways you can build a composite data value (henceforth
a <quote>tuple</quote>): you can build it from an array of Datum values,
or from an array of C strings that can be passed to the input
conversion functions of the tuple's column data types. In either
case, you first need to obtain or construct a <structname>TupleDesc</structname>
descriptor for the tuple structure. When working with Datums, you
pass the <structname>TupleDesc</structname> to <function>BlessTupleDesc</function>,
and then call <function>heap_form_tuple</function> for each row. When working
with C strings, you pass the <structname>TupleDesc</structname> to
<function>TupleDescGetAttInMetadata</function>, and then call
<function>BuildTupleFromCStrings</function> for each row. In the case of a
function returning a set of tuples, the setup steps can all be done
once during the first call of the function.
</para>
<para>
Several helper functions are available for setting up the needed
<structname>TupleDesc</structname>. The recommended way to do this in most
functions returning composite values is to call:
<programlisting>
TypeFuncClass get_call_result_type(FunctionCallInfo fcinfo,
Oid *resultTypeId,
TupleDesc *resultTupleDesc)
</programlisting>
passing the same <literal>fcinfo</literal> struct passed to the calling function
itself. (This of course requires that you use the version-1
calling conventions.) <varname>resultTypeId</varname> can be specified
as <literal>NULL</literal> or as the address of a local variable to receive the
function's result type OID. <varname>resultTupleDesc</varname> should be the
address of a local <structname>TupleDesc</structname> variable. Check that the
result is <literal>TYPEFUNC_COMPOSITE</literal>; if so,
<varname>resultTupleDesc</varname> has been filled with the needed
<structname>TupleDesc</structname>. (If it is not, you can report an error along
the lines of <quote>function returning record called in context that
cannot accept type record</quote>.)
</para>
<tip>
<para>
<function>get_call_result_type</function> can resolve the actual type of a
polymorphic function result; so it is useful in functions that return
scalar polymorphic results, not only functions that return composites.
The <varname>resultTypeId</varname> output is primarily useful for functions
returning polymorphic scalars.
</para>
</tip>
<note>
<para>
<function>get_call_result_type</function> has a sibling
<function>get_expr_result_type</function>, which can be used to resolve the
expected output type for a function call represented by an expression
tree. This can be used when trying to determine the result type from
outside the function itself. There is also
<function>get_func_result_type</function>, which can be used when only the
function's OID is available. However these functions are not able
to deal with functions declared to return <structname>record</structname>, and
<function>get_func_result_type</function> cannot resolve polymorphic types,
so you should preferentially use <function>get_call_result_type</function>.
</para>
</note>
<para>
Older, now-deprecated functions for obtaining
<structname>TupleDesc</structname>s are:
<programlisting>
TupleDesc RelationNameGetTupleDesc(const char *relname)
</programlisting>
to get a <structname>TupleDesc</structname> for the row type of a named relation,
and:
<programlisting>
TupleDesc TypeGetTupleDesc(Oid typeoid, List *colaliases)
</programlisting>
to get a <structname>TupleDesc</structname> based on a type OID. This can
be used to get a <structname>TupleDesc</structname> for a base or
composite type. It will not work for a function that returns
<structname>record</structname>, however, and it cannot resolve polymorphic
types.
</para>
<para>
Once you have a <structname>TupleDesc</structname>, call:
<programlisting>
TupleDesc BlessTupleDesc(TupleDesc tupdesc)
</programlisting>
if you plan to work with Datums, or:
<programlisting>
AttInMetadata *TupleDescGetAttInMetadata(TupleDesc tupdesc)
</programlisting>
if you plan to work with C strings. If you are writing a function
returning set, you can save the results of these functions in the
<structname>FuncCallContext</structname> structure — use the
<structfield>tuple_desc</structfield> or <structfield>attinmeta</structfield> field
respectively.
</para>
<para>
When working with Datums, use:
<programlisting>
HeapTuple heap_form_tuple(TupleDesc tupdesc, Datum *values, bool *isnull)
</programlisting>
to build a <structname>HeapTuple</structname> given user data in Datum form.
</para>
<para>
When working with C strings, use:
<programlisting>
HeapTuple BuildTupleFromCStrings(AttInMetadata *attinmeta, char **values)
</programlisting>
to build a <structname>HeapTuple</structname> given user data
in C string form. <parameter>values</parameter> is an array of C strings,
one for each attribute of the return row. Each C string should be in
the form expected by the input function of the attribute data
type. In order to return a null value for one of the attributes,
the corresponding pointer in the <parameter>values</parameter> array
should be set to <symbol>NULL</symbol>. This function will need to
be called again for each row you return.
</para>
<para>
Once you have built a tuple to return from your function, it
must be converted into a <type>Datum</type>. Use:
<programlisting>
HeapTupleGetDatum(HeapTuple tuple)
</programlisting>
to convert a <structname>HeapTuple</structname> into a valid Datum. This
<type>Datum</type> can be returned directly if you intend to return
just a single row, or it can be used as the current return value
in a set-returning function.
</para>
<para>
An example appears in the next section.
</para>
</sect2>
<sect2 id="xfunc-c-return-set">
<title>Returning Sets</title>
<para>
C-language functions have two options for returning sets (multiple
rows). In one method, called <firstterm>ValuePerCall</firstterm>
mode, a set-returning function is called repeatedly (passing the same
arguments each time) and it returns one new row on each call, until
it has no more rows to return and signals that by returning NULL.
The set-returning function (<acronym>SRF</acronym>) must therefore
save enough state across calls to remember what it was doing and
return the correct next item on each call.
In the other method, called <firstterm>Materialize</firstterm> mode,
an SRF fills and returns a tuplestore object containing its
entire result; then only one call occurs for the whole result, and
no inter-call state is needed.
</para>
<para>
When using ValuePerCall mode, it is important to remember that the
query is not guaranteed to be run to completion; that is, due to
options such as <literal>LIMIT</literal>, the executor might stop
making calls to the set-returning function before all rows have been
fetched. This means it is not safe to perform cleanup activities in
the last call, because that might not ever happen. It's recommended
to use Materialize mode for functions that need access to external
resources, such as file descriptors.
</para>
<para>
The remainder of this section documents a set of helper macros that
are commonly used (though not required to be used) for SRFs using
ValuePerCall mode. Additional details about Materialize mode can be
found in <filename>src/backend/utils/fmgr/README</filename>. Also,
the <filename>contrib</filename> modules in
the <productname>PostgreSQL</productname> source distribution contain
many examples of SRFs using both ValuePerCall and Materialize mode.
</para>
<para>
To use the ValuePerCall support macros described here,
include <filename>funcapi.h</filename>. These macros work with a
structure <structname>FuncCallContext</structname> that contains the
state that needs to be saved across calls. Within the calling
SRF, <literal>fcinfo->flinfo->fn_extra</literal> is used to
hold a pointer to <structname>FuncCallContext</structname> across
calls. The macros automatically fill that field on first use,
and expect to find the same pointer there on subsequent uses.
<programlisting>
typedef struct FuncCallContext
{
/*
* Number of times we've been called before
*
* call_cntr is initialized to 0 for you by SRF_FIRSTCALL_INIT(), and
* incremented for you every time SRF_RETURN_NEXT() is called.
*/
uint64 call_cntr;
/*
* OPTIONAL maximum number of calls
*
* max_calls is here for convenience only and setting it is optional.
* If not set, you must provide alternative means to know when the
* function is done.
*/
uint64 max_calls;
/*
* OPTIONAL pointer to miscellaneous user-provided context information
*
* user_fctx is for use as a pointer to your own data to retain
* arbitrary context information between calls of your function.
*/
void *user_fctx;
/*
* OPTIONAL pointer to struct containing attribute type input metadata
*
* attinmeta is for use when returning tuples (i.e., composite data types)
* and is not used when returning base data types. It is only needed
* if you intend to use BuildTupleFromCStrings() to create the return
* tuple.
*/
AttInMetadata *attinmeta;
/*
* memory context used for structures that must live for multiple calls
*
* multi_call_memory_ctx is set by SRF_FIRSTCALL_INIT() for you, and used
* by SRF_RETURN_DONE() for cleanup. It is the most appropriate memory
* context for any memory that is to be reused across multiple calls
* of the SRF.
*/
MemoryContext multi_call_memory_ctx;
/*
* OPTIONAL pointer to struct containing tuple description
*
* tuple_desc is for use when returning tuples (i.e., composite data types)
* and is only needed if you are going to build the tuples with
* heap_form_tuple() rather than with BuildTupleFromCStrings(). Note that
* the TupleDesc pointer stored here should usually have been run through
* BlessTupleDesc() first.
*/
TupleDesc tuple_desc;
} FuncCallContext;
</programlisting>
</para>
<para>
The macros to be used by an <acronym>SRF</acronym> using this
infrastructure are:
<programlisting>
SRF_IS_FIRSTCALL()
</programlisting>
Use this to determine if your function is being called for the first or a
subsequent time. On the first call (only), call:
<programlisting>
SRF_FIRSTCALL_INIT()
</programlisting>
to initialize the <structname>FuncCallContext</structname>. On every function call,
including the first, call:
<programlisting>
SRF_PERCALL_SETUP()
</programlisting>
to set up for using the <structname>FuncCallContext</structname>.
</para>
<para>
If your function has data to return in the current call, use:
<programlisting>
SRF_RETURN_NEXT(funcctx, result)
</programlisting>
to return it to the caller. (<literal>result</literal> must be of type
<type>Datum</type>, either a single value or a tuple prepared as
described above.) Finally, when your function is finished
returning data, use:
<programlisting>
SRF_RETURN_DONE(funcctx)
</programlisting>
to clean up and end the <acronym>SRF</acronym>.
</para>
<para>
The memory context that is current when the <acronym>SRF</acronym> is called is
a transient context that will be cleared between calls. This means
that you do not need to call <function>pfree</function> on everything
you allocated using <function>palloc</function>; it will go away anyway. However, if you want to allocate
any data structures to live across calls, you need to put them somewhere
else. The memory context referenced by
<structfield>multi_call_memory_ctx</structfield> is a suitable location for any
data that needs to survive until the <acronym>SRF</acronym> is finished running. In most
cases, this means that you should switch into
<structfield>multi_call_memory_ctx</structfield> while doing the
first-call setup.
Use <literal>funcctx->user_fctx</literal> to hold a pointer to
any such cross-call data structures.
(Data you allocate
in <structfield>multi_call_memory_ctx</structfield> will go away
automatically when the query ends, so it is not necessary to free
that data manually, either.)
</para>
<warning>
<para>
While the actual arguments to the function remain unchanged between
calls, if you detoast the argument values (which is normally done
transparently by the
<function>PG_GETARG_<replaceable>xxx</replaceable></function> macro)
in the transient context then the detoasted copies will be freed on
each cycle. Accordingly, if you keep references to such values in
your <structfield>user_fctx</structfield>, you must either copy them into the
<structfield>multi_call_memory_ctx</structfield> after detoasting, or ensure
that you detoast the values only in that context.
</para>
</warning>
<para>
A complete pseudo-code example looks like the following:
<programlisting>
Datum
my_set_returning_function(PG_FUNCTION_ARGS)
{
FuncCallContext *funcctx;
Datum result;
<replaceable>further declarations as needed</replaceable>
if (SRF_IS_FIRSTCALL())
{
MemoryContext oldcontext;
funcctx = SRF_FIRSTCALL_INIT();
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* One-time setup code appears here: */
<replaceable>user code</replaceable>
<replaceable>if returning composite</replaceable>
<replaceable>build TupleDesc, and perhaps AttInMetadata</replaceable>
<replaceable>endif returning composite</replaceable>
<replaceable>user code</replaceable>
MemoryContextSwitchTo(oldcontext);
}
/* Each-time setup code appears here: */
<replaceable>user code</replaceable>
funcctx = SRF_PERCALL_SETUP();
<replaceable>user code</replaceable>
/* this is just one way we might test whether we are done: */
if (funcctx->call_cntr < funcctx->max_calls)
{
/* Here we want to return another item: */
<replaceable>user code</replaceable>
<replaceable>obtain result Datum</replaceable>
SRF_RETURN_NEXT(funcctx, result);
}
else
{
/* Here we are done returning items, so just report that fact. */
/* (Resist the temptation to put cleanup code here.) */
SRF_RETURN_DONE(funcctx);
}
}
</programlisting>
</para>
<para>
A complete example of a simple <acronym>SRF</acronym> returning a composite type
looks like:
<programlisting><![CDATA[
PG_FUNCTION_INFO_V1(retcomposite);
Datum
retcomposite(PG_FUNCTION_ARGS)
{
FuncCallContext *funcctx;
int call_cntr;
int max_calls;
TupleDesc tupdesc;
AttInMetadata *attinmeta;
/* stuff done only on the first call of the function */
if (SRF_IS_FIRSTCALL())
{
MemoryContext oldcontext;
/* create a function context for cross-call persistence */
funcctx = SRF_FIRSTCALL_INIT();
/* switch to memory context appropriate for multiple function calls */
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* total number of tuples to be returned */
funcctx->max_calls = PG_GETARG_INT32(0);
/* Build a tuple descriptor for our result type */
if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("function returning record called in context "
"that cannot accept type record")));
/*
* generate attribute metadata needed later to produce tuples from raw
* C strings
*/
attinmeta = TupleDescGetAttInMetadata(tupdesc);
funcctx->attinmeta = attinmeta;
MemoryContextSwitchTo(oldcontext);
}
/* stuff done on every call of the function */
funcctx = SRF_PERCALL_SETUP();
call_cntr = funcctx->call_cntr;
max_calls = funcctx->max_calls;
attinmeta = funcctx->attinmeta;
if (call_cntr < max_calls) /* do when there is more left to send */
{
char **values;
HeapTuple tuple;
Datum result;
/*
* Prepare a values array for building the returned tuple.
* This should be an array of C strings which will
* be processed later by the type input functions.
*/
values = (char **) palloc(3 * sizeof(char *));
values[0] = (char *) palloc(16 * sizeof(char));
values[1] = (char *) palloc(16 * sizeof(char));
values[2] = (char *) palloc(16 * sizeof(char));
snprintf(values[0], 16, "%d", 1 * PG_GETARG_INT32(1));
snprintf(values[1], 16, "%d", 2 * PG_GETARG_INT32(1));
snprintf(values[2], 16, "%d", 3 * PG_GETARG_INT32(1));
/* build a tuple */
tuple = BuildTupleFromCStrings(attinmeta, values);
/* make the tuple into a datum */
result = HeapTupleGetDatum(tuple);
/* clean up (this is not really necessary) */
pfree(values[0]);
pfree(values[1]);
pfree(values[2]);
pfree(values);
SRF_RETURN_NEXT(funcctx, result);
}
else /* do when there is no more left */
{
SRF_RETURN_DONE(funcctx);
}
}
]]>
</programlisting>
One way to declare this function in SQL is:
<programlisting>
CREATE TYPE __retcomposite AS (f1 integer, f2 integer, f3 integer);
CREATE OR REPLACE FUNCTION retcomposite(integer, integer)
RETURNS SETOF __retcomposite
AS '<replaceable>filename</replaceable>', 'retcomposite'
LANGUAGE C IMMUTABLE STRICT;
</programlisting>
A different way is to use OUT parameters:
<programlisting>
CREATE OR REPLACE FUNCTION retcomposite(IN integer, IN integer,
OUT f1 integer, OUT f2 integer, OUT f3 integer)
RETURNS SETOF record
AS '<replaceable>filename</replaceable>', 'retcomposite'
LANGUAGE C IMMUTABLE STRICT;
</programlisting>
Notice that in this method the output type of the function is formally
an anonymous <structname>record</structname> type.
</para>
</sect2>
<sect2>
<title>Polymorphic Arguments and Return Types</title>
<para>
C-language functions can be declared to accept and
return the polymorphic types described in <xref
linkend="extend-types-polymorphic"/>.
When a function's arguments or return types
are defined as polymorphic types, the function author cannot know
in advance what data type it will be called with, or
need to return. There are two routines provided in <filename>fmgr.h</filename>
to allow a version-1 C function to discover the actual data types
of its arguments and the type it is expected to return. The routines are
called <literal>get_fn_expr_rettype(FmgrInfo *flinfo)</literal> and
<literal>get_fn_expr_argtype(FmgrInfo *flinfo, int argnum)</literal>.
They return the result or argument type OID, or <symbol>InvalidOid</symbol> if the
information is not available.
The structure <literal>flinfo</literal> is normally accessed as
<literal>fcinfo->flinfo</literal>. The parameter <literal>argnum</literal>
is zero based. <function>get_call_result_type</function> can also be used
as an alternative to <function>get_fn_expr_rettype</function>.
There is also <function>get_fn_expr_variadic</function>, which can be used to
find out whether variadic arguments have been merged into an array.
This is primarily useful for <literal>VARIADIC "any"</literal> functions,
since such merging will always have occurred for variadic functions
taking ordinary array types.
</para>
<para>
For example, suppose we want to write a function to accept a single
element of any type, and return a one-dimensional array of that type:
<programlisting>
PG_FUNCTION_INFO_V1(make_array);
Datum
make_array(PG_FUNCTION_ARGS)
{
ArrayType *result;
Oid element_type = get_fn_expr_argtype(fcinfo->flinfo, 0);
Datum element;
bool isnull;
int16 typlen;
bool typbyval;
char typalign;
int ndims;
int dims[MAXDIM];
int lbs[MAXDIM];
if (!OidIsValid(element_type))
elog(ERROR, "could not determine data type of input");
/* get the provided element, being careful in case it's NULL */
isnull = PG_ARGISNULL(0);
if (isnull)
element = (Datum) 0;
else
element = PG_GETARG_DATUM(0);
/* we have one dimension */
ndims = 1;
/* and one element */
dims[0] = 1;
/* and lower bound is 1 */
lbs[0] = 1;
/* get required info about the element type */
get_typlenbyvalalign(element_type, &typlen, &typbyval, &typalign);
/* now build the array */
result = construct_md_array(&element, &isnull, ndims, dims, lbs,
element_type, typlen, typbyval, typalign);
PG_RETURN_ARRAYTYPE_P(result);
}
</programlisting>
</para>
<para>
The following command declares the function
<function>make_array</function> in SQL:
<programlisting>
CREATE FUNCTION make_array(anyelement) RETURNS anyarray
AS '<replaceable>DIRECTORY</replaceable>/funcs', 'make_array'
LANGUAGE C IMMUTABLE;
</programlisting>
</para>
<para>
There is a variant of polymorphism that is only available to C-language
functions: they can be declared to take parameters of type
<literal>"any"</literal>. (Note that this type name must be double-quoted,
since it's also an SQL reserved word.) This works like
<type>anyelement</type> except that it does not constrain different
<literal>"any"</literal> arguments to be the same type, nor do they help
determine the function's result type. A C-language function can also
declare its final parameter to be <literal>VARIADIC "any"</literal>. This will
match one or more actual arguments of any type (not necessarily the same
type). These arguments will <emphasis>not</emphasis> be gathered into an array
as happens with normal variadic functions; they will just be passed to
the function separately. The <function>PG_NARGS()</function> macro and the
methods described above must be used to determine the number of actual
arguments and their types when using this feature. Also, users of such
a function might wish to use the <literal>VARIADIC</literal> keyword in their
function call, with the expectation that the function would treat the
array elements as separate arguments. The function itself must implement
that behavior if wanted, after using <function>get_fn_expr_variadic</function> to
detect that the actual argument was marked with <literal>VARIADIC</literal>.
</para>
</sect2>
<sect2 id="xfunc-shared-addin">
<title>Shared Memory and LWLocks</title>
<para>
Add-ins can reserve LWLocks and an allocation of shared memory on server
startup. The add-in's shared library must be preloaded by specifying
it in
<xref linkend="guc-shared-preload-libraries"/><indexterm><primary>shared_preload_libraries</primary></indexterm>.
The shared library should register a <literal>shmem_request_hook</literal>
in its <function>_PG_init</function> function. This
<literal>shmem_request_hook</literal> can reserve LWLocks or shared memory.
Shared memory is reserved by calling:
<programlisting>
void RequestAddinShmemSpace(int size)
</programlisting>
from your <literal>shmem_request_hook</literal>.
</para>
<para>
LWLocks are reserved by calling:
<programlisting>
void RequestNamedLWLockTranche(const char *tranche_name, int num_lwlocks)
</programlisting>
from your <literal>shmem_request_hook</literal>. This will ensure that an array of
<literal>num_lwlocks</literal> LWLocks is available under the name
<literal>tranche_name</literal>. Use <function>GetNamedLWLockTranche</function>
to get a pointer to this array.
</para>
<para>
An example of a <literal>shmem_request_hook</literal> can be found in
<filename>contrib/pg_stat_statements/pg_stat_statements.c</filename> in the
<productname>PostgreSQL</productname> source tree.
</para>
<para>
To avoid possible race-conditions, each backend should use the LWLock
<function>AddinShmemInitLock</function> when connecting to and initializing
its allocation of shared memory, as shown here:
<programlisting>
static mystruct *ptr = NULL;
if (!ptr)
{
bool found;
LWLockAcquire(AddinShmemInitLock, LW_EXCLUSIVE);
ptr = ShmemInitStruct("my struct name", size, &found);
if (!found)
{
initialize contents of shmem area;
acquire any requested LWLocks using:
ptr->locks = GetNamedLWLockTranche("my tranche name");
}
LWLockRelease(AddinShmemInitLock);
}
</programlisting>
</para>
</sect2>
<sect2 id="extend-cpp">
<title>Using C++ for Extensibility</title>
<indexterm zone="extend-cpp">
<primary>C++</primary>
</indexterm>
<para>
Although the <productname>PostgreSQL</productname> backend is written in
C, it is possible to write extensions in C++ if these guidelines are
followed:
<itemizedlist>
<listitem>
<para>
All functions accessed by the backend must present a C interface
to the backend; these C functions can then call C++ functions.
For example, <literal>extern C</literal> linkage is required for
backend-accessed functions. This is also necessary for any
functions that are passed as pointers between the backend and
C++ code.
</para>
</listitem>
<listitem>
<para>
Free memory using the appropriate deallocation method. For example,
most backend memory is allocated using <function>palloc()</function>, so use
<function>pfree()</function> to free it. Using C++
<function>delete</function> in such cases will fail.
</para>
</listitem>
<listitem>
<para>
Prevent exceptions from propagating into the C code (use a catch-all
block at the top level of all <literal>extern C</literal> functions). This
is necessary even if the C++ code does not explicitly throw any
exceptions, because events like out-of-memory can still throw
exceptions. Any exceptions must be caught and appropriate errors
passed back to the C interface. If possible, compile C++ with
<option>-fno-exceptions</option> to eliminate exceptions entirely; in such
cases, you must check for failures in your C++ code, e.g., check for
NULL returned by <function>new()</function>.
</para>
</listitem>
<listitem>
<para>
If calling backend functions from C++ code, be sure that the
C++ call stack contains only plain old data structures
(<acronym>POD</acronym>). This is necessary because backend errors
generate a distant <function>longjmp()</function> that does not properly
unroll a C++ call stack with non-POD objects.
</para>
</listitem>
</itemizedlist>
</para>
<para>
In summary, it is best to place C++ code behind a wall of
<literal>extern C</literal> functions that interface to the backend,
and avoid exception, memory, and call stack leakage.
</para>
</sect2>
</sect1>
<sect1 id="xfunc-optimization">
<title>Function Optimization Information</title>
<indexterm zone="xfunc-optimization">
<primary>optimization information</primary>
<secondary>for functions</secondary>
</indexterm>
<para>
By default, a function is just a <quote>black box</quote> that the
database system knows very little about the behavior of. However,
that means that queries using the function may be executed much less
efficiently than they could be. It is possible to supply additional
knowledge that helps the planner optimize function calls.
</para>
<para>
Some basic facts can be supplied by declarative annotations provided in
the <link linkend="sql-createfunction"><command>CREATE FUNCTION</command></link> command. Most important of
these is the function's <link linkend="xfunc-volatility">volatility
category</link> (<literal>IMMUTABLE</literal>, <literal>STABLE</literal>,
or <literal>VOLATILE</literal>); one should always be careful to
specify this correctly when defining a function.
The parallel safety property (<literal>PARALLEL
UNSAFE</literal>, <literal>PARALLEL RESTRICTED</literal>, or
<literal>PARALLEL SAFE</literal>) must also be specified if you hope
to use the function in parallelized queries.
It can also be useful to specify the function's estimated execution
cost, and/or the number of rows a set-returning function is estimated
to return. However, the declarative way of specifying those two
facts only allows specifying a constant value, which is often
inadequate.
</para>
<para>
It is also possible to attach a <firstterm>planner support
function</firstterm> to an SQL-callable function (called
its <firstterm>target function</firstterm>), and thereby provide
knowledge about the target function that is too complex to be
represented declaratively. Planner support functions have to be
written in C (although their target functions might not be), so this is
an advanced feature that relatively few people will use.
</para>
<para>
A planner support function must have the SQL signature
<programlisting>
supportfn(internal) returns internal
</programlisting>
It is attached to its target function by specifying
the <literal>SUPPORT</literal> clause when creating the target function.
</para>
<para>
The details of the API for planner support functions can be found in
file <filename>src/include/nodes/supportnodes.h</filename> in the
<productname>PostgreSQL</productname> source code. Here we provide
just an overview of what planner support functions can do.
The set of possible requests to a support function is extensible,
so more things might be possible in future versions.
</para>
<para>
Some function calls can be simplified during planning based on
properties specific to the function. For example,
<literal>int4mul(n, 1)</literal> could be simplified to
just <literal>n</literal>. This type of transformation can be
performed by a planner support function, by having it implement
the <literal>SupportRequestSimplify</literal> request type.
The support function will be called for each instance of its target
function found in a query parse tree. If it finds that the particular
call can be simplified into some other form, it can build and return a
parse tree representing that expression. This will automatically work
for operators based on the function, too — in the example just
given, <literal>n * 1</literal> would also be simplified to
<literal>n</literal>.
(But note that this is just an example; this particular
optimization is not actually performed by
standard <productname>PostgreSQL</productname>.)
We make no guarantee that <productname>PostgreSQL</productname> will
never call the target function in cases that the support function could
simplify. Ensure rigorous equivalence between the simplified
expression and an actual execution of the target function.
</para>
<para>
For target functions that return <type>boolean</type>, it is often useful to estimate
the fraction of rows that will be selected by a <literal>WHERE</literal> clause using that
function. This can be done by a support function that implements
the <literal>SupportRequestSelectivity</literal> request type.
</para>
<para>
If the target function's run time is highly dependent on its inputs,
it may be useful to provide a non-constant cost estimate for it.
This can be done by a support function that implements
the <literal>SupportRequestCost</literal> request type.
</para>
<para>
For target functions that return sets, it is often useful to provide
a non-constant estimate for the number of rows that will be returned.
This can be done by a support function that implements
the <literal>SupportRequestRows</literal> request type.
</para>
<para>
For target functions that return <type>boolean</type>, it may be possible to
convert a function call appearing in <literal>WHERE</literal> into an indexable operator
clause or clauses. The converted clauses might be exactly equivalent
to the function's condition, or they could be somewhat weaker (that is,
they might accept some values that the function condition does not).
In the latter case the index condition is said to
be <firstterm>lossy</firstterm>; it can still be used to scan an index,
but the function call will have to be executed for each row returned by
the index to see if it really passes the <literal>WHERE</literal> condition or not.
To create such conditions, the support function must implement
the <literal>SupportRequestIndexCondition</literal> request type.
</para>
</sect1>
|