summaryrefslogtreecommitdiffstats
path: root/src/common/f2s.c
blob: 39366b65c70ae238f504372213aed7a6c8072d60 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
/*---------------------------------------------------------------------------
 *
 * Ryu floating-point output for single precision.
 *
 * Portions Copyright (c) 2018-2022, PostgreSQL Global Development Group
 *
 * IDENTIFICATION
 *	  src/common/f2s.c
 *
 * This is a modification of code taken from github.com/ulfjack/ryu under the
 * terms of the Boost license (not the Apache license). The original copyright
 * notice follows:
 *
 * Copyright 2018 Ulf Adams
 *
 * The contents of this file may be used under the terms of the Apache
 * License, Version 2.0.
 *
 *     (See accompanying file LICENSE-Apache or copy at
 *      http://www.apache.org/licenses/LICENSE-2.0)
 *
 * Alternatively, the contents of this file may be used under the terms of the
 * Boost Software License, Version 1.0.
 *
 *     (See accompanying file LICENSE-Boost or copy at
 *      https://www.boost.org/LICENSE_1_0.txt)
 *
 * Unless required by applicable law or agreed to in writing, this software is
 * distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.
 *
 *---------------------------------------------------------------------------
 */

#ifndef FRONTEND
#include "postgres.h"
#else
#include "postgres_fe.h"
#endif

#include "common/shortest_dec.h"
#include "digit_table.h"
#include "ryu_common.h"

#define FLOAT_MANTISSA_BITS 23
#define FLOAT_EXPONENT_BITS 8
#define FLOAT_BIAS 127

/*
 * This table is generated (by the upstream) by PrintFloatLookupTable,
 * and modified (by us) to add UINT64CONST.
 */
#define FLOAT_POW5_INV_BITCOUNT 59
static const uint64 FLOAT_POW5_INV_SPLIT[31] = {
	UINT64CONST(576460752303423489), UINT64CONST(461168601842738791), UINT64CONST(368934881474191033), UINT64CONST(295147905179352826),
	UINT64CONST(472236648286964522), UINT64CONST(377789318629571618), UINT64CONST(302231454903657294), UINT64CONST(483570327845851670),
	UINT64CONST(386856262276681336), UINT64CONST(309485009821345069), UINT64CONST(495176015714152110), UINT64CONST(396140812571321688),
	UINT64CONST(316912650057057351), UINT64CONST(507060240091291761), UINT64CONST(405648192073033409), UINT64CONST(324518553658426727),
	UINT64CONST(519229685853482763), UINT64CONST(415383748682786211), UINT64CONST(332306998946228969), UINT64CONST(531691198313966350),
	UINT64CONST(425352958651173080), UINT64CONST(340282366920938464), UINT64CONST(544451787073501542), UINT64CONST(435561429658801234),
	UINT64CONST(348449143727040987), UINT64CONST(557518629963265579), UINT64CONST(446014903970612463), UINT64CONST(356811923176489971),
	UINT64CONST(570899077082383953), UINT64CONST(456719261665907162), UINT64CONST(365375409332725730)
};
#define FLOAT_POW5_BITCOUNT 61
static const uint64 FLOAT_POW5_SPLIT[47] = {
	UINT64CONST(1152921504606846976), UINT64CONST(1441151880758558720), UINT64CONST(1801439850948198400), UINT64CONST(2251799813685248000),
	UINT64CONST(1407374883553280000), UINT64CONST(1759218604441600000), UINT64CONST(2199023255552000000), UINT64CONST(1374389534720000000),
	UINT64CONST(1717986918400000000), UINT64CONST(2147483648000000000), UINT64CONST(1342177280000000000), UINT64CONST(1677721600000000000),
	UINT64CONST(2097152000000000000), UINT64CONST(1310720000000000000), UINT64CONST(1638400000000000000), UINT64CONST(2048000000000000000),
	UINT64CONST(1280000000000000000), UINT64CONST(1600000000000000000), UINT64CONST(2000000000000000000), UINT64CONST(1250000000000000000),
	UINT64CONST(1562500000000000000), UINT64CONST(1953125000000000000), UINT64CONST(1220703125000000000), UINT64CONST(1525878906250000000),
	UINT64CONST(1907348632812500000), UINT64CONST(1192092895507812500), UINT64CONST(1490116119384765625), UINT64CONST(1862645149230957031),
	UINT64CONST(1164153218269348144), UINT64CONST(1455191522836685180), UINT64CONST(1818989403545856475), UINT64CONST(2273736754432320594),
	UINT64CONST(1421085471520200371), UINT64CONST(1776356839400250464), UINT64CONST(2220446049250313080), UINT64CONST(1387778780781445675),
	UINT64CONST(1734723475976807094), UINT64CONST(2168404344971008868), UINT64CONST(1355252715606880542), UINT64CONST(1694065894508600678),
	UINT64CONST(2117582368135750847), UINT64CONST(1323488980084844279), UINT64CONST(1654361225106055349), UINT64CONST(2067951531382569187),
	UINT64CONST(1292469707114105741), UINT64CONST(1615587133892632177), UINT64CONST(2019483917365790221)
};

static inline uint32
pow5Factor(uint32 value)
{
	uint32		count = 0;

	for (;;)
	{
		Assert(value != 0);
		const uint32 q = value / 5;
		const uint32 r = value % 5;

		if (r != 0)
			break;

		value = q;
		++count;
	}
	return count;
}

/*  Returns true if value is divisible by 5^p. */
static inline bool
multipleOfPowerOf5(const uint32 value, const uint32 p)
{
	return pow5Factor(value) >= p;
}

/*  Returns true if value is divisible by 2^p. */
static inline bool
multipleOfPowerOf2(const uint32 value, const uint32 p)
{
	/* return __builtin_ctz(value) >= p; */
	return (value & ((1u << p) - 1)) == 0;
}

/*
 * It seems to be slightly faster to avoid uint128_t here, although the
 * generated code for uint128_t looks slightly nicer.
 */
static inline uint32
mulShift(const uint32 m, const uint64 factor, const int32 shift)
{
	/*
	 * The casts here help MSVC to avoid calls to the __allmul library
	 * function.
	 */
	const uint32 factorLo = (uint32) (factor);
	const uint32 factorHi = (uint32) (factor >> 32);
	const uint64 bits0 = (uint64) m * factorLo;
	const uint64 bits1 = (uint64) m * factorHi;

	Assert(shift > 32);

#ifdef RYU_32_BIT_PLATFORM

	/*
	 * On 32-bit platforms we can avoid a 64-bit shift-right since we only
	 * need the upper 32 bits of the result and the shift value is > 32.
	 */
	const uint32 bits0Hi = (uint32) (bits0 >> 32);
	uint32		bits1Lo = (uint32) (bits1);
	uint32		bits1Hi = (uint32) (bits1 >> 32);

	bits1Lo += bits0Hi;
	bits1Hi += (bits1Lo < bits0Hi);

	const int32 s = shift - 32;

	return (bits1Hi << (32 - s)) | (bits1Lo >> s);

#else							/* RYU_32_BIT_PLATFORM */

	const uint64 sum = (bits0 >> 32) + bits1;
	const uint64 shiftedSum = sum >> (shift - 32);

	Assert(shiftedSum <= PG_UINT32_MAX);
	return (uint32) shiftedSum;

#endif							/* RYU_32_BIT_PLATFORM */
}

static inline uint32
mulPow5InvDivPow2(const uint32 m, const uint32 q, const int32 j)
{
	return mulShift(m, FLOAT_POW5_INV_SPLIT[q], j);
}

static inline uint32
mulPow5divPow2(const uint32 m, const uint32 i, const int32 j)
{
	return mulShift(m, FLOAT_POW5_SPLIT[i], j);
}

static inline uint32
decimalLength(const uint32 v)
{
	/* Function precondition: v is not a 10-digit number. */
	/* (9 digits are sufficient for round-tripping.) */
	Assert(v < 1000000000);
	if (v >= 100000000)
	{
		return 9;
	}
	if (v >= 10000000)
	{
		return 8;
	}
	if (v >= 1000000)
	{
		return 7;
	}
	if (v >= 100000)
	{
		return 6;
	}
	if (v >= 10000)
	{
		return 5;
	}
	if (v >= 1000)
	{
		return 4;
	}
	if (v >= 100)
	{
		return 3;
	}
	if (v >= 10)
	{
		return 2;
	}
	return 1;
}

/*  A floating decimal representing m * 10^e. */
typedef struct floating_decimal_32
{
	uint32		mantissa;
	int32		exponent;
} floating_decimal_32;

static inline floating_decimal_32
f2d(const uint32 ieeeMantissa, const uint32 ieeeExponent)
{
	int32		e2;
	uint32		m2;

	if (ieeeExponent == 0)
	{
		/* We subtract 2 so that the bounds computation has 2 additional bits. */
		e2 = 1 - FLOAT_BIAS - FLOAT_MANTISSA_BITS - 2;
		m2 = ieeeMantissa;
	}
	else
	{
		e2 = ieeeExponent - FLOAT_BIAS - FLOAT_MANTISSA_BITS - 2;
		m2 = (1u << FLOAT_MANTISSA_BITS) | ieeeMantissa;
	}

#if STRICTLY_SHORTEST
	const bool	even = (m2 & 1) == 0;
	const bool	acceptBounds = even;
#else
	const bool	acceptBounds = false;
#endif

	/* Step 2: Determine the interval of legal decimal representations. */
	const uint32 mv = 4 * m2;
	const uint32 mp = 4 * m2 + 2;

	/* Implicit bool -> int conversion. True is 1, false is 0. */
	const uint32 mmShift = ieeeMantissa != 0 || ieeeExponent <= 1;
	const uint32 mm = 4 * m2 - 1 - mmShift;

	/* Step 3: Convert to a decimal power base using 64-bit arithmetic. */
	uint32		vr,
				vp,
				vm;
	int32		e10;
	bool		vmIsTrailingZeros = false;
	bool		vrIsTrailingZeros = false;
	uint8		lastRemovedDigit = 0;

	if (e2 >= 0)
	{
		const uint32 q = log10Pow2(e2);

		e10 = q;

		const int32 k = FLOAT_POW5_INV_BITCOUNT + pow5bits(q) - 1;
		const int32 i = -e2 + q + k;

		vr = mulPow5InvDivPow2(mv, q, i);
		vp = mulPow5InvDivPow2(mp, q, i);
		vm = mulPow5InvDivPow2(mm, q, i);

		if (q != 0 && (vp - 1) / 10 <= vm / 10)
		{
			/*
			 * We need to know one removed digit even if we are not going to
			 * loop below. We could use q = X - 1 above, except that would
			 * require 33 bits for the result, and we've found that 32-bit
			 * arithmetic is faster even on 64-bit machines.
			 */
			const int32 l = FLOAT_POW5_INV_BITCOUNT + pow5bits(q - 1) - 1;

			lastRemovedDigit = (uint8) (mulPow5InvDivPow2(mv, q - 1, -e2 + q - 1 + l) % 10);
		}
		if (q <= 9)
		{
			/*
			 * The largest power of 5 that fits in 24 bits is 5^10, but q <= 9
			 * seems to be safe as well.
			 *
			 * Only one of mp, mv, and mm can be a multiple of 5, if any.
			 */
			if (mv % 5 == 0)
			{
				vrIsTrailingZeros = multipleOfPowerOf5(mv, q);
			}
			else if (acceptBounds)
			{
				vmIsTrailingZeros = multipleOfPowerOf5(mm, q);
			}
			else
			{
				vp -= multipleOfPowerOf5(mp, q);
			}
		}
	}
	else
	{
		const uint32 q = log10Pow5(-e2);

		e10 = q + e2;

		const int32 i = -e2 - q;
		const int32 k = pow5bits(i) - FLOAT_POW5_BITCOUNT;
		int32		j = q - k;

		vr = mulPow5divPow2(mv, i, j);
		vp = mulPow5divPow2(mp, i, j);
		vm = mulPow5divPow2(mm, i, j);

		if (q != 0 && (vp - 1) / 10 <= vm / 10)
		{
			j = q - 1 - (pow5bits(i + 1) - FLOAT_POW5_BITCOUNT);
			lastRemovedDigit = (uint8) (mulPow5divPow2(mv, i + 1, j) % 10);
		}
		if (q <= 1)
		{
			/*
			 * {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q
			 * trailing 0 bits.
			 */
			/* mv = 4 * m2, so it always has at least two trailing 0 bits. */
			vrIsTrailingZeros = true;
			if (acceptBounds)
			{
				/*
				 * mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff
				 * mmShift == 1.
				 */
				vmIsTrailingZeros = mmShift == 1;
			}
			else
			{
				/*
				 * mp = mv + 2, so it always has at least one trailing 0 bit.
				 */
				--vp;
			}
		}
		else if (q < 31)
		{
			/* TODO(ulfjack):Use a tighter bound here. */
			vrIsTrailingZeros = multipleOfPowerOf2(mv, q - 1);
		}
	}

	/*
	 * Step 4: Find the shortest decimal representation in the interval of
	 * legal representations.
	 */
	uint32		removed = 0;
	uint32		output;

	if (vmIsTrailingZeros || vrIsTrailingZeros)
	{
		/* General case, which happens rarely (~4.0%). */
		while (vp / 10 > vm / 10)
		{
			vmIsTrailingZeros &= vm - (vm / 10) * 10 == 0;
			vrIsTrailingZeros &= lastRemovedDigit == 0;
			lastRemovedDigit = (uint8) (vr % 10);
			vr /= 10;
			vp /= 10;
			vm /= 10;
			++removed;
		}
		if (vmIsTrailingZeros)
		{
			while (vm % 10 == 0)
			{
				vrIsTrailingZeros &= lastRemovedDigit == 0;
				lastRemovedDigit = (uint8) (vr % 10);
				vr /= 10;
				vp /= 10;
				vm /= 10;
				++removed;
			}
		}

		if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0)
		{
			/* Round even if the exact number is .....50..0. */
			lastRemovedDigit = 4;
		}

		/*
		 * We need to take vr + 1 if vr is outside bounds or we need to round
		 * up.
		 */
		output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5);
	}
	else
	{
		/*
		 * Specialized for the common case (~96.0%). Percentages below are
		 * relative to this.
		 *
		 * Loop iterations below (approximately): 0: 13.6%, 1: 70.7%, 2:
		 * 14.1%, 3: 1.39%, 4: 0.14%, 5+: 0.01%
		 */
		while (vp / 10 > vm / 10)
		{
			lastRemovedDigit = (uint8) (vr % 10);
			vr /= 10;
			vp /= 10;
			vm /= 10;
			++removed;
		}

		/*
		 * We need to take vr + 1 if vr is outside bounds or we need to round
		 * up.
		 */
		output = vr + (vr == vm || lastRemovedDigit >= 5);
	}

	const int32 exp = e10 + removed;

	floating_decimal_32 fd;

	fd.exponent = exp;
	fd.mantissa = output;
	return fd;
}

static inline int
to_chars_f(const floating_decimal_32 v, const uint32 olength, char *const result)
{
	/* Step 5: Print the decimal representation. */
	int			index = 0;

	uint32		output = v.mantissa;
	int32		exp = v.exponent;

	/*----
	 * On entry, mantissa * 10^exp is the result to be output.
	 * Caller has already done the - sign if needed.
	 *
	 * We want to insert the point somewhere depending on the output length
	 * and exponent, which might mean adding zeros:
	 *
	 *            exp  | format
	 *            1+   |  ddddddddd000000
	 *            0    |  ddddddddd
	 *  -1 .. -len+1   |  dddddddd.d to d.ddddddddd
	 *  -len ...       |  0.ddddddddd to 0.000dddddd
	 */
	uint32		i = 0;
	int32		nexp = exp + olength;

	if (nexp <= 0)
	{
		/* -nexp is number of 0s to add after '.' */
		Assert(nexp >= -3);
		/* 0.000ddddd */
		index = 2 - nexp;
		/* copy 8 bytes rather than 5 to let compiler optimize */
		memcpy(result, "0.000000", 8);
	}
	else if (exp < 0)
	{
		/*
		 * dddd.dddd; leave space at the start and move the '.' in after
		 */
		index = 1;
	}
	else
	{
		/*
		 * We can save some code later by pre-filling with zeros. We know that
		 * there can be no more than 6 output digits in this form, otherwise
		 * we would not choose fixed-point output. memset 8 rather than 6
		 * bytes to let the compiler optimize it.
		 */
		Assert(exp < 6 && exp + olength <= 6);
		memset(result, '0', 8);
	}

	while (output >= 10000)
	{
		const uint32 c = output - 10000 * (output / 10000);
		const uint32 c0 = (c % 100) << 1;
		const uint32 c1 = (c / 100) << 1;

		output /= 10000;

		memcpy(result + index + olength - i - 2, DIGIT_TABLE + c0, 2);
		memcpy(result + index + olength - i - 4, DIGIT_TABLE + c1, 2);
		i += 4;
	}
	if (output >= 100)
	{
		const uint32 c = (output % 100) << 1;

		output /= 100;
		memcpy(result + index + olength - i - 2, DIGIT_TABLE + c, 2);
		i += 2;
	}
	if (output >= 10)
	{
		const uint32 c = output << 1;

		memcpy(result + index + olength - i - 2, DIGIT_TABLE + c, 2);
	}
	else
	{
		result[index] = (char) ('0' + output);
	}

	if (index == 1)
	{
		/*
		 * nexp is 1..6 here, representing the number of digits before the
		 * point. A value of 7+ is not possible because we switch to
		 * scientific notation when the display exponent reaches 6.
		 */
		Assert(nexp < 7);
		/* gcc only seems to want to optimize memmove for small 2^n */
		if (nexp & 4)
		{
			memmove(result + index - 1, result + index, 4);
			index += 4;
		}
		if (nexp & 2)
		{
			memmove(result + index - 1, result + index, 2);
			index += 2;
		}
		if (nexp & 1)
		{
			result[index - 1] = result[index];
		}
		result[nexp] = '.';
		index = olength + 1;
	}
	else if (exp >= 0)
	{
		/* we supplied the trailing zeros earlier, now just set the length. */
		index = olength + exp;
	}
	else
	{
		index = olength + (2 - nexp);
	}

	return index;
}

static inline int
to_chars(const floating_decimal_32 v, const bool sign, char *const result)
{
	/* Step 5: Print the decimal representation. */
	int			index = 0;

	uint32		output = v.mantissa;
	uint32		olength = decimalLength(output);
	int32		exp = v.exponent + olength - 1;

	if (sign)
		result[index++] = '-';

	/*
	 * The thresholds for fixed-point output are chosen to match printf
	 * defaults. Beware that both the code of to_chars_f and the value of
	 * FLOAT_SHORTEST_DECIMAL_LEN are sensitive to these thresholds.
	 */
	if (exp >= -4 && exp < 6)
		return to_chars_f(v, olength, result + index) + sign;

	/*
	 * If v.exponent is exactly 0, we might have reached here via the small
	 * integer fast path, in which case v.mantissa might contain trailing
	 * (decimal) zeros. For scientific notation we need to move these zeros
	 * into the exponent. (For fixed point this doesn't matter, which is why
	 * we do this here rather than above.)
	 *
	 * Since we already calculated the display exponent (exp) above based on
	 * the old decimal length, that value does not change here. Instead, we
	 * just reduce the display length for each digit removed.
	 *
	 * If we didn't get here via the fast path, the raw exponent will not
	 * usually be 0, and there will be no trailing zeros, so we pay no more
	 * than one div10/multiply extra cost. We claw back half of that by
	 * checking for divisibility by 2 before dividing by 10.
	 */
	if (v.exponent == 0)
	{
		while ((output & 1) == 0)
		{
			const uint32 q = output / 10;
			const uint32 r = output - 10 * q;

			if (r != 0)
				break;
			output = q;
			--olength;
		}
	}

	/*----
	 * Print the decimal digits.
	 * The following code is equivalent to:
	 *
	 * for (uint32 i = 0; i < olength - 1; ++i) {
	 *   const uint32 c = output % 10; output /= 10;
	 *   result[index + olength - i] = (char) ('0' + c);
	 * }
	 * result[index] = '0' + output % 10;
	 */
	uint32		i = 0;

	while (output >= 10000)
	{
		const uint32 c = output - 10000 * (output / 10000);
		const uint32 c0 = (c % 100) << 1;
		const uint32 c1 = (c / 100) << 1;

		output /= 10000;

		memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2);
		memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2);
		i += 4;
	}
	if (output >= 100)
	{
		const uint32 c = (output % 100) << 1;

		output /= 100;
		memcpy(result + index + olength - i - 1, DIGIT_TABLE + c, 2);
		i += 2;
	}
	if (output >= 10)
	{
		const uint32 c = output << 1;

		/*
		 * We can't use memcpy here: the decimal dot goes between these two
		 * digits.
		 */
		result[index + olength - i] = DIGIT_TABLE[c + 1];
		result[index] = DIGIT_TABLE[c];
	}
	else
	{
		result[index] = (char) ('0' + output);
	}

	/* Print decimal point if needed. */
	if (olength > 1)
	{
		result[index + 1] = '.';
		index += olength + 1;
	}
	else
	{
		++index;
	}

	/* Print the exponent. */
	result[index++] = 'e';
	if (exp < 0)
	{
		result[index++] = '-';
		exp = -exp;
	}
	else
		result[index++] = '+';

	memcpy(result + index, DIGIT_TABLE + 2 * exp, 2);
	index += 2;

	return index;
}

static inline bool
f2d_small_int(const uint32 ieeeMantissa,
			  const uint32 ieeeExponent,
			  floating_decimal_32 *v)
{
	const int32 e2 = (int32) ieeeExponent - FLOAT_BIAS - FLOAT_MANTISSA_BITS;

	/*
	 * Avoid using multiple "return false;" here since it tends to provoke the
	 * compiler into inlining multiple copies of f2d, which is undesirable.
	 */

	if (e2 >= -FLOAT_MANTISSA_BITS && e2 <= 0)
	{
		/*----
		 * Since 2^23 <= m2 < 2^24 and 0 <= -e2 <= 23:
		 *   1 <= f = m2 / 2^-e2 < 2^24.
		 *
		 * Test if the lower -e2 bits of the significand are 0, i.e. whether
		 * the fraction is 0. We can use ieeeMantissa here, since the implied
		 * 1 bit can never be tested by this; the implied 1 can only be part
		 * of a fraction if e2 < -FLOAT_MANTISSA_BITS which we already
		 * checked. (e.g. 0.5 gives ieeeMantissa == 0 and e2 == -24)
		 */
		const uint32 mask = (1U << -e2) - 1;
		const uint32 fraction = ieeeMantissa & mask;

		if (fraction == 0)
		{
			/*----
			 * f is an integer in the range [1, 2^24).
			 * Note: mantissa might contain trailing (decimal) 0's.
			 * Note: since 2^24 < 10^9, there is no need to adjust
			 * decimalLength().
			 */
			const uint32 m2 = (1U << FLOAT_MANTISSA_BITS) | ieeeMantissa;

			v->mantissa = m2 >> -e2;
			v->exponent = 0;
			return true;
		}
	}

	return false;
}

/*
 * Store the shortest decimal representation of the given float as an
 * UNTERMINATED string in the caller's supplied buffer (which must be at least
 * FLOAT_SHORTEST_DECIMAL_LEN-1 bytes long).
 *
 * Returns the number of bytes stored.
 */
int
float_to_shortest_decimal_bufn(float f, char *result)
{
	/*
	 * Step 1: Decode the floating-point number, and unify normalized and
	 * subnormal cases.
	 */
	const uint32 bits = float_to_bits(f);

	/* Decode bits into sign, mantissa, and exponent. */
	const bool	ieeeSign = ((bits >> (FLOAT_MANTISSA_BITS + FLOAT_EXPONENT_BITS)) & 1) != 0;
	const uint32 ieeeMantissa = bits & ((1u << FLOAT_MANTISSA_BITS) - 1);
	const uint32 ieeeExponent = (bits >> FLOAT_MANTISSA_BITS) & ((1u << FLOAT_EXPONENT_BITS) - 1);

	/* Case distinction; exit early for the easy cases. */
	if (ieeeExponent == ((1u << FLOAT_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0))
	{
		return copy_special_str(result, ieeeSign, (ieeeExponent != 0), (ieeeMantissa != 0));
	}

	floating_decimal_32 v;
	const bool	isSmallInt = f2d_small_int(ieeeMantissa, ieeeExponent, &v);

	if (!isSmallInt)
	{
		v = f2d(ieeeMantissa, ieeeExponent);
	}

	return to_chars(v, ieeeSign, result);
}

/*
 * Store the shortest decimal representation of the given float as a
 * null-terminated string in the caller's supplied buffer (which must be at
 * least FLOAT_SHORTEST_DECIMAL_LEN bytes long).
 *
 * Returns the string length.
 */
int
float_to_shortest_decimal_buf(float f, char *result)
{
	const int	index = float_to_shortest_decimal_bufn(f, result);

	/* Terminate the string. */
	Assert(index < FLOAT_SHORTEST_DECIMAL_LEN);
	result[index] = '\0';
	return index;
}

/*
 * Return the shortest decimal representation as a null-terminated palloc'd
 * string (outside the backend, uses malloc() instead).
 *
 * Caller is responsible for freeing the result.
 */
char *
float_to_shortest_decimal(float f)
{
	char	   *const result = (char *) palloc(FLOAT_SHORTEST_DECIMAL_LEN);

	float_to_shortest_decimal_buf(f, result);
	return result;
}