diff options
Diffstat (limited to 'src/backend/storage/lmgr/s_lock.c')
-rw-r--r-- | src/backend/storage/lmgr/s_lock.c | 324 |
1 files changed, 324 insertions, 0 deletions
diff --git a/src/backend/storage/lmgr/s_lock.c b/src/backend/storage/lmgr/s_lock.c new file mode 100644 index 0000000..327ac64 --- /dev/null +++ b/src/backend/storage/lmgr/s_lock.c @@ -0,0 +1,324 @@ +/*------------------------------------------------------------------------- + * + * s_lock.c + * Hardware-dependent implementation of spinlocks. + * + * When waiting for a contended spinlock we loop tightly for awhile, then + * delay using pg_usleep() and try again. Preferably, "awhile" should be a + * small multiple of the maximum time we expect a spinlock to be held. 100 + * iterations seems about right as an initial guess. However, on a + * uniprocessor the loop is a waste of cycles, while in a multi-CPU scenario + * it's usually better to spin a bit longer than to call the kernel, so we try + * to adapt the spin loop count depending on whether we seem to be in a + * uniprocessor or multiprocessor. + * + * Note: you might think MIN_SPINS_PER_DELAY should be just 1, but you'd + * be wrong; there are platforms where that can result in a "stuck + * spinlock" failure. This has been seen particularly on Alphas; it seems + * that the first TAS after returning from kernel space will always fail + * on that hardware. + * + * Once we do decide to block, we use randomly increasing pg_usleep() + * delays. The first delay is 1 msec, then the delay randomly increases to + * about one second, after which we reset to 1 msec and start again. The + * idea here is that in the presence of heavy contention we need to + * increase the delay, else the spinlock holder may never get to run and + * release the lock. (Consider situation where spinlock holder has been + * nice'd down in priority by the scheduler --- it will not get scheduled + * until all would-be acquirers are sleeping, so if we always use a 1-msec + * sleep, there is a real possibility of starvation.) But we can't just + * clamp the delay to an upper bound, else it would take a long time to + * make a reasonable number of tries. + * + * We time out and declare error after NUM_DELAYS delays (thus, exactly + * that many tries). With the given settings, this will usually take 2 or + * so minutes. It seems better to fix the total number of tries (and thus + * the probability of unintended failure) than to fix the total time + * spent. + * + * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group + * Portions Copyright (c) 1994, Regents of the University of California + * + * + * IDENTIFICATION + * src/backend/storage/lmgr/s_lock.c + * + *------------------------------------------------------------------------- + */ +#include "postgres.h" + +#include <time.h> +#include <unistd.h> + +#include "common/pg_prng.h" +#include "port/atomics.h" +#include "storage/s_lock.h" +#include "utils/wait_event.h" + +#define MIN_SPINS_PER_DELAY 10 +#define MAX_SPINS_PER_DELAY 1000 +#define NUM_DELAYS 1000 +#define MIN_DELAY_USEC 1000L +#define MAX_DELAY_USEC 1000000L + + +slock_t dummy_spinlock; + +static int spins_per_delay = DEFAULT_SPINS_PER_DELAY; + + +/* + * s_lock_stuck() - complain about a stuck spinlock + */ +static void +s_lock_stuck(const char *file, int line, const char *func) +{ + if (!func) + func = "(unknown)"; +#if defined(S_LOCK_TEST) + fprintf(stderr, + "\nStuck spinlock detected at %s, %s:%d.\n", + func, file, line); + exit(1); +#else + elog(PANIC, "stuck spinlock detected at %s, %s:%d", + func, file, line); +#endif +} + +/* + * s_lock(lock) - platform-independent portion of waiting for a spinlock. + */ +int +s_lock(volatile slock_t *lock, const char *file, int line, const char *func) +{ + SpinDelayStatus delayStatus; + + init_spin_delay(&delayStatus, file, line, func); + + while (TAS_SPIN(lock)) + { + perform_spin_delay(&delayStatus); + } + + finish_spin_delay(&delayStatus); + + return delayStatus.delays; +} + +#ifdef USE_DEFAULT_S_UNLOCK +void +s_unlock(volatile slock_t *lock) +{ +#ifdef TAS_ACTIVE_WORD + /* HP's PA-RISC */ + *TAS_ACTIVE_WORD(lock) = -1; +#else + *lock = 0; +#endif +} +#endif + +/* + * Wait while spinning on a contended spinlock. + */ +void +perform_spin_delay(SpinDelayStatus *status) +{ + /* CPU-specific delay each time through the loop */ + SPIN_DELAY(); + + /* Block the process every spins_per_delay tries */ + if (++(status->spins) >= spins_per_delay) + { + if (++(status->delays) > NUM_DELAYS) + s_lock_stuck(status->file, status->line, status->func); + + if (status->cur_delay == 0) /* first time to delay? */ + status->cur_delay = MIN_DELAY_USEC; + + /* + * Once we start sleeping, the overhead of reporting a wait event is + * justified. Actively spinning easily stands out in profilers, but + * sleeping with an exponential backoff is harder to spot... + * + * We might want to report something more granular at some point, but + * this is better than nothing. + */ + pgstat_report_wait_start(WAIT_EVENT_SPIN_DELAY); + pg_usleep(status->cur_delay); + pgstat_report_wait_end(); + +#if defined(S_LOCK_TEST) + fprintf(stdout, "*"); + fflush(stdout); +#endif + + /* increase delay by a random fraction between 1X and 2X */ + status->cur_delay += (int) (status->cur_delay * + pg_prng_double(&pg_global_prng_state) + 0.5); + /* wrap back to minimum delay when max is exceeded */ + if (status->cur_delay > MAX_DELAY_USEC) + status->cur_delay = MIN_DELAY_USEC; + + status->spins = 0; + } +} + +/* + * After acquiring a spinlock, update estimates about how long to loop. + * + * If we were able to acquire the lock without delaying, it's a good + * indication we are in a multiprocessor. If we had to delay, it's a sign + * (but not a sure thing) that we are in a uniprocessor. Hence, we + * decrement spins_per_delay slowly when we had to delay, and increase it + * rapidly when we didn't. It's expected that spins_per_delay will + * converge to the minimum value on a uniprocessor and to the maximum + * value on a multiprocessor. + * + * Note: spins_per_delay is local within our current process. We want to + * average these observations across multiple backends, since it's + * relatively rare for this function to even get entered, and so a single + * backend might not live long enough to converge on a good value. That + * is handled by the two routines below. + */ +void +finish_spin_delay(SpinDelayStatus *status) +{ + if (status->cur_delay == 0) + { + /* we never had to delay */ + if (spins_per_delay < MAX_SPINS_PER_DELAY) + spins_per_delay = Min(spins_per_delay + 100, MAX_SPINS_PER_DELAY); + } + else + { + if (spins_per_delay > MIN_SPINS_PER_DELAY) + spins_per_delay = Max(spins_per_delay - 1, MIN_SPINS_PER_DELAY); + } +} + +/* + * Set local copy of spins_per_delay during backend startup. + * + * NB: this has to be pretty fast as it is called while holding a spinlock + */ +void +set_spins_per_delay(int shared_spins_per_delay) +{ + spins_per_delay = shared_spins_per_delay; +} + +/* + * Update shared estimate of spins_per_delay during backend exit. + * + * NB: this has to be pretty fast as it is called while holding a spinlock + */ +int +update_spins_per_delay(int shared_spins_per_delay) +{ + /* + * We use an exponential moving average with a relatively slow adaption + * rate, so that noise in any one backend's result won't affect the shared + * value too much. As long as both inputs are within the allowed range, + * the result must be too, so we need not worry about clamping the result. + * + * We deliberately truncate rather than rounding; this is so that single + * adjustments inside a backend can affect the shared estimate (see the + * asymmetric adjustment rules above). + */ + return (shared_spins_per_delay * 15 + spins_per_delay) / 16; +} + + +/*****************************************************************************/ +#if defined(S_LOCK_TEST) + +/* + * test program for verifying a port's spinlock support. + */ + +struct test_lock_struct +{ + char pad1; + slock_t lock; + char pad2; +}; + +volatile struct test_lock_struct test_lock; + +int +main() +{ + pg_prng_seed(&pg_global_prng_state, (uint64) time(NULL)); + + test_lock.pad1 = test_lock.pad2 = 0x44; + + S_INIT_LOCK(&test_lock.lock); + + if (test_lock.pad1 != 0x44 || test_lock.pad2 != 0x44) + { + printf("S_LOCK_TEST: failed, declared datatype is wrong size\n"); + return 1; + } + + if (!S_LOCK_FREE(&test_lock.lock)) + { + printf("S_LOCK_TEST: failed, lock not initialized\n"); + return 1; + } + + S_LOCK(&test_lock.lock); + + if (test_lock.pad1 != 0x44 || test_lock.pad2 != 0x44) + { + printf("S_LOCK_TEST: failed, declared datatype is wrong size\n"); + return 1; + } + + if (S_LOCK_FREE(&test_lock.lock)) + { + printf("S_LOCK_TEST: failed, lock not locked\n"); + return 1; + } + + S_UNLOCK(&test_lock.lock); + + if (test_lock.pad1 != 0x44 || test_lock.pad2 != 0x44) + { + printf("S_LOCK_TEST: failed, declared datatype is wrong size\n"); + return 1; + } + + if (!S_LOCK_FREE(&test_lock.lock)) + { + printf("S_LOCK_TEST: failed, lock not unlocked\n"); + return 1; + } + + S_LOCK(&test_lock.lock); + + if (test_lock.pad1 != 0x44 || test_lock.pad2 != 0x44) + { + printf("S_LOCK_TEST: failed, declared datatype is wrong size\n"); + return 1; + } + + if (S_LOCK_FREE(&test_lock.lock)) + { + printf("S_LOCK_TEST: failed, lock not re-locked\n"); + return 1; + } + + printf("S_LOCK_TEST: this will print %d stars and then\n", NUM_DELAYS); + printf(" exit with a 'stuck spinlock' message\n"); + printf(" if S_LOCK() and TAS() are working.\n"); + fflush(stdout); + + s_lock(&test_lock.lock, __FILE__, __LINE__, __func__); + + printf("S_LOCK_TEST: failed, lock not locked\n"); + return 1; +} + +#endif /* S_LOCK_TEST */ |