summaryrefslogtreecommitdiffstats
path: root/src/backend/utils/adt/float.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/backend/utils/adt/float.c')
-rw-r--r--src/backend/utils/adt/float.c4177
1 files changed, 4177 insertions, 0 deletions
diff --git a/src/backend/utils/adt/float.c b/src/backend/utils/adt/float.c
new file mode 100644
index 0000000..dfa90a0
--- /dev/null
+++ b/src/backend/utils/adt/float.c
@@ -0,0 +1,4177 @@
+/*-------------------------------------------------------------------------
+ *
+ * float.c
+ * Functions for the built-in floating-point types.
+ *
+ * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ *
+ * IDENTIFICATION
+ * src/backend/utils/adt/float.c
+ *
+ *-------------------------------------------------------------------------
+ */
+#include "postgres.h"
+
+#include <ctype.h>
+#include <float.h>
+#include <math.h>
+#include <limits.h>
+
+#include "catalog/pg_type.h"
+#include "common/int.h"
+#include "common/pg_prng.h"
+#include "common/shortest_dec.h"
+#include "libpq/pqformat.h"
+#include "miscadmin.h"
+#include "utils/array.h"
+#include "utils/float.h"
+#include "utils/fmgrprotos.h"
+#include "utils/sortsupport.h"
+#include "utils/timestamp.h"
+
+
+/*
+ * Configurable GUC parameter
+ *
+ * If >0, use shortest-decimal format for output; this is both the default and
+ * allows for compatibility with clients that explicitly set a value here to
+ * get round-trip-accurate results. If 0 or less, then use the old, slow,
+ * decimal rounding method.
+ */
+int extra_float_digits = 1;
+
+/* Cached constants for degree-based trig functions */
+static bool degree_consts_set = false;
+static float8 sin_30 = 0;
+static float8 one_minus_cos_60 = 0;
+static float8 asin_0_5 = 0;
+static float8 acos_0_5 = 0;
+static float8 atan_1_0 = 0;
+static float8 tan_45 = 0;
+static float8 cot_45 = 0;
+
+/*
+ * These are intentionally not static; don't "fix" them. They will never
+ * be referenced by other files, much less changed; but we don't want the
+ * compiler to know that, else it might try to precompute expressions
+ * involving them. See comments for init_degree_constants().
+ */
+float8 degree_c_thirty = 30.0;
+float8 degree_c_forty_five = 45.0;
+float8 degree_c_sixty = 60.0;
+float8 degree_c_one_half = 0.5;
+float8 degree_c_one = 1.0;
+
+/* State for drandom() and setseed() */
+static bool drandom_seed_set = false;
+static pg_prng_state drandom_seed;
+
+/* Local function prototypes */
+static double sind_q1(double x);
+static double cosd_q1(double x);
+static void init_degree_constants(void);
+
+
+/*
+ * We use these out-of-line ereport() calls to report float overflow,
+ * underflow, and zero-divide, because following our usual practice of
+ * repeating them at each call site would lead to a lot of code bloat.
+ *
+ * This does mean that you don't get a useful error location indicator.
+ */
+pg_noinline void
+float_overflow_error(void)
+{
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("value out of range: overflow")));
+}
+
+pg_noinline void
+float_underflow_error(void)
+{
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("value out of range: underflow")));
+}
+
+pg_noinline void
+float_zero_divide_error(void)
+{
+ ereport(ERROR,
+ (errcode(ERRCODE_DIVISION_BY_ZERO),
+ errmsg("division by zero")));
+}
+
+
+/*
+ * Returns -1 if 'val' represents negative infinity, 1 if 'val'
+ * represents (positive) infinity, and 0 otherwise. On some platforms,
+ * this is equivalent to the isinf() macro, but not everywhere: C99
+ * does not specify that isinf() needs to distinguish between positive
+ * and negative infinity.
+ */
+int
+is_infinite(double val)
+{
+ int inf = isinf(val);
+
+ if (inf == 0)
+ return 0;
+ else if (val > 0)
+ return 1;
+ else
+ return -1;
+}
+
+
+/* ========== USER I/O ROUTINES ========== */
+
+
+/*
+ * float4in - converts "num" to float4
+ *
+ * Note that this code now uses strtof(), where it used to use strtod().
+ *
+ * The motivation for using strtof() is to avoid a double-rounding problem:
+ * for certain decimal inputs, if you round the input correctly to a double,
+ * and then round the double to a float, the result is incorrect in that it
+ * does not match the result of rounding the decimal value to float directly.
+ *
+ * One of the best examples is 7.038531e-26:
+ *
+ * 0xAE43FDp-107 = 7.03853069185120912085...e-26
+ * midpoint 7.03853100000000022281...e-26
+ * 0xAE43FEp-107 = 7.03853130814879132477...e-26
+ *
+ * making 0xAE43FDp-107 the correct float result, but if you do the conversion
+ * via a double, you get
+ *
+ * 0xAE43FD.7FFFFFF8p-107 = 7.03853099999999907487...e-26
+ * midpoint 7.03853099999999964884...e-26
+ * 0xAE43FD.80000000p-107 = 7.03853100000000022281...e-26
+ * 0xAE43FD.80000008p-107 = 7.03853100000000137076...e-26
+ *
+ * so the value rounds to the double exactly on the midpoint between the two
+ * nearest floats, and then rounding again to a float gives the incorrect
+ * result of 0xAE43FEp-107.
+ *
+ */
+Datum
+float4in(PG_FUNCTION_ARGS)
+{
+ char *num = PG_GETARG_CSTRING(0);
+
+ PG_RETURN_FLOAT4(float4in_internal(num, NULL, "real", num,
+ fcinfo->context));
+}
+
+/*
+ * float4in_internal - guts of float4in()
+ *
+ * This is exposed for use by functions that want a reasonably
+ * platform-independent way of inputting floats. The behavior is
+ * essentially like strtof + ereturn on error.
+ *
+ * Uses the same API as float8in_internal below, so most of its
+ * comments also apply here, except regarding use in geometric types.
+ */
+float4
+float4in_internal(char *num, char **endptr_p,
+ const char *type_name, const char *orig_string,
+ struct Node *escontext)
+{
+ float val;
+ char *endptr;
+
+ /*
+ * endptr points to the first character _after_ the sequence we recognized
+ * as a valid floating point number. orig_string points to the original
+ * input string.
+ */
+
+ /* skip leading whitespace */
+ while (*num != '\0' && isspace((unsigned char) *num))
+ num++;
+
+ /*
+ * Check for an empty-string input to begin with, to avoid the vagaries of
+ * strtod() on different platforms.
+ */
+ if (*num == '\0')
+ ereturn(escontext, 0,
+ (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
+ errmsg("invalid input syntax for type %s: \"%s\"",
+ type_name, orig_string)));
+
+ errno = 0;
+ val = strtof(num, &endptr);
+
+ /* did we not see anything that looks like a double? */
+ if (endptr == num || errno != 0)
+ {
+ int save_errno = errno;
+
+ /*
+ * C99 requires that strtof() accept NaN, [+-]Infinity, and [+-]Inf,
+ * but not all platforms support all of these (and some accept them
+ * but set ERANGE anyway...) Therefore, we check for these inputs
+ * ourselves if strtof() fails.
+ *
+ * Note: C99 also requires hexadecimal input as well as some extended
+ * forms of NaN, but we consider these forms unportable and don't try
+ * to support them. You can use 'em if your strtof() takes 'em.
+ */
+ if (pg_strncasecmp(num, "NaN", 3) == 0)
+ {
+ val = get_float4_nan();
+ endptr = num + 3;
+ }
+ else if (pg_strncasecmp(num, "Infinity", 8) == 0)
+ {
+ val = get_float4_infinity();
+ endptr = num + 8;
+ }
+ else if (pg_strncasecmp(num, "+Infinity", 9) == 0)
+ {
+ val = get_float4_infinity();
+ endptr = num + 9;
+ }
+ else if (pg_strncasecmp(num, "-Infinity", 9) == 0)
+ {
+ val = -get_float4_infinity();
+ endptr = num + 9;
+ }
+ else if (pg_strncasecmp(num, "inf", 3) == 0)
+ {
+ val = get_float4_infinity();
+ endptr = num + 3;
+ }
+ else if (pg_strncasecmp(num, "+inf", 4) == 0)
+ {
+ val = get_float4_infinity();
+ endptr = num + 4;
+ }
+ else if (pg_strncasecmp(num, "-inf", 4) == 0)
+ {
+ val = -get_float4_infinity();
+ endptr = num + 4;
+ }
+ else if (save_errno == ERANGE)
+ {
+ /*
+ * Some platforms return ERANGE for denormalized numbers (those
+ * that are not zero, but are too close to zero to have full
+ * precision). We'd prefer not to throw error for that, so try to
+ * detect whether it's a "real" out-of-range condition by checking
+ * to see if the result is zero or huge.
+ */
+ if (val == 0.0 ||
+#if !defined(HUGE_VALF)
+ isinf(val)
+#else
+ (val >= HUGE_VALF || val <= -HUGE_VALF)
+#endif
+ )
+ {
+ /* see comments in float8in_internal for rationale */
+ char *errnumber = pstrdup(num);
+
+ errnumber[endptr - num] = '\0';
+
+ ereturn(escontext, 0,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("\"%s\" is out of range for type real",
+ errnumber)));
+ }
+ }
+ else
+ ereturn(escontext, 0,
+ (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
+ errmsg("invalid input syntax for type %s: \"%s\"",
+ type_name, orig_string)));
+ }
+
+ /* skip trailing whitespace */
+ while (*endptr != '\0' && isspace((unsigned char) *endptr))
+ endptr++;
+
+ /* report stopping point if wanted, else complain if not end of string */
+ if (endptr_p)
+ *endptr_p = endptr;
+ else if (*endptr != '\0')
+ ereturn(escontext, 0,
+ (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
+ errmsg("invalid input syntax for type %s: \"%s\"",
+ type_name, orig_string)));
+
+ return val;
+}
+
+/*
+ * float4out - converts a float4 number to a string
+ * using a standard output format
+ */
+Datum
+float4out(PG_FUNCTION_ARGS)
+{
+ float4 num = PG_GETARG_FLOAT4(0);
+ char *ascii = (char *) palloc(32);
+ int ndig = FLT_DIG + extra_float_digits;
+
+ if (extra_float_digits > 0)
+ {
+ float_to_shortest_decimal_buf(num, ascii);
+ PG_RETURN_CSTRING(ascii);
+ }
+
+ (void) pg_strfromd(ascii, 32, ndig, num);
+ PG_RETURN_CSTRING(ascii);
+}
+
+/*
+ * float4recv - converts external binary format to float4
+ */
+Datum
+float4recv(PG_FUNCTION_ARGS)
+{
+ StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
+
+ PG_RETURN_FLOAT4(pq_getmsgfloat4(buf));
+}
+
+/*
+ * float4send - converts float4 to binary format
+ */
+Datum
+float4send(PG_FUNCTION_ARGS)
+{
+ float4 num = PG_GETARG_FLOAT4(0);
+ StringInfoData buf;
+
+ pq_begintypsend(&buf);
+ pq_sendfloat4(&buf, num);
+ PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
+}
+
+/*
+ * float8in - converts "num" to float8
+ */
+Datum
+float8in(PG_FUNCTION_ARGS)
+{
+ char *num = PG_GETARG_CSTRING(0);
+
+ PG_RETURN_FLOAT8(float8in_internal(num, NULL, "double precision", num,
+ fcinfo->context));
+}
+
+/*
+ * float8in_internal - guts of float8in()
+ *
+ * This is exposed for use by functions that want a reasonably
+ * platform-independent way of inputting doubles. The behavior is
+ * essentially like strtod + ereturn on error, but note the following
+ * differences:
+ * 1. Both leading and trailing whitespace are skipped.
+ * 2. If endptr_p is NULL, we report error if there's trailing junk.
+ * Otherwise, it's up to the caller to complain about trailing junk.
+ * 3. In event of a syntax error, the report mentions the given type_name
+ * and prints orig_string as the input; this is meant to support use of
+ * this function with types such as "box" and "point", where what we are
+ * parsing here is just a substring of orig_string.
+ *
+ * If escontext points to an ErrorSaveContext node, that is filled instead
+ * of throwing an error; the caller must check SOFT_ERROR_OCCURRED()
+ * to detect errors.
+ *
+ * "num" could validly be declared "const char *", but that results in an
+ * unreasonable amount of extra casting both here and in callers, so we don't.
+ */
+float8
+float8in_internal(char *num, char **endptr_p,
+ const char *type_name, const char *orig_string,
+ struct Node *escontext)
+{
+ double val;
+ char *endptr;
+
+ /* skip leading whitespace */
+ while (*num != '\0' && isspace((unsigned char) *num))
+ num++;
+
+ /*
+ * Check for an empty-string input to begin with, to avoid the vagaries of
+ * strtod() on different platforms.
+ */
+ if (*num == '\0')
+ ereturn(escontext, 0,
+ (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
+ errmsg("invalid input syntax for type %s: \"%s\"",
+ type_name, orig_string)));
+
+ errno = 0;
+ val = strtod(num, &endptr);
+
+ /* did we not see anything that looks like a double? */
+ if (endptr == num || errno != 0)
+ {
+ int save_errno = errno;
+
+ /*
+ * C99 requires that strtod() accept NaN, [+-]Infinity, and [+-]Inf,
+ * but not all platforms support all of these (and some accept them
+ * but set ERANGE anyway...) Therefore, we check for these inputs
+ * ourselves if strtod() fails.
+ *
+ * Note: C99 also requires hexadecimal input as well as some extended
+ * forms of NaN, but we consider these forms unportable and don't try
+ * to support them. You can use 'em if your strtod() takes 'em.
+ */
+ if (pg_strncasecmp(num, "NaN", 3) == 0)
+ {
+ val = get_float8_nan();
+ endptr = num + 3;
+ }
+ else if (pg_strncasecmp(num, "Infinity", 8) == 0)
+ {
+ val = get_float8_infinity();
+ endptr = num + 8;
+ }
+ else if (pg_strncasecmp(num, "+Infinity", 9) == 0)
+ {
+ val = get_float8_infinity();
+ endptr = num + 9;
+ }
+ else if (pg_strncasecmp(num, "-Infinity", 9) == 0)
+ {
+ val = -get_float8_infinity();
+ endptr = num + 9;
+ }
+ else if (pg_strncasecmp(num, "inf", 3) == 0)
+ {
+ val = get_float8_infinity();
+ endptr = num + 3;
+ }
+ else if (pg_strncasecmp(num, "+inf", 4) == 0)
+ {
+ val = get_float8_infinity();
+ endptr = num + 4;
+ }
+ else if (pg_strncasecmp(num, "-inf", 4) == 0)
+ {
+ val = -get_float8_infinity();
+ endptr = num + 4;
+ }
+ else if (save_errno == ERANGE)
+ {
+ /*
+ * Some platforms return ERANGE for denormalized numbers (those
+ * that are not zero, but are too close to zero to have full
+ * precision). We'd prefer not to throw error for that, so try to
+ * detect whether it's a "real" out-of-range condition by checking
+ * to see if the result is zero or huge.
+ *
+ * On error, we intentionally complain about double precision not
+ * the given type name, and we print only the part of the string
+ * that is the current number.
+ */
+ if (val == 0.0 || val >= HUGE_VAL || val <= -HUGE_VAL)
+ {
+ char *errnumber = pstrdup(num);
+
+ errnumber[endptr - num] = '\0';
+ ereturn(escontext, 0,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("\"%s\" is out of range for type double precision",
+ errnumber)));
+ }
+ }
+ else
+ ereturn(escontext, 0,
+ (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
+ errmsg("invalid input syntax for type %s: \"%s\"",
+ type_name, orig_string)));
+ }
+
+ /* skip trailing whitespace */
+ while (*endptr != '\0' && isspace((unsigned char) *endptr))
+ endptr++;
+
+ /* report stopping point if wanted, else complain if not end of string */
+ if (endptr_p)
+ *endptr_p = endptr;
+ else if (*endptr != '\0')
+ ereturn(escontext, 0,
+ (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
+ errmsg("invalid input syntax for type %s: \"%s\"",
+ type_name, orig_string)));
+
+ return val;
+}
+
+
+/*
+ * float8out - converts float8 number to a string
+ * using a standard output format
+ */
+Datum
+float8out(PG_FUNCTION_ARGS)
+{
+ float8 num = PG_GETARG_FLOAT8(0);
+
+ PG_RETURN_CSTRING(float8out_internal(num));
+}
+
+/*
+ * float8out_internal - guts of float8out()
+ *
+ * This is exposed for use by functions that want a reasonably
+ * platform-independent way of outputting doubles.
+ * The result is always palloc'd.
+ */
+char *
+float8out_internal(double num)
+{
+ char *ascii = (char *) palloc(32);
+ int ndig = DBL_DIG + extra_float_digits;
+
+ if (extra_float_digits > 0)
+ {
+ double_to_shortest_decimal_buf(num, ascii);
+ return ascii;
+ }
+
+ (void) pg_strfromd(ascii, 32, ndig, num);
+ return ascii;
+}
+
+/*
+ * float8recv - converts external binary format to float8
+ */
+Datum
+float8recv(PG_FUNCTION_ARGS)
+{
+ StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
+
+ PG_RETURN_FLOAT8(pq_getmsgfloat8(buf));
+}
+
+/*
+ * float8send - converts float8 to binary format
+ */
+Datum
+float8send(PG_FUNCTION_ARGS)
+{
+ float8 num = PG_GETARG_FLOAT8(0);
+ StringInfoData buf;
+
+ pq_begintypsend(&buf);
+ pq_sendfloat8(&buf, num);
+ PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
+}
+
+
+/* ========== PUBLIC ROUTINES ========== */
+
+
+/*
+ * ======================
+ * FLOAT4 BASE OPERATIONS
+ * ======================
+ */
+
+/*
+ * float4abs - returns |arg1| (absolute value)
+ */
+Datum
+float4abs(PG_FUNCTION_ARGS)
+{
+ float4 arg1 = PG_GETARG_FLOAT4(0);
+
+ PG_RETURN_FLOAT4(fabsf(arg1));
+}
+
+/*
+ * float4um - returns -arg1 (unary minus)
+ */
+Datum
+float4um(PG_FUNCTION_ARGS)
+{
+ float4 arg1 = PG_GETARG_FLOAT4(0);
+ float4 result;
+
+ result = -arg1;
+ PG_RETURN_FLOAT4(result);
+}
+
+Datum
+float4up(PG_FUNCTION_ARGS)
+{
+ float4 arg = PG_GETARG_FLOAT4(0);
+
+ PG_RETURN_FLOAT4(arg);
+}
+
+Datum
+float4larger(PG_FUNCTION_ARGS)
+{
+ float4 arg1 = PG_GETARG_FLOAT4(0);
+ float4 arg2 = PG_GETARG_FLOAT4(1);
+ float4 result;
+
+ if (float4_gt(arg1, arg2))
+ result = arg1;
+ else
+ result = arg2;
+ PG_RETURN_FLOAT4(result);
+}
+
+Datum
+float4smaller(PG_FUNCTION_ARGS)
+{
+ float4 arg1 = PG_GETARG_FLOAT4(0);
+ float4 arg2 = PG_GETARG_FLOAT4(1);
+ float4 result;
+
+ if (float4_lt(arg1, arg2))
+ result = arg1;
+ else
+ result = arg2;
+ PG_RETURN_FLOAT4(result);
+}
+
+/*
+ * ======================
+ * FLOAT8 BASE OPERATIONS
+ * ======================
+ */
+
+/*
+ * float8abs - returns |arg1| (absolute value)
+ */
+Datum
+float8abs(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+
+ PG_RETURN_FLOAT8(fabs(arg1));
+}
+
+
+/*
+ * float8um - returns -arg1 (unary minus)
+ */
+Datum
+float8um(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+
+ result = -arg1;
+ PG_RETURN_FLOAT8(result);
+}
+
+Datum
+float8up(PG_FUNCTION_ARGS)
+{
+ float8 arg = PG_GETARG_FLOAT8(0);
+
+ PG_RETURN_FLOAT8(arg);
+}
+
+Datum
+float8larger(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 arg2 = PG_GETARG_FLOAT8(1);
+ float8 result;
+
+ if (float8_gt(arg1, arg2))
+ result = arg1;
+ else
+ result = arg2;
+ PG_RETURN_FLOAT8(result);
+}
+
+Datum
+float8smaller(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 arg2 = PG_GETARG_FLOAT8(1);
+ float8 result;
+
+ if (float8_lt(arg1, arg2))
+ result = arg1;
+ else
+ result = arg2;
+ PG_RETURN_FLOAT8(result);
+}
+
+
+/*
+ * ====================
+ * ARITHMETIC OPERATORS
+ * ====================
+ */
+
+/*
+ * float4pl - returns arg1 + arg2
+ * float4mi - returns arg1 - arg2
+ * float4mul - returns arg1 * arg2
+ * float4div - returns arg1 / arg2
+ */
+Datum
+float4pl(PG_FUNCTION_ARGS)
+{
+ float4 arg1 = PG_GETARG_FLOAT4(0);
+ float4 arg2 = PG_GETARG_FLOAT4(1);
+
+ PG_RETURN_FLOAT4(float4_pl(arg1, arg2));
+}
+
+Datum
+float4mi(PG_FUNCTION_ARGS)
+{
+ float4 arg1 = PG_GETARG_FLOAT4(0);
+ float4 arg2 = PG_GETARG_FLOAT4(1);
+
+ PG_RETURN_FLOAT4(float4_mi(arg1, arg2));
+}
+
+Datum
+float4mul(PG_FUNCTION_ARGS)
+{
+ float4 arg1 = PG_GETARG_FLOAT4(0);
+ float4 arg2 = PG_GETARG_FLOAT4(1);
+
+ PG_RETURN_FLOAT4(float4_mul(arg1, arg2));
+}
+
+Datum
+float4div(PG_FUNCTION_ARGS)
+{
+ float4 arg1 = PG_GETARG_FLOAT4(0);
+ float4 arg2 = PG_GETARG_FLOAT4(1);
+
+ PG_RETURN_FLOAT4(float4_div(arg1, arg2));
+}
+
+/*
+ * float8pl - returns arg1 + arg2
+ * float8mi - returns arg1 - arg2
+ * float8mul - returns arg1 * arg2
+ * float8div - returns arg1 / arg2
+ */
+Datum
+float8pl(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 arg2 = PG_GETARG_FLOAT8(1);
+
+ PG_RETURN_FLOAT8(float8_pl(arg1, arg2));
+}
+
+Datum
+float8mi(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 arg2 = PG_GETARG_FLOAT8(1);
+
+ PG_RETURN_FLOAT8(float8_mi(arg1, arg2));
+}
+
+Datum
+float8mul(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 arg2 = PG_GETARG_FLOAT8(1);
+
+ PG_RETURN_FLOAT8(float8_mul(arg1, arg2));
+}
+
+Datum
+float8div(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 arg2 = PG_GETARG_FLOAT8(1);
+
+ PG_RETURN_FLOAT8(float8_div(arg1, arg2));
+}
+
+
+/*
+ * ====================
+ * COMPARISON OPERATORS
+ * ====================
+ */
+
+/*
+ * float4{eq,ne,lt,le,gt,ge} - float4/float4 comparison operations
+ */
+int
+float4_cmp_internal(float4 a, float4 b)
+{
+ if (float4_gt(a, b))
+ return 1;
+ if (float4_lt(a, b))
+ return -1;
+ return 0;
+}
+
+Datum
+float4eq(PG_FUNCTION_ARGS)
+{
+ float4 arg1 = PG_GETARG_FLOAT4(0);
+ float4 arg2 = PG_GETARG_FLOAT4(1);
+
+ PG_RETURN_BOOL(float4_eq(arg1, arg2));
+}
+
+Datum
+float4ne(PG_FUNCTION_ARGS)
+{
+ float4 arg1 = PG_GETARG_FLOAT4(0);
+ float4 arg2 = PG_GETARG_FLOAT4(1);
+
+ PG_RETURN_BOOL(float4_ne(arg1, arg2));
+}
+
+Datum
+float4lt(PG_FUNCTION_ARGS)
+{
+ float4 arg1 = PG_GETARG_FLOAT4(0);
+ float4 arg2 = PG_GETARG_FLOAT4(1);
+
+ PG_RETURN_BOOL(float4_lt(arg1, arg2));
+}
+
+Datum
+float4le(PG_FUNCTION_ARGS)
+{
+ float4 arg1 = PG_GETARG_FLOAT4(0);
+ float4 arg2 = PG_GETARG_FLOAT4(1);
+
+ PG_RETURN_BOOL(float4_le(arg1, arg2));
+}
+
+Datum
+float4gt(PG_FUNCTION_ARGS)
+{
+ float4 arg1 = PG_GETARG_FLOAT4(0);
+ float4 arg2 = PG_GETARG_FLOAT4(1);
+
+ PG_RETURN_BOOL(float4_gt(arg1, arg2));
+}
+
+Datum
+float4ge(PG_FUNCTION_ARGS)
+{
+ float4 arg1 = PG_GETARG_FLOAT4(0);
+ float4 arg2 = PG_GETARG_FLOAT4(1);
+
+ PG_RETURN_BOOL(float4_ge(arg1, arg2));
+}
+
+Datum
+btfloat4cmp(PG_FUNCTION_ARGS)
+{
+ float4 arg1 = PG_GETARG_FLOAT4(0);
+ float4 arg2 = PG_GETARG_FLOAT4(1);
+
+ PG_RETURN_INT32(float4_cmp_internal(arg1, arg2));
+}
+
+static int
+btfloat4fastcmp(Datum x, Datum y, SortSupport ssup)
+{
+ float4 arg1 = DatumGetFloat4(x);
+ float4 arg2 = DatumGetFloat4(y);
+
+ return float4_cmp_internal(arg1, arg2);
+}
+
+Datum
+btfloat4sortsupport(PG_FUNCTION_ARGS)
+{
+ SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0);
+
+ ssup->comparator = btfloat4fastcmp;
+ PG_RETURN_VOID();
+}
+
+/*
+ * float8{eq,ne,lt,le,gt,ge} - float8/float8 comparison operations
+ */
+int
+float8_cmp_internal(float8 a, float8 b)
+{
+ if (float8_gt(a, b))
+ return 1;
+ if (float8_lt(a, b))
+ return -1;
+ return 0;
+}
+
+Datum
+float8eq(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 arg2 = PG_GETARG_FLOAT8(1);
+
+ PG_RETURN_BOOL(float8_eq(arg1, arg2));
+}
+
+Datum
+float8ne(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 arg2 = PG_GETARG_FLOAT8(1);
+
+ PG_RETURN_BOOL(float8_ne(arg1, arg2));
+}
+
+Datum
+float8lt(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 arg2 = PG_GETARG_FLOAT8(1);
+
+ PG_RETURN_BOOL(float8_lt(arg1, arg2));
+}
+
+Datum
+float8le(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 arg2 = PG_GETARG_FLOAT8(1);
+
+ PG_RETURN_BOOL(float8_le(arg1, arg2));
+}
+
+Datum
+float8gt(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 arg2 = PG_GETARG_FLOAT8(1);
+
+ PG_RETURN_BOOL(float8_gt(arg1, arg2));
+}
+
+Datum
+float8ge(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 arg2 = PG_GETARG_FLOAT8(1);
+
+ PG_RETURN_BOOL(float8_ge(arg1, arg2));
+}
+
+Datum
+btfloat8cmp(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 arg2 = PG_GETARG_FLOAT8(1);
+
+ PG_RETURN_INT32(float8_cmp_internal(arg1, arg2));
+}
+
+static int
+btfloat8fastcmp(Datum x, Datum y, SortSupport ssup)
+{
+ float8 arg1 = DatumGetFloat8(x);
+ float8 arg2 = DatumGetFloat8(y);
+
+ return float8_cmp_internal(arg1, arg2);
+}
+
+Datum
+btfloat8sortsupport(PG_FUNCTION_ARGS)
+{
+ SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0);
+
+ ssup->comparator = btfloat8fastcmp;
+ PG_RETURN_VOID();
+}
+
+Datum
+btfloat48cmp(PG_FUNCTION_ARGS)
+{
+ float4 arg1 = PG_GETARG_FLOAT4(0);
+ float8 arg2 = PG_GETARG_FLOAT8(1);
+
+ /* widen float4 to float8 and then compare */
+ PG_RETURN_INT32(float8_cmp_internal(arg1, arg2));
+}
+
+Datum
+btfloat84cmp(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float4 arg2 = PG_GETARG_FLOAT4(1);
+
+ /* widen float4 to float8 and then compare */
+ PG_RETURN_INT32(float8_cmp_internal(arg1, arg2));
+}
+
+/*
+ * in_range support function for float8.
+ *
+ * Note: we needn't supply a float8_float4 variant, as implicit coercion
+ * of the offset value takes care of that scenario just as well.
+ */
+Datum
+in_range_float8_float8(PG_FUNCTION_ARGS)
+{
+ float8 val = PG_GETARG_FLOAT8(0);
+ float8 base = PG_GETARG_FLOAT8(1);
+ float8 offset = PG_GETARG_FLOAT8(2);
+ bool sub = PG_GETARG_BOOL(3);
+ bool less = PG_GETARG_BOOL(4);
+ float8 sum;
+
+ /*
+ * Reject negative or NaN offset. Negative is per spec, and NaN is
+ * because appropriate semantics for that seem non-obvious.
+ */
+ if (isnan(offset) || offset < 0)
+ ereport(ERROR,
+ (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
+ errmsg("invalid preceding or following size in window function")));
+
+ /*
+ * Deal with cases where val and/or base is NaN, following the rule that
+ * NaN sorts after non-NaN (cf float8_cmp_internal). The offset cannot
+ * affect the conclusion.
+ */
+ if (isnan(val))
+ {
+ if (isnan(base))
+ PG_RETURN_BOOL(true); /* NAN = NAN */
+ else
+ PG_RETURN_BOOL(!less); /* NAN > non-NAN */
+ }
+ else if (isnan(base))
+ {
+ PG_RETURN_BOOL(less); /* non-NAN < NAN */
+ }
+
+ /*
+ * Deal with cases where both base and offset are infinite, and computing
+ * base +/- offset would produce NaN. This corresponds to a window frame
+ * whose boundary infinitely precedes +inf or infinitely follows -inf,
+ * which is not well-defined. For consistency with other cases involving
+ * infinities, such as the fact that +inf infinitely follows +inf, we
+ * choose to assume that +inf infinitely precedes +inf and -inf infinitely
+ * follows -inf, and therefore that all finite and infinite values are in
+ * such a window frame.
+ *
+ * offset is known positive, so we need only check the sign of base in
+ * this test.
+ */
+ if (isinf(offset) && isinf(base) &&
+ (sub ? base > 0 : base < 0))
+ PG_RETURN_BOOL(true);
+
+ /*
+ * Otherwise it should be safe to compute base +/- offset. We trust the
+ * FPU to cope if an input is +/-inf or the true sum would overflow, and
+ * produce a suitably signed infinity, which will compare properly against
+ * val whether or not that's infinity.
+ */
+ if (sub)
+ sum = base - offset;
+ else
+ sum = base + offset;
+
+ if (less)
+ PG_RETURN_BOOL(val <= sum);
+ else
+ PG_RETURN_BOOL(val >= sum);
+}
+
+/*
+ * in_range support function for float4.
+ *
+ * We would need a float4_float8 variant in any case, so we supply that and
+ * let implicit coercion take care of the float4_float4 case.
+ */
+Datum
+in_range_float4_float8(PG_FUNCTION_ARGS)
+{
+ float4 val = PG_GETARG_FLOAT4(0);
+ float4 base = PG_GETARG_FLOAT4(1);
+ float8 offset = PG_GETARG_FLOAT8(2);
+ bool sub = PG_GETARG_BOOL(3);
+ bool less = PG_GETARG_BOOL(4);
+ float8 sum;
+
+ /*
+ * Reject negative or NaN offset. Negative is per spec, and NaN is
+ * because appropriate semantics for that seem non-obvious.
+ */
+ if (isnan(offset) || offset < 0)
+ ereport(ERROR,
+ (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
+ errmsg("invalid preceding or following size in window function")));
+
+ /*
+ * Deal with cases where val and/or base is NaN, following the rule that
+ * NaN sorts after non-NaN (cf float8_cmp_internal). The offset cannot
+ * affect the conclusion.
+ */
+ if (isnan(val))
+ {
+ if (isnan(base))
+ PG_RETURN_BOOL(true); /* NAN = NAN */
+ else
+ PG_RETURN_BOOL(!less); /* NAN > non-NAN */
+ }
+ else if (isnan(base))
+ {
+ PG_RETURN_BOOL(less); /* non-NAN < NAN */
+ }
+
+ /*
+ * Deal with cases where both base and offset are infinite, and computing
+ * base +/- offset would produce NaN. This corresponds to a window frame
+ * whose boundary infinitely precedes +inf or infinitely follows -inf,
+ * which is not well-defined. For consistency with other cases involving
+ * infinities, such as the fact that +inf infinitely follows +inf, we
+ * choose to assume that +inf infinitely precedes +inf and -inf infinitely
+ * follows -inf, and therefore that all finite and infinite values are in
+ * such a window frame.
+ *
+ * offset is known positive, so we need only check the sign of base in
+ * this test.
+ */
+ if (isinf(offset) && isinf(base) &&
+ (sub ? base > 0 : base < 0))
+ PG_RETURN_BOOL(true);
+
+ /*
+ * Otherwise it should be safe to compute base +/- offset. We trust the
+ * FPU to cope if an input is +/-inf or the true sum would overflow, and
+ * produce a suitably signed infinity, which will compare properly against
+ * val whether or not that's infinity.
+ */
+ if (sub)
+ sum = base - offset;
+ else
+ sum = base + offset;
+
+ if (less)
+ PG_RETURN_BOOL(val <= sum);
+ else
+ PG_RETURN_BOOL(val >= sum);
+}
+
+
+/*
+ * ===================
+ * CONVERSION ROUTINES
+ * ===================
+ */
+
+/*
+ * ftod - converts a float4 number to a float8 number
+ */
+Datum
+ftod(PG_FUNCTION_ARGS)
+{
+ float4 num = PG_GETARG_FLOAT4(0);
+
+ PG_RETURN_FLOAT8((float8) num);
+}
+
+
+/*
+ * dtof - converts a float8 number to a float4 number
+ */
+Datum
+dtof(PG_FUNCTION_ARGS)
+{
+ float8 num = PG_GETARG_FLOAT8(0);
+ float4 result;
+
+ result = (float4) num;
+ if (unlikely(isinf(result)) && !isinf(num))
+ float_overflow_error();
+ if (unlikely(result == 0.0f) && num != 0.0)
+ float_underflow_error();
+
+ PG_RETURN_FLOAT4(result);
+}
+
+
+/*
+ * dtoi4 - converts a float8 number to an int4 number
+ */
+Datum
+dtoi4(PG_FUNCTION_ARGS)
+{
+ float8 num = PG_GETARG_FLOAT8(0);
+
+ /*
+ * Get rid of any fractional part in the input. This is so we don't fail
+ * on just-out-of-range values that would round into range. Note
+ * assumption that rint() will pass through a NaN or Inf unchanged.
+ */
+ num = rint(num);
+
+ /* Range check */
+ if (unlikely(isnan(num) || !FLOAT8_FITS_IN_INT32(num)))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("integer out of range")));
+
+ PG_RETURN_INT32((int32) num);
+}
+
+
+/*
+ * dtoi2 - converts a float8 number to an int2 number
+ */
+Datum
+dtoi2(PG_FUNCTION_ARGS)
+{
+ float8 num = PG_GETARG_FLOAT8(0);
+
+ /*
+ * Get rid of any fractional part in the input. This is so we don't fail
+ * on just-out-of-range values that would round into range. Note
+ * assumption that rint() will pass through a NaN or Inf unchanged.
+ */
+ num = rint(num);
+
+ /* Range check */
+ if (unlikely(isnan(num) || !FLOAT8_FITS_IN_INT16(num)))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("smallint out of range")));
+
+ PG_RETURN_INT16((int16) num);
+}
+
+
+/*
+ * i4tod - converts an int4 number to a float8 number
+ */
+Datum
+i4tod(PG_FUNCTION_ARGS)
+{
+ int32 num = PG_GETARG_INT32(0);
+
+ PG_RETURN_FLOAT8((float8) num);
+}
+
+
+/*
+ * i2tod - converts an int2 number to a float8 number
+ */
+Datum
+i2tod(PG_FUNCTION_ARGS)
+{
+ int16 num = PG_GETARG_INT16(0);
+
+ PG_RETURN_FLOAT8((float8) num);
+}
+
+
+/*
+ * ftoi4 - converts a float4 number to an int4 number
+ */
+Datum
+ftoi4(PG_FUNCTION_ARGS)
+{
+ float4 num = PG_GETARG_FLOAT4(0);
+
+ /*
+ * Get rid of any fractional part in the input. This is so we don't fail
+ * on just-out-of-range values that would round into range. Note
+ * assumption that rint() will pass through a NaN or Inf unchanged.
+ */
+ num = rint(num);
+
+ /* Range check */
+ if (unlikely(isnan(num) || !FLOAT4_FITS_IN_INT32(num)))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("integer out of range")));
+
+ PG_RETURN_INT32((int32) num);
+}
+
+
+/*
+ * ftoi2 - converts a float4 number to an int2 number
+ */
+Datum
+ftoi2(PG_FUNCTION_ARGS)
+{
+ float4 num = PG_GETARG_FLOAT4(0);
+
+ /*
+ * Get rid of any fractional part in the input. This is so we don't fail
+ * on just-out-of-range values that would round into range. Note
+ * assumption that rint() will pass through a NaN or Inf unchanged.
+ */
+ num = rint(num);
+
+ /* Range check */
+ if (unlikely(isnan(num) || !FLOAT4_FITS_IN_INT16(num)))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("smallint out of range")));
+
+ PG_RETURN_INT16((int16) num);
+}
+
+
+/*
+ * i4tof - converts an int4 number to a float4 number
+ */
+Datum
+i4tof(PG_FUNCTION_ARGS)
+{
+ int32 num = PG_GETARG_INT32(0);
+
+ PG_RETURN_FLOAT4((float4) num);
+}
+
+
+/*
+ * i2tof - converts an int2 number to a float4 number
+ */
+Datum
+i2tof(PG_FUNCTION_ARGS)
+{
+ int16 num = PG_GETARG_INT16(0);
+
+ PG_RETURN_FLOAT4((float4) num);
+}
+
+
+/*
+ * =======================
+ * RANDOM FLOAT8 OPERATORS
+ * =======================
+ */
+
+/*
+ * dround - returns ROUND(arg1)
+ */
+Datum
+dround(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+
+ PG_RETURN_FLOAT8(rint(arg1));
+}
+
+/*
+ * dceil - returns the smallest integer greater than or
+ * equal to the specified float
+ */
+Datum
+dceil(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+
+ PG_RETURN_FLOAT8(ceil(arg1));
+}
+
+/*
+ * dfloor - returns the largest integer lesser than or
+ * equal to the specified float
+ */
+Datum
+dfloor(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+
+ PG_RETURN_FLOAT8(floor(arg1));
+}
+
+/*
+ * dsign - returns -1 if the argument is less than 0, 0
+ * if the argument is equal to 0, and 1 if the
+ * argument is greater than zero.
+ */
+Datum
+dsign(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+
+ if (arg1 > 0)
+ result = 1.0;
+ else if (arg1 < 0)
+ result = -1.0;
+ else
+ result = 0.0;
+
+ PG_RETURN_FLOAT8(result);
+}
+
+/*
+ * dtrunc - returns truncation-towards-zero of arg1,
+ * arg1 >= 0 ... the greatest integer less
+ * than or equal to arg1
+ * arg1 < 0 ... the least integer greater
+ * than or equal to arg1
+ */
+Datum
+dtrunc(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+
+ if (arg1 >= 0)
+ result = floor(arg1);
+ else
+ result = -floor(-arg1);
+
+ PG_RETURN_FLOAT8(result);
+}
+
+
+/*
+ * dsqrt - returns square root of arg1
+ */
+Datum
+dsqrt(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+
+ if (arg1 < 0)
+ ereport(ERROR,
+ (errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION),
+ errmsg("cannot take square root of a negative number")));
+
+ result = sqrt(arg1);
+ if (unlikely(isinf(result)) && !isinf(arg1))
+ float_overflow_error();
+ if (unlikely(result == 0.0) && arg1 != 0.0)
+ float_underflow_error();
+
+ PG_RETURN_FLOAT8(result);
+}
+
+
+/*
+ * dcbrt - returns cube root of arg1
+ */
+Datum
+dcbrt(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+
+ result = cbrt(arg1);
+ if (unlikely(isinf(result)) && !isinf(arg1))
+ float_overflow_error();
+ if (unlikely(result == 0.0) && arg1 != 0.0)
+ float_underflow_error();
+
+ PG_RETURN_FLOAT8(result);
+}
+
+
+/*
+ * dpow - returns pow(arg1,arg2)
+ */
+Datum
+dpow(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 arg2 = PG_GETARG_FLOAT8(1);
+ float8 result;
+
+ /*
+ * The POSIX spec says that NaN ^ 0 = 1, and 1 ^ NaN = 1, while all other
+ * cases with NaN inputs yield NaN (with no error). Many older platforms
+ * get one or more of these cases wrong, so deal with them via explicit
+ * logic rather than trusting pow(3).
+ */
+ if (isnan(arg1))
+ {
+ if (isnan(arg2) || arg2 != 0.0)
+ PG_RETURN_FLOAT8(get_float8_nan());
+ PG_RETURN_FLOAT8(1.0);
+ }
+ if (isnan(arg2))
+ {
+ if (arg1 != 1.0)
+ PG_RETURN_FLOAT8(get_float8_nan());
+ PG_RETURN_FLOAT8(1.0);
+ }
+
+ /*
+ * The SQL spec requires that we emit a particular SQLSTATE error code for
+ * certain error conditions. Specifically, we don't return a
+ * divide-by-zero error code for 0 ^ -1.
+ */
+ if (arg1 == 0 && arg2 < 0)
+ ereport(ERROR,
+ (errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION),
+ errmsg("zero raised to a negative power is undefined")));
+ if (arg1 < 0 && floor(arg2) != arg2)
+ ereport(ERROR,
+ (errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION),
+ errmsg("a negative number raised to a non-integer power yields a complex result")));
+
+ /*
+ * We don't trust the platform's pow() to handle infinity cases per POSIX
+ * spec either, so deal with those explicitly too. It's easier to handle
+ * infinite y first, so that it doesn't matter if x is also infinite.
+ */
+ if (isinf(arg2))
+ {
+ float8 absx = fabs(arg1);
+
+ if (absx == 1.0)
+ result = 1.0;
+ else if (arg2 > 0.0) /* y = +Inf */
+ {
+ if (absx > 1.0)
+ result = arg2;
+ else
+ result = 0.0;
+ }
+ else /* y = -Inf */
+ {
+ if (absx > 1.0)
+ result = 0.0;
+ else
+ result = -arg2;
+ }
+ }
+ else if (isinf(arg1))
+ {
+ if (arg2 == 0.0)
+ result = 1.0;
+ else if (arg1 > 0.0) /* x = +Inf */
+ {
+ if (arg2 > 0.0)
+ result = arg1;
+ else
+ result = 0.0;
+ }
+ else /* x = -Inf */
+ {
+ /*
+ * Per POSIX, the sign of the result depends on whether y is an
+ * odd integer. Since x < 0, we already know from the previous
+ * domain check that y is an integer. It is odd if y/2 is not
+ * also an integer.
+ */
+ float8 halfy = arg2 / 2; /* should be computed exactly */
+ bool yisoddinteger = (floor(halfy) != halfy);
+
+ if (arg2 > 0.0)
+ result = yisoddinteger ? arg1 : -arg1;
+ else
+ result = yisoddinteger ? -0.0 : 0.0;
+ }
+ }
+ else
+ {
+ /*
+ * pow() sets errno on only some platforms, depending on whether it
+ * follows _IEEE_, _POSIX_, _XOPEN_, or _SVID_, so we must check both
+ * errno and invalid output values. (We can't rely on just the
+ * latter, either; some old platforms return a large-but-finite
+ * HUGE_VAL when reporting overflow.)
+ */
+ errno = 0;
+ result = pow(arg1, arg2);
+ if (errno == EDOM || isnan(result))
+ {
+ /*
+ * We handled all possible domain errors above, so this should be
+ * impossible. However, old glibc versions on x86 have a bug that
+ * causes them to fail this way for abs(y) greater than 2^63:
+ *
+ * https://sourceware.org/bugzilla/show_bug.cgi?id=3866
+ *
+ * Hence, if we get here, assume y is finite but large (large
+ * enough to be certainly even). The result should be 0 if x == 0,
+ * 1.0 if abs(x) == 1.0, otherwise an overflow or underflow error.
+ */
+ if (arg1 == 0.0)
+ result = 0.0; /* we already verified y is positive */
+ else
+ {
+ float8 absx = fabs(arg1);
+
+ if (absx == 1.0)
+ result = 1.0;
+ else if (arg2 >= 0.0 ? (absx > 1.0) : (absx < 1.0))
+ float_overflow_error();
+ else
+ float_underflow_error();
+ }
+ }
+ else if (errno == ERANGE)
+ {
+ if (result != 0.0)
+ float_overflow_error();
+ else
+ float_underflow_error();
+ }
+ else
+ {
+ if (unlikely(isinf(result)))
+ float_overflow_error();
+ if (unlikely(result == 0.0) && arg1 != 0.0)
+ float_underflow_error();
+ }
+ }
+
+ PG_RETURN_FLOAT8(result);
+}
+
+
+/*
+ * dexp - returns the exponential function of arg1
+ */
+Datum
+dexp(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+
+ /*
+ * Handle NaN and Inf cases explicitly. This avoids needing to assume
+ * that the platform's exp() conforms to POSIX for these cases, and it
+ * removes some edge cases for the overflow checks below.
+ */
+ if (isnan(arg1))
+ result = arg1;
+ else if (isinf(arg1))
+ {
+ /* Per POSIX, exp(-Inf) is 0 */
+ result = (arg1 > 0.0) ? arg1 : 0;
+ }
+ else
+ {
+ /*
+ * On some platforms, exp() will not set errno but just return Inf or
+ * zero to report overflow/underflow; therefore, test both cases.
+ */
+ errno = 0;
+ result = exp(arg1);
+ if (unlikely(errno == ERANGE))
+ {
+ if (result != 0.0)
+ float_overflow_error();
+ else
+ float_underflow_error();
+ }
+ else if (unlikely(isinf(result)))
+ float_overflow_error();
+ else if (unlikely(result == 0.0))
+ float_underflow_error();
+ }
+
+ PG_RETURN_FLOAT8(result);
+}
+
+
+/*
+ * dlog1 - returns the natural logarithm of arg1
+ */
+Datum
+dlog1(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+
+ /*
+ * Emit particular SQLSTATE error codes for ln(). This is required by the
+ * SQL standard.
+ */
+ if (arg1 == 0.0)
+ ereport(ERROR,
+ (errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG),
+ errmsg("cannot take logarithm of zero")));
+ if (arg1 < 0)
+ ereport(ERROR,
+ (errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG),
+ errmsg("cannot take logarithm of a negative number")));
+
+ result = log(arg1);
+ if (unlikely(isinf(result)) && !isinf(arg1))
+ float_overflow_error();
+ if (unlikely(result == 0.0) && arg1 != 1.0)
+ float_underflow_error();
+
+ PG_RETURN_FLOAT8(result);
+}
+
+
+/*
+ * dlog10 - returns the base 10 logarithm of arg1
+ */
+Datum
+dlog10(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+
+ /*
+ * Emit particular SQLSTATE error codes for log(). The SQL spec doesn't
+ * define log(), but it does define ln(), so it makes sense to emit the
+ * same error code for an analogous error condition.
+ */
+ if (arg1 == 0.0)
+ ereport(ERROR,
+ (errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG),
+ errmsg("cannot take logarithm of zero")));
+ if (arg1 < 0)
+ ereport(ERROR,
+ (errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG),
+ errmsg("cannot take logarithm of a negative number")));
+
+ result = log10(arg1);
+ if (unlikely(isinf(result)) && !isinf(arg1))
+ float_overflow_error();
+ if (unlikely(result == 0.0) && arg1 != 1.0)
+ float_underflow_error();
+
+ PG_RETURN_FLOAT8(result);
+}
+
+
+/*
+ * dacos - returns the arccos of arg1 (radians)
+ */
+Datum
+dacos(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+
+ /* Per the POSIX spec, return NaN if the input is NaN */
+ if (isnan(arg1))
+ PG_RETURN_FLOAT8(get_float8_nan());
+
+ /*
+ * The principal branch of the inverse cosine function maps values in the
+ * range [-1, 1] to values in the range [0, Pi], so we should reject any
+ * inputs outside that range and the result will always be finite.
+ */
+ if (arg1 < -1.0 || arg1 > 1.0)
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("input is out of range")));
+
+ result = acos(arg1);
+ if (unlikely(isinf(result)))
+ float_overflow_error();
+
+ PG_RETURN_FLOAT8(result);
+}
+
+
+/*
+ * dasin - returns the arcsin of arg1 (radians)
+ */
+Datum
+dasin(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+
+ /* Per the POSIX spec, return NaN if the input is NaN */
+ if (isnan(arg1))
+ PG_RETURN_FLOAT8(get_float8_nan());
+
+ /*
+ * The principal branch of the inverse sine function maps values in the
+ * range [-1, 1] to values in the range [-Pi/2, Pi/2], so we should reject
+ * any inputs outside that range and the result will always be finite.
+ */
+ if (arg1 < -1.0 || arg1 > 1.0)
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("input is out of range")));
+
+ result = asin(arg1);
+ if (unlikely(isinf(result)))
+ float_overflow_error();
+
+ PG_RETURN_FLOAT8(result);
+}
+
+
+/*
+ * datan - returns the arctan of arg1 (radians)
+ */
+Datum
+datan(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+
+ /* Per the POSIX spec, return NaN if the input is NaN */
+ if (isnan(arg1))
+ PG_RETURN_FLOAT8(get_float8_nan());
+
+ /*
+ * The principal branch of the inverse tangent function maps all inputs to
+ * values in the range [-Pi/2, Pi/2], so the result should always be
+ * finite, even if the input is infinite.
+ */
+ result = atan(arg1);
+ if (unlikely(isinf(result)))
+ float_overflow_error();
+
+ PG_RETURN_FLOAT8(result);
+}
+
+
+/*
+ * atan2 - returns the arctan of arg1/arg2 (radians)
+ */
+Datum
+datan2(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 arg2 = PG_GETARG_FLOAT8(1);
+ float8 result;
+
+ /* Per the POSIX spec, return NaN if either input is NaN */
+ if (isnan(arg1) || isnan(arg2))
+ PG_RETURN_FLOAT8(get_float8_nan());
+
+ /*
+ * atan2 maps all inputs to values in the range [-Pi, Pi], so the result
+ * should always be finite, even if the inputs are infinite.
+ */
+ result = atan2(arg1, arg2);
+ if (unlikely(isinf(result)))
+ float_overflow_error();
+
+ PG_RETURN_FLOAT8(result);
+}
+
+
+/*
+ * dcos - returns the cosine of arg1 (radians)
+ */
+Datum
+dcos(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+
+ /* Per the POSIX spec, return NaN if the input is NaN */
+ if (isnan(arg1))
+ PG_RETURN_FLOAT8(get_float8_nan());
+
+ /*
+ * cos() is periodic and so theoretically can work for all finite inputs,
+ * but some implementations may choose to throw error if the input is so
+ * large that there are no significant digits in the result. So we should
+ * check for errors. POSIX allows an error to be reported either via
+ * errno or via fetestexcept(), but currently we only support checking
+ * errno. (fetestexcept() is rumored to report underflow unreasonably
+ * early on some platforms, so it's not clear that believing it would be a
+ * net improvement anyway.)
+ *
+ * For infinite inputs, POSIX specifies that the trigonometric functions
+ * should return a domain error; but we won't notice that unless the
+ * platform reports via errno, so also explicitly test for infinite
+ * inputs.
+ */
+ errno = 0;
+ result = cos(arg1);
+ if (errno != 0 || isinf(arg1))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("input is out of range")));
+ if (unlikely(isinf(result)))
+ float_overflow_error();
+
+ PG_RETURN_FLOAT8(result);
+}
+
+
+/*
+ * dcot - returns the cotangent of arg1 (radians)
+ */
+Datum
+dcot(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+
+ /* Per the POSIX spec, return NaN if the input is NaN */
+ if (isnan(arg1))
+ PG_RETURN_FLOAT8(get_float8_nan());
+
+ /* Be sure to throw an error if the input is infinite --- see dcos() */
+ errno = 0;
+ result = tan(arg1);
+ if (errno != 0 || isinf(arg1))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("input is out of range")));
+
+ result = 1.0 / result;
+ /* Not checking for overflow because cot(0) == Inf */
+
+ PG_RETURN_FLOAT8(result);
+}
+
+
+/*
+ * dsin - returns the sine of arg1 (radians)
+ */
+Datum
+dsin(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+
+ /* Per the POSIX spec, return NaN if the input is NaN */
+ if (isnan(arg1))
+ PG_RETURN_FLOAT8(get_float8_nan());
+
+ /* Be sure to throw an error if the input is infinite --- see dcos() */
+ errno = 0;
+ result = sin(arg1);
+ if (errno != 0 || isinf(arg1))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("input is out of range")));
+ if (unlikely(isinf(result)))
+ float_overflow_error();
+
+ PG_RETURN_FLOAT8(result);
+}
+
+
+/*
+ * dtan - returns the tangent of arg1 (radians)
+ */
+Datum
+dtan(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+
+ /* Per the POSIX spec, return NaN if the input is NaN */
+ if (isnan(arg1))
+ PG_RETURN_FLOAT8(get_float8_nan());
+
+ /* Be sure to throw an error if the input is infinite --- see dcos() */
+ errno = 0;
+ result = tan(arg1);
+ if (errno != 0 || isinf(arg1))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("input is out of range")));
+ /* Not checking for overflow because tan(pi/2) == Inf */
+
+ PG_RETURN_FLOAT8(result);
+}
+
+
+/* ========== DEGREE-BASED TRIGONOMETRIC FUNCTIONS ========== */
+
+
+/*
+ * Initialize the cached constants declared at the head of this file
+ * (sin_30 etc). The fact that we need those at all, let alone need this
+ * Rube-Goldberg-worthy method of initializing them, is because there are
+ * compilers out there that will precompute expressions such as sin(constant)
+ * using a sin() function different from what will be used at runtime. If we
+ * want exact results, we must ensure that none of the scaling constants used
+ * in the degree-based trig functions are computed that way. To do so, we
+ * compute them from the variables degree_c_thirty etc, which are also really
+ * constants, but the compiler cannot assume that.
+ *
+ * Other hazards we are trying to forestall with this kluge include the
+ * possibility that compilers will rearrange the expressions, or compute
+ * some intermediate results in registers wider than a standard double.
+ *
+ * In the places where we use these constants, the typical pattern is like
+ * volatile float8 sin_x = sin(x * RADIANS_PER_DEGREE);
+ * return (sin_x / sin_30);
+ * where we hope to get a value of exactly 1.0 from the division when x = 30.
+ * The volatile temporary variable is needed on machines with wide float
+ * registers, to ensure that the result of sin(x) is rounded to double width
+ * the same as the value of sin_30 has been. Experimentation with gcc shows
+ * that marking the temp variable volatile is necessary to make the store and
+ * reload actually happen; hopefully the same trick works for other compilers.
+ * (gcc's documentation suggests using the -ffloat-store compiler switch to
+ * ensure this, but that is compiler-specific and it also pessimizes code in
+ * many places where we don't care about this.)
+ */
+static void
+init_degree_constants(void)
+{
+ sin_30 = sin(degree_c_thirty * RADIANS_PER_DEGREE);
+ one_minus_cos_60 = 1.0 - cos(degree_c_sixty * RADIANS_PER_DEGREE);
+ asin_0_5 = asin(degree_c_one_half);
+ acos_0_5 = acos(degree_c_one_half);
+ atan_1_0 = atan(degree_c_one);
+ tan_45 = sind_q1(degree_c_forty_five) / cosd_q1(degree_c_forty_five);
+ cot_45 = cosd_q1(degree_c_forty_five) / sind_q1(degree_c_forty_five);
+ degree_consts_set = true;
+}
+
+#define INIT_DEGREE_CONSTANTS() \
+do { \
+ if (!degree_consts_set) \
+ init_degree_constants(); \
+} while(0)
+
+
+/*
+ * asind_q1 - returns the inverse sine of x in degrees, for x in
+ * the range [0, 1]. The result is an angle in the
+ * first quadrant --- [0, 90] degrees.
+ *
+ * For the 3 special case inputs (0, 0.5 and 1), this
+ * function will return exact values (0, 30 and 90
+ * degrees respectively).
+ */
+static double
+asind_q1(double x)
+{
+ /*
+ * Stitch together inverse sine and cosine functions for the ranges [0,
+ * 0.5] and (0.5, 1]. Each expression below is guaranteed to return
+ * exactly 30 for x=0.5, so the result is a continuous monotonic function
+ * over the full range.
+ */
+ if (x <= 0.5)
+ {
+ volatile float8 asin_x = asin(x);
+
+ return (asin_x / asin_0_5) * 30.0;
+ }
+ else
+ {
+ volatile float8 acos_x = acos(x);
+
+ return 90.0 - (acos_x / acos_0_5) * 60.0;
+ }
+}
+
+
+/*
+ * acosd_q1 - returns the inverse cosine of x in degrees, for x in
+ * the range [0, 1]. The result is an angle in the
+ * first quadrant --- [0, 90] degrees.
+ *
+ * For the 3 special case inputs (0, 0.5 and 1), this
+ * function will return exact values (0, 60 and 90
+ * degrees respectively).
+ */
+static double
+acosd_q1(double x)
+{
+ /*
+ * Stitch together inverse sine and cosine functions for the ranges [0,
+ * 0.5] and (0.5, 1]. Each expression below is guaranteed to return
+ * exactly 60 for x=0.5, so the result is a continuous monotonic function
+ * over the full range.
+ */
+ if (x <= 0.5)
+ {
+ volatile float8 asin_x = asin(x);
+
+ return 90.0 - (asin_x / asin_0_5) * 30.0;
+ }
+ else
+ {
+ volatile float8 acos_x = acos(x);
+
+ return (acos_x / acos_0_5) * 60.0;
+ }
+}
+
+
+/*
+ * dacosd - returns the arccos of arg1 (degrees)
+ */
+Datum
+dacosd(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+
+ /* Per the POSIX spec, return NaN if the input is NaN */
+ if (isnan(arg1))
+ PG_RETURN_FLOAT8(get_float8_nan());
+
+ INIT_DEGREE_CONSTANTS();
+
+ /*
+ * The principal branch of the inverse cosine function maps values in the
+ * range [-1, 1] to values in the range [0, 180], so we should reject any
+ * inputs outside that range and the result will always be finite.
+ */
+ if (arg1 < -1.0 || arg1 > 1.0)
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("input is out of range")));
+
+ if (arg1 >= 0.0)
+ result = acosd_q1(arg1);
+ else
+ result = 90.0 + asind_q1(-arg1);
+
+ if (unlikely(isinf(result)))
+ float_overflow_error();
+
+ PG_RETURN_FLOAT8(result);
+}
+
+
+/*
+ * dasind - returns the arcsin of arg1 (degrees)
+ */
+Datum
+dasind(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+
+ /* Per the POSIX spec, return NaN if the input is NaN */
+ if (isnan(arg1))
+ PG_RETURN_FLOAT8(get_float8_nan());
+
+ INIT_DEGREE_CONSTANTS();
+
+ /*
+ * The principal branch of the inverse sine function maps values in the
+ * range [-1, 1] to values in the range [-90, 90], so we should reject any
+ * inputs outside that range and the result will always be finite.
+ */
+ if (arg1 < -1.0 || arg1 > 1.0)
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("input is out of range")));
+
+ if (arg1 >= 0.0)
+ result = asind_q1(arg1);
+ else
+ result = -asind_q1(-arg1);
+
+ if (unlikely(isinf(result)))
+ float_overflow_error();
+
+ PG_RETURN_FLOAT8(result);
+}
+
+
+/*
+ * datand - returns the arctan of arg1 (degrees)
+ */
+Datum
+datand(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+ volatile float8 atan_arg1;
+
+ /* Per the POSIX spec, return NaN if the input is NaN */
+ if (isnan(arg1))
+ PG_RETURN_FLOAT8(get_float8_nan());
+
+ INIT_DEGREE_CONSTANTS();
+
+ /*
+ * The principal branch of the inverse tangent function maps all inputs to
+ * values in the range [-90, 90], so the result should always be finite,
+ * even if the input is infinite. Additionally, we take care to ensure
+ * than when arg1 is 1, the result is exactly 45.
+ */
+ atan_arg1 = atan(arg1);
+ result = (atan_arg1 / atan_1_0) * 45.0;
+
+ if (unlikely(isinf(result)))
+ float_overflow_error();
+
+ PG_RETURN_FLOAT8(result);
+}
+
+
+/*
+ * atan2d - returns the arctan of arg1/arg2 (degrees)
+ */
+Datum
+datan2d(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 arg2 = PG_GETARG_FLOAT8(1);
+ float8 result;
+ volatile float8 atan2_arg1_arg2;
+
+ /* Per the POSIX spec, return NaN if either input is NaN */
+ if (isnan(arg1) || isnan(arg2))
+ PG_RETURN_FLOAT8(get_float8_nan());
+
+ INIT_DEGREE_CONSTANTS();
+
+ /*
+ * atan2d maps all inputs to values in the range [-180, 180], so the
+ * result should always be finite, even if the inputs are infinite.
+ *
+ * Note: this coding assumes that atan(1.0) is a suitable scaling constant
+ * to get an exact result from atan2(). This might well fail on us at
+ * some point, requiring us to decide exactly what inputs we think we're
+ * going to guarantee an exact result for.
+ */
+ atan2_arg1_arg2 = atan2(arg1, arg2);
+ result = (atan2_arg1_arg2 / atan_1_0) * 45.0;
+
+ if (unlikely(isinf(result)))
+ float_overflow_error();
+
+ PG_RETURN_FLOAT8(result);
+}
+
+
+/*
+ * sind_0_to_30 - returns the sine of an angle that lies between 0 and
+ * 30 degrees. This will return exactly 0 when x is 0,
+ * and exactly 0.5 when x is 30 degrees.
+ */
+static double
+sind_0_to_30(double x)
+{
+ volatile float8 sin_x = sin(x * RADIANS_PER_DEGREE);
+
+ return (sin_x / sin_30) / 2.0;
+}
+
+
+/*
+ * cosd_0_to_60 - returns the cosine of an angle that lies between 0
+ * and 60 degrees. This will return exactly 1 when x
+ * is 0, and exactly 0.5 when x is 60 degrees.
+ */
+static double
+cosd_0_to_60(double x)
+{
+ volatile float8 one_minus_cos_x = 1.0 - cos(x * RADIANS_PER_DEGREE);
+
+ return 1.0 - (one_minus_cos_x / one_minus_cos_60) / 2.0;
+}
+
+
+/*
+ * sind_q1 - returns the sine of an angle in the first quadrant
+ * (0 to 90 degrees).
+ */
+static double
+sind_q1(double x)
+{
+ /*
+ * Stitch together the sine and cosine functions for the ranges [0, 30]
+ * and (30, 90]. These guarantee to return exact answers at their
+ * endpoints, so the overall result is a continuous monotonic function
+ * that gives exact results when x = 0, 30 and 90 degrees.
+ */
+ if (x <= 30.0)
+ return sind_0_to_30(x);
+ else
+ return cosd_0_to_60(90.0 - x);
+}
+
+
+/*
+ * cosd_q1 - returns the cosine of an angle in the first quadrant
+ * (0 to 90 degrees).
+ */
+static double
+cosd_q1(double x)
+{
+ /*
+ * Stitch together the sine and cosine functions for the ranges [0, 60]
+ * and (60, 90]. These guarantee to return exact answers at their
+ * endpoints, so the overall result is a continuous monotonic function
+ * that gives exact results when x = 0, 60 and 90 degrees.
+ */
+ if (x <= 60.0)
+ return cosd_0_to_60(x);
+ else
+ return sind_0_to_30(90.0 - x);
+}
+
+
+/*
+ * dcosd - returns the cosine of arg1 (degrees)
+ */
+Datum
+dcosd(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+ int sign = 1;
+
+ /*
+ * Per the POSIX spec, return NaN if the input is NaN and throw an error
+ * if the input is infinite.
+ */
+ if (isnan(arg1))
+ PG_RETURN_FLOAT8(get_float8_nan());
+
+ if (isinf(arg1))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("input is out of range")));
+
+ INIT_DEGREE_CONSTANTS();
+
+ /* Reduce the range of the input to [0,90] degrees */
+ arg1 = fmod(arg1, 360.0);
+
+ if (arg1 < 0.0)
+ {
+ /* cosd(-x) = cosd(x) */
+ arg1 = -arg1;
+ }
+
+ if (arg1 > 180.0)
+ {
+ /* cosd(360-x) = cosd(x) */
+ arg1 = 360.0 - arg1;
+ }
+
+ if (arg1 > 90.0)
+ {
+ /* cosd(180-x) = -cosd(x) */
+ arg1 = 180.0 - arg1;
+ sign = -sign;
+ }
+
+ result = sign * cosd_q1(arg1);
+
+ if (unlikely(isinf(result)))
+ float_overflow_error();
+
+ PG_RETURN_FLOAT8(result);
+}
+
+
+/*
+ * dcotd - returns the cotangent of arg1 (degrees)
+ */
+Datum
+dcotd(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+ volatile float8 cot_arg1;
+ int sign = 1;
+
+ /*
+ * Per the POSIX spec, return NaN if the input is NaN and throw an error
+ * if the input is infinite.
+ */
+ if (isnan(arg1))
+ PG_RETURN_FLOAT8(get_float8_nan());
+
+ if (isinf(arg1))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("input is out of range")));
+
+ INIT_DEGREE_CONSTANTS();
+
+ /* Reduce the range of the input to [0,90] degrees */
+ arg1 = fmod(arg1, 360.0);
+
+ if (arg1 < 0.0)
+ {
+ /* cotd(-x) = -cotd(x) */
+ arg1 = -arg1;
+ sign = -sign;
+ }
+
+ if (arg1 > 180.0)
+ {
+ /* cotd(360-x) = -cotd(x) */
+ arg1 = 360.0 - arg1;
+ sign = -sign;
+ }
+
+ if (arg1 > 90.0)
+ {
+ /* cotd(180-x) = -cotd(x) */
+ arg1 = 180.0 - arg1;
+ sign = -sign;
+ }
+
+ cot_arg1 = cosd_q1(arg1) / sind_q1(arg1);
+ result = sign * (cot_arg1 / cot_45);
+
+ /*
+ * On some machines we get cotd(270) = minus zero, but this isn't always
+ * true. For portability, and because the user constituency for this
+ * function probably doesn't want minus zero, force it to plain zero.
+ */
+ if (result == 0.0)
+ result = 0.0;
+
+ /* Not checking for overflow because cotd(0) == Inf */
+
+ PG_RETURN_FLOAT8(result);
+}
+
+
+/*
+ * dsind - returns the sine of arg1 (degrees)
+ */
+Datum
+dsind(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+ int sign = 1;
+
+ /*
+ * Per the POSIX spec, return NaN if the input is NaN and throw an error
+ * if the input is infinite.
+ */
+ if (isnan(arg1))
+ PG_RETURN_FLOAT8(get_float8_nan());
+
+ if (isinf(arg1))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("input is out of range")));
+
+ INIT_DEGREE_CONSTANTS();
+
+ /* Reduce the range of the input to [0,90] degrees */
+ arg1 = fmod(arg1, 360.0);
+
+ if (arg1 < 0.0)
+ {
+ /* sind(-x) = -sind(x) */
+ arg1 = -arg1;
+ sign = -sign;
+ }
+
+ if (arg1 > 180.0)
+ {
+ /* sind(360-x) = -sind(x) */
+ arg1 = 360.0 - arg1;
+ sign = -sign;
+ }
+
+ if (arg1 > 90.0)
+ {
+ /* sind(180-x) = sind(x) */
+ arg1 = 180.0 - arg1;
+ }
+
+ result = sign * sind_q1(arg1);
+
+ if (unlikely(isinf(result)))
+ float_overflow_error();
+
+ PG_RETURN_FLOAT8(result);
+}
+
+
+/*
+ * dtand - returns the tangent of arg1 (degrees)
+ */
+Datum
+dtand(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+ volatile float8 tan_arg1;
+ int sign = 1;
+
+ /*
+ * Per the POSIX spec, return NaN if the input is NaN and throw an error
+ * if the input is infinite.
+ */
+ if (isnan(arg1))
+ PG_RETURN_FLOAT8(get_float8_nan());
+
+ if (isinf(arg1))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("input is out of range")));
+
+ INIT_DEGREE_CONSTANTS();
+
+ /* Reduce the range of the input to [0,90] degrees */
+ arg1 = fmod(arg1, 360.0);
+
+ if (arg1 < 0.0)
+ {
+ /* tand(-x) = -tand(x) */
+ arg1 = -arg1;
+ sign = -sign;
+ }
+
+ if (arg1 > 180.0)
+ {
+ /* tand(360-x) = -tand(x) */
+ arg1 = 360.0 - arg1;
+ sign = -sign;
+ }
+
+ if (arg1 > 90.0)
+ {
+ /* tand(180-x) = -tand(x) */
+ arg1 = 180.0 - arg1;
+ sign = -sign;
+ }
+
+ tan_arg1 = sind_q1(arg1) / cosd_q1(arg1);
+ result = sign * (tan_arg1 / tan_45);
+
+ /*
+ * On some machines we get tand(180) = minus zero, but this isn't always
+ * true. For portability, and because the user constituency for this
+ * function probably doesn't want minus zero, force it to plain zero.
+ */
+ if (result == 0.0)
+ result = 0.0;
+
+ /* Not checking for overflow because tand(90) == Inf */
+
+ PG_RETURN_FLOAT8(result);
+}
+
+
+/*
+ * degrees - returns degrees converted from radians
+ */
+Datum
+degrees(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+
+ PG_RETURN_FLOAT8(float8_div(arg1, RADIANS_PER_DEGREE));
+}
+
+
+/*
+ * dpi - returns the constant PI
+ */
+Datum
+dpi(PG_FUNCTION_ARGS)
+{
+ PG_RETURN_FLOAT8(M_PI);
+}
+
+
+/*
+ * radians - returns radians converted from degrees
+ */
+Datum
+radians(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+
+ PG_RETURN_FLOAT8(float8_mul(arg1, RADIANS_PER_DEGREE));
+}
+
+
+/* ========== HYPERBOLIC FUNCTIONS ========== */
+
+
+/*
+ * dsinh - returns the hyperbolic sine of arg1
+ */
+Datum
+dsinh(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+
+ errno = 0;
+ result = sinh(arg1);
+
+ /*
+ * if an ERANGE error occurs, it means there is an overflow. For sinh,
+ * the result should be either -infinity or infinity, depending on the
+ * sign of arg1.
+ */
+ if (errno == ERANGE)
+ {
+ if (arg1 < 0)
+ result = -get_float8_infinity();
+ else
+ result = get_float8_infinity();
+ }
+
+ PG_RETURN_FLOAT8(result);
+}
+
+
+/*
+ * dcosh - returns the hyperbolic cosine of arg1
+ */
+Datum
+dcosh(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+
+ errno = 0;
+ result = cosh(arg1);
+
+ /*
+ * if an ERANGE error occurs, it means there is an overflow. As cosh is
+ * always positive, it always means the result is positive infinity.
+ */
+ if (errno == ERANGE)
+ result = get_float8_infinity();
+
+ if (unlikely(result == 0.0))
+ float_underflow_error();
+
+ PG_RETURN_FLOAT8(result);
+}
+
+/*
+ * dtanh - returns the hyperbolic tangent of arg1
+ */
+Datum
+dtanh(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+
+ /*
+ * For tanh, we don't need an errno check because it never overflows.
+ */
+ result = tanh(arg1);
+
+ if (unlikely(isinf(result)))
+ float_overflow_error();
+
+ PG_RETURN_FLOAT8(result);
+}
+
+/*
+ * dasinh - returns the inverse hyperbolic sine of arg1
+ */
+Datum
+dasinh(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+
+ /*
+ * For asinh, we don't need an errno check because it never overflows.
+ */
+ result = asinh(arg1);
+
+ PG_RETURN_FLOAT8(result);
+}
+
+/*
+ * dacosh - returns the inverse hyperbolic cosine of arg1
+ */
+Datum
+dacosh(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+
+ /*
+ * acosh is only defined for inputs >= 1.0. By checking this ourselves,
+ * we need not worry about checking for an EDOM error, which is a good
+ * thing because some implementations will report that for NaN. Otherwise,
+ * no error is possible.
+ */
+ if (arg1 < 1.0)
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("input is out of range")));
+
+ result = acosh(arg1);
+
+ PG_RETURN_FLOAT8(result);
+}
+
+/*
+ * datanh - returns the inverse hyperbolic tangent of arg1
+ */
+Datum
+datanh(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+
+ /*
+ * atanh is only defined for inputs between -1 and 1. By checking this
+ * ourselves, we need not worry about checking for an EDOM error, which is
+ * a good thing because some implementations will report that for NaN.
+ */
+ if (arg1 < -1.0 || arg1 > 1.0)
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("input is out of range")));
+
+ /*
+ * Also handle the infinity cases ourselves; this is helpful because old
+ * glibc versions may produce the wrong errno for this. All other inputs
+ * cannot produce an error.
+ */
+ if (arg1 == -1.0)
+ result = -get_float8_infinity();
+ else if (arg1 == 1.0)
+ result = get_float8_infinity();
+ else
+ result = atanh(arg1);
+
+ PG_RETURN_FLOAT8(result);
+}
+
+
+/* ========== ERROR FUNCTIONS ========== */
+
+
+/*
+ * derf - returns the error function: erf(arg1)
+ */
+Datum
+derf(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+
+ /*
+ * For erf, we don't need an errno check because it never overflows.
+ */
+ result = erf(arg1);
+
+ if (unlikely(isinf(result)))
+ float_overflow_error();
+
+ PG_RETURN_FLOAT8(result);
+}
+
+/*
+ * derfc - returns the complementary error function: 1 - erf(arg1)
+ */
+Datum
+derfc(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float8 result;
+
+ /*
+ * For erfc, we don't need an errno check because it never overflows.
+ */
+ result = erfc(arg1);
+
+ if (unlikely(isinf(result)))
+ float_overflow_error();
+
+ PG_RETURN_FLOAT8(result);
+}
+
+
+/* ========== RANDOM FUNCTIONS ========== */
+
+
+/*
+ * initialize_drandom_seed - initialize drandom_seed if not yet done
+ */
+static void
+initialize_drandom_seed(void)
+{
+ /* Initialize random seed, if not done yet in this process */
+ if (unlikely(!drandom_seed_set))
+ {
+ /*
+ * If possible, initialize the seed using high-quality random bits.
+ * Should that fail for some reason, we fall back on a lower-quality
+ * seed based on current time and PID.
+ */
+ if (unlikely(!pg_prng_strong_seed(&drandom_seed)))
+ {
+ TimestampTz now = GetCurrentTimestamp();
+ uint64 iseed;
+
+ /* Mix the PID with the most predictable bits of the timestamp */
+ iseed = (uint64) now ^ ((uint64) MyProcPid << 32);
+ pg_prng_seed(&drandom_seed, iseed);
+ }
+ drandom_seed_set = true;
+ }
+}
+
+/*
+ * drandom - returns a random number
+ */
+Datum
+drandom(PG_FUNCTION_ARGS)
+{
+ float8 result;
+
+ initialize_drandom_seed();
+
+ /* pg_prng_double produces desired result range [0.0 - 1.0) */
+ result = pg_prng_double(&drandom_seed);
+
+ PG_RETURN_FLOAT8(result);
+}
+
+/*
+ * drandom_normal - returns a random number from a normal distribution
+ */
+Datum
+drandom_normal(PG_FUNCTION_ARGS)
+{
+ float8 mean = PG_GETARG_FLOAT8(0);
+ float8 stddev = PG_GETARG_FLOAT8(1);
+ float8 result,
+ z;
+
+ initialize_drandom_seed();
+
+ /* Get random value from standard normal(mean = 0.0, stddev = 1.0) */
+ z = pg_prng_double_normal(&drandom_seed);
+ /* Transform the normal standard variable (z) */
+ /* using the target normal distribution parameters */
+ result = (stddev * z) + mean;
+
+ PG_RETURN_FLOAT8(result);
+}
+
+/*
+ * setseed - set seed for the random number generator
+ */
+Datum
+setseed(PG_FUNCTION_ARGS)
+{
+ float8 seed = PG_GETARG_FLOAT8(0);
+
+ if (seed < -1 || seed > 1 || isnan(seed))
+ ereport(ERROR,
+ (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
+ errmsg("setseed parameter %g is out of allowed range [-1,1]",
+ seed)));
+
+ pg_prng_fseed(&drandom_seed, seed);
+ drandom_seed_set = true;
+
+ PG_RETURN_VOID();
+}
+
+
+
+/*
+ * =========================
+ * FLOAT AGGREGATE OPERATORS
+ * =========================
+ *
+ * float8_accum - accumulate for AVG(), variance aggregates, etc.
+ * float4_accum - same, but input data is float4
+ * float8_avg - produce final result for float AVG()
+ * float8_var_samp - produce final result for float VAR_SAMP()
+ * float8_var_pop - produce final result for float VAR_POP()
+ * float8_stddev_samp - produce final result for float STDDEV_SAMP()
+ * float8_stddev_pop - produce final result for float STDDEV_POP()
+ *
+ * The naive schoolbook implementation of these aggregates works by
+ * accumulating sum(X) and sum(X^2). However, this approach suffers from
+ * large rounding errors in the final computation of quantities like the
+ * population variance (N*sum(X^2) - sum(X)^2) / N^2, since each of the
+ * intermediate terms is potentially very large, while the difference is often
+ * quite small.
+ *
+ * Instead we use the Youngs-Cramer algorithm [1] which works by accumulating
+ * Sx=sum(X) and Sxx=sum((X-Sx/N)^2), using a numerically stable algorithm to
+ * incrementally update those quantities. The final computations of each of
+ * the aggregate values is then trivial and gives more accurate results (for
+ * example, the population variance is just Sxx/N). This algorithm is also
+ * fairly easy to generalize to allow parallel execution without loss of
+ * precision (see, for example, [2]). For more details, and a comparison of
+ * this with other algorithms, see [3].
+ *
+ * The transition datatype for all these aggregates is a 3-element array
+ * of float8, holding the values N, Sx, Sxx in that order.
+ *
+ * Note that we represent N as a float to avoid having to build a special
+ * datatype. Given a reasonable floating-point implementation, there should
+ * be no accuracy loss unless N exceeds 2 ^ 52 or so (by which time the
+ * user will have doubtless lost interest anyway...)
+ *
+ * [1] Some Results Relevant to Choice of Sum and Sum-of-Product Algorithms,
+ * E. A. Youngs and E. M. Cramer, Technometrics Vol 13, No 3, August 1971.
+ *
+ * [2] Updating Formulae and a Pairwise Algorithm for Computing Sample
+ * Variances, T. F. Chan, G. H. Golub & R. J. LeVeque, COMPSTAT 1982.
+ *
+ * [3] Numerically Stable Parallel Computation of (Co-)Variance, Erich
+ * Schubert and Michael Gertz, Proceedings of the 30th International
+ * Conference on Scientific and Statistical Database Management, 2018.
+ */
+
+static float8 *
+check_float8_array(ArrayType *transarray, const char *caller, int n)
+{
+ /*
+ * We expect the input to be an N-element float array; verify that. We
+ * don't need to use deconstruct_array() since the array data is just
+ * going to look like a C array of N float8 values.
+ */
+ if (ARR_NDIM(transarray) != 1 ||
+ ARR_DIMS(transarray)[0] != n ||
+ ARR_HASNULL(transarray) ||
+ ARR_ELEMTYPE(transarray) != FLOAT8OID)
+ elog(ERROR, "%s: expected %d-element float8 array", caller, n);
+ return (float8 *) ARR_DATA_PTR(transarray);
+}
+
+/*
+ * float8_combine
+ *
+ * An aggregate combine function used to combine two 3 fields
+ * aggregate transition data into a single transition data.
+ * This function is used only in two stage aggregation and
+ * shouldn't be called outside aggregate context.
+ */
+Datum
+float8_combine(PG_FUNCTION_ARGS)
+{
+ ArrayType *transarray1 = PG_GETARG_ARRAYTYPE_P(0);
+ ArrayType *transarray2 = PG_GETARG_ARRAYTYPE_P(1);
+ float8 *transvalues1;
+ float8 *transvalues2;
+ float8 N1,
+ Sx1,
+ Sxx1,
+ N2,
+ Sx2,
+ Sxx2,
+ tmp,
+ N,
+ Sx,
+ Sxx;
+
+ transvalues1 = check_float8_array(transarray1, "float8_combine", 3);
+ transvalues2 = check_float8_array(transarray2, "float8_combine", 3);
+
+ N1 = transvalues1[0];
+ Sx1 = transvalues1[1];
+ Sxx1 = transvalues1[2];
+
+ N2 = transvalues2[0];
+ Sx2 = transvalues2[1];
+ Sxx2 = transvalues2[2];
+
+ /*--------------------
+ * The transition values combine using a generalization of the
+ * Youngs-Cramer algorithm as follows:
+ *
+ * N = N1 + N2
+ * Sx = Sx1 + Sx2
+ * Sxx = Sxx1 + Sxx2 + N1 * N2 * (Sx1/N1 - Sx2/N2)^2 / N;
+ *
+ * It's worth handling the special cases N1 = 0 and N2 = 0 separately
+ * since those cases are trivial, and we then don't need to worry about
+ * division-by-zero errors in the general case.
+ *--------------------
+ */
+ if (N1 == 0.0)
+ {
+ N = N2;
+ Sx = Sx2;
+ Sxx = Sxx2;
+ }
+ else if (N2 == 0.0)
+ {
+ N = N1;
+ Sx = Sx1;
+ Sxx = Sxx1;
+ }
+ else
+ {
+ N = N1 + N2;
+ Sx = float8_pl(Sx1, Sx2);
+ tmp = Sx1 / N1 - Sx2 / N2;
+ Sxx = Sxx1 + Sxx2 + N1 * N2 * tmp * tmp / N;
+ if (unlikely(isinf(Sxx)) && !isinf(Sxx1) && !isinf(Sxx2))
+ float_overflow_error();
+ }
+
+ /*
+ * If we're invoked as an aggregate, we can cheat and modify our first
+ * parameter in-place to reduce palloc overhead. Otherwise we construct a
+ * new array with the updated transition data and return it.
+ */
+ if (AggCheckCallContext(fcinfo, NULL))
+ {
+ transvalues1[0] = N;
+ transvalues1[1] = Sx;
+ transvalues1[2] = Sxx;
+
+ PG_RETURN_ARRAYTYPE_P(transarray1);
+ }
+ else
+ {
+ Datum transdatums[3];
+ ArrayType *result;
+
+ transdatums[0] = Float8GetDatumFast(N);
+ transdatums[1] = Float8GetDatumFast(Sx);
+ transdatums[2] = Float8GetDatumFast(Sxx);
+
+ result = construct_array(transdatums, 3,
+ FLOAT8OID,
+ sizeof(float8), FLOAT8PASSBYVAL, TYPALIGN_DOUBLE);
+
+ PG_RETURN_ARRAYTYPE_P(result);
+ }
+}
+
+Datum
+float8_accum(PG_FUNCTION_ARGS)
+{
+ ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
+ float8 newval = PG_GETARG_FLOAT8(1);
+ float8 *transvalues;
+ float8 N,
+ Sx,
+ Sxx,
+ tmp;
+
+ transvalues = check_float8_array(transarray, "float8_accum", 3);
+ N = transvalues[0];
+ Sx = transvalues[1];
+ Sxx = transvalues[2];
+
+ /*
+ * Use the Youngs-Cramer algorithm to incorporate the new value into the
+ * transition values.
+ */
+ N += 1.0;
+ Sx += newval;
+ if (transvalues[0] > 0.0)
+ {
+ tmp = newval * N - Sx;
+ Sxx += tmp * tmp / (N * transvalues[0]);
+
+ /*
+ * Overflow check. We only report an overflow error when finite
+ * inputs lead to infinite results. Note also that Sxx should be NaN
+ * if any of the inputs are infinite, so we intentionally prevent Sxx
+ * from becoming infinite.
+ */
+ if (isinf(Sx) || isinf(Sxx))
+ {
+ if (!isinf(transvalues[1]) && !isinf(newval))
+ float_overflow_error();
+
+ Sxx = get_float8_nan();
+ }
+ }
+ else
+ {
+ /*
+ * At the first input, we normally can leave Sxx as 0. However, if
+ * the first input is Inf or NaN, we'd better force Sxx to NaN;
+ * otherwise we will falsely report variance zero when there are no
+ * more inputs.
+ */
+ if (isnan(newval) || isinf(newval))
+ Sxx = get_float8_nan();
+ }
+
+ /*
+ * If we're invoked as an aggregate, we can cheat and modify our first
+ * parameter in-place to reduce palloc overhead. Otherwise we construct a
+ * new array with the updated transition data and return it.
+ */
+ if (AggCheckCallContext(fcinfo, NULL))
+ {
+ transvalues[0] = N;
+ transvalues[1] = Sx;
+ transvalues[2] = Sxx;
+
+ PG_RETURN_ARRAYTYPE_P(transarray);
+ }
+ else
+ {
+ Datum transdatums[3];
+ ArrayType *result;
+
+ transdatums[0] = Float8GetDatumFast(N);
+ transdatums[1] = Float8GetDatumFast(Sx);
+ transdatums[2] = Float8GetDatumFast(Sxx);
+
+ result = construct_array(transdatums, 3,
+ FLOAT8OID,
+ sizeof(float8), FLOAT8PASSBYVAL, TYPALIGN_DOUBLE);
+
+ PG_RETURN_ARRAYTYPE_P(result);
+ }
+}
+
+Datum
+float4_accum(PG_FUNCTION_ARGS)
+{
+ ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
+
+ /* do computations as float8 */
+ float8 newval = PG_GETARG_FLOAT4(1);
+ float8 *transvalues;
+ float8 N,
+ Sx,
+ Sxx,
+ tmp;
+
+ transvalues = check_float8_array(transarray, "float4_accum", 3);
+ N = transvalues[0];
+ Sx = transvalues[1];
+ Sxx = transvalues[2];
+
+ /*
+ * Use the Youngs-Cramer algorithm to incorporate the new value into the
+ * transition values.
+ */
+ N += 1.0;
+ Sx += newval;
+ if (transvalues[0] > 0.0)
+ {
+ tmp = newval * N - Sx;
+ Sxx += tmp * tmp / (N * transvalues[0]);
+
+ /*
+ * Overflow check. We only report an overflow error when finite
+ * inputs lead to infinite results. Note also that Sxx should be NaN
+ * if any of the inputs are infinite, so we intentionally prevent Sxx
+ * from becoming infinite.
+ */
+ if (isinf(Sx) || isinf(Sxx))
+ {
+ if (!isinf(transvalues[1]) && !isinf(newval))
+ float_overflow_error();
+
+ Sxx = get_float8_nan();
+ }
+ }
+ else
+ {
+ /*
+ * At the first input, we normally can leave Sxx as 0. However, if
+ * the first input is Inf or NaN, we'd better force Sxx to NaN;
+ * otherwise we will falsely report variance zero when there are no
+ * more inputs.
+ */
+ if (isnan(newval) || isinf(newval))
+ Sxx = get_float8_nan();
+ }
+
+ /*
+ * If we're invoked as an aggregate, we can cheat and modify our first
+ * parameter in-place to reduce palloc overhead. Otherwise we construct a
+ * new array with the updated transition data and return it.
+ */
+ if (AggCheckCallContext(fcinfo, NULL))
+ {
+ transvalues[0] = N;
+ transvalues[1] = Sx;
+ transvalues[2] = Sxx;
+
+ PG_RETURN_ARRAYTYPE_P(transarray);
+ }
+ else
+ {
+ Datum transdatums[3];
+ ArrayType *result;
+
+ transdatums[0] = Float8GetDatumFast(N);
+ transdatums[1] = Float8GetDatumFast(Sx);
+ transdatums[2] = Float8GetDatumFast(Sxx);
+
+ result = construct_array(transdatums, 3,
+ FLOAT8OID,
+ sizeof(float8), FLOAT8PASSBYVAL, TYPALIGN_DOUBLE);
+
+ PG_RETURN_ARRAYTYPE_P(result);
+ }
+}
+
+Datum
+float8_avg(PG_FUNCTION_ARGS)
+{
+ ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
+ float8 *transvalues;
+ float8 N,
+ Sx;
+
+ transvalues = check_float8_array(transarray, "float8_avg", 3);
+ N = transvalues[0];
+ Sx = transvalues[1];
+ /* ignore Sxx */
+
+ /* SQL defines AVG of no values to be NULL */
+ if (N == 0.0)
+ PG_RETURN_NULL();
+
+ PG_RETURN_FLOAT8(Sx / N);
+}
+
+Datum
+float8_var_pop(PG_FUNCTION_ARGS)
+{
+ ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
+ float8 *transvalues;
+ float8 N,
+ Sxx;
+
+ transvalues = check_float8_array(transarray, "float8_var_pop", 3);
+ N = transvalues[0];
+ /* ignore Sx */
+ Sxx = transvalues[2];
+
+ /* Population variance is undefined when N is 0, so return NULL */
+ if (N == 0.0)
+ PG_RETURN_NULL();
+
+ /* Note that Sxx is guaranteed to be non-negative */
+
+ PG_RETURN_FLOAT8(Sxx / N);
+}
+
+Datum
+float8_var_samp(PG_FUNCTION_ARGS)
+{
+ ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
+ float8 *transvalues;
+ float8 N,
+ Sxx;
+
+ transvalues = check_float8_array(transarray, "float8_var_samp", 3);
+ N = transvalues[0];
+ /* ignore Sx */
+ Sxx = transvalues[2];
+
+ /* Sample variance is undefined when N is 0 or 1, so return NULL */
+ if (N <= 1.0)
+ PG_RETURN_NULL();
+
+ /* Note that Sxx is guaranteed to be non-negative */
+
+ PG_RETURN_FLOAT8(Sxx / (N - 1.0));
+}
+
+Datum
+float8_stddev_pop(PG_FUNCTION_ARGS)
+{
+ ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
+ float8 *transvalues;
+ float8 N,
+ Sxx;
+
+ transvalues = check_float8_array(transarray, "float8_stddev_pop", 3);
+ N = transvalues[0];
+ /* ignore Sx */
+ Sxx = transvalues[2];
+
+ /* Population stddev is undefined when N is 0, so return NULL */
+ if (N == 0.0)
+ PG_RETURN_NULL();
+
+ /* Note that Sxx is guaranteed to be non-negative */
+
+ PG_RETURN_FLOAT8(sqrt(Sxx / N));
+}
+
+Datum
+float8_stddev_samp(PG_FUNCTION_ARGS)
+{
+ ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
+ float8 *transvalues;
+ float8 N,
+ Sxx;
+
+ transvalues = check_float8_array(transarray, "float8_stddev_samp", 3);
+ N = transvalues[0];
+ /* ignore Sx */
+ Sxx = transvalues[2];
+
+ /* Sample stddev is undefined when N is 0 or 1, so return NULL */
+ if (N <= 1.0)
+ PG_RETURN_NULL();
+
+ /* Note that Sxx is guaranteed to be non-negative */
+
+ PG_RETURN_FLOAT8(sqrt(Sxx / (N - 1.0)));
+}
+
+/*
+ * =========================
+ * SQL2003 BINARY AGGREGATES
+ * =========================
+ *
+ * As with the preceding aggregates, we use the Youngs-Cramer algorithm to
+ * reduce rounding errors in the aggregate final functions.
+ *
+ * The transition datatype for all these aggregates is a 6-element array of
+ * float8, holding the values N, Sx=sum(X), Sxx=sum((X-Sx/N)^2), Sy=sum(Y),
+ * Syy=sum((Y-Sy/N)^2), Sxy=sum((X-Sx/N)*(Y-Sy/N)) in that order.
+ *
+ * Note that Y is the first argument to all these aggregates!
+ *
+ * It might seem attractive to optimize this by having multiple accumulator
+ * functions that only calculate the sums actually needed. But on most
+ * modern machines, a couple of extra floating-point multiplies will be
+ * insignificant compared to the other per-tuple overhead, so I've chosen
+ * to minimize code space instead.
+ */
+
+Datum
+float8_regr_accum(PG_FUNCTION_ARGS)
+{
+ ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
+ float8 newvalY = PG_GETARG_FLOAT8(1);
+ float8 newvalX = PG_GETARG_FLOAT8(2);
+ float8 *transvalues;
+ float8 N,
+ Sx,
+ Sxx,
+ Sy,
+ Syy,
+ Sxy,
+ tmpX,
+ tmpY,
+ scale;
+
+ transvalues = check_float8_array(transarray, "float8_regr_accum", 6);
+ N = transvalues[0];
+ Sx = transvalues[1];
+ Sxx = transvalues[2];
+ Sy = transvalues[3];
+ Syy = transvalues[4];
+ Sxy = transvalues[5];
+
+ /*
+ * Use the Youngs-Cramer algorithm to incorporate the new values into the
+ * transition values.
+ */
+ N += 1.0;
+ Sx += newvalX;
+ Sy += newvalY;
+ if (transvalues[0] > 0.0)
+ {
+ tmpX = newvalX * N - Sx;
+ tmpY = newvalY * N - Sy;
+ scale = 1.0 / (N * transvalues[0]);
+ Sxx += tmpX * tmpX * scale;
+ Syy += tmpY * tmpY * scale;
+ Sxy += tmpX * tmpY * scale;
+
+ /*
+ * Overflow check. We only report an overflow error when finite
+ * inputs lead to infinite results. Note also that Sxx, Syy and Sxy
+ * should be NaN if any of the relevant inputs are infinite, so we
+ * intentionally prevent them from becoming infinite.
+ */
+ if (isinf(Sx) || isinf(Sxx) || isinf(Sy) || isinf(Syy) || isinf(Sxy))
+ {
+ if (((isinf(Sx) || isinf(Sxx)) &&
+ !isinf(transvalues[1]) && !isinf(newvalX)) ||
+ ((isinf(Sy) || isinf(Syy)) &&
+ !isinf(transvalues[3]) && !isinf(newvalY)) ||
+ (isinf(Sxy) &&
+ !isinf(transvalues[1]) && !isinf(newvalX) &&
+ !isinf(transvalues[3]) && !isinf(newvalY)))
+ float_overflow_error();
+
+ if (isinf(Sxx))
+ Sxx = get_float8_nan();
+ if (isinf(Syy))
+ Syy = get_float8_nan();
+ if (isinf(Sxy))
+ Sxy = get_float8_nan();
+ }
+ }
+ else
+ {
+ /*
+ * At the first input, we normally can leave Sxx et al as 0. However,
+ * if the first input is Inf or NaN, we'd better force the dependent
+ * sums to NaN; otherwise we will falsely report variance zero when
+ * there are no more inputs.
+ */
+ if (isnan(newvalX) || isinf(newvalX))
+ Sxx = Sxy = get_float8_nan();
+ if (isnan(newvalY) || isinf(newvalY))
+ Syy = Sxy = get_float8_nan();
+ }
+
+ /*
+ * If we're invoked as an aggregate, we can cheat and modify our first
+ * parameter in-place to reduce palloc overhead. Otherwise we construct a
+ * new array with the updated transition data and return it.
+ */
+ if (AggCheckCallContext(fcinfo, NULL))
+ {
+ transvalues[0] = N;
+ transvalues[1] = Sx;
+ transvalues[2] = Sxx;
+ transvalues[3] = Sy;
+ transvalues[4] = Syy;
+ transvalues[5] = Sxy;
+
+ PG_RETURN_ARRAYTYPE_P(transarray);
+ }
+ else
+ {
+ Datum transdatums[6];
+ ArrayType *result;
+
+ transdatums[0] = Float8GetDatumFast(N);
+ transdatums[1] = Float8GetDatumFast(Sx);
+ transdatums[2] = Float8GetDatumFast(Sxx);
+ transdatums[3] = Float8GetDatumFast(Sy);
+ transdatums[4] = Float8GetDatumFast(Syy);
+ transdatums[5] = Float8GetDatumFast(Sxy);
+
+ result = construct_array(transdatums, 6,
+ FLOAT8OID,
+ sizeof(float8), FLOAT8PASSBYVAL, TYPALIGN_DOUBLE);
+
+ PG_RETURN_ARRAYTYPE_P(result);
+ }
+}
+
+/*
+ * float8_regr_combine
+ *
+ * An aggregate combine function used to combine two 6 fields
+ * aggregate transition data into a single transition data.
+ * This function is used only in two stage aggregation and
+ * shouldn't be called outside aggregate context.
+ */
+Datum
+float8_regr_combine(PG_FUNCTION_ARGS)
+{
+ ArrayType *transarray1 = PG_GETARG_ARRAYTYPE_P(0);
+ ArrayType *transarray2 = PG_GETARG_ARRAYTYPE_P(1);
+ float8 *transvalues1;
+ float8 *transvalues2;
+ float8 N1,
+ Sx1,
+ Sxx1,
+ Sy1,
+ Syy1,
+ Sxy1,
+ N2,
+ Sx2,
+ Sxx2,
+ Sy2,
+ Syy2,
+ Sxy2,
+ tmp1,
+ tmp2,
+ N,
+ Sx,
+ Sxx,
+ Sy,
+ Syy,
+ Sxy;
+
+ transvalues1 = check_float8_array(transarray1, "float8_regr_combine", 6);
+ transvalues2 = check_float8_array(transarray2, "float8_regr_combine", 6);
+
+ N1 = transvalues1[0];
+ Sx1 = transvalues1[1];
+ Sxx1 = transvalues1[2];
+ Sy1 = transvalues1[3];
+ Syy1 = transvalues1[4];
+ Sxy1 = transvalues1[5];
+
+ N2 = transvalues2[0];
+ Sx2 = transvalues2[1];
+ Sxx2 = transvalues2[2];
+ Sy2 = transvalues2[3];
+ Syy2 = transvalues2[4];
+ Sxy2 = transvalues2[5];
+
+ /*--------------------
+ * The transition values combine using a generalization of the
+ * Youngs-Cramer algorithm as follows:
+ *
+ * N = N1 + N2
+ * Sx = Sx1 + Sx2
+ * Sxx = Sxx1 + Sxx2 + N1 * N2 * (Sx1/N1 - Sx2/N2)^2 / N
+ * Sy = Sy1 + Sy2
+ * Syy = Syy1 + Syy2 + N1 * N2 * (Sy1/N1 - Sy2/N2)^2 / N
+ * Sxy = Sxy1 + Sxy2 + N1 * N2 * (Sx1/N1 - Sx2/N2) * (Sy1/N1 - Sy2/N2) / N
+ *
+ * It's worth handling the special cases N1 = 0 and N2 = 0 separately
+ * since those cases are trivial, and we then don't need to worry about
+ * division-by-zero errors in the general case.
+ *--------------------
+ */
+ if (N1 == 0.0)
+ {
+ N = N2;
+ Sx = Sx2;
+ Sxx = Sxx2;
+ Sy = Sy2;
+ Syy = Syy2;
+ Sxy = Sxy2;
+ }
+ else if (N2 == 0.0)
+ {
+ N = N1;
+ Sx = Sx1;
+ Sxx = Sxx1;
+ Sy = Sy1;
+ Syy = Syy1;
+ Sxy = Sxy1;
+ }
+ else
+ {
+ N = N1 + N2;
+ Sx = float8_pl(Sx1, Sx2);
+ tmp1 = Sx1 / N1 - Sx2 / N2;
+ Sxx = Sxx1 + Sxx2 + N1 * N2 * tmp1 * tmp1 / N;
+ if (unlikely(isinf(Sxx)) && !isinf(Sxx1) && !isinf(Sxx2))
+ float_overflow_error();
+ Sy = float8_pl(Sy1, Sy2);
+ tmp2 = Sy1 / N1 - Sy2 / N2;
+ Syy = Syy1 + Syy2 + N1 * N2 * tmp2 * tmp2 / N;
+ if (unlikely(isinf(Syy)) && !isinf(Syy1) && !isinf(Syy2))
+ float_overflow_error();
+ Sxy = Sxy1 + Sxy2 + N1 * N2 * tmp1 * tmp2 / N;
+ if (unlikely(isinf(Sxy)) && !isinf(Sxy1) && !isinf(Sxy2))
+ float_overflow_error();
+ }
+
+ /*
+ * If we're invoked as an aggregate, we can cheat and modify our first
+ * parameter in-place to reduce palloc overhead. Otherwise we construct a
+ * new array with the updated transition data and return it.
+ */
+ if (AggCheckCallContext(fcinfo, NULL))
+ {
+ transvalues1[0] = N;
+ transvalues1[1] = Sx;
+ transvalues1[2] = Sxx;
+ transvalues1[3] = Sy;
+ transvalues1[4] = Syy;
+ transvalues1[5] = Sxy;
+
+ PG_RETURN_ARRAYTYPE_P(transarray1);
+ }
+ else
+ {
+ Datum transdatums[6];
+ ArrayType *result;
+
+ transdatums[0] = Float8GetDatumFast(N);
+ transdatums[1] = Float8GetDatumFast(Sx);
+ transdatums[2] = Float8GetDatumFast(Sxx);
+ transdatums[3] = Float8GetDatumFast(Sy);
+ transdatums[4] = Float8GetDatumFast(Syy);
+ transdatums[5] = Float8GetDatumFast(Sxy);
+
+ result = construct_array(transdatums, 6,
+ FLOAT8OID,
+ sizeof(float8), FLOAT8PASSBYVAL, TYPALIGN_DOUBLE);
+
+ PG_RETURN_ARRAYTYPE_P(result);
+ }
+}
+
+
+Datum
+float8_regr_sxx(PG_FUNCTION_ARGS)
+{
+ ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
+ float8 *transvalues;
+ float8 N,
+ Sxx;
+
+ transvalues = check_float8_array(transarray, "float8_regr_sxx", 6);
+ N = transvalues[0];
+ Sxx = transvalues[2];
+
+ /* if N is 0 we should return NULL */
+ if (N < 1.0)
+ PG_RETURN_NULL();
+
+ /* Note that Sxx is guaranteed to be non-negative */
+
+ PG_RETURN_FLOAT8(Sxx);
+}
+
+Datum
+float8_regr_syy(PG_FUNCTION_ARGS)
+{
+ ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
+ float8 *transvalues;
+ float8 N,
+ Syy;
+
+ transvalues = check_float8_array(transarray, "float8_regr_syy", 6);
+ N = transvalues[0];
+ Syy = transvalues[4];
+
+ /* if N is 0 we should return NULL */
+ if (N < 1.0)
+ PG_RETURN_NULL();
+
+ /* Note that Syy is guaranteed to be non-negative */
+
+ PG_RETURN_FLOAT8(Syy);
+}
+
+Datum
+float8_regr_sxy(PG_FUNCTION_ARGS)
+{
+ ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
+ float8 *transvalues;
+ float8 N,
+ Sxy;
+
+ transvalues = check_float8_array(transarray, "float8_regr_sxy", 6);
+ N = transvalues[0];
+ Sxy = transvalues[5];
+
+ /* if N is 0 we should return NULL */
+ if (N < 1.0)
+ PG_RETURN_NULL();
+
+ /* A negative result is valid here */
+
+ PG_RETURN_FLOAT8(Sxy);
+}
+
+Datum
+float8_regr_avgx(PG_FUNCTION_ARGS)
+{
+ ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
+ float8 *transvalues;
+ float8 N,
+ Sx;
+
+ transvalues = check_float8_array(transarray, "float8_regr_avgx", 6);
+ N = transvalues[0];
+ Sx = transvalues[1];
+
+ /* if N is 0 we should return NULL */
+ if (N < 1.0)
+ PG_RETURN_NULL();
+
+ PG_RETURN_FLOAT8(Sx / N);
+}
+
+Datum
+float8_regr_avgy(PG_FUNCTION_ARGS)
+{
+ ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
+ float8 *transvalues;
+ float8 N,
+ Sy;
+
+ transvalues = check_float8_array(transarray, "float8_regr_avgy", 6);
+ N = transvalues[0];
+ Sy = transvalues[3];
+
+ /* if N is 0 we should return NULL */
+ if (N < 1.0)
+ PG_RETURN_NULL();
+
+ PG_RETURN_FLOAT8(Sy / N);
+}
+
+Datum
+float8_covar_pop(PG_FUNCTION_ARGS)
+{
+ ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
+ float8 *transvalues;
+ float8 N,
+ Sxy;
+
+ transvalues = check_float8_array(transarray, "float8_covar_pop", 6);
+ N = transvalues[0];
+ Sxy = transvalues[5];
+
+ /* if N is 0 we should return NULL */
+ if (N < 1.0)
+ PG_RETURN_NULL();
+
+ PG_RETURN_FLOAT8(Sxy / N);
+}
+
+Datum
+float8_covar_samp(PG_FUNCTION_ARGS)
+{
+ ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
+ float8 *transvalues;
+ float8 N,
+ Sxy;
+
+ transvalues = check_float8_array(transarray, "float8_covar_samp", 6);
+ N = transvalues[0];
+ Sxy = transvalues[5];
+
+ /* if N is <= 1 we should return NULL */
+ if (N < 2.0)
+ PG_RETURN_NULL();
+
+ PG_RETURN_FLOAT8(Sxy / (N - 1.0));
+}
+
+Datum
+float8_corr(PG_FUNCTION_ARGS)
+{
+ ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
+ float8 *transvalues;
+ float8 N,
+ Sxx,
+ Syy,
+ Sxy;
+
+ transvalues = check_float8_array(transarray, "float8_corr", 6);
+ N = transvalues[0];
+ Sxx = transvalues[2];
+ Syy = transvalues[4];
+ Sxy = transvalues[5];
+
+ /* if N is 0 we should return NULL */
+ if (N < 1.0)
+ PG_RETURN_NULL();
+
+ /* Note that Sxx and Syy are guaranteed to be non-negative */
+
+ /* per spec, return NULL for horizontal and vertical lines */
+ if (Sxx == 0 || Syy == 0)
+ PG_RETURN_NULL();
+
+ PG_RETURN_FLOAT8(Sxy / sqrt(Sxx * Syy));
+}
+
+Datum
+float8_regr_r2(PG_FUNCTION_ARGS)
+{
+ ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
+ float8 *transvalues;
+ float8 N,
+ Sxx,
+ Syy,
+ Sxy;
+
+ transvalues = check_float8_array(transarray, "float8_regr_r2", 6);
+ N = transvalues[0];
+ Sxx = transvalues[2];
+ Syy = transvalues[4];
+ Sxy = transvalues[5];
+
+ /* if N is 0 we should return NULL */
+ if (N < 1.0)
+ PG_RETURN_NULL();
+
+ /* Note that Sxx and Syy are guaranteed to be non-negative */
+
+ /* per spec, return NULL for a vertical line */
+ if (Sxx == 0)
+ PG_RETURN_NULL();
+
+ /* per spec, return 1.0 for a horizontal line */
+ if (Syy == 0)
+ PG_RETURN_FLOAT8(1.0);
+
+ PG_RETURN_FLOAT8((Sxy * Sxy) / (Sxx * Syy));
+}
+
+Datum
+float8_regr_slope(PG_FUNCTION_ARGS)
+{
+ ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
+ float8 *transvalues;
+ float8 N,
+ Sxx,
+ Sxy;
+
+ transvalues = check_float8_array(transarray, "float8_regr_slope", 6);
+ N = transvalues[0];
+ Sxx = transvalues[2];
+ Sxy = transvalues[5];
+
+ /* if N is 0 we should return NULL */
+ if (N < 1.0)
+ PG_RETURN_NULL();
+
+ /* Note that Sxx is guaranteed to be non-negative */
+
+ /* per spec, return NULL for a vertical line */
+ if (Sxx == 0)
+ PG_RETURN_NULL();
+
+ PG_RETURN_FLOAT8(Sxy / Sxx);
+}
+
+Datum
+float8_regr_intercept(PG_FUNCTION_ARGS)
+{
+ ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
+ float8 *transvalues;
+ float8 N,
+ Sx,
+ Sxx,
+ Sy,
+ Sxy;
+
+ transvalues = check_float8_array(transarray, "float8_regr_intercept", 6);
+ N = transvalues[0];
+ Sx = transvalues[1];
+ Sxx = transvalues[2];
+ Sy = transvalues[3];
+ Sxy = transvalues[5];
+
+ /* if N is 0 we should return NULL */
+ if (N < 1.0)
+ PG_RETURN_NULL();
+
+ /* Note that Sxx is guaranteed to be non-negative */
+
+ /* per spec, return NULL for a vertical line */
+ if (Sxx == 0)
+ PG_RETURN_NULL();
+
+ PG_RETURN_FLOAT8((Sy - Sx * Sxy / Sxx) / N);
+}
+
+
+/*
+ * ====================================
+ * MIXED-PRECISION ARITHMETIC OPERATORS
+ * ====================================
+ */
+
+/*
+ * float48pl - returns arg1 + arg2
+ * float48mi - returns arg1 - arg2
+ * float48mul - returns arg1 * arg2
+ * float48div - returns arg1 / arg2
+ */
+Datum
+float48pl(PG_FUNCTION_ARGS)
+{
+ float4 arg1 = PG_GETARG_FLOAT4(0);
+ float8 arg2 = PG_GETARG_FLOAT8(1);
+
+ PG_RETURN_FLOAT8(float8_pl((float8) arg1, arg2));
+}
+
+Datum
+float48mi(PG_FUNCTION_ARGS)
+{
+ float4 arg1 = PG_GETARG_FLOAT4(0);
+ float8 arg2 = PG_GETARG_FLOAT8(1);
+
+ PG_RETURN_FLOAT8(float8_mi((float8) arg1, arg2));
+}
+
+Datum
+float48mul(PG_FUNCTION_ARGS)
+{
+ float4 arg1 = PG_GETARG_FLOAT4(0);
+ float8 arg2 = PG_GETARG_FLOAT8(1);
+
+ PG_RETURN_FLOAT8(float8_mul((float8) arg1, arg2));
+}
+
+Datum
+float48div(PG_FUNCTION_ARGS)
+{
+ float4 arg1 = PG_GETARG_FLOAT4(0);
+ float8 arg2 = PG_GETARG_FLOAT8(1);
+
+ PG_RETURN_FLOAT8(float8_div((float8) arg1, arg2));
+}
+
+/*
+ * float84pl - returns arg1 + arg2
+ * float84mi - returns arg1 - arg2
+ * float84mul - returns arg1 * arg2
+ * float84div - returns arg1 / arg2
+ */
+Datum
+float84pl(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float4 arg2 = PG_GETARG_FLOAT4(1);
+
+ PG_RETURN_FLOAT8(float8_pl(arg1, (float8) arg2));
+}
+
+Datum
+float84mi(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float4 arg2 = PG_GETARG_FLOAT4(1);
+
+ PG_RETURN_FLOAT8(float8_mi(arg1, (float8) arg2));
+}
+
+Datum
+float84mul(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float4 arg2 = PG_GETARG_FLOAT4(1);
+
+ PG_RETURN_FLOAT8(float8_mul(arg1, (float8) arg2));
+}
+
+Datum
+float84div(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float4 arg2 = PG_GETARG_FLOAT4(1);
+
+ PG_RETURN_FLOAT8(float8_div(arg1, (float8) arg2));
+}
+
+/*
+ * ====================
+ * COMPARISON OPERATORS
+ * ====================
+ */
+
+/*
+ * float48{eq,ne,lt,le,gt,ge} - float4/float8 comparison operations
+ */
+Datum
+float48eq(PG_FUNCTION_ARGS)
+{
+ float4 arg1 = PG_GETARG_FLOAT4(0);
+ float8 arg2 = PG_GETARG_FLOAT8(1);
+
+ PG_RETURN_BOOL(float8_eq((float8) arg1, arg2));
+}
+
+Datum
+float48ne(PG_FUNCTION_ARGS)
+{
+ float4 arg1 = PG_GETARG_FLOAT4(0);
+ float8 arg2 = PG_GETARG_FLOAT8(1);
+
+ PG_RETURN_BOOL(float8_ne((float8) arg1, arg2));
+}
+
+Datum
+float48lt(PG_FUNCTION_ARGS)
+{
+ float4 arg1 = PG_GETARG_FLOAT4(0);
+ float8 arg2 = PG_GETARG_FLOAT8(1);
+
+ PG_RETURN_BOOL(float8_lt((float8) arg1, arg2));
+}
+
+Datum
+float48le(PG_FUNCTION_ARGS)
+{
+ float4 arg1 = PG_GETARG_FLOAT4(0);
+ float8 arg2 = PG_GETARG_FLOAT8(1);
+
+ PG_RETURN_BOOL(float8_le((float8) arg1, arg2));
+}
+
+Datum
+float48gt(PG_FUNCTION_ARGS)
+{
+ float4 arg1 = PG_GETARG_FLOAT4(0);
+ float8 arg2 = PG_GETARG_FLOAT8(1);
+
+ PG_RETURN_BOOL(float8_gt((float8) arg1, arg2));
+}
+
+Datum
+float48ge(PG_FUNCTION_ARGS)
+{
+ float4 arg1 = PG_GETARG_FLOAT4(0);
+ float8 arg2 = PG_GETARG_FLOAT8(1);
+
+ PG_RETURN_BOOL(float8_ge((float8) arg1, arg2));
+}
+
+/*
+ * float84{eq,ne,lt,le,gt,ge} - float8/float4 comparison operations
+ */
+Datum
+float84eq(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float4 arg2 = PG_GETARG_FLOAT4(1);
+
+ PG_RETURN_BOOL(float8_eq(arg1, (float8) arg2));
+}
+
+Datum
+float84ne(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float4 arg2 = PG_GETARG_FLOAT4(1);
+
+ PG_RETURN_BOOL(float8_ne(arg1, (float8) arg2));
+}
+
+Datum
+float84lt(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float4 arg2 = PG_GETARG_FLOAT4(1);
+
+ PG_RETURN_BOOL(float8_lt(arg1, (float8) arg2));
+}
+
+Datum
+float84le(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float4 arg2 = PG_GETARG_FLOAT4(1);
+
+ PG_RETURN_BOOL(float8_le(arg1, (float8) arg2));
+}
+
+Datum
+float84gt(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float4 arg2 = PG_GETARG_FLOAT4(1);
+
+ PG_RETURN_BOOL(float8_gt(arg1, (float8) arg2));
+}
+
+Datum
+float84ge(PG_FUNCTION_ARGS)
+{
+ float8 arg1 = PG_GETARG_FLOAT8(0);
+ float4 arg2 = PG_GETARG_FLOAT4(1);
+
+ PG_RETURN_BOOL(float8_ge(arg1, (float8) arg2));
+}
+
+/*
+ * Implements the float8 version of the width_bucket() function
+ * defined by SQL2003. See also width_bucket_numeric().
+ *
+ * 'bound1' and 'bound2' are the lower and upper bounds of the
+ * histogram's range, respectively. 'count' is the number of buckets
+ * in the histogram. width_bucket() returns an integer indicating the
+ * bucket number that 'operand' belongs to in an equiwidth histogram
+ * with the specified characteristics. An operand smaller than the
+ * lower bound is assigned to bucket 0. An operand greater than the
+ * upper bound is assigned to an additional bucket (with number
+ * count+1). We don't allow "NaN" for any of the float8 inputs, and we
+ * don't allow either of the histogram bounds to be +/- infinity.
+ */
+Datum
+width_bucket_float8(PG_FUNCTION_ARGS)
+{
+ float8 operand = PG_GETARG_FLOAT8(0);
+ float8 bound1 = PG_GETARG_FLOAT8(1);
+ float8 bound2 = PG_GETARG_FLOAT8(2);
+ int32 count = PG_GETARG_INT32(3);
+ int32 result;
+
+ if (count <= 0)
+ ereport(ERROR,
+ (errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION),
+ errmsg("count must be greater than zero")));
+
+ if (isnan(operand) || isnan(bound1) || isnan(bound2))
+ ereport(ERROR,
+ (errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION),
+ errmsg("operand, lower bound, and upper bound cannot be NaN")));
+
+ /* Note that we allow "operand" to be infinite */
+ if (isinf(bound1) || isinf(bound2))
+ ereport(ERROR,
+ (errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION),
+ errmsg("lower and upper bounds must be finite")));
+
+ if (bound1 < bound2)
+ {
+ if (operand < bound1)
+ result = 0;
+ else if (operand >= bound2)
+ {
+ if (pg_add_s32_overflow(count, 1, &result))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("integer out of range")));
+ }
+ else
+ {
+ if (!isinf(bound2 - bound1))
+ {
+ /* The quotient is surely in [0,1], so this can't overflow */
+ result = count * ((operand - bound1) / (bound2 - bound1));
+ }
+ else
+ {
+ /*
+ * We get here if bound2 - bound1 overflows DBL_MAX. Since
+ * both bounds are finite, their difference can't exceed twice
+ * DBL_MAX; so we can perform the computation without overflow
+ * by dividing all the inputs by 2. That should be exact too,
+ * except in the case where a very small operand underflows to
+ * zero, which would have negligible impact on the result
+ * given such large bounds.
+ */
+ result = count * ((operand / 2 - bound1 / 2) / (bound2 / 2 - bound1 / 2));
+ }
+ /* The quotient could round to 1.0, which would be a lie */
+ if (result >= count)
+ result = count - 1;
+ /* Having done that, we can add 1 without fear of overflow */
+ result++;
+ }
+ }
+ else if (bound1 > bound2)
+ {
+ if (operand > bound1)
+ result = 0;
+ else if (operand <= bound2)
+ {
+ if (pg_add_s32_overflow(count, 1, &result))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("integer out of range")));
+ }
+ else
+ {
+ if (!isinf(bound1 - bound2))
+ result = count * ((bound1 - operand) / (bound1 - bound2));
+ else
+ result = count * ((bound1 / 2 - operand / 2) / (bound1 / 2 - bound2 / 2));
+ if (result >= count)
+ result = count - 1;
+ result++;
+ }
+ }
+ else
+ {
+ ereport(ERROR,
+ (errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION),
+ errmsg("lower bound cannot equal upper bound")));
+ result = 0; /* keep the compiler quiet */
+ }
+
+ PG_RETURN_INT32(result);
+}