diff options
Diffstat (limited to 'src/backend/postmaster/walwriter.c')
-rw-r--r-- | src/backend/postmaster/walwriter.c | 300 |
1 files changed, 300 insertions, 0 deletions
diff --git a/src/backend/postmaster/walwriter.c b/src/backend/postmaster/walwriter.c new file mode 100644 index 0000000..266fbc2 --- /dev/null +++ b/src/backend/postmaster/walwriter.c @@ -0,0 +1,300 @@ +/*------------------------------------------------------------------------- + * + * walwriter.c + * + * The WAL writer background process is new as of Postgres 8.3. It attempts + * to keep regular backends from having to write out (and fsync) WAL pages. + * Also, it guarantees that transaction commit records that weren't synced + * to disk immediately upon commit (ie, were "asynchronously committed") + * will reach disk within a knowable time --- which, as it happens, is at + * most three times the wal_writer_delay cycle time. + * + * Note that as with the bgwriter for shared buffers, regular backends are + * still empowered to issue WAL writes and fsyncs when the walwriter doesn't + * keep up. This means that the WALWriter is not an essential process and + * can shutdown quickly when requested. + * + * Because the walwriter's cycle is directly linked to the maximum delay + * before async-commit transactions are guaranteed committed, it's probably + * unwise to load additional functionality onto it. For instance, if you've + * got a yen to create xlog segments further in advance, that'd be better done + * in bgwriter than in walwriter. + * + * The walwriter is started by the postmaster as soon as the startup subprocess + * finishes. It remains alive until the postmaster commands it to terminate. + * Normal termination is by SIGTERM, which instructs the walwriter to exit(0). + * Emergency termination is by SIGQUIT; like any backend, the walwriter will + * simply abort and exit on SIGQUIT. + * + * If the walwriter exits unexpectedly, the postmaster treats that the same + * as a backend crash: shared memory may be corrupted, so remaining backends + * should be killed by SIGQUIT and then a recovery cycle started. + * + * + * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group + * + * + * IDENTIFICATION + * src/backend/postmaster/walwriter.c + * + *------------------------------------------------------------------------- + */ +#include "postgres.h" + +#include <signal.h> +#include <unistd.h> + +#include "access/xlog.h" +#include "libpq/pqsignal.h" +#include "miscadmin.h" +#include "pgstat.h" +#include "postmaster/interrupt.h" +#include "postmaster/walwriter.h" +#include "storage/bufmgr.h" +#include "storage/condition_variable.h" +#include "storage/fd.h" +#include "storage/ipc.h" +#include "storage/lwlock.h" +#include "storage/proc.h" +#include "storage/procsignal.h" +#include "storage/smgr.h" +#include "utils/guc.h" +#include "utils/hsearch.h" +#include "utils/memutils.h" +#include "utils/resowner.h" + + +/* + * GUC parameters + */ +int WalWriterDelay = 200; +int WalWriterFlushAfter = DEFAULT_WAL_WRITER_FLUSH_AFTER; + +/* + * Number of do-nothing loops before lengthening the delay time, and the + * multiplier to apply to WalWriterDelay when we do decide to hibernate. + * (Perhaps these need to be configurable?) + */ +#define LOOPS_UNTIL_HIBERNATE 50 +#define HIBERNATE_FACTOR 25 + +/* Prototypes for private functions */ +static void HandleWalWriterInterrupts(void); + +/* + * Main entry point for walwriter process + * + * This is invoked from AuxiliaryProcessMain, which has already created the + * basic execution environment, but not enabled signals yet. + */ +void +WalWriterMain(void) +{ + sigjmp_buf local_sigjmp_buf; + MemoryContext walwriter_context; + int left_till_hibernate; + bool hibernating; + + /* + * Properly accept or ignore signals the postmaster might send us + * + * We have no particular use for SIGINT at the moment, but seems + * reasonable to treat like SIGTERM. + */ + pqsignal(SIGHUP, SignalHandlerForConfigReload); + pqsignal(SIGINT, SignalHandlerForShutdownRequest); + pqsignal(SIGTERM, SignalHandlerForShutdownRequest); + /* SIGQUIT handler was already set up by InitPostmasterChild */ + pqsignal(SIGALRM, SIG_IGN); + pqsignal(SIGPIPE, SIG_IGN); + pqsignal(SIGUSR1, procsignal_sigusr1_handler); + pqsignal(SIGUSR2, SIG_IGN); /* not used */ + + /* + * Reset some signals that are accepted by postmaster but not here + */ + pqsignal(SIGCHLD, SIG_DFL); + + /* + * Create a memory context that we will do all our work in. We do this so + * that we can reset the context during error recovery and thereby avoid + * possible memory leaks. Formerly this code just ran in + * TopMemoryContext, but resetting that would be a really bad idea. + */ + walwriter_context = AllocSetContextCreate(TopMemoryContext, + "Wal Writer", + ALLOCSET_DEFAULT_SIZES); + MemoryContextSwitchTo(walwriter_context); + + /* + * If an exception is encountered, processing resumes here. + * + * You might wonder why this isn't coded as an infinite loop around a + * PG_TRY construct. The reason is that this is the bottom of the + * exception stack, and so with PG_TRY there would be no exception handler + * in force at all during the CATCH part. By leaving the outermost setjmp + * always active, we have at least some chance of recovering from an error + * during error recovery. (If we get into an infinite loop thereby, it + * will soon be stopped by overflow of elog.c's internal state stack.) + * + * Note that we use sigsetjmp(..., 1), so that the prevailing signal mask + * (to wit, BlockSig) will be restored when longjmp'ing to here. Thus, + * signals other than SIGQUIT will be blocked until we complete error + * recovery. It might seem that this policy makes the HOLD_INTERRUPTS() + * call redundant, but it is not since InterruptPending might be set + * already. + */ + if (sigsetjmp(local_sigjmp_buf, 1) != 0) + { + /* Since not using PG_TRY, must reset error stack by hand */ + error_context_stack = NULL; + + /* Prevent interrupts while cleaning up */ + HOLD_INTERRUPTS(); + + /* Report the error to the server log */ + EmitErrorReport(); + + /* + * These operations are really just a minimal subset of + * AbortTransaction(). We don't have very many resources to worry + * about in walwriter, but we do have LWLocks, and perhaps buffers? + */ + LWLockReleaseAll(); + ConditionVariableCancelSleep(); + pgstat_report_wait_end(); + UnlockBuffers(); + ReleaseAuxProcessResources(false); + AtEOXact_Buffers(false); + AtEOXact_SMgr(); + AtEOXact_Files(false); + AtEOXact_HashTables(false); + + /* + * Now return to normal top-level context and clear ErrorContext for + * next time. + */ + MemoryContextSwitchTo(walwriter_context); + FlushErrorState(); + + /* Flush any leaked data in the top-level context */ + MemoryContextResetAndDeleteChildren(walwriter_context); + + /* Now we can allow interrupts again */ + RESUME_INTERRUPTS(); + + /* + * Sleep at least 1 second after any error. A write error is likely + * to be repeated, and we don't want to be filling the error logs as + * fast as we can. + */ + pg_usleep(1000000L); + + /* + * Close all open files after any error. This is helpful on Windows, + * where holding deleted files open causes various strange errors. + * It's not clear we need it elsewhere, but shouldn't hurt. + */ + smgrcloseall(); + } + + /* We can now handle ereport(ERROR) */ + PG_exception_stack = &local_sigjmp_buf; + + /* + * Unblock signals (they were blocked when the postmaster forked us) + */ + sigprocmask(SIG_SETMASK, &UnBlockSig, NULL); + + /* + * Reset hibernation state after any error. + */ + left_till_hibernate = LOOPS_UNTIL_HIBERNATE; + hibernating = false; + SetWalWriterSleeping(false); + + /* + * Advertise our latch that backends can use to wake us up while we're + * sleeping. + */ + ProcGlobal->walwriterLatch = &MyProc->procLatch; + + /* + * Loop forever + */ + for (;;) + { + long cur_timeout; + + /* + * Advertise whether we might hibernate in this cycle. We do this + * before resetting the latch to ensure that any async commits will + * see the flag set if they might possibly need to wake us up, and + * that we won't miss any signal they send us. (If we discover work + * to do in the last cycle before we would hibernate, the global flag + * will be set unnecessarily, but little harm is done.) But avoid + * touching the global flag if it doesn't need to change. + */ + if (hibernating != (left_till_hibernate <= 1)) + { + hibernating = (left_till_hibernate <= 1); + SetWalWriterSleeping(hibernating); + } + + /* Clear any already-pending wakeups */ + ResetLatch(MyLatch); + + /* Process any signals received recently */ + HandleWalWriterInterrupts(); + + /* + * Do what we're here for; then, if XLogBackgroundFlush() found useful + * work to do, reset hibernation counter. + */ + if (XLogBackgroundFlush()) + left_till_hibernate = LOOPS_UNTIL_HIBERNATE; + else if (left_till_hibernate > 0) + left_till_hibernate--; + + /* report pending statistics to the cumulative stats system */ + pgstat_report_wal(false); + + /* + * Sleep until we are signaled or WalWriterDelay has elapsed. If we + * haven't done anything useful for quite some time, lengthen the + * sleep time so as to reduce the server's idle power consumption. + */ + if (left_till_hibernate > 0) + cur_timeout = WalWriterDelay; /* in ms */ + else + cur_timeout = WalWriterDelay * HIBERNATE_FACTOR; + + (void) WaitLatch(MyLatch, + WL_LATCH_SET | WL_TIMEOUT | WL_EXIT_ON_PM_DEATH, + cur_timeout, + WAIT_EVENT_WAL_WRITER_MAIN); + } +} + +/* + * Interrupt handler for main loops of WAL writer process. + */ +static void +HandleWalWriterInterrupts(void) +{ + if (ProcSignalBarrierPending) + ProcessProcSignalBarrier(); + + if (ConfigReloadPending) + { + ConfigReloadPending = false; + ProcessConfigFile(PGC_SIGHUP); + } + + if (ShutdownRequestPending) + proc_exit(0); + + /* Perform logging of memory contexts of this process */ + if (LogMemoryContextPending) + ProcessLogMemoryContextInterrupt(); +} |