1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
|
/*-------------------------------------------------------------------------
*
* pg_bitutils.h
* Miscellaneous functions for bit-wise operations.
*
*
* Copyright (c) 2019-2022, PostgreSQL Global Development Group
*
* src/include/port/pg_bitutils.h
*
*-------------------------------------------------------------------------
*/
#ifndef PG_BITUTILS_H
#define PG_BITUTILS_H
extern PGDLLIMPORT const uint8 pg_leftmost_one_pos[256];
extern PGDLLIMPORT const uint8 pg_rightmost_one_pos[256];
extern PGDLLIMPORT const uint8 pg_number_of_ones[256];
/*
* pg_leftmost_one_pos32
* Returns the position of the most significant set bit in "word",
* measured from the least significant bit. word must not be 0.
*/
static inline int
pg_leftmost_one_pos32(uint32 word)
{
#ifdef HAVE__BUILTIN_CLZ
Assert(word != 0);
return 31 - __builtin_clz(word);
#else
int shift = 32 - 8;
Assert(word != 0);
while ((word >> shift) == 0)
shift -= 8;
return shift + pg_leftmost_one_pos[(word >> shift) & 255];
#endif /* HAVE__BUILTIN_CLZ */
}
/*
* pg_leftmost_one_pos64
* As above, but for a 64-bit word.
*/
static inline int
pg_leftmost_one_pos64(uint64 word)
{
#ifdef HAVE__BUILTIN_CLZ
Assert(word != 0);
#if defined(HAVE_LONG_INT_64)
return 63 - __builtin_clzl(word);
#elif defined(HAVE_LONG_LONG_INT_64)
return 63 - __builtin_clzll(word);
#else
#error must have a working 64-bit integer datatype
#endif
#else /* !HAVE__BUILTIN_CLZ */
int shift = 64 - 8;
Assert(word != 0);
while ((word >> shift) == 0)
shift -= 8;
return shift + pg_leftmost_one_pos[(word >> shift) & 255];
#endif /* HAVE__BUILTIN_CLZ */
}
/*
* pg_rightmost_one_pos32
* Returns the position of the least significant set bit in "word",
* measured from the least significant bit. word must not be 0.
*/
static inline int
pg_rightmost_one_pos32(uint32 word)
{
#ifdef HAVE__BUILTIN_CTZ
Assert(word != 0);
return __builtin_ctz(word);
#else
int result = 0;
Assert(word != 0);
while ((word & 255) == 0)
{
word >>= 8;
result += 8;
}
result += pg_rightmost_one_pos[word & 255];
return result;
#endif /* HAVE__BUILTIN_CTZ */
}
/*
* pg_rightmost_one_pos64
* As above, but for a 64-bit word.
*/
static inline int
pg_rightmost_one_pos64(uint64 word)
{
#ifdef HAVE__BUILTIN_CTZ
Assert(word != 0);
#if defined(HAVE_LONG_INT_64)
return __builtin_ctzl(word);
#elif defined(HAVE_LONG_LONG_INT_64)
return __builtin_ctzll(word);
#else
#error must have a working 64-bit integer datatype
#endif
#else /* !HAVE__BUILTIN_CTZ */
int result = 0;
Assert(word != 0);
while ((word & 255) == 0)
{
word >>= 8;
result += 8;
}
result += pg_rightmost_one_pos[word & 255];
return result;
#endif /* HAVE__BUILTIN_CTZ */
}
/*
* pg_nextpower2_32
* Returns the next higher power of 2 above 'num', or 'num' if it's
* already a power of 2.
*
* 'num' mustn't be 0 or be above PG_UINT32_MAX / 2 + 1.
*/
static inline uint32
pg_nextpower2_32(uint32 num)
{
Assert(num > 0 && num <= PG_UINT32_MAX / 2 + 1);
/*
* A power 2 number has only 1 bit set. Subtracting 1 from such a number
* will turn on all previous bits resulting in no common bits being set
* between num and num-1.
*/
if ((num & (num - 1)) == 0)
return num; /* already power 2 */
return ((uint32) 1) << (pg_leftmost_one_pos32(num) + 1);
}
/*
* pg_nextpower2_64
* Returns the next higher power of 2 above 'num', or 'num' if it's
* already a power of 2.
*
* 'num' mustn't be 0 or be above PG_UINT64_MAX / 2 + 1.
*/
static inline uint64
pg_nextpower2_64(uint64 num)
{
Assert(num > 0 && num <= PG_UINT64_MAX / 2 + 1);
/*
* A power 2 number has only 1 bit set. Subtracting 1 from such a number
* will turn on all previous bits resulting in no common bits being set
* between num and num-1.
*/
if ((num & (num - 1)) == 0)
return num; /* already power 2 */
return ((uint64) 1) << (pg_leftmost_one_pos64(num) + 1);
}
/*
* pg_nextpower2_size_t
* Returns the next higher power of 2 above 'num', for a size_t input.
*/
#if SIZEOF_SIZE_T == 4
#define pg_nextpower2_size_t(num) pg_nextpower2_32(num)
#else
#define pg_nextpower2_size_t(num) pg_nextpower2_64(num)
#endif
/*
* pg_prevpower2_32
* Returns the next lower power of 2 below 'num', or 'num' if it's
* already a power of 2.
*
* 'num' mustn't be 0.
*/
static inline uint32
pg_prevpower2_32(uint32 num)
{
return ((uint32) 1) << pg_leftmost_one_pos32(num);
}
/*
* pg_prevpower2_64
* Returns the next lower power of 2 below 'num', or 'num' if it's
* already a power of 2.
*
* 'num' mustn't be 0.
*/
static inline uint64
pg_prevpower2_64(uint64 num)
{
return ((uint64) 1) << pg_leftmost_one_pos64(num);
}
/*
* pg_prevpower2_size_t
* Returns the next lower power of 2 below 'num', for a size_t input.
*/
#if SIZEOF_SIZE_T == 4
#define pg_prevpower2_size_t(num) pg_prevpower2_32(num)
#else
#define pg_prevpower2_size_t(num) pg_prevpower2_64(num)
#endif
/*
* pg_ceil_log2_32
* Returns equivalent of ceil(log2(num))
*/
static inline uint32
pg_ceil_log2_32(uint32 num)
{
if (num < 2)
return 0;
else
return pg_leftmost_one_pos32(num - 1) + 1;
}
/*
* pg_ceil_log2_64
* Returns equivalent of ceil(log2(num))
*/
static inline uint64
pg_ceil_log2_64(uint64 num)
{
if (num < 2)
return 0;
else
return pg_leftmost_one_pos64(num - 1) + 1;
}
/*
* With MSVC on x86_64 builds, try using native popcnt instructions via the
* __popcnt and __popcnt64 intrinsics. These don't work the same as GCC's
* __builtin_popcount* intrinsic functions as they always emit popcnt
* instructions.
*/
#if defined(_MSC_VER) && defined(_M_AMD64)
#define HAVE_X86_64_POPCNTQ
#endif
/*
* On x86_64, we can use the hardware popcount instruction, but only if
* we can verify that the CPU supports it via the cpuid instruction.
*
* Otherwise, we fall back to a hand-rolled implementation.
*/
#ifdef HAVE_X86_64_POPCNTQ
#if defined(HAVE__GET_CPUID) || defined(HAVE__CPUID)
#define TRY_POPCNT_FAST 1
#endif
#endif
#ifdef TRY_POPCNT_FAST
/* Attempt to use the POPCNT instruction, but perform a runtime check first */
extern int (*pg_popcount32) (uint32 word);
extern int (*pg_popcount64) (uint64 word);
#else
/* Use a portable implementation -- no need for a function pointer. */
extern int pg_popcount32(uint32 word);
extern int pg_popcount64(uint64 word);
#endif /* TRY_POPCNT_FAST */
/* Count the number of one-bits in a byte array */
extern uint64 pg_popcount(const char *buf, int bytes);
/*
* Rotate the bits of "word" to the right/left by n bits.
*/
static inline uint32
pg_rotate_right32(uint32 word, int n)
{
return (word >> n) | (word << (32 - n));
}
static inline uint32
pg_rotate_left32(uint32 word, int n)
{
return (word << n) | (word >> (32 - n));
}
#endif /* PG_BITUTILS_H */
|