1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
|
<!-- doc/src/sgml/cube.sgml -->
<sect1 id="cube" xreflabel="cube">
<title>cube — a multi-dimensional cube data type</title>
<indexterm zone="cube">
<primary>cube (extension)</primary>
</indexterm>
<para>
This module implements a data type <type>cube</type> for
representing multidimensional cubes.
</para>
<para>
This module is considered <quote>trusted</quote>, that is, it can be
installed by non-superusers who have <literal>CREATE</literal> privilege
on the current database.
</para>
<sect2 id="cube-syntax">
<title>Syntax</title>
<para>
<xref linkend="cube-repr-table"/> shows the valid external
representations for the <type>cube</type>
type. <replaceable>x</replaceable>, <replaceable>y</replaceable>, etc. denote
floating-point numbers.
</para>
<table id="cube-repr-table">
<title>Cube External Representations</title>
<tgroup cols="2">
<thead>
<row>
<entry>External Syntax</entry>
<entry>Meaning</entry>
</row>
</thead>
<tbody>
<row>
<entry><literal><replaceable>x</replaceable></literal></entry>
<entry>A one-dimensional point
(or, zero-length one-dimensional interval)
</entry>
</row>
<row>
<entry><literal>(<replaceable>x</replaceable>)</literal></entry>
<entry>Same as above</entry>
</row>
<row>
<entry><literal><replaceable>x1</replaceable>,<replaceable>x2</replaceable>,...,<replaceable>xn</replaceable></literal></entry>
<entry>A point in n-dimensional space, represented internally as a
zero-volume cube
</entry>
</row>
<row>
<entry><literal>(<replaceable>x1</replaceable>,<replaceable>x2</replaceable>,...,<replaceable>xn</replaceable>)</literal></entry>
<entry>Same as above</entry>
</row>
<row>
<entry><literal>(<replaceable>x</replaceable>),(<replaceable>y</replaceable>)</literal></entry>
<entry>A one-dimensional interval starting at <replaceable>x</replaceable> and ending at <replaceable>y</replaceable> or vice versa; the
order does not matter
</entry>
</row>
<row>
<entry><literal>[(<replaceable>x</replaceable>),(<replaceable>y</replaceable>)]</literal></entry>
<entry>Same as above</entry>
</row>
<row>
<entry><literal>(<replaceable>x1</replaceable>,...,<replaceable>xn</replaceable>),(<replaceable>y1</replaceable>,...,<replaceable>yn</replaceable>)</literal></entry>
<entry>An n-dimensional cube represented by a pair of its diagonally
opposite corners
</entry>
</row>
<row>
<entry><literal>[(<replaceable>x1</replaceable>,...,<replaceable>xn</replaceable>),(<replaceable>y1</replaceable>,...,<replaceable>yn</replaceable>)]</literal></entry>
<entry>Same as above</entry>
</row>
</tbody>
</tgroup>
</table>
<para>
It does not matter which order the opposite corners of a cube are
entered in. The <type>cube</type> functions
automatically swap values if needed to create a uniform
<quote>lower left — upper right</quote> internal representation.
When the corners coincide, <type>cube</type> stores only one corner
along with an <quote>is point</quote> flag to avoid wasting space.
</para>
<para>
White space is ignored on input, so
<literal>[(<replaceable>x</replaceable>),(<replaceable>y</replaceable>)]</literal> is the same as
<literal>[ ( <replaceable>x</replaceable> ), ( <replaceable>y</replaceable> ) ]</literal>.
</para>
</sect2>
<sect2 id="cube-precision">
<title>Precision</title>
<para>
Values are stored internally as 64-bit floating point numbers. This means
that numbers with more than about 16 significant digits will be truncated.
</para>
</sect2>
<sect2 id="cube-usage">
<title>Usage</title>
<para>
<xref linkend="cube-operators-table"/> shows the specialized operators
provided for type <type>cube</type>.
</para>
<table id="cube-operators-table">
<title>Cube Operators</title>
<tgroup cols="1">
<thead>
<row>
<entry role="func_table_entry"><para role="func_signature">
Operator
</para>
<para>
Description
</para></entry>
</row>
</thead>
<tbody>
<row>
<entry role="func_table_entry"><para role="func_signature">
<type>cube</type> <literal>&&</literal> <type>cube</type>
<returnvalue>boolean</returnvalue>
</para>
<para>
Do the cubes overlap?
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<type>cube</type> <literal>@></literal> <type>cube</type>
<returnvalue>boolean</returnvalue>
</para>
<para>
Does the first cube contain the second?
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<type>cube</type> <literal><@</literal> <type>cube</type>
<returnvalue>boolean</returnvalue>
</para>
<para>
Is the first cube contained in the second?
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<type>cube</type> <literal>-></literal> <type>integer</type>
<returnvalue>float8</returnvalue>
</para>
<para>
Extracts the <parameter>n</parameter>-th coordinate of the cube
(counting from 1).
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<type>cube</type> <literal>~></literal> <type>integer</type>
<returnvalue>float8</returnvalue>
</para>
<para>
Extracts the <parameter>n</parameter>-th coordinate of the cube,
counting in the following way: <parameter>n</parameter> = 2
* <parameter>k</parameter> - 1 means lower bound
of <parameter>k</parameter>-th dimension, <parameter>n</parameter> = 2
* <parameter>k</parameter> means upper bound of
<parameter>k</parameter>-th dimension. Negative
<parameter>n</parameter> denotes the inverse value of the corresponding
positive coordinate. This operator is designed for KNN-GiST support.
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<type>cube</type> <literal><-></literal> <type>cube</type>
<returnvalue>float8</returnvalue>
</para>
<para>
Computes the Euclidean distance between the two cubes.
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<type>cube</type> <literal><#></literal> <type>cube</type>
<returnvalue>float8</returnvalue>
</para>
<para>
Computes the taxicab (L-1 metric) distance between the two cubes.
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<type>cube</type> <literal><=></literal> <type>cube</type>
<returnvalue>float8</returnvalue>
</para>
<para>
Computes the Chebyshev (L-inf metric) distance between the two cubes.
</para></entry>
</row>
</tbody>
</tgroup>
</table>
<para>
In addition to the above operators, the usual comparison
operators shown in <xref linkend="functions-comparison-op-table"/> are
available for type <type>cube</type>. These
operators first compare the first coordinates, and if those are equal,
compare the second coordinates, etc. They exist mainly to support the
b-tree index operator class for <type>cube</type>, which can be useful for
example if you would like a UNIQUE constraint on a <type>cube</type> column.
Otherwise, this ordering is not of much practical use.
</para>
<para>
The <filename>cube</filename> module also provides a GiST index operator class for
<type>cube</type> values.
A <type>cube</type> GiST index can be used to search for values using the
<literal>=</literal>, <literal>&&</literal>, <literal>@></literal>, and
<literal><@</literal> operators in <literal>WHERE</literal> clauses.
</para>
<para>
In addition, a <type>cube</type> GiST index can be used to find nearest
neighbors using the metric operators
<literal><-></literal>, <literal><#></literal>, and
<literal><=></literal> in <literal>ORDER BY</literal> clauses.
For example, the nearest neighbor of the 3-D point (0.5, 0.5, 0.5)
could be found efficiently with:
<programlisting>
SELECT c FROM test ORDER BY c <-> cube(array[0.5,0.5,0.5]) LIMIT 1;
</programlisting>
</para>
<para>
The <literal>~></literal> operator can also be used in this way to
efficiently retrieve the first few values sorted by a selected coordinate.
For example, to get the first few cubes ordered by the first coordinate
(lower left corner) ascending one could use the following query:
<programlisting>
SELECT c FROM test ORDER BY c ~> 1 LIMIT 5;
</programlisting>
And to get 2-D cubes ordered by the first coordinate of the upper right
corner descending:
<programlisting>
SELECT c FROM test ORDER BY c ~> 3 DESC LIMIT 5;
</programlisting>
</para>
<para>
<xref linkend="cube-functions-table"/> shows the available functions.
</para>
<table id="cube-functions-table">
<title>Cube Functions</title>
<tgroup cols="1">
<thead>
<row>
<entry role="func_table_entry"><para role="func_signature">
Function
</para>
<para>
Description
</para>
<para>
Example(s)
</para></entry>
</row>
</thead>
<tbody>
<row>
<entry role="func_table_entry"><para role="func_signature">
<function>cube</function> ( <type>float8</type> )
<returnvalue>cube</returnvalue>
</para>
<para>
Makes a one dimensional cube with both coordinates the same.
</para>
<para>
<literal>cube(1)</literal>
<returnvalue>(1)</returnvalue>
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<function>cube</function> ( <type>float8</type>, <type>float8</type> )
<returnvalue>cube</returnvalue>
</para>
<para>
Makes a one dimensional cube.
</para>
<para>
<literal>cube(1, 2)</literal>
<returnvalue>(1),(2)</returnvalue>
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<function>cube</function> ( <type>float8[]</type> )
<returnvalue>cube</returnvalue>
</para>
<para>
Makes a zero-volume cube using the coordinates defined by the array.
</para>
<para>
<literal>cube(ARRAY[1,2,3])</literal>
<returnvalue>(1, 2, 3)</returnvalue>
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<function>cube</function> ( <type>float8[]</type>, <type>float8[]</type> )
<returnvalue>cube</returnvalue>
</para>
<para>
Makes a cube with upper right and lower left coordinates as defined by
the two arrays, which must be of the same length.
</para>
<para>
<literal>cube(ARRAY[1,2], ARRAY[3,4])</literal>
<returnvalue>(1, 2),(3, 4)</returnvalue>
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<function>cube</function> ( <type>cube</type>, <type>float8</type> )
<returnvalue>cube</returnvalue>
</para>
<para>
Makes a new cube by adding a dimension on to an existing cube,
with the same values for both endpoints of the new coordinate. This
is useful for building cubes piece by piece from calculated values.
</para>
<para>
<literal>cube('(1,2),(3,4)'::cube, 5)</literal>
<returnvalue>(1, 2, 5),(3, 4, 5)</returnvalue>
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<function>cube</function> ( <type>cube</type>, <type>float8</type>, <type>float8</type> )
<returnvalue>cube</returnvalue>
</para>
<para>
Makes a new cube by adding a dimension on to an existing cube. This is
useful for building cubes piece by piece from calculated values.
</para>
<para>
<literal>cube('(1,2),(3,4)'::cube, 5, 6)</literal>
<returnvalue>(1, 2, 5),(3, 4, 6)</returnvalue>
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<function>cube_dim</function> ( <type>cube</type> )
<returnvalue>integer</returnvalue>
</para>
<para>
Returns the number of dimensions of the cube.
</para>
<para>
<literal>cube_dim('(1,2),(3,4)')</literal>
<returnvalue>2</returnvalue>
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<function>cube_ll_coord</function> ( <type>cube</type>, <type>integer</type> )
<returnvalue>float8</returnvalue>
</para>
<para>
Returns the <parameter>n</parameter>-th coordinate value for the lower
left corner of the cube.
</para>
<para>
<literal>cube_ll_coord('(1,2),(3,4)', 2)</literal>
<returnvalue>2</returnvalue>
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<function>cube_ur_coord</function> ( <type>cube</type>, <type>integer</type> )
<returnvalue>float8</returnvalue>
</para>
<para>
Returns the <parameter>n</parameter>-th coordinate value for the
upper right corner of the cube.
</para>
<para>
<literal>cube_ur_coord('(1,2),(3,4)', 2)</literal>
<returnvalue>4</returnvalue>
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<function>cube_is_point</function> ( <type>cube</type> )
<returnvalue>boolean</returnvalue>
</para>
<para>
Returns true if the cube is a point, that is,
the two defining corners are the same.
</para>
<para>
<literal>cube_is_point(cube(1,1))</literal>
<returnvalue>t</returnvalue>
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<function>cube_distance</function> ( <type>cube</type>, <type>cube</type> )
<returnvalue>float8</returnvalue>
</para>
<para>
Returns the distance between two cubes. If both
cubes are points, this is the normal distance function.
</para>
<para>
<literal>cube_distance('(1,2)', '(3,4)')</literal>
<returnvalue>2.8284271247461903</returnvalue>
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<function>cube_subset</function> ( <type>cube</type>, <type>integer[]</type> )
<returnvalue>cube</returnvalue>
</para>
<para>
Makes a new cube from an existing cube, using a list of
dimension indexes from an array. Can be used to extract the endpoints
of a single dimension, or to drop dimensions, or to reorder them as
desired.
</para>
<para>
<literal>cube_subset(cube('(1,3,5),(6,7,8)'), ARRAY[2])</literal>
<returnvalue>(3),(7)</returnvalue>
</para>
<para>
<literal>cube_subset(cube('(1,3,5),(6,7,8)'), ARRAY[3,2,1,1])</literal>
<returnvalue>(5, 3, 1, 1),(8, 7, 6, 6)</returnvalue>
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<function>cube_union</function> ( <type>cube</type>, <type>cube</type> )
<returnvalue>cube</returnvalue>
</para>
<para>
Produces the union of two cubes.
</para>
<para>
<literal>cube_union('(1,2)', '(3,4)')</literal>
<returnvalue>(1, 2),(3, 4)</returnvalue>
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<function>cube_inter</function> ( <type>cube</type>, <type>cube</type> )
<returnvalue>cube</returnvalue>
</para>
<para>
Produces the intersection of two cubes.
</para>
<para>
<literal>cube_inter('(1,2)', '(3,4)')</literal>
<returnvalue>(3, 4),(1, 2)</returnvalue>
</para></entry>
</row>
<row>
<entry role="func_table_entry"><para role="func_signature">
<function>cube_enlarge</function> ( <parameter>c</parameter> <type>cube</type>, <parameter>r</parameter> <type>double</type>, <parameter>n</parameter> <type>integer</type> )
<returnvalue>cube</returnvalue>
</para>
<para>
Increases the size of the cube by the specified
radius <parameter>r</parameter> in at least <parameter>n</parameter>
dimensions. If the radius is negative the cube is shrunk instead.
All defined dimensions are changed by the
radius <parameter>r</parameter>. Lower-left coordinates are decreased
by <parameter>r</parameter> and upper-right coordinates are increased
by <parameter>r</parameter>. If a lower-left coordinate is increased
to more than the corresponding upper-right coordinate (this can only
happen when <parameter>r</parameter> < 0) than both coordinates are
set to their average. If <parameter>n</parameter> is greater than the
number of defined dimensions and the cube is being enlarged
(<parameter>r</parameter> > 0), then extra dimensions are added to
make <parameter>n</parameter> altogether; 0 is used as the initial
value for the extra coordinates. This function is useful for creating
bounding boxes around a point for searching for nearby points.
</para>
<para>
<literal>cube_enlarge('(1,2),(3,4)', 0.5, 3)</literal>
<returnvalue>(0.5, 1.5, -0.5),(3.5, 4.5, 0.5)</returnvalue>
</para></entry>
</row>
</tbody>
</tgroup>
</table>
</sect2>
<sect2 id="cube-defaults">
<title>Defaults</title>
<para>
This union:
</para>
<programlisting>
select cube_union('(0,5,2),(2,3,1)', '0');
cube_union
-------------------
(0, 0, 0),(2, 5, 2)
(1 row)
</programlisting>
<para>
does not contradict common sense, neither does the intersection:
</para>
<programlisting>
select cube_inter('(0,-1),(1,1)', '(-2),(2)');
cube_inter
-------------
(0, 0),(1, 0)
(1 row)
</programlisting>
<para>
In all binary operations on differently-dimensioned cubes,
the lower-dimensional one is assumed to be a Cartesian projection, i. e., having zeroes
in place of coordinates omitted in the string representation. The above
examples are equivalent to:
</para>
<programlisting>
cube_union('(0,5,2),(2,3,1)','(0,0,0),(0,0,0)');
cube_inter('(0,-1),(1,1)','(-2,0),(2,0)');
</programlisting>
<para>
The following containment predicate uses the point syntax,
while in fact the second argument is internally represented by a box.
This syntax makes it unnecessary to define a separate point type
and functions for (box,point) predicates.
</para>
<programlisting>
select cube_contains('(0,0),(1,1)', '0.5,0.5');
cube_contains
--------------
t
(1 row)
</programlisting>
</sect2>
<sect2 id="cube-notes">
<title>Notes</title>
<para>
For examples of usage, see the regression test <filename>sql/cube.sql</filename>.
</para>
<para>
To make it harder for people to break things, there
is a limit of 100 on the number of dimensions of cubes. This is set
in <filename>cubedata.h</filename> if you need something bigger.
</para>
</sect2>
<sect2 id="cube-credits">
<title>Credits</title>
<para>
Original author: Gene Selkov, Jr. <email>selkovjr@mcs.anl.gov</email>,
Mathematics and Computer Science Division, Argonne National Laboratory.
</para>
<para>
My thanks are primarily to Prof. Joe Hellerstein
(<ulink url="https://dsf.berkeley.edu/jmh/"></ulink>) for elucidating the
gist of the GiST (<ulink url="http://gist.cs.berkeley.edu/"></ulink>), and
to his former student Andy Dong for his example written for Illustra.
I am also grateful to all Postgres developers, present and past, for
enabling myself to create my own world and live undisturbed in it. And I
would like to acknowledge my gratitude to Argonne Lab and to the
U.S. Department of Energy for the years of faithful support of my database
research.
</para>
<para>
Minor updates to this package were made by Bruno Wolff III
<email>bruno@wolff.to</email> in August/September of 2002. These include
changing the precision from single precision to double precision and adding
some new functions.
</para>
<para>
Additional updates were made by Joshua Reich <email>josh@root.net</email> in
July 2006. These include <literal>cube(float8[], float8[])</literal> and
cleaning up the code to use the V1 call protocol instead of the deprecated
V0 protocol.
</para>
</sect2>
</sect1>
|