summaryrefslogtreecommitdiffstats
path: root/doc/src/sgml/ddl.sgml
blob: 11fa9c4a327b32b290d69c3c429ff28c166d6b76 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
<!-- doc/src/sgml/ddl.sgml -->

<chapter id="ddl">
 <title>Data Definition</title>

 <para>
  This chapter covers how one creates the database structures that
  will hold one's data.  In a relational database, the raw data is
  stored in tables, so the majority of this chapter is devoted to
  explaining how tables are created and modified and what features are
  available to control what data is stored in the tables.
  Subsequently, we discuss how tables can be organized into
  schemas, and how privileges can be assigned to tables.  Finally,
  we will briefly look at other features that affect the data storage,
  such as inheritance, table partitioning, views, functions, and
  triggers.
 </para>

 <sect1 id="ddl-basics">
  <title>Table Basics</title>

  <indexterm zone="ddl-basics">
   <primary>table</primary>
  </indexterm>

  <indexterm>
   <primary>row</primary>
  </indexterm>

  <indexterm>
   <primary>column</primary>
  </indexterm>

  <para>
   A table in a relational database is much like a table on paper: It
   consists of rows and columns.  The number and order of the columns
   is fixed, and each column has a name.  The number of rows is
   variable &mdash; it reflects how much data is stored at a given moment.
   SQL does not make any guarantees about the order of the rows in a
   table.  When a table is read, the rows will appear in an unspecified order,
   unless sorting is explicitly requested.  This is covered in <xref
   linkend="queries"/>.  Furthermore, SQL does not assign unique
   identifiers to rows, so it is possible to have several completely
   identical rows in a table.  This is a consequence of the
   mathematical model that underlies SQL but is usually not desirable.
   Later in this chapter we will see how to deal with this issue.
  </para>

  <para>
   Each column has a data type.  The data type constrains the set of
   possible values that can be assigned to a column and assigns
   semantics to the data stored in the column so that it can be used
   for computations.  For instance, a column declared to be of a
   numerical type will not accept arbitrary text strings, and the data
   stored in such a column can be used for mathematical computations.
   By contrast, a column declared to be of a character string type
   will accept almost any kind of data but it does not lend itself to
   mathematical calculations, although other operations such as string
   concatenation are available.
  </para>

  <para>
   <productname>PostgreSQL</productname> includes a sizable set of
   built-in data types that fit many applications.  Users can also
   define their own data types.  Most built-in data types have obvious
   names and semantics, so we defer a detailed explanation to <xref
   linkend="datatype"/>.  Some of the frequently used data types are
   <type>integer</type> for whole numbers, <type>numeric</type> for
   possibly fractional numbers, <type>text</type> for character
   strings, <type>date</type> for dates, <type>time</type> for
   time-of-day values, and <type>timestamp</type> for values
   containing both date and time.
  </para>

  <indexterm>
   <primary>table</primary>
   <secondary>creating</secondary>
  </indexterm>

  <para>
   To create a table, you use the aptly named <xref
   linkend="sql-createtable"/> command.
   In this command you specify at least a name for the new table, the
   names of the columns and the data type of each column.  For
   example:
<programlisting>
CREATE TABLE my_first_table (
    first_column text,
    second_column integer
);
</programlisting>
   This creates a table named <literal>my_first_table</literal> with
   two columns.  The first column is named
   <literal>first_column</literal> and has a data type of
   <type>text</type>; the second column has the name
   <literal>second_column</literal> and the type <type>integer</type>.
   The table and column names follow the identifier syntax explained
   in <xref linkend="sql-syntax-identifiers"/>.  The type names are
   usually also identifiers, but there are some exceptions.  Note that the
   column list is comma-separated and surrounded by parentheses.
  </para>

  <para>
   Of course, the previous example was heavily contrived.  Normally,
   you would give names to your tables and columns that convey what
   kind of data they store.  So let's look at a more realistic
   example:
<programlisting>
CREATE TABLE products (
    product_no integer,
    name text,
    price numeric
);
</programlisting>
   (The <type>numeric</type> type can store fractional components, as
   would be typical of monetary amounts.)
  </para>

  <tip>
   <para>
    When you create many interrelated tables it is wise to choose a
    consistent naming pattern for the tables and columns.  For
    instance, there is a choice of using singular or plural nouns for
    table names, both of which are favored by some theorist or other.
   </para>
  </tip>

  <para>
   There is a limit on how many columns a table can contain.
   Depending on the column types, it is between 250 and 1600.
   However, defining a table with anywhere near this many columns is
   highly unusual and often a questionable design.
  </para>

  <indexterm>
   <primary>table</primary>
   <secondary>removing</secondary>
  </indexterm>

  <para>
   If you no longer need a table, you can remove it using the <xref
   linkend="sql-droptable"/> command.
   For example:
<programlisting>
DROP TABLE my_first_table;
DROP TABLE products;
</programlisting>
   Attempting to drop a table that does not exist is an error.
   Nevertheless, it is common in SQL script files to unconditionally
   try to drop each table before creating it, ignoring any error
   messages, so that the script works whether or not the table exists.
   (If you like, you can use the <literal>DROP TABLE IF EXISTS</literal> variant
   to avoid the error messages, but this is not standard SQL.)
  </para>

  <para>
   If you need to modify a table that already exists, see <xref
   linkend="ddl-alter"/> later in this chapter.
  </para>

  <para>
   With the tools discussed so far you can create fully functional
   tables.  The remainder of this chapter is concerned with adding
   features to the table definition to ensure data integrity,
   security, or convenience.  If you are eager to fill your tables with
   data now you can skip ahead to <xref linkend="dml"/> and read the
   rest of this chapter later.
  </para>
 </sect1>

 <sect1 id="ddl-default">
  <title>Default Values</title>

  <indexterm zone="ddl-default">
   <primary>default value</primary>
  </indexterm>

  <para>
   A column can be assigned a default value.  When a new row is
   created and no values are specified for some of the columns, those
   columns will be filled with their respective default values.  A
   data manipulation command can also request explicitly that a column
   be set to its default value, without having to know what that value is.
   (Details about data manipulation commands are in <xref linkend="dml"/>.)
  </para>

  <para>
   <indexterm><primary>null value</primary><secondary>default value</secondary></indexterm>
   If no default value is declared explicitly, the default value is the
   null value.  This usually makes sense because a null value can
   be considered to represent unknown data.
  </para>

  <para>
   In a table definition, default values are listed after the column
   data type.  For example:
<programlisting>
CREATE TABLE products (
    product_no integer,
    name text,
    price numeric <emphasis>DEFAULT 9.99</emphasis>
);
</programlisting>
  </para>

  <para>
   The default value can be an expression, which will be
   evaluated whenever the default value is inserted
   (<emphasis>not</emphasis> when the table is created).  A common example
   is for a <type>timestamp</type> column to have a default of <literal>CURRENT_TIMESTAMP</literal>,
   so that it gets set to the time of row insertion.  Another common
   example is generating a <quote>serial number</quote> for each row.
   In <productname>PostgreSQL</productname> this is typically done by
   something like:
<programlisting>
CREATE TABLE products (
    product_no integer <emphasis>DEFAULT nextval('products_product_no_seq')</emphasis>,
    ...
);
</programlisting>
   where the <literal>nextval()</literal> function supplies successive values
   from a <firstterm>sequence object</firstterm> (see <xref
   linkend="functions-sequence"/>). This arrangement is sufficiently common
   that there's a special shorthand for it:
<programlisting>
CREATE TABLE products (
    product_no <emphasis>SERIAL</emphasis>,
    ...
);
</programlisting>
   The <literal>SERIAL</literal> shorthand is discussed further in <xref
   linkend="datatype-serial"/>.
  </para>
 </sect1>

 <sect1 id="ddl-generated-columns">
  <title>Generated Columns</title>

  <indexterm zone="ddl-generated-columns">
   <primary>generated column</primary>
  </indexterm>

  <para>
   A generated column is a special column that is always computed from other
   columns.  Thus, it is for columns what a view is for tables.  There are two
   kinds of generated columns: stored and virtual.  A stored generated column
   is computed when it is written (inserted or updated) and occupies storage
   as if it were a normal column.  A virtual generated column occupies no
   storage and is computed when it is read.  Thus, a virtual generated column
   is similar to a view and a stored generated column is similar to a
   materialized view (except that it is always updated automatically).
   PostgreSQL currently implements only stored generated columns.
  </para>

  <para>
   To create a generated column, use the <literal>GENERATED ALWAYS
   AS</literal> clause in <command>CREATE TABLE</command>, for example:
<programlisting>
CREATE TABLE people (
    ...,
    height_cm numeric,
    height_in numeric <emphasis>GENERATED ALWAYS AS (height_cm / 2.54) STORED</emphasis>
);
</programlisting>
   The keyword <literal>STORED</literal> must be specified to choose the
   stored kind of generated column.  See <xref linkend="sql-createtable"/> for
   more details.
  </para>

  <para>
   A generated column cannot be written to directly.  In
   <command>INSERT</command> or <command>UPDATE</command> commands, a value
   cannot be specified for a generated column, but the keyword
   <literal>DEFAULT</literal> may be specified.
  </para>

  <para>
   Consider the differences between a column with a default and a generated
   column.  The column default is evaluated once when the row is first
   inserted if no other value was provided; a generated column is updated
   whenever the row changes and cannot be overridden.  A column default may
   not refer to other columns of the table; a generation expression would
   normally do so.  A column default can use volatile functions, for example
   <literal>random()</literal> or functions referring to the current time;
   this is not allowed for generated columns.
  </para>

  <para>
   Several restrictions apply to the definition of generated columns and
   tables involving generated columns:

   <itemizedlist>
    <listitem>
     <para>
      The generation expression can only use immutable functions and cannot
      use subqueries or reference anything other than the current row in any
      way.
     </para>
    </listitem>
    <listitem>
     <para>
      A generation expression cannot reference another generated column.
     </para>
    </listitem>
    <listitem>
     <para>
      A generation expression cannot reference a system column, except
      <varname>tableoid</varname>.
     </para>
    </listitem>
    <listitem>
     <para>
      A generated column cannot have a column default or an identity definition.
     </para>
    </listitem>
    <listitem>
     <para>
      A generated column cannot be part of a partition key.
     </para>
    </listitem>
    <listitem>
     <para>
      Foreign tables can have generated columns.  See <xref
      linkend="sql-createforeigntable"/> for details.
     </para>
    </listitem>
    <listitem>
     <para>For inheritance and partitioning:</para>
     <itemizedlist>
      <listitem>
       <para>
        If a parent column is a generated column, its child column must also
        be a generated column; however, the child column can have a
        different generation expression.  The generation expression that is
        actually applied during insert or update of a row is the one
        associated with the table that the row is physically in.
        (This is unlike the behavior for column defaults: for those, the
        default value associated with the table named in the query applies.)
       </para>
      </listitem>
      <listitem>
       <para>
        If a parent column is not a generated column, its child column must
        not be generated either.
       </para>
      </listitem>
      <listitem>
       <para>
        For inherited tables, if you write a child column definition without
        any <literal>GENERATED</literal> clause in <command>CREATE TABLE
        ... INHERITS</command>, then its <literal>GENERATED</literal> clause
        will automatically be copied from the parent.  <command>ALTER TABLE
        ... INHERIT</command> will insist that parent and child columns
        already match as to generation status, but it will not require their
        generation expressions to match.
       </para>
      </listitem>
      <listitem>
       <para>
        Similarly for partitioned tables, if you write a child column
        definition without any <literal>GENERATED</literal> clause
        in <command>CREATE TABLE ... PARTITION OF</command>, then
        its <literal>GENERATED</literal> clause will automatically be copied
        from the parent.  <command>ALTER TABLE ... ATTACH PARTITION</command>
        will insist that parent and child columns already match as to
        generation status, but it will not require their generation
        expressions to match.
       </para>
      </listitem>
      <listitem>
       <para>
        In case of multiple inheritance, if one parent column is a generated
        column, then all parent columns must be generated columns.  If they
        do not all have the same generation expression, then the desired
        expression for the child must be specified explicitly.
       </para>
      </listitem>
     </itemizedlist>
    </listitem>
   </itemizedlist>
  </para>

  <para>
   Additional considerations apply to the use of generated columns.
   <itemizedlist>
    <listitem>
     <para>
      Generated columns maintain access privileges separately from their
      underlying base columns.  So, it is possible to arrange it so that a
      particular role can read from a generated column but not from the
      underlying base columns.
     </para>
    </listitem>
    <listitem>
     <para>
      Generated columns are, conceptually, updated after
      <literal>BEFORE</literal> triggers have run.  Therefore, changes made to
      base columns in a <literal>BEFORE</literal> trigger will be reflected in
      generated columns.  But conversely, it is not allowed to access
      generated columns in <literal>BEFORE</literal> triggers.
     </para>
    </listitem>
   </itemizedlist>
  </para>
 </sect1>

 <sect1 id="ddl-constraints">
  <title>Constraints</title>

  <indexterm zone="ddl-constraints">
   <primary>constraint</primary>
  </indexterm>

  <para>
   Data types are a way to limit the kind of data that can be stored
   in a table.  For many applications, however, the constraint they
   provide is too coarse.  For example, a column containing a product
   price should probably only accept positive values.  But there is no
   standard data type that accepts only positive numbers.  Another issue is
   that you might want to constrain column data with respect to other
   columns or rows.  For example, in a table containing product
   information, there should be only one row for each product number.
  </para>

  <para>
   To that end, SQL allows you to define constraints on columns and
   tables.  Constraints give you as much control over the data in your
   tables as you wish.  If a user attempts to store data in a column
   that would violate a constraint, an error is raised.  This applies
   even if the value came from the default value definition.
  </para>

  <sect2 id="ddl-constraints-check-constraints">
   <title>Check Constraints</title>

   <indexterm>
    <primary>check constraint</primary>
   </indexterm>

   <indexterm>
    <primary>constraint</primary>
    <secondary>check</secondary>
   </indexterm>

   <para>
    A check constraint is the most generic constraint type.  It allows
    you to specify that the value in a certain column must satisfy a
    Boolean (truth-value) expression.  For instance, to require positive
    product prices, you could use:
<programlisting>
CREATE TABLE products (
    product_no integer,
    name text,
    price numeric <emphasis>CHECK (price &gt; 0)</emphasis>
);
</programlisting>
   </para>

   <para>
    As you see, the constraint definition comes after the data type,
    just like default value definitions.  Default values and
    constraints can be listed in any order.  A check constraint
    consists of the key word <literal>CHECK</literal> followed by an
    expression in parentheses.  The check constraint expression should
    involve the column thus constrained, otherwise the constraint
    would not make too much sense.
   </para>

   <indexterm>
    <primary>constraint</primary>
    <secondary>name</secondary>
   </indexterm>

   <para>
    You can also give the constraint a separate name.  This clarifies
    error messages and allows you to refer to the constraint when you
    need to change it.  The syntax is:
<programlisting>
CREATE TABLE products (
    product_no integer,
    name text,
    price numeric <emphasis>CONSTRAINT positive_price</emphasis> CHECK (price &gt; 0)
);
</programlisting>
    So, to specify a named constraint, use the key word
    <literal>CONSTRAINT</literal> followed by an identifier followed
    by the constraint definition.  (If you don't specify a constraint
    name in this way, the system chooses a name for you.)
   </para>

   <para>
    A check constraint can also refer to several columns.  Say you
    store a regular price and a discounted price, and you want to
    ensure that the discounted price is lower than the regular price:
<programlisting>
CREATE TABLE products (
    product_no integer,
    name text,
    price numeric CHECK (price &gt; 0),
    discounted_price numeric CHECK (discounted_price &gt; 0),
    <emphasis>CHECK (price &gt; discounted_price)</emphasis>
);
</programlisting>
   </para>

   <para>
    The first two constraints should look familiar.  The third one
    uses a new syntax.  It is not attached to a particular column,
    instead it appears as a separate item in the comma-separated
    column list.  Column definitions and these constraint
    definitions can be listed in mixed order.
   </para>

   <para>
    We say that the first two constraints are column constraints, whereas the
    third one is a table constraint because it is written separately
    from any one column definition.  Column constraints can also be
    written as table constraints, while the reverse is not necessarily
    possible, since a column constraint is supposed to refer to only the
    column it is attached to.  (<productname>PostgreSQL</productname> doesn't
    enforce that rule, but you should follow it if you want your table
    definitions to work with other database systems.)  The above example could
    also be written as:
<programlisting>
CREATE TABLE products (
    product_no integer,
    name text,
    price numeric,
    CHECK (price &gt; 0),
    discounted_price numeric,
    CHECK (discounted_price &gt; 0),
    CHECK (price &gt; discounted_price)
);
</programlisting>
    or even:
<programlisting>
CREATE TABLE products (
    product_no integer,
    name text,
    price numeric CHECK (price &gt; 0),
    discounted_price numeric,
    CHECK (discounted_price &gt; 0 AND price &gt; discounted_price)
);
</programlisting>
    It's a matter of taste.
   </para>

   <para>
    Names can be assigned to table constraints in the same way as
    column constraints:
<programlisting>
CREATE TABLE products (
    product_no integer,
    name text,
    price numeric,
    CHECK (price &gt; 0),
    discounted_price numeric,
    CHECK (discounted_price &gt; 0),
    <emphasis>CONSTRAINT valid_discount</emphasis> CHECK (price &gt; discounted_price)
);
</programlisting>
   </para>

   <indexterm>
    <primary>null value</primary>
    <secondary sortas="check constraints">with check constraints</secondary>
   </indexterm>

   <para>
    It should be noted that a check constraint is satisfied if the
    check expression evaluates to true or the null value.  Since most
    expressions will evaluate to the null value if any operand is null,
    they will not prevent null values in the constrained columns.  To
    ensure that a column does not contain null values, the not-null
    constraint described in the next section can be used.
   </para>

   <note>
    <para>
     <productname>PostgreSQL</productname> does not support
     <literal>CHECK</literal> constraints that reference table data other than
     the new or updated row being checked.  While a <literal>CHECK</literal>
     constraint that violates this rule may appear to work in simple
     tests, it cannot guarantee that the database will not reach a state
     in which the constraint condition is false (due to subsequent changes
     of the other row(s) involved).  This would cause a database dump and
     restore to fail.  The restore could fail even when the complete
     database state is consistent with the constraint, due to rows not
     being loaded in an order that will satisfy the constraint.  If
     possible, use <literal>UNIQUE</literal>, <literal>EXCLUDE</literal>,
     or <literal>FOREIGN KEY</literal> constraints to express
     cross-row and cross-table restrictions.
    </para>

    <para>
     If what you desire is a one-time check against other rows at row
     insertion, rather than a continuously-maintained consistency
     guarantee, a custom <link linkend="triggers">trigger</link> can be used
     to implement that.  (This approach avoids the dump/restore problem because
     <application>pg_dump</application> does not reinstall triggers until after
     restoring data, so that the check will not be enforced during a
     dump/restore.)
    </para>
   </note>

   <note>
    <para>
     <productname>PostgreSQL</productname> assumes that
     <literal>CHECK</literal> constraints' conditions are immutable, that
     is, they will always give the same result for the same input row.
     This assumption is what justifies examining <literal>CHECK</literal>
     constraints only when rows are inserted or updated, and not at other
     times.  (The warning above about not referencing other table data is
     really a special case of this restriction.)
    </para>

    <para>
     An example of a common way to break this assumption is to reference a
     user-defined function in a <literal>CHECK</literal> expression, and
     then change the behavior of that
     function.  <productname>PostgreSQL</productname> does not disallow
     that, but it will not notice if there are rows in the table that now
     violate the <literal>CHECK</literal> constraint. That would cause a
     subsequent database dump and restore to fail.
     The recommended way to handle such a change is to drop the constraint
     (using <command>ALTER TABLE</command>), adjust the function definition,
     and re-add the constraint, thereby rechecking it against all table rows.
    </para>
   </note>
  </sect2>

  <sect2 id="ddl-constraints-not-null">
   <title>Not-Null Constraints</title>

   <indexterm>
    <primary>not-null constraint</primary>
   </indexterm>

   <indexterm>
    <primary>constraint</primary>
    <secondary>NOT NULL</secondary>
   </indexterm>

   <para>
    A not-null constraint simply specifies that a column must not
    assume the null value.  A syntax example:
<programlisting>
CREATE TABLE products (
    product_no integer <emphasis>NOT NULL</emphasis>,
    name text <emphasis>NOT NULL</emphasis>,
    price numeric
);
</programlisting>
   </para>

   <para>
    A not-null constraint is always written as a column constraint.  A
    not-null constraint is functionally equivalent to creating a check
    constraint <literal>CHECK (<replaceable>column_name</replaceable>
    IS NOT NULL)</literal>, but in
    <productname>PostgreSQL</productname> creating an explicit
    not-null constraint is more efficient.  The drawback is that you
    cannot give explicit names to not-null constraints created this
    way.
   </para>

   <para>
    Of course, a column can have more than one constraint.  Just write
    the constraints one after another:
<programlisting>
CREATE TABLE products (
    product_no integer NOT NULL,
    name text NOT NULL,
    price numeric NOT NULL CHECK (price &gt; 0)
);
</programlisting>
    The order doesn't matter.  It does not necessarily determine in which
    order the constraints are checked.
   </para>

   <para>
    The <literal>NOT NULL</literal> constraint has an inverse: the
    <literal>NULL</literal> constraint.  This does not mean that the
    column must be null, which would surely be useless.  Instead, this
    simply selects the default behavior that the column might be null.
    The <literal>NULL</literal> constraint is not present in the SQL
    standard and should not be used in portable applications.  (It was
    only added to <productname>PostgreSQL</productname> to be
    compatible with some other database systems.)  Some users, however,
    like it because it makes it easy to toggle the constraint in a
    script file.  For example, you could start with:
<programlisting>
CREATE TABLE products (
    product_no integer NULL,
    name text NULL,
    price numeric NULL
);
</programlisting>
    and then insert the <literal>NOT</literal> key word where desired.
   </para>

   <tip>
    <para>
     In most database designs the majority of columns should be marked
     not null.
    </para>
   </tip>
  </sect2>

  <sect2 id="ddl-constraints-unique-constraints">
   <title>Unique Constraints</title>

   <indexterm>
    <primary>unique constraint</primary>
   </indexterm>

   <indexterm>
    <primary>constraint</primary>
    <secondary>unique</secondary>
   </indexterm>

   <para>
    Unique constraints ensure that the data contained in a column, or a
    group of columns, is unique among all the rows in the
    table.  The syntax is:
<programlisting>
CREATE TABLE products (
    product_no integer <emphasis>UNIQUE</emphasis>,
    name text,
    price numeric
);
</programlisting>
    when written as a column constraint, and:
<programlisting>
CREATE TABLE products (
    product_no integer,
    name text,
    price numeric,
    <emphasis>UNIQUE (product_no)</emphasis>
);
</programlisting>
    when written as a table constraint.
   </para>

   <para>
    To define a unique constraint for a group of columns, write it as a
    table constraint with the column names separated by commas:
<programlisting>
CREATE TABLE example (
    a integer,
    b integer,
    c integer,
    <emphasis>UNIQUE (a, c)</emphasis>
);
</programlisting>
    This specifies that the combination of values in the indicated columns
    is unique across the whole table, though any one of the columns
    need not be (and ordinarily isn't) unique.
   </para>

   <para>
    You can assign your own name for a unique constraint, in the usual way:
<programlisting>
CREATE TABLE products (
    product_no integer <emphasis>CONSTRAINT must_be_different</emphasis> UNIQUE,
    name text,
    price numeric
);
</programlisting>
   </para>

   <para>
    Adding a unique constraint will automatically create a unique B-tree
    index on the column or group of columns listed in the constraint.
    A uniqueness restriction covering only some rows cannot be written as
    a unique constraint, but it is possible to enforce such a restriction by
    creating a unique <link linkend="indexes-partial">partial index</link>.
   </para>

   <indexterm>
    <primary>null value</primary>
    <secondary sortas="unique constraints">with unique constraints</secondary>
   </indexterm>

   <para>
    In general, a unique constraint is violated if there is more than
    one row in the table where the values of all of the
    columns included in the constraint are equal.
    By default, two null values are not considered equal in this
    comparison.  That means even in the presence of a
    unique constraint it is possible to store duplicate
    rows that contain a null value in at least one of the constrained
    columns.  This behavior can be changed by adding the clause <literal>NULLS
    NOT DISTINCT</literal>, like
<programlisting>
CREATE TABLE products (
    product_no integer UNIQUE <emphasis>NULLS NOT DISTINCT</emphasis>,
    name text,
    price numeric
);
</programlisting>
    or
<programlisting>
CREATE TABLE products (
    product_no integer,
    name text,
    price numeric,
    UNIQUE <emphasis>NULLS NOT DISTINCT</emphasis> (product_no)
);
</programlisting>
    The default behavior can be specified explicitly using <literal>NULLS
    DISTINCT</literal>.  The default null treatment in unique constraints is
    implementation-defined according to the SQL standard, and other
    implementations have a different behavior.  So be careful when developing
    applications that are intended to be portable.
   </para>
  </sect2>

  <sect2 id="ddl-constraints-primary-keys">
   <title>Primary Keys</title>

   <indexterm>
    <primary>primary key</primary>
   </indexterm>

   <indexterm>
    <primary>constraint</primary>
    <secondary>primary key</secondary>
   </indexterm>

   <para>
    A primary key constraint indicates that a column, or group of columns,
    can be used as a unique identifier for rows in the table.  This
    requires that the values be both unique and not null.  So, the following
    two table definitions accept the same data:
<programlisting>
CREATE TABLE products (
    product_no integer UNIQUE NOT NULL,
    name text,
    price numeric
);
</programlisting>

<programlisting>
CREATE TABLE products (
    product_no integer <emphasis>PRIMARY KEY</emphasis>,
    name text,
    price numeric
);
</programlisting>
   </para>

   <para>
    Primary keys can span more than one column; the syntax
    is similar to unique constraints:
<programlisting>
CREATE TABLE example (
    a integer,
    b integer,
    c integer,
    <emphasis>PRIMARY KEY (a, c)</emphasis>
);
</programlisting>
   </para>

   <para>
    Adding a primary key will automatically create a unique B-tree index
    on the column or group of columns listed in the primary key, and will
    force the column(s) to be marked <literal>NOT NULL</literal>.
   </para>

   <para>
    A table can have at most one primary key.  (There can be any number
    of unique and not-null constraints, which are functionally almost the
    same thing, but only one can be identified as the primary key.)
    Relational database theory
    dictates that every table must have a primary key.  This rule is
    not enforced by <productname>PostgreSQL</productname>, but it is
    usually best to follow it.
   </para>

   <para>
    Primary keys are useful both for
    documentation purposes and for client applications.  For example,
    a GUI application that allows modifying row values probably needs
    to know the primary key of a table to be able to identify rows
    uniquely.  There are also various ways in which the database system
    makes use of a primary key if one has been declared; for example,
    the primary key defines the default target column(s) for foreign keys
    referencing its table.
   </para>
  </sect2>

  <sect2 id="ddl-constraints-fk">
   <title>Foreign Keys</title>

   <indexterm>
    <primary>foreign key</primary>
   </indexterm>

   <indexterm>
    <primary>constraint</primary>
    <secondary>foreign key</secondary>
   </indexterm>

   <indexterm>
    <primary>referential integrity</primary>
   </indexterm>

   <para>
    A foreign key constraint specifies that the values in a column (or
    a group of columns) must match the values appearing in some row
    of another table.
    We say this maintains the <firstterm>referential
    integrity</firstterm> between two related tables.
   </para>

   <para>
    Say you have the product table that we have used several times already:
<programlisting>
CREATE TABLE products (
    product_no integer PRIMARY KEY,
    name text,
    price numeric
);
</programlisting>
    Let's also assume you have a table storing orders of those
    products.  We want to ensure that the orders table only contains
    orders of products that actually exist.  So we define a foreign
    key constraint in the orders table that references the products
    table:
<programlisting>
CREATE TABLE orders (
    order_id integer PRIMARY KEY,
    product_no integer <emphasis>REFERENCES products (product_no)</emphasis>,
    quantity integer
);
</programlisting>
    Now it is impossible to create orders with non-NULL
    <structfield>product_no</structfield> entries that do not appear in the
    products table.
   </para>

   <para>
    We say that in this situation the orders table is the
    <firstterm>referencing</firstterm> table and the products table is
    the <firstterm>referenced</firstterm> table.  Similarly, there are
    referencing and referenced columns.
   </para>

   <para>
    You can also shorten the above command to:
<programlisting>
CREATE TABLE orders (
    order_id integer PRIMARY KEY,
    product_no integer <emphasis>REFERENCES products</emphasis>,
    quantity integer
);
</programlisting>
    because in absence of a column list the primary key of the
    referenced table is used as the referenced column(s).
   </para>

   <para>
    You can assign your own name for a foreign key constraint,
    in the usual way.
   </para>

   <para>
    A foreign key can also constrain and reference a group of columns.
    As usual, it then needs to be written in table constraint form.
    Here is a contrived syntax example:
<programlisting>
CREATE TABLE t1 (
  a integer PRIMARY KEY,
  b integer,
  c integer,
  <emphasis>FOREIGN KEY (b, c) REFERENCES other_table (c1, c2)</emphasis>
);
</programlisting>
    Of course, the number and type of the constrained columns need to
    match the number and type of the referenced columns.
   </para>

   <indexterm>
    <primary>foreign key</primary>
    <secondary>self-referential</secondary>
   </indexterm>

   <para>
    Sometimes it is useful for the <quote>other table</quote> of a
    foreign key constraint to be the same table; this is called
    a <firstterm>self-referential</firstterm> foreign key.  For
    example, if you want rows of a table to represent nodes of a tree
    structure, you could write
<programlisting>
CREATE TABLE tree (
    node_id integer PRIMARY KEY,
    parent_id integer REFERENCES tree,
    name text,
    ...
);
</programlisting>
    A top-level node would have NULL <structfield>parent_id</structfield>,
    while non-NULL <structfield>parent_id</structfield> entries would be
    constrained to reference valid rows of the table.
   </para>

   <para>
    A table can have more than one foreign key constraint.  This is
    used to implement many-to-many relationships between tables.  Say
    you have tables about products and orders, but now you want to
    allow one order to contain possibly many products (which the
    structure above did not allow).  You could use this table structure:
<programlisting>
CREATE TABLE products (
    product_no integer PRIMARY KEY,
    name text,
    price numeric
);

CREATE TABLE orders (
    order_id integer PRIMARY KEY,
    shipping_address text,
    ...
);

CREATE TABLE order_items (
    product_no integer REFERENCES products,
    order_id integer REFERENCES orders,
    quantity integer,
    PRIMARY KEY (product_no, order_id)
);
</programlisting>
    Notice that the primary key overlaps with the foreign keys in
    the last table.
   </para>

   <indexterm>
    <primary>CASCADE</primary>
    <secondary>foreign key action</secondary>
   </indexterm>

   <indexterm>
    <primary>RESTRICT</primary>
    <secondary>foreign key action</secondary>
   </indexterm>

   <para>
    We know that the foreign keys disallow creation of orders that
    do not relate to any products.  But what if a product is removed
    after an order is created that references it?  SQL allows you to
    handle that as well.  Intuitively, we have a few options:
    <itemizedlist spacing="compact">
     <listitem><para>Disallow deleting a referenced product</para></listitem>
     <listitem><para>Delete the orders as well</para></listitem>
     <listitem><para>Something else?</para></listitem>
    </itemizedlist>
   </para>

   <para>
    To illustrate this, let's implement the following policy on the
    many-to-many relationship example above: when someone wants to
    remove a product that is still referenced by an order (via
    <literal>order_items</literal>), we disallow it.  If someone
    removes an order, the order items are removed as well:
<programlisting>
CREATE TABLE products (
    product_no integer PRIMARY KEY,
    name text,
    price numeric
);

CREATE TABLE orders (
    order_id integer PRIMARY KEY,
    shipping_address text,
    ...
);

CREATE TABLE order_items (
    product_no integer REFERENCES products <emphasis>ON DELETE RESTRICT</emphasis>,
    order_id integer REFERENCES orders <emphasis>ON DELETE CASCADE</emphasis>,
    quantity integer,
    PRIMARY KEY (product_no, order_id)
);
</programlisting>
   </para>

   <para>
    Restricting and cascading deletes are the two most common options.
    <literal>RESTRICT</literal> prevents deletion of a
    referenced row. <literal>NO ACTION</literal> means that if any
    referencing rows still exist when the constraint is checked, an error
    is raised; this is the default behavior if you do not specify anything.
    (The essential difference between these two choices is that
    <literal>NO ACTION</literal> allows the check to be deferred until
    later in the transaction, whereas <literal>RESTRICT</literal> does not.)
    <literal>CASCADE</literal> specifies that when a referenced row is deleted,
    row(s) referencing it should be automatically deleted as well.
    There are two other options:
    <literal>SET NULL</literal> and <literal>SET DEFAULT</literal>.
    These cause the referencing column(s) in the referencing row(s)
    to be set to nulls or their default
    values, respectively, when the referenced row is deleted.
    Note that these do not excuse you from observing any constraints.
    For example, if an action specifies <literal>SET DEFAULT</literal>
    but the default value would not satisfy the foreign key constraint, the
    operation will fail.
   </para>

   <para>
    The appropriate choice of <literal>ON DELETE</literal> action depends on
    what kinds of objects the related tables represent.  When the referencing
    table represents something that is a component of what is represented by
    the referenced table and cannot exist independently, then
    <literal>CASCADE</literal> could be appropriate.  If the two tables
    represent independent objects, then <literal>RESTRICT</literal> or
    <literal>NO ACTION</literal> is more appropriate; an application that
    actually wants to delete both objects would then have to be explicit about
    this and run two delete commands.  In the above example, order items are
    part of an order, and it is convenient if they are deleted automatically
    if an order is deleted.  But products and orders are different things, and
    so making a deletion of a product automatically cause the deletion of some
    order items could be considered problematic.  The actions <literal>SET
    NULL</literal> or <literal>SET DEFAULT</literal> can be appropriate if a
    foreign-key relationship represents optional information.  For example, if
    the products table contained a reference to a product manager, and the
    product manager entry gets deleted, then setting the product's product
    manager to null or a default might be useful.
   </para>

   <para>
    The actions <literal>SET NULL</literal> and <literal>SET DEFAULT</literal>
    can take a column list to specify which columns to set.  Normally, all
    columns of the foreign-key constraint are set; setting only a subset is
    useful in some special cases.  Consider the following example:
<programlisting>
CREATE TABLE tenants (
    tenant_id integer PRIMARY KEY
);

CREATE TABLE users (
    tenant_id integer REFERENCES tenants ON DELETE CASCADE,
    user_id integer NOT NULL,
    PRIMARY KEY (tenant_id, user_id)
);

CREATE TABLE posts (
    tenant_id integer REFERENCES tenants ON DELETE CASCADE,
    post_id integer NOT NULL,
    author_id integer,
    PRIMARY KEY (tenant_id, post_id),
    FOREIGN KEY (tenant_id, author_id) REFERENCES users ON DELETE SET NULL <emphasis>(author_id)</emphasis>
);
</programlisting>
    Without the specification of the column, the foreign key would also set
    the column <literal>tenant_id</literal> to null, but that column is still
    required as part of the primary key.
   </para>

   <para>
    Analogous to <literal>ON DELETE</literal> there is also
    <literal>ON UPDATE</literal> which is invoked when a referenced
    column is changed (updated).  The possible actions are the same,
    except that column lists cannot be specified for <literal>SET
    NULL</literal> and <literal>SET DEFAULT</literal>.
    In this case, <literal>CASCADE</literal> means that the updated values of the
    referenced column(s) should be copied into the referencing row(s).
   </para>

   <para>
    Normally, a referencing row need not satisfy the foreign key constraint
    if any of its referencing columns are null.  If <literal>MATCH FULL</literal>
    is added to the foreign key declaration, a referencing row escapes
    satisfying the constraint only if all its referencing columns are null
    (so a mix of null and non-null values is guaranteed to fail a
    <literal>MATCH FULL</literal> constraint).  If you don't want referencing rows
    to be able to avoid satisfying the foreign key constraint, declare the
    referencing column(s) as <literal>NOT NULL</literal>.
   </para>

   <para>
    A foreign key must reference columns that either are a primary key or
    form a unique constraint, or are columns from a non-partial unique index.
    This means that the referenced columns always have an index to allow
    efficient lookups on whether a referencing row has a match.  Since a
    <command>DELETE</command> of a row from the referenced table or an
    <command>UPDATE</command> of a referenced column will require a scan of
    the referencing table for rows matching the old value, it is often a good
    idea to index the referencing columns too.  Because this is not always
    needed, and there are many choices available on how to index, the
    declaration of a foreign key constraint does not automatically create an
    index on the referencing columns.
   </para>

   <para>
    More information about updating and deleting data is in <xref
    linkend="dml"/>.  Also see the description of foreign key constraint
    syntax in the reference documentation for
    <xref linkend="sql-createtable"/>.
   </para>
  </sect2>

  <sect2 id="ddl-constraints-exclusion">
   <title>Exclusion Constraints</title>

   <indexterm>
    <primary>exclusion constraint</primary>
   </indexterm>

   <indexterm>
    <primary>constraint</primary>
    <secondary>exclusion</secondary>
   </indexterm>

   <para>
    Exclusion constraints ensure that if any two rows are compared on
    the specified columns or expressions using the specified operators,
    at least one of these operator comparisons will return false or null.
    The syntax is:
<programlisting>
CREATE TABLE circles (
    c circle,
    EXCLUDE USING gist (c WITH &amp;&amp;)
);
</programlisting>
   </para>

   <para>
    See also <link linkend="sql-createtable-exclude"><command>CREATE
    TABLE ... CONSTRAINT ... EXCLUDE</command></link> for details.
   </para>

   <para>
    Adding an exclusion constraint will automatically create an index
    of the type specified in the constraint declaration.
   </para>
  </sect2>
 </sect1>

 <sect1 id="ddl-system-columns">
  <title>System Columns</title>

  <para>
   Every table has several <firstterm>system columns</firstterm> that are
   implicitly defined by the system.  Therefore, these names cannot be
   used as names of user-defined columns.  (Note that these
   restrictions are separate from whether the name is a key word or
   not; quoting a name will not allow you to escape these
   restrictions.)  You do not really need to be concerned about these
   columns; just know they exist.
  </para>

  <indexterm>
   <primary>column</primary>
   <secondary>system column</secondary>
  </indexterm>

  <variablelist>
   <varlistentry id="ddl-system-columns-tableoid">
    <term><structfield>tableoid</structfield></term>
    <listitem>
     <indexterm>
      <primary>tableoid</primary>
     </indexterm>

     <para>
      The OID of the table containing this row.  This column is
      particularly handy for queries that select from partitioned
      tables (see <xref linkend="ddl-partitioning"/>) or inheritance
      hierarchies (see <xref linkend="ddl-inherit"/>), since without it,
      it's difficult to tell which individual table a row came from.  The
      <structfield>tableoid</structfield> can be joined against the
      <structfield>oid</structfield> column of
      <structname>pg_class</structname> to obtain the table name.
     </para>
    </listitem>
   </varlistentry>

   <varlistentry id="ddl-system-columns-xmin">
    <term><structfield>xmin</structfield></term>
    <listitem>
     <indexterm>
      <primary>xmin</primary>
     </indexterm>

     <para>
      The identity (transaction ID) of the inserting transaction for
      this row version.  (A row version is an individual state of a
      row; each update of a row creates a new row version for the same
      logical row.)
     </para>
    </listitem>
   </varlistentry>

   <varlistentry id="ddl-system-columns-cmin">
    <term><structfield>cmin</structfield></term>
    <listitem>
     <indexterm>
      <primary>cmin</primary>
     </indexterm>

     <para>
      The command identifier (starting at zero) within the inserting
      transaction.
     </para>
    </listitem>
   </varlistentry>

   <varlistentry id="ddl-system-columns-xmax">
    <term><structfield>xmax</structfield></term>
    <listitem>
     <indexterm>
      <primary>xmax</primary>
     </indexterm>

     <para>
      The identity (transaction ID) of the deleting transaction, or
      zero for an undeleted row version.  It is possible for this column to
      be nonzero in a visible row version. That usually indicates that the
      deleting transaction hasn't committed yet, or that an attempted
      deletion was rolled back.
     </para>
    </listitem>
   </varlistentry>

   <varlistentry id="ddl-system-columns-cmax">
    <term><structfield>cmax</structfield></term>
    <listitem>
     <indexterm>
      <primary>cmax</primary>
     </indexterm>

     <para>
      The command identifier within the deleting transaction, or zero.
     </para>
    </listitem>
   </varlistentry>

   <varlistentry id="ddl-system-columns-ctid">
    <term><structfield>ctid</structfield></term>
    <listitem>
     <indexterm>
      <primary>ctid</primary>
     </indexterm>

     <para>
      The physical location of the row version within its table.  Note that
      although the <structfield>ctid</structfield> can be used to
      locate the row version very quickly, a row's
      <structfield>ctid</structfield> will change if it is
      updated or moved by <command>VACUUM FULL</command>.  Therefore
      <structfield>ctid</structfield> is useless as a long-term row
      identifier.  A primary key should be used to identify logical rows.
     </para>
    </listitem>
   </varlistentry>
  </variablelist>

   <para>
    Transaction identifiers are also 32-bit quantities.  In a
    long-lived database it is possible for transaction IDs to wrap
    around.  This is not a fatal problem given appropriate maintenance
    procedures; see <xref linkend="maintenance"/> for details.  It is
    unwise, however, to depend on the uniqueness of transaction IDs
    over the long term (more than one billion transactions).
   </para>

   <para>
    Command identifiers are also 32-bit quantities.  This creates a hard limit
    of 2<superscript>32</superscript> (4 billion) <acronym>SQL</acronym> commands
    within a single transaction.  In practice this limit is not a
    problem &mdash; note that the limit is on the number of
    <acronym>SQL</acronym> commands, not the number of rows processed.
    Also, only commands that actually modify the database contents will
    consume a command identifier.
   </para>
 </sect1>

 <sect1 id="ddl-alter">
  <title>Modifying Tables</title>

  <indexterm zone="ddl-alter">
   <primary>table</primary>
   <secondary>modifying</secondary>
  </indexterm>

  <para>
   When you create a table and you realize that you made a mistake, or
   the requirements of the application change, you can drop the
   table and create it again.  But this is not a convenient option if
   the table is already filled with data, or if the table is
   referenced by other database objects (for instance a foreign key
   constraint).  Therefore <productname>PostgreSQL</productname>
   provides a family of commands to make modifications to existing
   tables.  Note that this is conceptually distinct from altering
   the data contained in the table: here we are interested in altering
   the definition, or structure, of the table.
  </para>

  <para>
   You can:
   <itemizedlist spacing="compact">
    <listitem>
     <para>Add columns</para>
    </listitem>
    <listitem>
     <para>Remove columns</para>
    </listitem>
    <listitem>
     <para>Add constraints</para>
    </listitem>
    <listitem>
     <para>Remove constraints</para>
    </listitem>
    <listitem>
     <para>Change default values</para>
    </listitem>
    <listitem>
     <para>Change column data types</para>
    </listitem>
    <listitem>
     <para>Rename columns</para>
    </listitem>
    <listitem>
     <para>Rename tables</para>
    </listitem>
   </itemizedlist>

   All these actions are performed using the
   <xref linkend="sql-altertable"/>
   command, whose reference page contains details beyond those given
   here.
  </para>

  <sect2 id="ddl-alter-adding-a-column">
   <title>Adding a Column</title>

   <indexterm>
    <primary>column</primary>
    <secondary>adding</secondary>
   </indexterm>

   <para>
    To add a column, use a command like:
<programlisting>
ALTER TABLE products ADD COLUMN description text;
</programlisting>
    The new column is initially filled with whatever default
    value is given (null if you don't specify a <literal>DEFAULT</literal> clause).
   </para>

   <tip>
    <para>
     From <productname>PostgreSQL</productname> 11, adding a column with
     a constant default value no longer means that each row of the table
     needs to be updated when the <command>ALTER TABLE</command> statement
     is executed. Instead, the default value will be returned the next time
     the row is accessed, and applied when the table is rewritten, making
     the <command>ALTER TABLE</command> very fast even on large tables.
    </para>

    <para>
     However, if the default value is volatile (e.g.,
     <function>clock_timestamp()</function>)
     each row will need to be updated with the value calculated at the time
     <command>ALTER TABLE</command> is executed. To avoid a potentially
     lengthy update operation, particularly if you intend to fill the column
     with mostly nondefault values anyway, it may be preferable to add the
     column with no default, insert the correct values using
     <command>UPDATE</command>, and then add any desired default as described
     below.
    </para>
   </tip>

   <para>
    You can also define constraints on the column at the same time,
    using the usual syntax:
<programlisting>
ALTER TABLE products ADD COLUMN description text CHECK (description &lt;&gt; '');
</programlisting>
    In fact all the options that can be applied to a column description
    in <command>CREATE TABLE</command> can be used here.  Keep in mind however
    that the default value must satisfy the given constraints, or the
    <literal>ADD</literal> will fail.  Alternatively, you can add
    constraints later (see below) after you've filled in the new column
    correctly.
   </para>

  </sect2>

  <sect2 id="ddl-alter-removing-a-column">
   <title>Removing a Column</title>

   <indexterm>
    <primary>column</primary>
    <secondary>removing</secondary>
   </indexterm>

   <para>
    To remove a column, use a command like:
<programlisting>
ALTER TABLE products DROP COLUMN description;
</programlisting>
    Whatever data was in the column disappears.  Table constraints involving
    the column are dropped, too.  However, if the column is referenced by a
    foreign key constraint of another table,
    <productname>PostgreSQL</productname> will not silently drop that
    constraint.  You can authorize dropping everything that depends on
    the column by adding <literal>CASCADE</literal>:
<programlisting>
ALTER TABLE products DROP COLUMN description CASCADE;
</programlisting>
    See <xref linkend="ddl-depend"/> for a description of the general
    mechanism behind this.
   </para>
  </sect2>

  <sect2 id="ddl-alter-adding-a-constraint">
   <title>Adding a Constraint</title>

   <indexterm>
    <primary>constraint</primary>
    <secondary>adding</secondary>
   </indexterm>

   <para>
    To add a constraint, the table constraint syntax is used.  For example:
<programlisting>
ALTER TABLE products ADD CHECK (name &lt;&gt; '');
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;
</programlisting>
    To add a not-null constraint, which cannot be written as a table
    constraint, use this syntax:
<programlisting>
ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;
</programlisting>
   </para>

   <para>
    The constraint will be checked immediately, so the table data must
    satisfy the constraint before it can be added.
   </para>
  </sect2>

  <sect2 id="ddl-alter-removing-a-constraint">
   <title>Removing a Constraint</title>

   <indexterm>
    <primary>constraint</primary>
    <secondary>removing</secondary>
   </indexterm>

   <para>
    To remove a constraint you need to know its name.  If you gave it
    a name then that's easy.  Otherwise the system assigned a
    generated name, which you need to find out.  The
    <application>psql</application> command <literal>\d
    <replaceable>tablename</replaceable></literal> can be helpful
    here; other interfaces might also provide a way to inspect table
    details.  Then the command is:
<programlisting>
ALTER TABLE products DROP CONSTRAINT some_name;
</programlisting>
    (If you are dealing with a generated constraint name like <literal>$2</literal>,
    don't forget that you'll need to double-quote it to make it a valid
    identifier.)
   </para>

   <para>
    As with dropping a column, you need to add <literal>CASCADE</literal> if you
    want to drop a constraint that something else depends on.  An example
    is that a foreign key constraint depends on a unique or primary key
    constraint on the referenced column(s).
   </para>

   <para>
    This works the same for all constraint types except not-null
    constraints. To drop a not null constraint use:
<programlisting>
ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;
</programlisting>
    (Recall that not-null constraints do not have names.)
   </para>
  </sect2>

  <sect2 id="ddl-alter-column-default">
   <title>Changing a Column's Default Value</title>

   <indexterm>
    <primary>default value</primary>
    <secondary>changing</secondary>
   </indexterm>

   <para>
    To set a new default for a column, use a command like:
<programlisting>
ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;
</programlisting>
    Note that this doesn't affect any existing rows in the table, it
    just changes the default for future <command>INSERT</command> commands.
   </para>

   <para>
    To remove any default value, use:
<programlisting>
ALTER TABLE products ALTER COLUMN price DROP DEFAULT;
</programlisting>
    This is effectively the same as setting the default to null.
    As a consequence, it is not an error
    to drop a default where one hadn't been defined, because the
    default is implicitly the null value.
   </para>
  </sect2>

  <sect2 id="ddl-alter-column-type">
   <title>Changing a Column's Data Type</title>

   <indexterm>
    <primary>column data type</primary>
    <secondary>changing</secondary>
   </indexterm>

   <para>
    To convert a column to a different data type, use a command like:
<programlisting>
ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);
</programlisting>
    This will succeed only if each existing entry in the column can be
    converted to the new type by an implicit cast.  If a more complex
    conversion is needed, you can add a <literal>USING</literal> clause that
    specifies how to compute the new values from the old.
   </para>

   <para>
    <productname>PostgreSQL</productname> will attempt to convert the column's
    default value (if any) to the new type, as well as any constraints
    that involve the column.  But these conversions might fail, or might
    produce surprising results.  It's often best to drop any constraints
    on the column before altering its type, and then add back suitably
    modified constraints afterwards.
   </para>
  </sect2>

  <sect2 id="ddl-alter-renaming-column">
   <title>Renaming a Column</title>

   <indexterm>
    <primary>column</primary>
    <secondary>renaming</secondary>
   </indexterm>

   <para>
    To rename a column:
<programlisting>
ALTER TABLE products RENAME COLUMN product_no TO product_number;
</programlisting>
   </para>
  </sect2>

  <sect2 id="ddl-alter-renaming-table">
   <title>Renaming a Table</title>

   <indexterm>
    <primary>table</primary>
    <secondary>renaming</secondary>
   </indexterm>

   <para>
    To rename a table:
<programlisting>
ALTER TABLE products RENAME TO items;
</programlisting>
   </para>
  </sect2>
 </sect1>

 <sect1 id="ddl-priv">
  <title>Privileges</title>

  <indexterm zone="ddl-priv">
   <primary>privilege</primary>
  </indexterm>

  <indexterm>
   <primary>permission</primary>
   <see>privilege</see>
  </indexterm>

  <indexterm zone="ddl-priv">
   <primary>owner</primary>
  </indexterm>

  <indexterm zone="ddl-priv">
   <primary>GRANT</primary>
  </indexterm>

  <indexterm zone="ddl-priv">
   <primary>REVOKE</primary>
  </indexterm>

  <indexterm zone="ddl-priv">
   <primary>ACL</primary>
  </indexterm>

  <para>
   When an object is created, it is assigned an owner. The
   owner is normally the role that executed the creation statement.
   For most kinds of objects, the initial state is that only the owner
   (or a superuser) can do anything with the object. To allow
   other roles to use it, <firstterm>privileges</firstterm> must be
   granted.
  </para>

  <para>
   There are different kinds of privileges: <literal>SELECT</literal>,
   <literal>INSERT</literal>, <literal>UPDATE</literal>, <literal>DELETE</literal>,
   <literal>TRUNCATE</literal>, <literal>REFERENCES</literal>, <literal>TRIGGER</literal>,
   <literal>CREATE</literal>, <literal>CONNECT</literal>, <literal>TEMPORARY</literal>,
   <literal>EXECUTE</literal>, <literal>USAGE</literal>, <literal>SET</literal>
   and <literal>ALTER SYSTEM</literal>.
   The privileges applicable to a particular
   object vary depending on the object's type (table, function, etc.).
   More detail about the meanings of these privileges appears below.
   The following sections and chapters will also show you how
   these privileges are used.
  </para>

  <para>
   The right to modify or destroy an object is inherent in being the
   object's owner, and cannot be granted or revoked in itself.
   (However, like all privileges, that right can be inherited by
   members of the owning role; see <xref linkend="role-membership"/>.)
  </para>

  <para>
   An object can be assigned to a new owner with an <command>ALTER</command>
   command of the appropriate kind for the object, for example
<programlisting>
ALTER TABLE <replaceable>table_name</replaceable> OWNER TO <replaceable>new_owner</replaceable>;
</programlisting>
   Superusers can always do this; ordinary roles can only do it if they are
   both the current owner of the object (or inherit the privileges of the
   owning role) and able to <literal>SET ROLE</literal> to the new owning role.
  </para>

  <para>
   To assign privileges, the <xref linkend="sql-grant"/> command is
   used. For example, if <literal>joe</literal> is an existing role, and
   <literal>accounts</literal> is an existing table, the privilege to
   update the table can be granted with:
<programlisting>
GRANT UPDATE ON accounts TO joe;
</programlisting>
   Writing <literal>ALL</literal> in place of a specific privilege grants all
   privileges that are relevant for the object type.
  </para>

  <para>
   The special <quote>role</quote> name <literal>PUBLIC</literal> can
   be used to grant a privilege to every role on the system.  Also,
   <quote>group</quote> roles can be set up to help manage privileges when
   there are many users of a database &mdash; for details see
   <xref linkend="user-manag"/>.
  </para>

  <para>
   To revoke a previously-granted privilege, use the fittingly named
   <xref linkend="sql-revoke"/> command:
<programlisting>
REVOKE ALL ON accounts FROM PUBLIC;
</programlisting>
  </para>

  <para>
   Ordinarily, only the object's owner (or a superuser) can grant or
   revoke privileges on an object.  However, it is possible to grant a
   privilege <quote>with grant option</quote>, which gives the recipient
   the right to grant it in turn to others.  If the grant option is
   subsequently revoked then all who received the privilege from that
   recipient (directly or through a chain of grants) will lose the
   privilege.  For details see the <xref linkend="sql-grant"/> and
   <xref linkend="sql-revoke"/> reference pages.
  </para>

  <para>
   An object's owner can choose to revoke their own ordinary privileges,
   for example to make a table read-only for themselves as well as others.
   But owners are always treated as holding all grant options, so they
   can always re-grant their own privileges.
  </para>

  <para>
   The available privileges are:

   <variablelist>
    <varlistentry id="ddl-priv-select">
     <term><literal>SELECT</literal></term>
     <listitem>
      <para>
       Allows <command>SELECT</command> from
       any column, or specific column(s), of a table, view, materialized
       view, or other table-like object.
       Also allows use of <command>COPY TO</command>.
       This privilege is also needed to reference existing column values in
       <command>UPDATE</command>, <command>DELETE</command>,
       or <command>MERGE</command>.
       For sequences, this privilege also allows use of the
       <function>currval</function> function.
       For large objects, this privilege allows the object to be read.
      </para>
     </listitem>
    </varlistentry>

    <varlistentry id="ddl-priv-insert">
     <term><literal>INSERT</literal></term>
     <listitem>
      <para>
       Allows <command>INSERT</command> of a new row into a table, view,
       etc.  Can be granted on specific column(s), in which case
       only those columns may be assigned to in the <command>INSERT</command>
       command (other columns will therefore receive default values).
       Also allows use of <command>COPY FROM</command>.
      </para>
     </listitem>
    </varlistentry>

    <varlistentry id="ddl-priv-update">
     <term><literal>UPDATE</literal></term>
     <listitem>
      <para>
       Allows <command>UPDATE</command> of any
       column, or specific column(s), of a table, view, etc.
       (In practice, any nontrivial <command>UPDATE</command> command will
       require <literal>SELECT</literal> privilege as well, since it must
       reference table columns to determine which rows to update, and/or to
       compute new values for columns.)
       <literal>SELECT ... FOR UPDATE</literal>
       and <literal>SELECT ... FOR SHARE</literal>
       also require this privilege on at least one column, in addition to the
       <literal>SELECT</literal> privilege.  For sequences, this
       privilege allows use of the <function>nextval</function> and
       <function>setval</function> functions.
       For large objects, this privilege allows writing or truncating the
       object.
      </para>
     </listitem>
    </varlistentry>

    <varlistentry id="ddl-priv-delete">
     <term><literal>DELETE</literal></term>
     <listitem>
      <para>
       Allows <command>DELETE</command> of a row from a table, view, etc.
       (In practice, any nontrivial <command>DELETE</command> command will
       require <literal>SELECT</literal> privilege as well, since it must
       reference table columns to determine which rows to delete.)
      </para>
     </listitem>
    </varlistentry>

    <varlistentry id="ddl-priv-truncate">
     <term><literal>TRUNCATE</literal></term>
     <listitem>
      <para>
       Allows <command>TRUNCATE</command> on a table.
      </para>
     </listitem>
    </varlistentry>

    <varlistentry id="ddl-priv-references">
     <term><literal>REFERENCES</literal></term>
     <listitem>
      <para>
       Allows creation of a foreign key constraint referencing a
       table, or specific column(s) of a table.
      </para>
     </listitem>
    </varlistentry>

    <varlistentry id="ddl-priv-trigger">
     <term><literal>TRIGGER</literal></term>
     <listitem>
      <para>
       Allows creation of a trigger on a table, view, etc.
      </para>
     </listitem>
    </varlistentry>

    <varlistentry id="ddl-priv-create">
     <term><literal>CREATE</literal></term>
     <listitem>
      <para>
       For databases, allows new schemas and publications to be created within
       the database, and allows trusted extensions to be installed within
       the database.
      </para>
      <para>
       For schemas, allows new objects to be created within the schema.
       To rename an existing object, you must own the
       object <emphasis>and</emphasis> have this privilege for the containing
       schema.
      </para>
      <para>
       For tablespaces, allows tables, indexes, and temporary files to be
       created within the tablespace, and allows databases to be created that
       have the tablespace as their default tablespace.
      </para>
      <para>
       Note that revoking this privilege will not alter the existence or
       location of existing objects.
      </para>
     </listitem>
    </varlistentry>

    <varlistentry id="ddl-priv-connect">
     <term><literal>CONNECT</literal></term>
     <listitem>
      <para>
       Allows the grantee to connect to the database.  This
       privilege is checked at connection startup (in addition to checking
       any restrictions imposed by <filename>pg_hba.conf</filename>).
      </para>
     </listitem>
    </varlistentry>

    <varlistentry id="ddl-priv-temporary">
     <term><literal>TEMPORARY</literal></term>
     <listitem>
      <para>
       Allows temporary tables to be created while using the database.
      </para>
     </listitem>
    </varlistentry>

    <varlistentry id="ddl-priv-execute">
     <term><literal>EXECUTE</literal></term>
     <listitem>
      <para>
       Allows calling a function or procedure, including use of
       any operators that are implemented on top of the function.  This is the
       only type of privilege that is applicable to functions and procedures.
      </para>
     </listitem>
    </varlistentry>

    <varlistentry id="ddl-priv-usage">
     <term><literal>USAGE</literal></term>
     <listitem>
      <para>
       For procedural languages, allows use of the language for
       the creation of functions in that language.  This is the only type
       of privilege that is applicable to procedural languages.
      </para>
      <para>
       For schemas, allows access to objects contained in the
       schema (assuming that the objects' own privilege requirements are
       also met).  Essentially this allows the grantee to <quote>look up</quote>
       objects within the schema.  Without this permission, it is still
       possible to see the object names, e.g., by querying system catalogs.
       Also, after revoking this permission, existing sessions might have
       statements that have previously performed this lookup, so this is not
       a completely secure way to prevent object access.
      </para>
      <para>
       For sequences, allows use of the
       <function>currval</function> and <function>nextval</function> functions.
      </para>
      <para>
       For types and domains, allows use of the type or domain in the
       creation of tables, functions, and other schema objects.  (Note that
       this privilege does not control all <quote>usage</quote> of the
       type, such as values of the type appearing in queries.  It only
       prevents objects from being created that depend on the type.  The
       main purpose of this privilege is controlling which users can create
       dependencies on a type, which could prevent the owner from changing
       the type later.)
      </para>
      <para>
       For foreign-data wrappers, allows creation of new servers using the
       foreign-data wrapper.
      </para>
      <para>
       For foreign servers, allows creation of foreign tables using the
       server.  Grantees may also create, alter, or drop their own user
       mappings associated with that server.
      </para>
     </listitem>
    </varlistentry>

    <varlistentry id="ddl-priv-set">
     <term><literal>SET</literal></term>
     <listitem>
      <para>
       Allows a server configuration parameter to be set to a new value
       within the current session.  (While this privilege can be granted
       on any parameter, it is meaningless except for parameters that would
       normally require superuser privilege to set.)
      </para>
     </listitem>
    </varlistentry>

    <varlistentry id="ddl-priv-alter-system">
     <term><literal>ALTER SYSTEM</literal></term>
     <listitem>
      <para>
       Allows a server configuration parameter to be configured to a new
       value using the <xref linkend="sql-altersystem"/> command.
      </para>
     </listitem>
    </varlistentry>
   </variablelist>

   The privileges required by other commands are listed on the
   reference page of the respective command.
  </para>

  <para>
   PostgreSQL grants privileges on some types of objects to
   <literal>PUBLIC</literal> by default when the objects are created.
   No privileges are granted to <literal>PUBLIC</literal> by default on
   tables,
   table columns,
   sequences,
   foreign data wrappers,
   foreign servers,
   large objects,
   schemas,
   tablespaces,
   or configuration parameters.
   For other types of objects, the default privileges
   granted to <literal>PUBLIC</literal> are as follows:
   <literal>CONNECT</literal> and <literal>TEMPORARY</literal> (create
   temporary tables) privileges for databases;
   <literal>EXECUTE</literal> privilege for functions and procedures; and
   <literal>USAGE</literal> privilege for languages and data types
   (including domains).
   The object owner can, of course, <command>REVOKE</command>
   both default and expressly granted privileges. (For maximum
   security, issue the <command>REVOKE</command> in the same transaction that
   creates the object; then there is no window in which another user
   can use the object.)
   Also, these default privilege settings can be overridden using the
   <xref linkend="sql-alterdefaultprivileges"/> command.
  </para>

  <para>
   <xref linkend="privilege-abbrevs-table"/> shows the one-letter
   abbreviations that are used for these privilege types in
   <firstterm>ACL</firstterm> (Access Control List) values.
   You will see these letters in the output of the <xref linkend="app-psql"/>
   commands listed below, or when looking at ACL columns of system catalogs.
  </para>

  <table id="privilege-abbrevs-table">
   <title>ACL Privilege Abbreviations</title>
   <tgroup cols="3">
    <colspec colname="col1" colwidth="1*"/>
    <colspec colname="col2" colwidth="1*"/>
    <colspec colname="col3" colwidth="2*"/>
    <thead>
     <row>
      <entry>Privilege</entry>
      <entry>Abbreviation</entry>
      <entry>Applicable Object Types</entry>
     </row>
    </thead>
    <tbody>
     <row>
      <entry><literal>SELECT</literal></entry>
      <entry><literal>r</literal> (<quote>read</quote>)</entry>
      <entry>
       <literal>LARGE OBJECT</literal>,
       <literal>SEQUENCE</literal>,
       <literal>TABLE</literal> (and table-like objects),
       table column
      </entry>
     </row>
     <row>
      <entry><literal>INSERT</literal></entry>
      <entry><literal>a</literal> (<quote>append</quote>)</entry>
      <entry><literal>TABLE</literal>, table column</entry>
     </row>
     <row>
      <entry><literal>UPDATE</literal></entry>
      <entry><literal>w</literal> (<quote>write</quote>)</entry>
      <entry>
       <literal>LARGE OBJECT</literal>,
       <literal>SEQUENCE</literal>,
       <literal>TABLE</literal>,
       table column
      </entry>
     </row>
     <row>
      <entry><literal>DELETE</literal></entry>
      <entry><literal>d</literal></entry>
      <entry><literal>TABLE</literal></entry>
     </row>
     <row>
      <entry><literal>TRUNCATE</literal></entry>
      <entry><literal>D</literal></entry>
      <entry><literal>TABLE</literal></entry>
     </row>
     <row>
      <entry><literal>REFERENCES</literal></entry>
      <entry><literal>x</literal></entry>
      <entry><literal>TABLE</literal>, table column</entry>
     </row>
     <row>
      <entry><literal>TRIGGER</literal></entry>
      <entry><literal>t</literal></entry>
      <entry><literal>TABLE</literal></entry>
     </row>
     <row>
      <entry><literal>CREATE</literal></entry>
      <entry><literal>C</literal></entry>
      <entry>
       <literal>DATABASE</literal>,
       <literal>SCHEMA</literal>,
       <literal>TABLESPACE</literal>
      </entry>
     </row>
     <row>
      <entry><literal>CONNECT</literal></entry>
      <entry><literal>c</literal></entry>
      <entry><literal>DATABASE</literal></entry>
     </row>
     <row>
      <entry><literal>TEMPORARY</literal></entry>
      <entry><literal>T</literal></entry>
      <entry><literal>DATABASE</literal></entry>
     </row>
     <row>
      <entry><literal>EXECUTE</literal></entry>
      <entry><literal>X</literal></entry>
      <entry><literal>FUNCTION</literal>, <literal>PROCEDURE</literal></entry>
     </row>
     <row>
      <entry><literal>USAGE</literal></entry>
      <entry><literal>U</literal></entry>
      <entry>
       <literal>DOMAIN</literal>,
       <literal>FOREIGN DATA WRAPPER</literal>,
       <literal>FOREIGN SERVER</literal>,
       <literal>LANGUAGE</literal>,
       <literal>SCHEMA</literal>,
       <literal>SEQUENCE</literal>,
       <literal>TYPE</literal>
      </entry>
     </row>
     <row>
      <entry><literal>SET</literal></entry>
      <entry><literal>s</literal></entry>
      <entry><literal>PARAMETER</literal></entry>
     </row>
     <row>
      <entry><literal>ALTER SYSTEM</literal></entry>
      <entry><literal>A</literal></entry>
      <entry><literal>PARAMETER</literal></entry>
     </row>
     </tbody>
   </tgroup>
  </table>

  <para>
   <xref linkend="privileges-summary-table"/> summarizes the privileges
   available for each type of SQL object, using the abbreviations shown
   above.
   It also shows the <application>psql</application> command
   that can be used to examine privilege settings for each object type.
  </para>

  <table id="privileges-summary-table">
   <title>Summary of Access Privileges</title>
   <tgroup cols="4">
    <colspec colname="col1" colwidth="2*"/>
    <colspec colname="col2" colwidth="1*"/>
    <colspec colname="col3" colwidth="1*"/>
    <colspec colname="col4" colwidth="1*"/>
    <thead>
     <row>
      <entry>Object Type</entry>
      <entry>All Privileges</entry>
      <entry>Default <literal>PUBLIC</literal> Privileges</entry>
      <entry><application>psql</application> Command</entry>
     </row>
    </thead>
    <tbody>
     <row>
      <entry><literal>DATABASE</literal></entry>
      <entry><literal>CTc</literal></entry>
      <entry><literal>Tc</literal></entry>
      <entry><literal>\l</literal></entry>
     </row>
     <row>
      <entry><literal>DOMAIN</literal></entry>
      <entry><literal>U</literal></entry>
      <entry><literal>U</literal></entry>
      <entry><literal>\dD+</literal></entry>
     </row>
     <row>
      <entry><literal>FUNCTION</literal> or <literal>PROCEDURE</literal></entry>
      <entry><literal>X</literal></entry>
      <entry><literal>X</literal></entry>
      <entry><literal>\df+</literal></entry>
     </row>
     <row>
      <entry><literal>FOREIGN DATA WRAPPER</literal></entry>
      <entry><literal>U</literal></entry>
      <entry>none</entry>
      <entry><literal>\dew+</literal></entry>
     </row>
     <row>
      <entry><literal>FOREIGN SERVER</literal></entry>
      <entry><literal>U</literal></entry>
      <entry>none</entry>
      <entry><literal>\des+</literal></entry>
     </row>
     <row>
      <entry><literal>LANGUAGE</literal></entry>
      <entry><literal>U</literal></entry>
      <entry><literal>U</literal></entry>
      <entry><literal>\dL+</literal></entry>
     </row>
     <row>
      <entry><literal>LARGE OBJECT</literal></entry>
      <entry><literal>rw</literal></entry>
      <entry>none</entry>
      <entry><literal>\dl+</literal></entry>
     </row>
     <row>
      <entry><literal>PARAMETER</literal></entry>
      <entry><literal>sA</literal></entry>
      <entry>none</entry>
      <entry><literal>\dconfig+</literal></entry>
     </row>
     <row>
      <entry><literal>SCHEMA</literal></entry>
      <entry><literal>UC</literal></entry>
      <entry>none</entry>
      <entry><literal>\dn+</literal></entry>
     </row>
     <row>
      <entry><literal>SEQUENCE</literal></entry>
      <entry><literal>rwU</literal></entry>
      <entry>none</entry>
      <entry><literal>\dp</literal></entry>
     </row>
     <row>
      <entry><literal>TABLE</literal> (and table-like objects)</entry>
      <entry><literal>arwdDxt</literal></entry>
      <entry>none</entry>
      <entry><literal>\dp</literal></entry>
     </row>
     <row>
      <entry>Table column</entry>
      <entry><literal>arwx</literal></entry>
      <entry>none</entry>
      <entry><literal>\dp</literal></entry>
     </row>
     <row>
      <entry><literal>TABLESPACE</literal></entry>
      <entry><literal>C</literal></entry>
      <entry>none</entry>
      <entry><literal>\db+</literal></entry>
     </row>
     <row>
      <entry><literal>TYPE</literal></entry>
      <entry><literal>U</literal></entry>
      <entry><literal>U</literal></entry>
      <entry><literal>\dT+</literal></entry>
     </row>
    </tbody>
   </tgroup>
  </table>

  <para>
   <indexterm>
    <primary><type>aclitem</type></primary>
   </indexterm>
   The privileges that have been granted for a particular object are
   displayed as a list of <type>aclitem</type> entries, each having the
   format:
<synopsis>
<replaceable>grantee</replaceable><literal>=</literal><replaceable>privilege-abbreviation</replaceable><optional><literal>*</literal></optional>...<literal>/</literal><replaceable>grantor</replaceable>
</synopsis>
   Each <type>aclitem</type> lists all the permissions of one grantee that
   have been granted by a particular grantor.  Specific privileges are
   represented by one-letter abbreviations from
   <xref linkend="privilege-abbrevs-table"/>, with <literal>*</literal>
   appended if the privilege was granted with grant option.  For example,
   <literal>calvin=r*w/hobbes</literal> specifies that the role
   <literal>calvin</literal> has the privilege
   <literal>SELECT</literal> (<literal>r</literal>) with grant option
   (<literal>*</literal>) as well as the non-grantable
   privilege <literal>UPDATE</literal> (<literal>w</literal>), both granted
   by the role <literal>hobbes</literal>.  If <literal>calvin</literal>
   also has some privileges on the same object granted by a different
   grantor, those would appear as a separate <type>aclitem</type> entry.
   An empty grantee field in an <type>aclitem</type> stands
   for <literal>PUBLIC</literal>.
  </para>

  <para>
   As an example, suppose that user <literal>miriam</literal> creates
   table <literal>mytable</literal> and does:
<programlisting>
GRANT SELECT ON mytable TO PUBLIC;
GRANT SELECT, UPDATE, INSERT ON mytable TO admin;
GRANT SELECT (col1), UPDATE (col1) ON mytable TO miriam_rw;
</programlisting>
   Then <application>psql</application>'s <literal>\dp</literal> command
   would show:
<programlisting>
=&gt; \dp mytable
                                  Access privileges
 Schema |  Name   | Type  |   Access privileges   |   Column privileges   | Policies
--------+---------+-------+-----------------------+-----------------------+----------
 public | mytable | table | miriam=arwdDxt/miriam+| col1:                +|
        |         |       | =r/miriam            +|   miriam_rw=rw/miriam |
        |         |       | admin=arw/miriam      |                       |
(1 row)
</programlisting>
  </para>

  <para>
   If the <quote>Access privileges</quote> column is empty for a given
   object, it means the object has default privileges (that is, its
   privileges entry in the relevant system catalog is null).  Default
   privileges always include all privileges for the owner, and can include
   some privileges for <literal>PUBLIC</literal> depending on the object
   type, as explained above.  The first <command>GRANT</command>
   or <command>REVOKE</command> on an object will instantiate the default
   privileges (producing, for
   example, <literal>miriam=arwdDxt/miriam</literal>) and then modify them
   per the specified request.  Similarly, entries are shown in <quote>Column
   privileges</quote> only for columns with nondefault privileges.
   (Note: for this purpose, <quote>default privileges</quote> always means
   the built-in default privileges for the object's type.  An object whose
   privileges have been affected by an <command>ALTER DEFAULT
   PRIVILEGES</command> command will always be shown with an explicit
   privilege entry that includes the effects of
   the <command>ALTER</command>.)
  </para>

  <para>
   Notice that the owner's implicit grant options are not marked in the
   access privileges display.  A <literal>*</literal> will appear only when
   grant options have been explicitly granted to someone.
  </para>
 </sect1>

 <sect1 id="ddl-rowsecurity">
  <title>Row Security Policies</title>

  <indexterm zone="ddl-rowsecurity">
   <primary>row-level security</primary>
  </indexterm>

  <indexterm zone="ddl-rowsecurity">
   <primary>policy</primary>
  </indexterm>

  <para>
   In addition to the SQL-standard <link linkend="ddl-priv">privilege
   system</link> available through <xref linkend="sql-grant"/>,
   tables can have <firstterm>row security policies</firstterm> that restrict,
   on a per-user basis, which rows can be returned by normal queries
   or inserted, updated, or deleted by data modification commands.
   This feature is also known as <firstterm>Row-Level Security</firstterm>.
   By default, tables do not have any policies, so that if a user has
   access privileges to a table according to the SQL privilege system,
   all rows within it are equally available for querying or updating.
  </para>

  <para>
   When row security is enabled on a table (with
   <link linkend="sql-altertable">ALTER TABLE ... ENABLE ROW LEVEL
   SECURITY</link>), all normal access to the table for selecting rows or
   modifying rows must be allowed by a row security policy.  (However, the
   table's owner is typically not subject to row security policies.)  If no
   policy exists for the table, a default-deny policy is used, meaning that
   no rows are visible or can be modified.  Operations that apply to the
   whole table, such as <command>TRUNCATE</command> and <literal>REFERENCES</literal>,
   are not subject to row security.
  </para>

  <para>
   Row security policies can be specific to commands, or to roles, or to
   both.  A policy can be specified to apply to <literal>ALL</literal>
   commands, or to <literal>SELECT</literal>, <literal>INSERT</literal>, <literal>UPDATE</literal>,
   or <literal>DELETE</literal>.  Multiple roles can be assigned to a given
   policy, and normal role membership and inheritance rules apply.
  </para>

  <para>
   To specify which rows are visible or modifiable according to a policy,
   an expression is required that returns a Boolean result.  This
   expression will be evaluated for each row prior to any conditions or
   functions coming from the user's query.  (The only exceptions to this
   rule are <literal>leakproof</literal> functions, which are guaranteed to
   not leak information; the optimizer may choose to apply such functions
   ahead of the row-security check.)  Rows for which the expression does
   not return <literal>true</literal> will not be processed.  Separate expressions
   may be specified to provide independent control over the rows which are
   visible and the rows which are allowed to be modified.  Policy
   expressions are run as part of the query and with the privileges of the
   user running the query, although security-definer functions can be used
   to access data not available to the calling user.
  </para>

  <para>
   Superusers and roles with the <literal>BYPASSRLS</literal> attribute always
   bypass the row security system when accessing a table.  Table owners
   normally bypass row security as well, though a table owner can choose to
   be subject to row security with <link linkend="sql-altertable">ALTER
   TABLE ... FORCE ROW LEVEL SECURITY</link>.
  </para>

  <para>
   Enabling and disabling row security, as well as adding policies to a
   table, is always the privilege of the table owner only.
  </para>

  <para>
   Policies are created using the <xref linkend="sql-createpolicy"/>
   command, altered using the <xref linkend="sql-alterpolicy"/> command,
   and dropped using the <xref linkend="sql-droppolicy"/> command.  To
   enable and disable row security for a given table, use the
   <xref linkend="sql-altertable"/> command.
  </para>

  <para>
   Each policy has a name and multiple policies can be defined for a
   table.  As policies are table-specific, each policy for a table must
   have a unique name.  Different tables may have policies with the
   same name.
  </para>

  <para>
   When multiple policies apply to a given query, they are combined using
   either <literal>OR</literal> (for permissive policies, which are the
   default) or using <literal>AND</literal> (for restrictive policies).
   This is similar to the rule that a given role has the privileges
   of all roles that they are a member of.  Permissive vs. restrictive
   policies are discussed further below.
  </para>

  <para>
   As a simple example, here is how to create a policy on
   the <literal>account</literal> relation to allow only members of
   the <literal>managers</literal> role to access rows, and only rows of their
   accounts:
  </para>

<programlisting>
CREATE TABLE accounts (manager text, company text, contact_email text);

ALTER TABLE accounts ENABLE ROW LEVEL SECURITY;

CREATE POLICY account_managers ON accounts TO managers
    USING (manager = current_user);
</programlisting>

  <para>
   The policy above implicitly provides a <literal>WITH CHECK</literal>
   clause identical to its <literal>USING</literal> clause, so that the
   constraint applies both to rows selected by a command (so a manager
   cannot <command>SELECT</command>, <command>UPDATE</command>,
   or <command>DELETE</command> existing rows belonging to a different
   manager) and to rows modified by a command (so rows belonging to a
   different manager cannot be created via <command>INSERT</command>
   or <command>UPDATE</command>).
  </para>

  <para>
   If no role is specified, or the special user name
   <literal>PUBLIC</literal> is used, then the policy applies to all
   users on the system.  To allow all users to access only their own row in
   a <literal>users</literal> table, a simple policy can be used:
  </para>

<programlisting>
CREATE POLICY user_policy ON users
    USING (user_name = current_user);
</programlisting>

  <para>
   This works similarly to the previous example.
  </para>

  <para>
   To use a different policy for rows that are being added to the table
   compared to those rows that are visible, multiple policies can be
   combined.  This pair of policies would allow all users to view all rows
   in the <literal>users</literal> table, but only modify their own:
  </para>

<programlisting>
CREATE POLICY user_sel_policy ON users
    FOR SELECT
    USING (true);
CREATE POLICY user_mod_policy ON users
    USING (user_name = current_user);
</programlisting>

  <para>
   In a <command>SELECT</command> command, these two policies are combined
   using <literal>OR</literal>, with the net effect being that all rows
   can be selected.  In other command types, only the second policy applies,
   so that the effects are the same as before.
  </para>

  <para>
   Row security can also be disabled with the <command>ALTER TABLE</command>
   command.  Disabling row security does not remove any policies that are
   defined on the table; they are simply ignored.  Then all rows in the
   table are visible and modifiable, subject to the standard SQL privileges
   system.
  </para>

  <para>
   Below is a larger example of how this feature can be used in production
   environments.  The table <literal>passwd</literal> emulates a Unix password
   file:
  </para>

<programlisting>
-- Simple passwd-file based example
CREATE TABLE passwd (
  user_name             text UNIQUE NOT NULL,
  pwhash                text,
  uid                   int  PRIMARY KEY,
  gid                   int  NOT NULL,
  real_name             text NOT NULL,
  home_phone            text,
  extra_info            text,
  home_dir              text NOT NULL,
  shell                 text NOT NULL
);

CREATE ROLE admin;  -- Administrator
CREATE ROLE bob;    -- Normal user
CREATE ROLE alice;  -- Normal user

-- Populate the table
INSERT INTO passwd VALUES
  ('admin','xxx',0,0,'Admin','111-222-3333',null,'/root','/bin/dash');
INSERT INTO passwd VALUES
  ('bob','xxx',1,1,'Bob','123-456-7890',null,'/home/bob','/bin/zsh');
INSERT INTO passwd VALUES
  ('alice','xxx',2,1,'Alice','098-765-4321',null,'/home/alice','/bin/zsh');

-- Be sure to enable row-level security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURITY;

-- Create policies
-- Administrator can see all rows and add any rows
CREATE POLICY admin_all ON passwd TO admin USING (true) WITH CHECK (true);
-- Normal users can view all rows
CREATE POLICY all_view ON passwd FOR SELECT USING (true);
-- Normal users can update their own records, but
-- limit which shells a normal user is allowed to set
CREATE POLICY user_mod ON passwd FOR UPDATE
  USING (current_user = user_name)
  WITH CHECK (
    current_user = user_name AND
    shell IN ('/bin/bash','/bin/sh','/bin/dash','/bin/zsh','/bin/tcsh')
  );

-- Allow admin all normal rights
GRANT SELECT, INSERT, UPDATE, DELETE ON passwd TO admin;
-- Users only get select access on public columns
GRANT SELECT
  (user_name, uid, gid, real_name, home_phone, extra_info, home_dir, shell)
  ON passwd TO public;
-- Allow users to update certain columns
GRANT UPDATE
  (pwhash, real_name, home_phone, extra_info, shell)
  ON passwd TO public;
</programlisting>

  <para>
   As with any security settings, it's important to test and ensure that
   the system is behaving as expected.  Using the example above, this
   demonstrates that the permission system is working properly.
  </para>

<programlisting>
-- admin can view all rows and fields
postgres=&gt; set role admin;
SET
postgres=&gt; table passwd;
 user_name | pwhash | uid | gid | real_name |  home_phone  | extra_info | home_dir    |   shell
-----------+--------+-----+-----+-----------+--------------+------------+-------------+-----------
 admin     | xxx    |   0 |   0 | Admin     | 111-222-3333 |            | /root       | /bin/dash
 bob       | xxx    |   1 |   1 | Bob       | 123-456-7890 |            | /home/bob   | /bin/zsh
 alice     | xxx    |   2 |   1 | Alice     | 098-765-4321 |            | /home/alice | /bin/zsh
(3 rows)

-- Test what Alice is able to do
postgres=&gt; set role alice;
SET
postgres=&gt; table passwd;
ERROR:  permission denied for table passwd
postgres=&gt; select user_name,real_name,home_phone,extra_info,home_dir,shell from passwd;
 user_name | real_name |  home_phone  | extra_info | home_dir    |   shell
-----------+-----------+--------------+------------+-------------+-----------
 admin     | Admin     | 111-222-3333 |            | /root       | /bin/dash
 bob       | Bob       | 123-456-7890 |            | /home/bob   | /bin/zsh
 alice     | Alice     | 098-765-4321 |            | /home/alice | /bin/zsh
(3 rows)

postgres=&gt; update passwd set user_name = 'joe';
ERROR:  permission denied for table passwd
-- Alice is allowed to change her own real_name, but no others
postgres=&gt; update passwd set real_name = 'Alice Doe';
UPDATE 1
postgres=&gt; update passwd set real_name = 'John Doe' where user_name = 'admin';
UPDATE 0
postgres=&gt; update passwd set shell = '/bin/xx';
ERROR:  new row violates WITH CHECK OPTION for "passwd"
postgres=&gt; delete from passwd;
ERROR:  permission denied for table passwd
postgres=&gt; insert into passwd (user_name) values ('xxx');
ERROR:  permission denied for table passwd
-- Alice can change her own password; RLS silently prevents updating other rows
postgres=&gt; update passwd set pwhash = 'abc';
UPDATE 1
</programlisting>

  <para>
   All of the policies constructed thus far have been permissive policies,
   meaning that when multiple policies are applied they are combined using
   the <quote>OR</quote> Boolean operator.  While permissive policies can be constructed
   to only allow access to rows in the intended cases, it can be simpler to
   combine permissive policies with restrictive policies (which the records
   must pass and which are combined using the <quote>AND</quote> Boolean operator).
   Building on the example above, we add a restrictive policy to require
   the administrator to be connected over a local Unix socket to access the
   records of the <literal>passwd</literal> table:
  </para>

<programlisting>
CREATE POLICY admin_local_only ON passwd AS RESTRICTIVE TO admin
    USING (pg_catalog.inet_client_addr() IS NULL);
</programlisting>

  <para>
   We can then see that an administrator connecting over a network will not
   see any records, due to the restrictive policy:
  </para>

<programlisting>
=&gt; SELECT current_user;
 current_user
--------------
 admin
(1 row)

=&gt; select inet_client_addr();
 inet_client_addr
------------------
 127.0.0.1
(1 row)

=&gt; TABLE passwd;
 user_name | pwhash | uid | gid | real_name | home_phone | extra_info | home_dir | shell
-----------+--------+-----+-----+-----------+------------+------------+----------+-------
(0 rows)

=&gt; UPDATE passwd set pwhash = NULL;
UPDATE 0
</programlisting>

  <para>
   Referential integrity checks, such as unique or primary key constraints
   and foreign key references, always bypass row security to ensure that
   data integrity is maintained.  Care must be taken when developing
   schemas and row level policies to avoid <quote>covert channel</quote> leaks of
   information through such referential integrity checks.
  </para>

  <para>
   In some contexts it is important to be sure that row security is
   not being applied.  For example, when taking a backup, it could be
   disastrous if row security silently caused some rows to be omitted
   from the backup.  In such a situation, you can set the
   <xref linkend="guc-row-security"/> configuration parameter
   to <literal>off</literal>.  This does not in itself bypass row security;
   what it does is throw an error if any query's results would get filtered
   by a policy.  The reason for the error can then be investigated and
   fixed.
  </para>

  <para>
   In the examples above, the policy expressions consider only the current
   values in the row to be accessed or updated.  This is the simplest and
   best-performing case; when possible, it's best to design row security
   applications to work this way.  If it is necessary to consult other rows
   or other tables to make a policy decision, that can be accomplished using
   sub-<command>SELECT</command>s, or functions that contain <command>SELECT</command>s,
   in the policy expressions.  Be aware however that such accesses can
   create race conditions that could allow information leakage if care is
   not taken.  As an example, consider the following table design:
  </para>

<programlisting>
-- definition of privilege groups
CREATE TABLE groups (group_id int PRIMARY KEY,
                     group_name text NOT NULL);

INSERT INTO groups VALUES
  (1, 'low'),
  (2, 'medium'),
  (5, 'high');

GRANT ALL ON groups TO alice;  -- alice is the administrator
GRANT SELECT ON groups TO public;

-- definition of users' privilege levels
CREATE TABLE users (user_name text PRIMARY KEY,
                    group_id int NOT NULL REFERENCES groups);

INSERT INTO users VALUES
  ('alice', 5),
  ('bob', 2),
  ('mallory', 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

-- table holding the information to be protected
CREATE TABLE information (info text,
                          group_id int NOT NULL REFERENCES groups);

INSERT INTO information VALUES
  ('barely secret', 1),
  ('slightly secret', 2),
  ('very secret', 5);

ALTER TABLE information ENABLE ROW LEVEL SECURITY;

-- a row should be visible to/updatable by users whose security group_id is
-- greater than or equal to the row's group_id
CREATE POLICY fp_s ON information FOR SELECT
  USING (group_id &lt;= (SELECT group_id FROM users WHERE user_name = current_user));
CREATE POLICY fp_u ON information FOR UPDATE
  USING (group_id &lt;= (SELECT group_id FROM users WHERE user_name = current_user));

-- we rely only on RLS to protect the information table
GRANT ALL ON information TO public;
</programlisting>

  <para>
   Now suppose that <literal>alice</literal> wishes to change the <quote>slightly
   secret</quote> information, but decides that <literal>mallory</literal> should not
   be trusted with the new content of that row, so she does:
  </para>

<programlisting>
BEGIN;
UPDATE users SET group_id = 1 WHERE user_name = 'mallory';
UPDATE information SET info = 'secret from mallory' WHERE group_id = 2;
COMMIT;
</programlisting>

  <para>
   That looks safe; there is no window wherein <literal>mallory</literal> should be
   able to see the <quote>secret from mallory</quote> string.  However, there is
   a race condition here.  If <literal>mallory</literal> is concurrently doing,
   say,
<programlisting>
SELECT * FROM information WHERE group_id = 2 FOR UPDATE;
</programlisting>
   and her transaction is in <literal>READ COMMITTED</literal> mode, it is possible
   for her to see <quote>secret from mallory</quote>.  That happens if her
   transaction reaches the <structname>information</structname> row just
   after <literal>alice</literal>'s does.  It blocks waiting
   for <literal>alice</literal>'s transaction to commit, then fetches the updated
   row contents thanks to the <literal>FOR UPDATE</literal> clause.  However, it
   does <emphasis>not</emphasis> fetch an updated row for the
   implicit <command>SELECT</command> from <structname>users</structname>, because that
   sub-<command>SELECT</command> did not have <literal>FOR UPDATE</literal>; instead
   the <structname>users</structname> row is read with the snapshot taken at the start
   of the query.  Therefore, the policy expression tests the old value
   of <literal>mallory</literal>'s privilege level and allows her to see the
   updated row.
  </para>

  <para>
   There are several ways around this problem.  One simple answer is to use
   <literal>SELECT ... FOR SHARE</literal> in sub-<command>SELECT</command>s in row
   security policies.  However, that requires granting <literal>UPDATE</literal>
   privilege on the referenced table (here <structname>users</structname>) to the
   affected users, which might be undesirable.  (But another row security
   policy could be applied to prevent them from actually exercising that
   privilege; or the sub-<command>SELECT</command> could be embedded into a security
   definer function.)  Also, heavy concurrent use of row share locks on the
   referenced table could pose a performance problem, especially if updates
   of it are frequent.  Another solution, practical if updates of the
   referenced table are infrequent, is to take an
   <literal>ACCESS EXCLUSIVE</literal> lock on the
   referenced table when updating it, so that no concurrent transactions
   could be examining old row values.  Or one could just wait for all
   concurrent transactions to end after committing an update of the
   referenced table and before making changes that rely on the new security
   situation.
  </para>

  <para>
   For additional details see <xref linkend="sql-createpolicy"/>
   and <xref linkend="sql-altertable"/>.
  </para>

 </sect1>

 <sect1 id="ddl-schemas">
  <title>Schemas</title>

  <indexterm zone="ddl-schemas">
   <primary>schema</primary>
  </indexterm>

  <para>
   A <productname>PostgreSQL</productname> database cluster contains
   one or more named databases.  Roles and a few other object types are
   shared across the entire cluster.  A client connection to the server
   can only access data in a single database, the one specified in the
   connection request.
  </para>

  <note>
   <para>
    Users of a cluster do not necessarily have the privilege to access every
    database in the cluster.  Sharing of role names means that there
    cannot be different roles named, say, <literal>joe</literal> in two databases
    in the same cluster; but the system can be configured to allow
    <literal>joe</literal> access to only some of the databases.
   </para>
  </note>

  <para>
   A database contains one or more named <firstterm>schemas</firstterm>, which
   in turn contain tables.  Schemas also contain other kinds of named
   objects, including data types, functions, and operators.  The same
   object name can be used in different schemas without conflict; for
   example, both <literal>schema1</literal> and <literal>myschema</literal> can
   contain tables named <literal>mytable</literal>.  Unlike databases,
   schemas are not rigidly separated: a user can access objects in any
   of the schemas in the database they are connected to, if they have
   privileges to do so.
  </para>

  <para>
   There are several reasons why one might want to use schemas:

   <itemizedlist>
    <listitem>
     <para>
      To allow many users to use one database without interfering with
      each other.
     </para>
    </listitem>

    <listitem>
     <para>
      To organize database objects into logical groups to make them
      more manageable.
     </para>
    </listitem>

    <listitem>
     <para>
      Third-party applications can be put into separate schemas so
      they do not collide with the names of other objects.
     </para>
    </listitem>
   </itemizedlist>

   Schemas are analogous to directories at the operating system level,
   except that schemas cannot be nested.
  </para>

  <sect2 id="ddl-schemas-create">
   <title>Creating a Schema</title>

   <indexterm zone="ddl-schemas-create">
    <primary>schema</primary>
    <secondary>creating</secondary>
   </indexterm>

   <para>
    To create a schema, use the <xref linkend="sql-createschema"/>
    command.  Give the schema a name
    of your choice.  For example:
<programlisting>
CREATE SCHEMA myschema;
</programlisting>
   </para>

   <indexterm>
    <primary>qualified name</primary>
   </indexterm>

   <indexterm>
    <primary>name</primary>
    <secondary>qualified</secondary>
   </indexterm>

   <para>
    To create or access objects in a schema, write a
    <firstterm>qualified name</firstterm> consisting of the schema name and
    table name separated by a dot:
<synopsis>
<replaceable>schema</replaceable><literal>.</literal><replaceable>table</replaceable>
</synopsis>
    This works anywhere a table name is expected, including the table
    modification commands and the data access commands discussed in
    the following chapters.
    (For brevity we will speak of tables only, but the same ideas apply
    to other kinds of named objects, such as types and functions.)
   </para>

   <para>
    Actually, the even more general syntax
<synopsis>
<replaceable>database</replaceable><literal>.</literal><replaceable>schema</replaceable><literal>.</literal><replaceable>table</replaceable>
</synopsis>
    can be used too, but at present this is just for pro forma
    compliance with the SQL standard.  If you write a database name,
    it must be the same as the database you are connected to.
   </para>

   <para>
    So to create a table in the new schema, use:
<programlisting>
CREATE TABLE myschema.mytable (
 ...
);
</programlisting>
   </para>

   <indexterm>
    <primary>schema</primary>
    <secondary>removing</secondary>
   </indexterm>

   <para>
    To drop a schema if it's empty (all objects in it have been
    dropped), use:
<programlisting>
DROP SCHEMA myschema;
</programlisting>
    To drop a schema including all contained objects, use:
<programlisting>
DROP SCHEMA myschema CASCADE;
</programlisting>
    See <xref linkend="ddl-depend"/> for a description of the general
    mechanism behind this.
   </para>

   <para>
    Often you will want to create a schema owned by someone else
    (since this is one of the ways to restrict the activities of your
    users to well-defined namespaces).  The syntax for that is:
<programlisting>
CREATE SCHEMA <replaceable>schema_name</replaceable> AUTHORIZATION <replaceable>user_name</replaceable>;
</programlisting>
    You can even omit the schema name, in which case the schema name
    will be the same as the user name.  See <xref
    linkend="ddl-schemas-patterns"/> for how this can be useful.
   </para>

   <para>
    Schema names beginning with <literal>pg_</literal> are reserved for
    system purposes and cannot be created by users.
   </para>
  </sect2>

  <sect2 id="ddl-schemas-public">
   <title>The Public Schema</title>

   <indexterm zone="ddl-schemas-public">
    <primary>schema</primary>
    <secondary>public</secondary>
   </indexterm>

   <para>
    In the previous sections we created tables without specifying any
    schema names.  By default such tables (and other objects) are
    automatically put into a schema named <quote>public</quote>.  Every new
    database contains such a schema.  Thus, the following are equivalent:
<programlisting>
CREATE TABLE products ( ... );
</programlisting>
    and:
<programlisting>
CREATE TABLE public.products ( ... );
</programlisting>
   </para>
  </sect2>

  <sect2 id="ddl-schemas-path">
   <title>The Schema Search Path</title>

   <indexterm>
    <primary>search path</primary>
   </indexterm>

   <indexterm>
    <primary>unqualified name</primary>
   </indexterm>

   <indexterm>
    <primary>name</primary>
    <secondary>unqualified</secondary>
   </indexterm>

   <para>
    Qualified names are tedious to write, and it's often best not to
    wire a particular schema name into applications anyway.  Therefore
    tables are often referred to by <firstterm>unqualified names</firstterm>,
    which consist of just the table name.  The system determines which table
    is meant by following a <firstterm>search path</firstterm>, which is a list
    of schemas to look in.  The first matching table in the search path
    is taken to be the one wanted.  If there is no match in the search
    path, an error is reported, even if matching table names exist
    in other schemas in the database.
   </para>

  <para>
    The ability to create like-named objects in different schemas complicates
    writing a query that references precisely the same objects every time.  It
    also opens up the potential for users to change the behavior of other
    users' queries, maliciously or accidentally.  Due to the prevalence of
    unqualified names in queries and their use
    in <productname>PostgreSQL</productname> internals, adding a schema
    to <varname>search_path</varname> effectively trusts all users having
    <literal>CREATE</literal> privilege on that schema.  When you run an
    ordinary query, a malicious user able to create objects in a schema of
    your search path can take control and execute arbitrary SQL functions as
    though you executed them.
   </para>

   <indexterm>
    <primary>schema</primary>
    <secondary>current</secondary>
   </indexterm>

   <para>
    The first schema named in the search path is called the current schema.
    Aside from being the first schema searched, it is also the schema in
    which new tables will be created if the <command>CREATE TABLE</command>
    command does not specify a schema name.
   </para>

   <indexterm>
    <primary><varname>search_path</varname> configuration parameter</primary>
   </indexterm>

   <para>
    To show the current search path, use the following command:
<programlisting>
SHOW search_path;
</programlisting>
    In the default setup this returns:
<screen>
 search_path
--------------
 "$user", public
</screen>
    The first element specifies that a schema with the same name as
    the current user is to be searched.  If no such schema exists,
    the entry is ignored.  The second element refers to the
    public schema that we have seen already.
   </para>

   <para>
    The first schema in the search path that exists is the default
    location for creating new objects.  That is the reason that by
    default objects are created in the public schema.  When objects
    are referenced in any other context without schema qualification
    (table modification, data modification, or query commands) the
    search path is traversed until a matching object is found.
    Therefore, in the default configuration, any unqualified access
    again can only refer to the public schema.
   </para>

   <para>
    To put our new schema in the path, we use:
<programlisting>
SET search_path TO myschema,public;
</programlisting>
    (We omit the <literal>$user</literal> here because we have no
    immediate need for it.)  And then we can access the table without
    schema qualification:
<programlisting>
DROP TABLE mytable;
</programlisting>
    Also, since <literal>myschema</literal> is the first element in
    the path, new objects would by default be created in it.
   </para>

   <para>
    We could also have written:
<programlisting>
SET search_path TO myschema;
</programlisting>
    Then we no longer have access to the public schema without
    explicit qualification.  There is nothing special about the public
    schema except that it exists by default.  It can be dropped, too.
   </para>

   <para>
    See also <xref linkend="functions-info"/> for other ways to manipulate
    the schema search path.
   </para>

   <para>
    The search path works in the same way for data type names, function names,
    and operator names as it does for table names.  Data type and function
    names can be qualified in exactly the same way as table names.  If you
    need to write a qualified operator name in an expression, there is a
    special provision: you must write
<synopsis>
<literal>OPERATOR(</literal><replaceable>schema</replaceable><literal>.</literal><replaceable>operator</replaceable><literal>)</literal>
</synopsis>
    This is needed to avoid syntactic ambiguity.  An example is:
<programlisting>
SELECT 3 OPERATOR(pg_catalog.+) 4;
</programlisting>
    In practice one usually relies on the search path for operators,
    so as not to have to write anything so ugly as that.
   </para>
  </sect2>

  <sect2 id="ddl-schemas-priv">
   <title>Schemas and Privileges</title>

   <indexterm zone="ddl-schemas-priv">
    <primary>privilege</primary>
    <secondary sortas="schemas">for schemas</secondary>
   </indexterm>

   <para>
    By default, users cannot access any objects in schemas they do not
    own.  To allow that, the owner of the schema must grant the
    <literal>USAGE</literal> privilege on the schema.  By default, everyone
    has that privilege on the schema <literal>public</literal>.  To allow
    users to make use of the objects in a schema, additional privileges might
    need to be granted, as appropriate for the object.
   </para>

   <para>
    A user can also be allowed to create objects in someone else's schema.  To
    allow that, the <literal>CREATE</literal> privilege on the schema needs to
    be granted.  In databases upgraded from
    <productname>PostgreSQL</productname> 14 or earlier, everyone has that
    privilege on the schema <literal>public</literal>.
    Some <link linkend="ddl-schemas-patterns">usage patterns</link> call for
    revoking that privilege:
<programlisting>
REVOKE CREATE ON SCHEMA public FROM PUBLIC;
</programlisting>
    (The first <quote>public</quote> is the schema, the second
    <quote>public</quote> means <quote>every user</quote>.  In the
    first sense it is an identifier, in the second sense it is a
    key word, hence the different capitalization; recall the
    guidelines from <xref linkend="sql-syntax-identifiers"/>.)
   </para>
  </sect2>

  <sect2 id="ddl-schemas-catalog">
   <title>The System Catalog Schema</title>

   <indexterm zone="ddl-schemas-catalog">
    <primary>system catalog</primary>
    <secondary>schema</secondary>
   </indexterm>

   <para>
    In addition to <literal>public</literal> and user-created schemas, each
    database contains a <literal>pg_catalog</literal> schema, which contains
    the system tables and all the built-in data types, functions, and
    operators.  <literal>pg_catalog</literal> is always effectively part of
    the search path.  If it is not named explicitly in the path then
    it is implicitly searched <emphasis>before</emphasis> searching the path's
    schemas.  This ensures that built-in names will always be
    findable.  However, you can explicitly place
    <literal>pg_catalog</literal> at the end of your search path if you
    prefer to have user-defined names override built-in names.
   </para>

   <para>
    Since system table names begin with <literal>pg_</literal>, it is best to
    avoid such names to ensure that you won't suffer a conflict if some
    future version defines a system table named the same as your
    table.  (With the default search path, an unqualified reference to
    your table name would then be resolved as the system table instead.)
    System tables will continue to follow the convention of having
    names beginning with <literal>pg_</literal>, so that they will not
    conflict with unqualified user-table names so long as users avoid
    the <literal>pg_</literal> prefix.
   </para>
  </sect2>

  <sect2 id="ddl-schemas-patterns">
   <title>Usage Patterns</title>

   <para>
    Schemas can be used to organize your data in many ways.
    A <firstterm>secure schema usage pattern</firstterm> prevents untrusted
    users from changing the behavior of other users' queries.  When a database
    does not use a secure schema usage pattern, users wishing to securely
    query that database would take protective action at the beginning of each
    session.  Specifically, they would begin each session by
    setting <varname>search_path</varname> to the empty string or otherwise
    removing schemas that are writable by non-superusers
    from <varname>search_path</varname>.  There are a few usage patterns
    easily supported by the default configuration:
    <itemizedlist>
     <listitem>
      <para>
       Constrain ordinary users to user-private schemas.
       To implement this pattern, first ensure that no schemas have
       public <literal>CREATE</literal> privileges.  Then, for every user
       needing to create non-temporary objects, create a schema with the
       same name as that user, for example
       <literal>CREATE SCHEMA alice AUTHORIZATION alice</literal>.
       (Recall that the default search path starts
       with <literal>$user</literal>, which resolves to the user
       name. Therefore, if each user has a separate schema, they access
       their own schemas by default.)  This pattern is a secure schema
       usage pattern unless an untrusted user is the database owner or
       has been granted <literal>ADMIN OPTION</literal> on a relevant role,
       in which case no secure schema usage pattern exists.
      </para>
      <!-- A database owner can attack the database's users via "CREATE SCHEMA
           trojan; ALTER DATABASE $mydb SET search_path = trojan, public;". -->

      <para>
       In <productname>PostgreSQL</productname> 15 and later, the default
       configuration supports this usage pattern.  In prior versions, or
       when using a database that has been upgraded from a prior version,
       you will need to remove the public <literal>CREATE</literal>
       privilege from the <literal>public</literal> schema (issue
       <literal>REVOKE CREATE ON SCHEMA public FROM PUBLIC</literal>).
       Then consider auditing the <literal>public</literal> schema for
       objects named like objects in schema <literal>pg_catalog</literal>.
      </para>
      <!-- "DROP SCHEMA public" is inferior to this REVOKE, because pg_dump
           doesn't preserve that DROP. -->
     </listitem>

     <listitem>
      <para>
       Remove the public schema from the default search path, by modifying
       <link linkend="config-setting-configuration-file"><filename>postgresql.conf</filename></link>
       or by issuing <literal>ALTER ROLE ALL SET search_path =
       "$user"</literal>.  Then, grant privileges to create in the public
       schema.  Only qualified names will choose public schema objects.  While
       qualified table references are fine, calls to functions in the public
       schema <link linkend="typeconv-func">will be unsafe or
       unreliable</link>.  If you create functions or extensions in the public
       schema, use the first pattern instead.  Otherwise, like the first
       pattern, this is secure unless an untrusted user is the database owner
       or has been granted <literal>ADMIN OPTION</literal> on a relevant role.
      </para>
     </listitem>

     <listitem>
      <para>
       Keep the default search path, and grant privileges to create in the
       public schema.  All users access the public schema implicitly.  This
       simulates the situation where schemas are not available at all, giving
       a smooth transition from the non-schema-aware world.  However, this is
       never a secure pattern.  It is acceptable only when the database has a
       single user or a few mutually-trusting users.  In databases upgraded
       from <productname>PostgreSQL</productname> 14 or earlier, this is the
       default.
      </para>
     </listitem>
    </itemizedlist>
   </para>

   <para>
    For any pattern, to install shared applications (tables to be used by
    everyone, additional functions provided by third parties, etc.), put them
    into separate schemas.  Remember to grant appropriate privileges to allow
    the other users to access them.  Users can then refer to these additional
    objects by qualifying the names with a schema name, or they can put the
    additional schemas into their search path, as they choose.
   </para>
  </sect2>

  <sect2 id="ddl-schemas-portability">
   <title>Portability</title>

   <para>
    In the SQL standard, the notion of objects in the same schema
    being owned by different users does not exist.  Moreover, some
    implementations do not allow you to create schemas that have a
    different name than their owner.  In fact, the concepts of schema
    and user are nearly equivalent in a database system that
    implements only the basic schema support specified in the
    standard.  Therefore, many users consider qualified names to
    really consist of
    <literal><replaceable>user_name</replaceable>.<replaceable>table_name</replaceable></literal>.
    This is how <productname>PostgreSQL</productname> will effectively
    behave if you create a per-user schema for every user.
   </para>

   <para>
    Also, there is no concept of a <literal>public</literal> schema in the
    SQL standard.  For maximum conformance to the standard, you should
    not use the <literal>public</literal> schema.
   </para>

   <para>
    Of course, some SQL database systems might not implement schemas
    at all, or provide namespace support by allowing (possibly
    limited) cross-database access.  If you need to work with those
    systems, then maximum portability would be achieved by not using
    schemas at all.
   </para>
  </sect2>
 </sect1>

 <sect1 id="ddl-inherit">
  <title>Inheritance</title>

  <indexterm>
   <primary>inheritance</primary>
  </indexterm>

  <indexterm>
   <primary>table</primary>
   <secondary>inheritance</secondary>
  </indexterm>

  <para>
   <productname>PostgreSQL</productname> implements table inheritance,
   which can be a useful tool for database designers.  (SQL:1999 and
   later define a type inheritance feature, which differs in many
   respects from the features described here.)
  </para>

  <para>
   Let's start with an example: suppose we are trying to build a data
   model for cities.  Each state has many cities, but only one
   capital. We want to be able to quickly retrieve the capital city
   for any particular state. This can be done by creating two tables,
   one for state capitals and one for cities that are not
   capitals. However, what happens when we want to ask for data about
   a city, regardless of whether it is a capital or not? The
   inheritance feature can help to resolve this problem. We define the
   <structname>capitals</structname> table so that it inherits from
   <structname>cities</structname>:

<programlisting>
CREATE TABLE cities (
    name            text,
    population      float,
    elevation       int     -- in feet
);

CREATE TABLE capitals (
    state           char(2)
) INHERITS (cities);
</programlisting>

   In this case, the <structname>capitals</structname> table <firstterm>inherits</firstterm>
   all the columns of its parent table, <structname>cities</structname>. State
   capitals also have an extra column, <structfield>state</structfield>, that shows
   their state.
  </para>

  <para>
   In <productname>PostgreSQL</productname>, a table can inherit from
   zero or more other tables, and a query can reference either all
   rows of a table or all rows of a table plus all of its descendant tables.
   The latter behavior is the default.
   For example, the following query finds the names of all cities,
   including state capitals, that are located at an elevation over
   500 feet:

<programlisting>
SELECT name, elevation
    FROM cities
    WHERE elevation &gt; 500;
</programlisting>

   Given the sample data from the <productname>PostgreSQL</productname>
   tutorial (see <xref linkend="tutorial-sql-intro"/>), this returns:

<programlisting>
   name    | elevation
-----------+-----------
 Las Vegas |      2174
 Mariposa  |      1953
 Madison   |       845
</programlisting>
  </para>

  <para>
   On the other hand, the following query finds all the cities that
   are not state capitals and are situated at an elevation over 500 feet:

<programlisting>
SELECT name, elevation
    FROM ONLY cities
    WHERE elevation &gt; 500;

   name    | elevation
-----------+-----------
 Las Vegas |      2174
 Mariposa  |      1953
</programlisting>
  </para>

  <para>
   Here the <literal>ONLY</literal> keyword indicates that the query
   should apply only to <structname>cities</structname>, and not any tables
   below <structname>cities</structname> in the inheritance hierarchy.  Many
   of the commands that we have already discussed &mdash;
   <command>SELECT</command>, <command>UPDATE</command> and
   <command>DELETE</command> &mdash; support the
   <literal>ONLY</literal> keyword.
  </para>

  <para>
   You can also write the table name with a trailing <literal>*</literal>
   to explicitly specify that descendant tables are included:

<programlisting>
SELECT name, elevation
    FROM cities*
    WHERE elevation &gt; 500;
</programlisting>

   Writing <literal>*</literal> is not necessary, since this behavior is always
   the default.  However, this syntax is still supported for
   compatibility with older releases where the default could be changed.
  </para>

  <para>
   In some cases you might wish to know which table a particular row
   originated from. There is a system column called
   <structfield>tableoid</structfield> in each table which can tell you the
   originating table:

<programlisting>
SELECT c.tableoid, c.name, c.elevation
FROM cities c
WHERE c.elevation &gt; 500;
</programlisting>

   which returns:

<programlisting>
 tableoid |   name    | elevation
----------+-----------+-----------
   139793 | Las Vegas |      2174
   139793 | Mariposa  |      1953
   139798 | Madison   |       845
</programlisting>

   (If you try to reproduce this example, you will probably get
   different numeric OIDs.)  By doing a join with
   <structname>pg_class</structname> you can see the actual table names:

<programlisting>
SELECT p.relname, c.name, c.elevation
FROM cities c, pg_class p
WHERE c.elevation &gt; 500 AND c.tableoid = p.oid;
</programlisting>

   which returns:

<programlisting>
 relname  |   name    | elevation
----------+-----------+-----------
 cities   | Las Vegas |      2174
 cities   | Mariposa  |      1953
 capitals | Madison   |       845
</programlisting>
  </para>

  <para>
   Another way to get the same effect is to use the <type>regclass</type>
   alias type, which will print the table OID symbolically:

<programlisting>
SELECT c.tableoid::regclass, c.name, c.elevation
FROM cities c
WHERE c.elevation &gt; 500;
</programlisting>
  </para>

  <para>
   Inheritance does not automatically propagate data from
   <command>INSERT</command> or <command>COPY</command> commands to
   other tables in the inheritance hierarchy. In our example, the
   following <command>INSERT</command> statement will fail:
<programlisting>
INSERT INTO cities (name, population, elevation, state)
VALUES ('Albany', NULL, NULL, 'NY');
</programlisting>
   We might hope that the data would somehow be routed to the
   <structname>capitals</structname> table, but this does not happen:
   <command>INSERT</command> always inserts into exactly the table
   specified.  In some cases it is possible to redirect the insertion
   using a rule (see <xref linkend="rules"/>).  However that does not
   help for the above case because the <structname>cities</structname> table
   does not contain the column <structfield>state</structfield>, and so the
   command will be rejected before the rule can be applied.
  </para>

  <para>
   All check constraints and not-null constraints on a parent table are
   automatically inherited by its children, unless explicitly specified
   otherwise with <literal>NO INHERIT</literal> clauses.  Other types of constraints
   (unique, primary key, and foreign key constraints) are not inherited.
  </para>

  <para>
   A table can inherit from more than one parent table, in which case it has
   the union of the columns defined by the parent tables.  Any columns
   declared in the child table's definition are added to these.  If the
   same column name appears in multiple parent tables, or in both a parent
   table and the child's definition, then these columns are <quote>merged</quote>
   so that there is only one such column in the child table.  To be merged,
   columns must have the same data types, else an error is raised.
   Inheritable check constraints and not-null constraints are merged in a
   similar fashion.  Thus, for example, a merged column will be marked
   not-null if any one of the column definitions it came from is marked
   not-null.  Check constraints are merged if they have the same name,
   and the merge will fail if their conditions are different.
  </para>

  <para>
   Table inheritance is typically established when the child table is
   created, using the <literal>INHERITS</literal> clause of the
   <link linkend="sql-createtable"><command>CREATE TABLE</command></link>
   statement.
   Alternatively, a table which is already defined in a compatible way can
   have a new parent relationship added, using the <literal>INHERIT</literal>
   variant of <link linkend="sql-altertable"><command>ALTER TABLE</command></link>.
   To do this the new child table must already include columns with
   the same names and types as the columns of the parent. It must also include
   check constraints with the same names and check expressions as those of the
   parent. Similarly an inheritance link can be removed from a child using the
   <literal>NO INHERIT</literal> variant of <command>ALTER TABLE</command>.
   Dynamically adding and removing inheritance links like this can be useful
   when the inheritance relationship is being used for table
   partitioning (see <xref linkend="ddl-partitioning"/>).
  </para>

  <para>
   One convenient way to create a compatible table that will later be made
   a new child is to use the <literal>LIKE</literal> clause in <command>CREATE
   TABLE</command>. This creates a new table with the same columns as
   the source table. If there are any <literal>CHECK</literal>
   constraints defined on the source table, the <literal>INCLUDING
   CONSTRAINTS</literal> option to <literal>LIKE</literal> should be
   specified, as the new child must have constraints matching the parent
   to be considered compatible.
  </para>

  <para>
   A parent table cannot be dropped while any of its children remain. Neither
   can columns or check constraints of child tables be dropped or altered
   if they are inherited
   from any parent tables. If you wish to remove a table and all of its
   descendants, one easy way is to drop the parent table with the
   <literal>CASCADE</literal> option (see <xref linkend="ddl-depend"/>).
  </para>

  <para>
   <command>ALTER TABLE</command> will
   propagate any changes in column data definitions and check
   constraints down the inheritance hierarchy.  Again, dropping
   columns that are depended on by other tables is only possible when using
   the <literal>CASCADE</literal> option. <command>ALTER
   TABLE</command> follows the same rules for duplicate column merging
   and rejection that apply during <command>CREATE TABLE</command>.
  </para>

  <para>
   Inherited queries perform access permission checks on the parent table
   only.  Thus, for example, granting <literal>UPDATE</literal> permission on
   the <structname>cities</structname> table implies permission to update rows in
   the <structname>capitals</structname> table as well, when they are
   accessed through <structname>cities</structname>.  This preserves the appearance
   that the data is (also) in the parent table.  But
   the <structname>capitals</structname> table could not be updated directly
   without an additional grant.  In a similar way, the parent table's row
   security policies (see <xref linkend="ddl-rowsecurity"/>) are applied to
   rows coming from child tables during an inherited query.  A child table's
   policies, if any, are applied only when it is the table explicitly named
   in the query; and in that case, any policies attached to its parent(s) are
   ignored.
  </para>

  <para>
   Foreign tables (see <xref linkend="ddl-foreign-data"/>) can also
   be part of inheritance hierarchies, either as parent or child
   tables, just as regular tables can be.  If a foreign table is part
   of an inheritance hierarchy then any operations not supported by
   the foreign table are not supported on the whole hierarchy either.
  </para>

 <sect2 id="ddl-inherit-caveats">
  <title>Caveats</title>

  <para>
   Note that not all SQL commands are able to work on
   inheritance hierarchies.  Commands that are used for data querying,
   data modification, or schema modification
   (e.g., <literal>SELECT</literal>, <literal>UPDATE</literal>, <literal>DELETE</literal>,
   most variants of <literal>ALTER TABLE</literal>, but
   not <literal>INSERT</literal> or <literal>ALTER TABLE ...
   RENAME</literal>) typically default to including child tables and
   support the <literal>ONLY</literal> notation to exclude them.
   Commands that do database maintenance and tuning
   (e.g., <literal>REINDEX</literal>, <literal>VACUUM</literal>)
   typically only work on individual, physical tables and do not
   support recursing over inheritance hierarchies.  The respective
   behavior of each individual command is documented in its reference
   page (<xref linkend="sql-commands"/>).
  </para>

  <para>
   A serious limitation of the inheritance feature is that indexes (including
   unique constraints) and foreign key constraints only apply to single
   tables, not to their inheritance children. This is true on both the
   referencing and referenced sides of a foreign key constraint. Thus,
   in the terms of the above example:

   <itemizedlist>
    <listitem>
     <para>
      If we declared <structname>cities</structname>.<structfield>name</structfield> to be
      <literal>UNIQUE</literal> or a <literal>PRIMARY KEY</literal>, this would not stop the
      <structname>capitals</structname> table from having rows with names duplicating
      rows in <structname>cities</structname>.  And those duplicate rows would by
      default show up in queries from <structname>cities</structname>.  In fact, by
      default <structname>capitals</structname> would have no unique constraint at all,
      and so could contain multiple rows with the same name.
      You could add a unique constraint to <structname>capitals</structname>, but this
      would not prevent duplication compared to <structname>cities</structname>.
     </para>
    </listitem>

    <listitem>
     <para>
      Similarly, if we were to specify that
      <structname>cities</structname>.<structfield>name</structfield> <literal>REFERENCES</literal> some
      other table, this constraint would not automatically propagate to
      <structname>capitals</structname>.  In this case you could work around it by
      manually adding the same <literal>REFERENCES</literal> constraint to
      <structname>capitals</structname>.
     </para>
    </listitem>

    <listitem>
     <para>
      Specifying that another table's column <literal>REFERENCES
      cities(name)</literal> would allow the other table to contain city names, but
      not capital names.  There is no good workaround for this case.
     </para>
    </listitem>
   </itemizedlist>

   Some functionality not implemented for inheritance hierarchies is
   implemented for declarative partitioning.
   Considerable care is needed in deciding whether partitioning with legacy
   inheritance is useful for your application.
  </para>

   </sect2>
  </sect1>

  <sect1 id="ddl-partitioning">
   <title>Table Partitioning</title>

   <indexterm>
    <primary>partitioning</primary>
   </indexterm>

   <indexterm>
    <primary>table</primary>
    <secondary>partitioning</secondary>
   </indexterm>

   <indexterm>
    <primary>partitioned table</primary>
   </indexterm>

   <para>
    <productname>PostgreSQL</productname> supports basic table
    partitioning. This section describes why and how to implement
    partitioning as part of your database design.
   </para>

   <sect2 id="ddl-partitioning-overview">
     <title>Overview</title>

    <para>
     Partitioning refers to splitting what is logically one large table into
     smaller physical pieces.  Partitioning can provide several benefits:
    <itemizedlist>
     <listitem>
      <para>
       Query performance can be improved dramatically in certain situations,
       particularly when most of the heavily accessed rows of the table are in a
       single partition or a small number of partitions.  Partitioning
       effectively substitutes for the upper tree levels of indexes,
       making it more likely that the heavily-used parts of the indexes
       fit in memory.
      </para>
     </listitem>

     <listitem>
      <para>
       When queries or updates access a large percentage of a single
       partition, performance can be improved by using a
       sequential scan of that partition instead of using an
       index, which would require random-access reads scattered across the
       whole table.
      </para>
     </listitem>

     <listitem>
      <para>
       Bulk loads and deletes can be accomplished by adding or removing
       partitions, if the usage pattern is accounted for in the
       partitioning design.  Dropping an individual partition
       using <command>DROP TABLE</command>, or doing <command>ALTER TABLE
       DETACH PARTITION</command>, is far faster than a bulk
       operation.  These commands also entirely avoid the
       <command>VACUUM</command> overhead caused by a bulk <command>DELETE</command>.
      </para>
     </listitem>

     <listitem>
      <para>
       Seldom-used data can be migrated to cheaper and slower storage media.
      </para>
     </listitem>
    </itemizedlist>

     These benefits will normally be worthwhile only when a table would
     otherwise be very large. The exact point at which a table will
     benefit from partitioning depends on the application, although a
     rule of thumb is that the size of the table should exceed the physical
     memory of the database server.
    </para>

    <para>
     <productname>PostgreSQL</productname> offers built-in support for the
     following forms of partitioning:

     <variablelist>
      <varlistentry id="ddl-partitioning-overview-range">
       <term>Range Partitioning</term>

       <listitem>
        <para>
         The table is partitioned into <quote>ranges</quote> defined
         by a key column or set of columns, with no overlap between
         the ranges of values assigned to different partitions.  For
         example, one might partition by date ranges, or by ranges of
         identifiers for particular business objects.
         Each range's bounds are understood as being inclusive at the
         lower end and exclusive at the upper end.  For example, if one
         partition's range is from <literal>1</literal>
         to <literal>10</literal>, and the next one's range is
         from <literal>10</literal> to <literal>20</literal>, then
         value <literal>10</literal> belongs to the second partition not
         the first.
        </para>
       </listitem>
      </varlistentry>

      <varlistentry id="ddl-partitioning-overview-list">
       <term>List Partitioning</term>

       <listitem>
        <para>
         The table is partitioned by explicitly listing which key value(s)
         appear in each partition.
        </para>
       </listitem>
      </varlistentry>

      <varlistentry id="ddl-partitioning-overview-hash">
       <term>Hash Partitioning</term>

       <listitem>
        <para>
         The table is partitioned by specifying a modulus and a remainder for
         each partition. Each partition will hold the rows for which the hash
         value of the partition key divided by the specified modulus will
         produce the specified remainder.
        </para>
       </listitem>
      </varlistentry>
     </variablelist>

     If your application needs to use other forms of partitioning not listed
     above, alternative methods such as inheritance and
     <literal>UNION ALL</literal> views can be used instead.  Such methods
     offer flexibility but do not have some of the performance benefits
     of built-in declarative partitioning.
    </para>
   </sect2>

  <sect2 id="ddl-partitioning-declarative">
   <title>Declarative Partitioning</title>

   <para>
    <productname>PostgreSQL</productname> allows you to declare
    that a table is divided into partitions.  The table that is divided
    is referred to as a <firstterm>partitioned table</firstterm>.  The
    declaration includes the <firstterm>partitioning method</firstterm>
    as described above, plus a list of columns or expressions to be used
    as the <firstterm>partition key</firstterm>.
   </para>

   <para>
    The partitioned table itself is a <quote>virtual</quote> table having
    no storage of its own.  Instead, the storage belongs
    to <firstterm>partitions</firstterm>, which are otherwise-ordinary
    tables associated with the partitioned table.
    Each partition stores a subset of the data as defined by its
    <firstterm>partition bounds</firstterm>.
    All rows inserted into a partitioned table will be routed to the
    appropriate one of the partitions based on the values of the partition
    key column(s).
    Updating the partition key of a row will cause it to be moved into a
    different partition if it no longer satisfies the partition bounds
    of its original partition.
   </para>

   <para>
    Partitions may themselves be defined as partitioned tables, resulting
    in <firstterm>sub-partitioning</firstterm>.  Although all partitions
    must have the same columns as their partitioned parent, partitions may
    have their
    own indexes, constraints and default values, distinct from those of other
    partitions.  See <xref linkend="sql-createtable"/> for more details on
    creating partitioned tables and partitions.
   </para>

   <para>
    It is not possible to turn a regular table into a partitioned table or
    vice versa.  However, it is possible to add an existing regular or
    partitioned table as a partition of a partitioned table, or remove a
    partition from a partitioned table turning it into a standalone table;
    this can simplify and speed up many maintenance processes.
    See <xref linkend="sql-altertable"/> to learn more about the
    <command>ATTACH PARTITION</command> and <command>DETACH PARTITION</command>
    sub-commands.
   </para>

   <para>
    Partitions can also be <link linkend="ddl-foreign-data">foreign
    tables</link>, although considerable care is needed because it is then
    the user's responsibility that the contents of the foreign table
    satisfy the partitioning rule.  There are some other restrictions as
    well.  See <xref linkend="sql-createforeigntable"/> for more
    information.
   </para>

   <sect3 id="ddl-partitioning-declarative-example">
    <title>Example</title>

   <para>
    Suppose we are constructing a database for a large ice cream company.
    The company measures peak temperatures every day as well as ice cream
    sales in each region. Conceptually, we want a table like:

<programlisting>
CREATE TABLE measurement (
    city_id         int not null,
    logdate         date not null,
    peaktemp        int,
    unitsales       int
);
</programlisting>

    We know that most queries will access just the last week's, month's or
    quarter's data, since the main use of this table will be to prepare
    online reports for management.  To reduce the amount of old data that
    needs to be stored, we decide to keep only the most recent 3 years
    worth of data. At the beginning of each month we will remove the oldest
    month's data.  In this situation we can use partitioning to help us meet
    all of our different requirements for the measurements table.
   </para>

   <para>
    To use declarative partitioning in this case, use the following steps:

    <orderedlist spacing="compact">
     <listitem>
      <para>
       Create the <structname>measurement</structname> table as a partitioned
       table by specifying the <literal>PARTITION BY</literal> clause, which
       includes the partitioning method (<literal>RANGE</literal> in this
       case) and the list of column(s) to use as the partition key.

<programlisting>
CREATE TABLE measurement (
    city_id         int not null,
    logdate         date not null,
    peaktemp        int,
    unitsales       int
) PARTITION BY RANGE (logdate);
</programlisting>
      </para>
     </listitem>

     <listitem>
      <para>
       Create partitions.  Each partition's definition must specify bounds
       that correspond to the partitioning method and partition key of the
       parent.  Note that specifying bounds such that the new partition's
       values would overlap with those in one or more existing partitions will
       cause an error.
      </para>

      <para>
       Partitions thus created are in every way normal
       <productname>PostgreSQL</productname>
       tables (or, possibly, foreign tables).  It is possible to specify a
       tablespace and storage parameters for each partition separately.
      </para>

      <para>
       For our example, each partition should hold one month's worth of
       data, to match the requirement of deleting one month's data at a
       time.  So the commands might look like:

<programlisting>
CREATE TABLE measurement_y2006m02 PARTITION OF measurement
    FOR VALUES FROM ('2006-02-01') TO ('2006-03-01');

CREATE TABLE measurement_y2006m03 PARTITION OF measurement
    FOR VALUES FROM ('2006-03-01') TO ('2006-04-01');

...
CREATE TABLE measurement_y2007m11 PARTITION OF measurement
    FOR VALUES FROM ('2007-11-01') TO ('2007-12-01');

CREATE TABLE measurement_y2007m12 PARTITION OF measurement
    FOR VALUES FROM ('2007-12-01') TO ('2008-01-01')
    TABLESPACE fasttablespace;

CREATE TABLE measurement_y2008m01 PARTITION OF measurement
    FOR VALUES FROM ('2008-01-01') TO ('2008-02-01')
    WITH (parallel_workers = 4)
    TABLESPACE fasttablespace;
</programlisting>

       (Recall that adjacent partitions can share a bound value, since
       range upper bounds are treated as exclusive bounds.)
      </para>

      <para>
       If you wish to implement sub-partitioning, again specify the
       <literal>PARTITION BY</literal> clause in the commands used to create
       individual partitions, for example:

<programlisting>
CREATE TABLE measurement_y2006m02 PARTITION OF measurement
    FOR VALUES FROM ('2006-02-01') TO ('2006-03-01')
    PARTITION BY RANGE (peaktemp);
</programlisting>

       After creating partitions of <structname>measurement_y2006m02</structname>,
       any data inserted into <structname>measurement</structname> that is mapped to
       <structname>measurement_y2006m02</structname> (or data that is
       directly inserted into <structname>measurement_y2006m02</structname>,
       which is allowed provided its partition constraint is satisfied)
       will be further redirected to one of its
       partitions based on the <structfield>peaktemp</structfield> column.  The partition
       key specified may overlap with the parent's partition key, although
       care should be taken when specifying the bounds of a sub-partition
       such that the set of data it accepts constitutes a subset of what
       the partition's own bounds allow; the system does not try to check
       whether that's really the case.
      </para>

      <para>
       Inserting data into the parent table that does not map
       to one of the existing partitions will cause an error; an appropriate
       partition must be added manually.
      </para>

      <para>
       It is not necessary to manually create table constraints describing
       the partition boundary conditions for partitions.  Such constraints
       will be created automatically.
      </para>
     </listitem>

     <listitem>
      <para>
       Create an index on the key column(s), as well as any other indexes you
       might want, on the partitioned table. (The key index is not strictly
       necessary, but in most scenarios it is helpful.)
       This automatically creates a matching index on each partition, and
       any partitions you create or attach later will also have such an
       index.
       An index or unique constraint declared on a partitioned table
       is <quote>virtual</quote> in the same way that the partitioned table
       is: the actual data is in child indexes on the individual partition
       tables.

<programlisting>
CREATE INDEX ON measurement (logdate);
</programlisting>
      </para>
     </listitem>

      <listitem>
       <para>
        Ensure that the <xref linkend="guc-enable-partition-pruning"/>
        configuration parameter is not disabled in <filename>postgresql.conf</filename>.
        If it is, queries will not be optimized as desired.
       </para>
      </listitem>
    </orderedlist>
   </para>

   <para>
    In the above example we would be creating a new partition each month, so
    it might be wise to write a script that generates the required DDL
    automatically.
   </para>
   </sect3>

   <sect3 id="ddl-partitioning-declarative-maintenance">
    <title>Partition Maintenance</title>

    <para>
      Normally the set of partitions established when initially defining the
      table is not intended to remain static.  It is common to want to
      remove partitions holding old data and periodically add new partitions for
      new data. One of the most important advantages of partitioning is
      precisely that it allows this otherwise painful task to be executed
      nearly instantaneously by manipulating the partition structure, rather
      than physically moving large amounts of data around.
    </para>

    <para>
     The simplest option for removing old data is to drop the partition that
     is no longer necessary:
<programlisting>
DROP TABLE measurement_y2006m02;
</programlisting>
     This can very quickly delete millions of records because it doesn't have
     to individually delete every record.  Note however that the above command
     requires taking an <literal>ACCESS EXCLUSIVE</literal> lock on the parent
     table.
    </para>

   <para>
     Another option that is often preferable is to remove the partition from
     the partitioned table but retain access to it as a table in its own
     right.  This has two forms:

<programlisting>
ALTER TABLE measurement DETACH PARTITION measurement_y2006m02;
ALTER TABLE measurement DETACH PARTITION measurement_y2006m02 CONCURRENTLY;
</programlisting>

     These allow further operations to be performed on the data before
     it is dropped. For example, this is often a useful time to back up
     the data using <command>COPY</command>, <application>pg_dump</application>, or
     similar tools. It might also be a useful time to aggregate data
     into smaller formats, perform other data manipulations, or run
     reports.  The first form of the command requires an
     <literal>ACCESS EXCLUSIVE</literal> lock on the parent table.
     Adding the <literal>CONCURRENTLY</literal> qualifier as in the second
     form allows the detach operation to require only
     <literal>SHARE UPDATE EXCLUSIVE</literal> lock on the parent table, but see
     <link linkend="sql-altertable-detach-partition"><literal>ALTER TABLE ... DETACH PARTITION</literal></link>
     for details on the restrictions.
   </para>

   <para>
     Similarly we can add a new partition to handle new data. We can create an
     empty partition in the partitioned table just as the original partitions
     were created above:

<programlisting>
CREATE TABLE measurement_y2008m02 PARTITION OF measurement
    FOR VALUES FROM ('2008-02-01') TO ('2008-03-01')
    TABLESPACE fasttablespace;
</programlisting>

     As an alternative, it is sometimes more convenient to create the
     new table outside the partition structure, and attach it as a
     partition later. This allows new data to be loaded, checked, and
     transformed prior to it appearing in the partitioned table.
     Moreover, the <literal>ATTACH PARTITION</literal> operation requires
     only <literal>SHARE UPDATE EXCLUSIVE</literal> lock on the
     partitioned table, as opposed to the <literal>ACCESS
     EXCLUSIVE</literal> lock that is required by <command>CREATE TABLE
     ... PARTITION OF</command>, so it is more friendly to concurrent
     operations on the partitioned table.
     The <literal>CREATE TABLE ... LIKE</literal> option is helpful
     to avoid tediously repeating the parent table's definition:

<programlisting>
CREATE TABLE measurement_y2008m02
  (LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS)
  TABLESPACE fasttablespace;

ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
   CHECK ( logdate &gt;= DATE '2008-02-01' AND logdate &lt; DATE '2008-03-01' );

\copy measurement_y2008m02 from 'measurement_y2008m02'
-- possibly some other data preparation work

ALTER TABLE measurement ATTACH PARTITION measurement_y2008m02
    FOR VALUES FROM ('2008-02-01') TO ('2008-03-01' );
</programlisting>
    </para>

    <para>
     Before running the <command>ATTACH PARTITION</command> command, it is
     recommended to create a <literal>CHECK</literal> constraint on the table to
     be attached that matches the expected partition constraint, as
     illustrated above. That way, the system will be able to skip the scan
     which is otherwise needed to validate the implicit
     partition constraint. Without the <literal>CHECK</literal> constraint,
     the table will be scanned to validate the partition constraint while
     holding an <literal>ACCESS EXCLUSIVE</literal> lock on that partition.
     It is recommended to drop the now-redundant <literal>CHECK</literal>
     constraint after the <command>ATTACH PARTITION</command> is complete.  If
     the table being attached is itself a partitioned table, then each of its
     sub-partitions will be recursively locked and scanned until either a
     suitable <literal>CHECK</literal> constraint is encountered or the leaf
     partitions are reached.
    </para>

    <para>
     Similarly, if the partitioned table has a <literal>DEFAULT</literal>
     partition, it is recommended to create a <literal>CHECK</literal>
     constraint which excludes the to-be-attached partition's constraint.  If
     this is not done then the <literal>DEFAULT</literal> partition will be
     scanned to verify that it contains no records which should be located in
     the partition being attached.  This operation will be performed whilst
     holding an <literal>ACCESS EXCLUSIVE</literal> lock on the <literal>
     DEFAULT</literal> partition.  If the <literal>DEFAULT</literal> partition
     is itself a partitioned table, then each of its partitions will be
     recursively checked in the same way as the table being attached, as
     mentioned above.
    </para>

    <para>
     As explained above, it is possible to create indexes on partitioned tables
     so that they are applied automatically to the entire hierarchy.
     This is very
     convenient, as not only will the existing partitions become indexed, but
     also any partitions that are created in the future will.  One limitation is
     that it's not possible to use the <literal>CONCURRENTLY</literal>
     qualifier when creating such a partitioned index.  To avoid long lock
     times, it is possible to use <command>CREATE INDEX ON ONLY</command>
     the partitioned table; such an index is marked invalid, and the partitions
     do not get the index applied automatically.  The indexes on partitions can
     be created individually using <literal>CONCURRENTLY</literal>, and then
     <firstterm>attached</firstterm> to the index on the parent using
     <command>ALTER INDEX .. ATTACH PARTITION</command>.  Once indexes for all
     partitions are attached to the parent index, the parent index is marked
     valid automatically.  Example:
<programlisting>
CREATE INDEX measurement_usls_idx ON ONLY measurement (unitsales);

CREATE INDEX CONCURRENTLY measurement_usls_200602_idx
    ON measurement_y2006m02 (unitsales);
ALTER INDEX measurement_usls_idx
    ATTACH PARTITION measurement_usls_200602_idx;
...
</programlisting>

     This technique can be used with <literal>UNIQUE</literal> and
     <literal>PRIMARY KEY</literal> constraints too; the indexes are created
     implicitly when the constraint is created.  Example:
<programlisting>
ALTER TABLE ONLY measurement ADD UNIQUE (city_id, logdate);

ALTER TABLE measurement_y2006m02 ADD UNIQUE (city_id, logdate);
ALTER INDEX measurement_city_id_logdate_key
    ATTACH PARTITION measurement_y2006m02_city_id_logdate_key;
...
</programlisting>
    </para>
   </sect3>

   <sect3 id="ddl-partitioning-declarative-limitations">
    <title>Limitations</title>

   <para>
    The following limitations apply to partitioned tables:
    <itemizedlist>
     <listitem>
      <para>
       To create a unique or primary key constraint on a partitioned table,
       the partition keys must not include any expressions or function calls
       and the constraint's columns must include all of the partition key
       columns.  This limitation exists because the individual indexes making
       up the constraint can only directly enforce uniqueness within their own
       partitions; therefore, the partition structure itself must guarantee
       that there are not duplicates in different partitions.
      </para>
     </listitem>

     <listitem>
      <para>
       There is no way to create an exclusion constraint spanning the
       whole partitioned table.  It is only possible to put such a
       constraint on each leaf partition individually.  Again, this
       limitation stems from not being able to enforce cross-partition
       restrictions.
      </para>
     </listitem>

     <listitem>
      <para>
       <literal>BEFORE ROW</literal> triggers on <literal>INSERT</literal>
       cannot change which partition is the final destination for a new row.
      </para>
     </listitem>

     <listitem>
      <para>
       Mixing temporary and permanent relations in the same partition tree is
       not allowed.  Hence, if the partitioned table is permanent, so must be
       its partitions and likewise if the partitioned table is temporary.  When
       using temporary relations, all members of the partition tree have to be
       from the same session.
      </para>
     </listitem>
    </itemizedlist>
    </para>

    <para>
     Individual partitions are linked to their partitioned table using
     inheritance behind-the-scenes.  However, it is not possible to use
     all of the generic features of inheritance with declaratively
     partitioned tables or their partitions, as discussed below.  Notably,
     a partition cannot have any parents other than the partitioned table
     it is a partition of, nor can a table inherit from both a partitioned
     table and a regular table.  That means partitioned tables and their
     partitions never share an inheritance hierarchy with regular tables.
    </para>

    <para>
     Since a partition hierarchy consisting of the partitioned table and its
     partitions is still an inheritance hierarchy,
     <structfield>tableoid</structfield> and all the normal rules of
     inheritance apply as described in <xref linkend="ddl-inherit"/>, with
     a few exceptions:

     <itemizedlist>
      <listitem>
       <para>
        Partitions cannot have columns that are not present in the parent.  It
        is not possible to specify columns when creating partitions with
        <command>CREATE TABLE</command>, nor is it possible to add columns to
        partitions after-the-fact using <command>ALTER TABLE</command>.
        Tables may be added as a partition with <command>ALTER TABLE
        ... ATTACH PARTITION</command> only if their columns exactly match
        the parent.
       </para>
      </listitem>

      <listitem>
       <para>
        Both <literal>CHECK</literal> and <literal>NOT NULL</literal>
        constraints of a partitioned table are always inherited by all its
        partitions.  <literal>CHECK</literal> constraints that are marked
        <literal>NO INHERIT</literal> are not allowed to be created on
        partitioned tables.
        You cannot drop a <literal>NOT NULL</literal> constraint on a
        partition's column if the same constraint is present in the parent
        table.
       </para>
      </listitem>

      <listitem>
       <para>
        Using <literal>ONLY</literal> to add or drop a constraint on only
        the partitioned table is supported as long as there are no
        partitions.  Once partitions exist, using <literal>ONLY</literal>
        will result in an error for any constraints other than
        <literal>UNIQUE</literal> and <literal>PRIMARY KEY</literal>.
        Instead, constraints on the partitions
        themselves can be added and (if they are not present in the parent
        table) dropped.
       </para>
      </listitem>

      <listitem>
       <para>
        As a partitioned table does not have any data itself, attempts to use
        <command>TRUNCATE</command> <literal>ONLY</literal> on a partitioned
        table will always return an error.
       </para>
      </listitem>
     </itemizedlist>
    </para>
    </sect3>
   </sect2>

   <sect2 id="ddl-partitioning-using-inheritance">
    <title>Partitioning Using Inheritance</title>

    <para>
     While the built-in declarative partitioning is suitable for most
     common use cases, there are some circumstances where a more flexible
     approach may be useful.  Partitioning can be implemented using table
     inheritance, which allows for several features not supported
     by declarative partitioning, such as:

     <itemizedlist>
      <listitem>
       <para>
        For declarative partitioning, partitions must have exactly the same set
        of columns as the partitioned table, whereas with table inheritance,
        child tables may have extra columns not present in the parent.
       </para>
      </listitem>

      <listitem>
       <para>
        Table inheritance allows for multiple inheritance.
       </para>
      </listitem>

      <listitem>
       <para>
        Declarative partitioning only supports range, list and hash
        partitioning, whereas table inheritance allows data to be divided in a
        manner of the user's choosing.  (Note, however, that if constraint
        exclusion is unable to prune child tables effectively, query performance
        might be poor.)
       </para>
      </listitem>
     </itemizedlist>
    </para>

    <sect3 id="ddl-partitioning-inheritance-example">
     <title>Example</title>

     <para>
      This example builds a partitioning structure equivalent to the
      declarative partitioning example above.  Use
      the following steps:

      <orderedlist spacing="compact">
       <listitem>
        <para>
         Create the <quote>root</quote> table, from which all of the
         <quote>child</quote> tables will inherit.  This table will contain no data.  Do not
         define any check constraints on this table, unless you intend them
         to be applied equally to all child tables.  There is no point in
         defining any indexes or unique constraints on it, either.  For our
         example, the root table is the <structname>measurement</structname>
         table as originally defined:

<programlisting>
CREATE TABLE measurement (
    city_id         int not null,
    logdate         date not null,
    peaktemp        int,
    unitsales       int
);
</programlisting>
        </para>
       </listitem>

       <listitem>
        <para>
         Create several <quote>child</quote> tables that each inherit from
         the root table.  Normally, these tables will not add any columns
         to the set inherited from the root.  Just as with declarative
         partitioning, these tables are in every way normal
         <productname>PostgreSQL</productname> tables (or foreign tables).
        </para>

        <para>
<programlisting>
CREATE TABLE measurement_y2006m02 () INHERITS (measurement);
CREATE TABLE measurement_y2006m03 () INHERITS (measurement);
...
CREATE TABLE measurement_y2007m11 () INHERITS (measurement);
CREATE TABLE measurement_y2007m12 () INHERITS (measurement);
CREATE TABLE measurement_y2008m01 () INHERITS (measurement);
</programlisting>
        </para>
       </listitem>

       <listitem>
        <para>
         Add non-overlapping table constraints to the child tables to
         define the allowed key values in each.
        </para>

        <para>
         Typical examples would be:
<programlisting>
CHECK ( x = 1 )
CHECK ( county IN ( 'Oxfordshire', 'Buckinghamshire', 'Warwickshire' ))
CHECK ( outletID &gt;= 100 AND outletID &lt; 200 )
</programlisting>
         Ensure that the constraints guarantee that there is no overlap
         between the key values permitted in different child tables.  A common
         mistake is to set up range constraints like:
<programlisting>
CHECK ( outletID BETWEEN 100 AND 200 )
CHECK ( outletID BETWEEN 200 AND 300 )
</programlisting>
         This is wrong since it is not clear which child table the key
         value 200 belongs in.
         Instead, ranges should be defined in this style:

<programlisting>
CREATE TABLE measurement_y2006m02 (
    CHECK ( logdate &gt;= DATE '2006-02-01' AND logdate &lt; DATE '2006-03-01' )
) INHERITS (measurement);

CREATE TABLE measurement_y2006m03 (
    CHECK ( logdate &gt;= DATE '2006-03-01' AND logdate &lt; DATE '2006-04-01' )
) INHERITS (measurement);

...
CREATE TABLE measurement_y2007m11 (
    CHECK ( logdate &gt;= DATE '2007-11-01' AND logdate &lt; DATE '2007-12-01' )
) INHERITS (measurement);

CREATE TABLE measurement_y2007m12 (
    CHECK ( logdate &gt;= DATE '2007-12-01' AND logdate &lt; DATE '2008-01-01' )
) INHERITS (measurement);

CREATE TABLE measurement_y2008m01 (
    CHECK ( logdate &gt;= DATE '2008-01-01' AND logdate &lt; DATE '2008-02-01' )
) INHERITS (measurement);
</programlisting>
        </para>
       </listitem>

       <listitem>
        <para>
         For each child table, create an index on the key column(s),
         as well as any other indexes you might want.
<programlisting>
CREATE INDEX measurement_y2006m02_logdate ON measurement_y2006m02 (logdate);
CREATE INDEX measurement_y2006m03_logdate ON measurement_y2006m03 (logdate);
CREATE INDEX measurement_y2007m11_logdate ON measurement_y2007m11 (logdate);
CREATE INDEX measurement_y2007m12_logdate ON measurement_y2007m12 (logdate);
CREATE INDEX measurement_y2008m01_logdate ON measurement_y2008m01 (logdate);
</programlisting>
        </para>
       </listitem>

       <listitem>
        <para>
         We want our application to be able to say <literal>INSERT INTO
         measurement ...</literal> and have the data be redirected into the
         appropriate child table.  We can arrange that by attaching
         a suitable trigger function to the root table.
         If data will be added only to the latest child, we can
         use a very simple trigger function:

<programlisting>
CREATE OR REPLACE FUNCTION measurement_insert_trigger()
RETURNS TRIGGER AS $$
BEGIN
    INSERT INTO measurement_y2008m01 VALUES (NEW.*);
    RETURN NULL;
END;
$$
LANGUAGE plpgsql;
</programlisting>
        </para>

        <para>
         After creating the function, we create a trigger which
         calls the trigger function:

<programlisting>
CREATE TRIGGER insert_measurement_trigger
    BEFORE INSERT ON measurement
    FOR EACH ROW EXECUTE FUNCTION measurement_insert_trigger();
</programlisting>

         We must redefine the trigger function each month so that it always
         inserts into the current child table.  The trigger definition does
         not need to be updated, however.
        </para>

        <para>
         We might want to insert data and have the server automatically
         locate the child table into which the row should be added. We
         could do this with a more complex trigger function, for example:

<programlisting>
CREATE OR REPLACE FUNCTION measurement_insert_trigger()
RETURNS TRIGGER AS $$
BEGIN
    IF ( NEW.logdate &gt;= DATE '2006-02-01' AND
         NEW.logdate &lt; DATE '2006-03-01' ) THEN
        INSERT INTO measurement_y2006m02 VALUES (NEW.*);
    ELSIF ( NEW.logdate &gt;= DATE '2006-03-01' AND
            NEW.logdate &lt; DATE '2006-04-01' ) THEN
        INSERT INTO measurement_y2006m03 VALUES (NEW.*);
    ...
    ELSIF ( NEW.logdate &gt;= DATE '2008-01-01' AND
            NEW.logdate &lt; DATE '2008-02-01' ) THEN
        INSERT INTO measurement_y2008m01 VALUES (NEW.*);
    ELSE
        RAISE EXCEPTION 'Date out of range.  Fix the measurement_insert_trigger() function!';
    END IF;
    RETURN NULL;
END;
$$
LANGUAGE plpgsql;
</programlisting>

         The trigger definition is the same as before.
         Note that each <literal>IF</literal> test must exactly match the
         <literal>CHECK</literal> constraint for its child table.
        </para>

        <para>
         While this function is more complex than the single-month case,
         it doesn't need to be updated as often, since branches can be
         added in advance of being needed.
        </para>

        <note>
         <para>
          In practice, it might be best to check the newest child first,
          if most inserts go into that child.  For simplicity, we have
          shown the trigger's tests in the same order as in other parts
          of this example.
         </para>
        </note>

        <para>
         A different approach to redirecting inserts into the appropriate
         child table is to set up rules, instead of a trigger, on the
         root table.  For example:

<programlisting>
CREATE RULE measurement_insert_y2006m02 AS
ON INSERT TO measurement WHERE
    ( logdate &gt;= DATE '2006-02-01' AND logdate &lt; DATE '2006-03-01' )
DO INSTEAD
    INSERT INTO measurement_y2006m02 VALUES (NEW.*);
...
CREATE RULE measurement_insert_y2008m01 AS
ON INSERT TO measurement WHERE
    ( logdate &gt;= DATE '2008-01-01' AND logdate &lt; DATE '2008-02-01' )
DO INSTEAD
    INSERT INTO measurement_y2008m01 VALUES (NEW.*);
</programlisting>

         A rule has significantly more overhead than a trigger, but the
         overhead is paid once per query rather than once per row, so this
         method might be advantageous for bulk-insert situations.  In most
         cases, however, the trigger method will offer better performance.
        </para>

        <para>
         Be aware that <command>COPY</command> ignores rules.  If you want to
         use <command>COPY</command> to insert data, you'll need to copy into the
         correct child table rather than directly into the root. <command>COPY</command>
         does fire triggers, so you can use it normally if you use the trigger
         approach.
        </para>

        <para>
         Another disadvantage of the rule approach is that there is no simple
         way to force an error if the set of rules doesn't cover the insertion
         date; the data will silently go into the root table instead.
        </para>
       </listitem>

       <listitem>
        <para>
         Ensure that the <xref linkend="guc-constraint-exclusion"/>
         configuration parameter is not disabled in
         <filename>postgresql.conf</filename>; otherwise
         child tables may be accessed unnecessarily.
        </para>
       </listitem>
      </orderedlist>
     </para>

     <para>
      As we can see, a complex table hierarchy could require a
      substantial amount of DDL.  In the above example we would be creating
      a new child table each month, so it might be wise to write a script that
      generates the required DDL automatically.
     </para>
    </sect3>

    <sect3 id="ddl-partitioning-inheritance-maintenance">
     <title>Maintenance for Inheritance Partitioning</title>
     <para>
      To remove old data quickly, simply drop the child table that is no longer
      necessary:
<programlisting>
DROP TABLE measurement_y2006m02;
</programlisting>
     </para>

    <para>
     To remove the child table from the inheritance hierarchy table but retain access to
     it as a table in its own right:

<programlisting>
ALTER TABLE measurement_y2006m02 NO INHERIT measurement;
</programlisting>
    </para>

    <para>
     To add a new child table to handle new data, create an empty child table
     just as the original children were created above:

<programlisting>
CREATE TABLE measurement_y2008m02 (
    CHECK ( logdate &gt;= DATE '2008-02-01' AND logdate &lt; DATE '2008-03-01' )
) INHERITS (measurement);
</programlisting>

     Alternatively, one may want to create and populate the new child table
     before adding it to the table hierarchy.  This could allow data to be
     loaded, checked, and transformed before being made visible to queries on
     the parent table.

<programlisting>
CREATE TABLE measurement_y2008m02
  (LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS);
ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
   CHECK ( logdate &gt;= DATE '2008-02-01' AND logdate &lt; DATE '2008-03-01' );
\copy measurement_y2008m02 from 'measurement_y2008m02'
-- possibly some other data preparation work
ALTER TABLE measurement_y2008m02 INHERIT measurement;
</programlisting>
    </para>
   </sect3>

   <sect3 id="ddl-partitioning-inheritance-caveats">
    <title>Caveats</title>

    <para>
     The following caveats apply to partitioning implemented using
     inheritance:
     <itemizedlist>
      <listitem>
       <para>
        There is no automatic way to verify that all of the
        <literal>CHECK</literal> constraints are mutually
        exclusive.  It is safer to create code that generates
        child tables and creates and/or modifies associated objects than
        to write each by hand.
       </para>
      </listitem>

      <listitem>
       <para>
        Indexes and foreign key constraints apply to single tables and not
        to their inheritance children, hence they have some
        <link linkend="ddl-inherit-caveats">caveats</link> to be aware of.
       </para>
      </listitem>

      <listitem>
       <para>
        The schemes shown here assume that the values of a row's key column(s)
        never change, or at least do not change enough to require it to move to another partition.
        An <command>UPDATE</command> that attempts
        to do that will fail because of the <literal>CHECK</literal> constraints.
        If you need to handle such cases, you can put suitable update triggers
        on the child tables, but it makes management of the structure
        much more complicated.
       </para>
      </listitem>

      <listitem>
       <para>
        If you are using manual <command>VACUUM</command> or
        <command>ANALYZE</command> commands, don't forget that
        you need to run them on each child table individually. A command like:
<programlisting>
ANALYZE measurement;
</programlisting>
        will only process the root table.
       </para>
      </listitem>

      <listitem>
       <para>
        <command>INSERT</command> statements with <literal>ON CONFLICT</literal>
        clauses are unlikely to work as expected, as the <literal>ON CONFLICT</literal>
        action is only taken in case of unique violations on the specified
        target relation, not its child relations.
       </para>
      </listitem>

      <listitem>
       <para>
        Triggers or rules will be needed to route rows to the desired
        child table, unless the application is explicitly aware of the
        partitioning scheme.  Triggers may be complicated to write, and will
        be much slower than the tuple routing performed internally by
        declarative partitioning.
       </para>
      </listitem>
     </itemizedlist>
    </para>
   </sect3>
  </sect2>

  <sect2 id="ddl-partition-pruning">
   <title>Partition Pruning</title>

   <indexterm>
    <primary>partition pruning</primary>
   </indexterm>

   <para>
    <firstterm>Partition pruning</firstterm> is a query optimization technique
    that improves performance for declaratively partitioned tables.
    As an example:

<programlisting>
SET enable_partition_pruning = on;                 -- the default
SELECT count(*) FROM measurement WHERE logdate &gt;= DATE '2008-01-01';
</programlisting>

    Without partition pruning, the above query would scan each of the
    partitions of the <structname>measurement</structname> table. With
    partition pruning enabled, the planner will examine the definition
    of each partition and prove that the partition need not
    be scanned because it could not contain any rows meeting the query's
    <literal>WHERE</literal> clause.  When the planner can prove this, it
    excludes (<firstterm>prunes</firstterm>) the partition from the query
    plan.
   </para>

   <para>
    By using the EXPLAIN command and the <xref
    linkend="guc-enable-partition-pruning"/> configuration parameter, it's
    possible to show the difference between a plan for which partitions have
    been pruned and one for which they have not.  A typical unoptimized
    plan for this type of table setup is:
<programlisting>
SET enable_partition_pruning = off;
EXPLAIN SELECT count(*) FROM measurement WHERE logdate &gt;= DATE '2008-01-01';
                                    QUERY PLAN
-------------------------------------------------------------------&zwsp;----------------
 Aggregate  (cost=188.76..188.77 rows=1 width=8)
   -&gt;  Append  (cost=0.00..181.05 rows=3085 width=0)
         -&gt;  Seq Scan on measurement_y2006m02  (cost=0.00..33.12 rows=617 width=0)
               Filter: (logdate &gt;= '2008-01-01'::date)
         -&gt;  Seq Scan on measurement_y2006m03  (cost=0.00..33.12 rows=617 width=0)
               Filter: (logdate &gt;= '2008-01-01'::date)
...
         -&gt;  Seq Scan on measurement_y2007m11  (cost=0.00..33.12 rows=617 width=0)
               Filter: (logdate &gt;= '2008-01-01'::date)
         -&gt;  Seq Scan on measurement_y2007m12  (cost=0.00..33.12 rows=617 width=0)
               Filter: (logdate &gt;= '2008-01-01'::date)
         -&gt;  Seq Scan on measurement_y2008m01  (cost=0.00..33.12 rows=617 width=0)
               Filter: (logdate &gt;= '2008-01-01'::date)
</programlisting>

    Some or all of the partitions might use index scans instead of
    full-table sequential scans, but the point here is that there
    is no need to scan the older partitions at all to answer this query.
    When we enable partition pruning, we get a significantly
    cheaper plan that will deliver the same answer:
<programlisting>
SET enable_partition_pruning = on;
EXPLAIN SELECT count(*) FROM measurement WHERE logdate &gt;= DATE '2008-01-01';
                                    QUERY PLAN
-------------------------------------------------------------------&zwsp;----------------
 Aggregate  (cost=37.75..37.76 rows=1 width=8)
   -&gt;  Seq Scan on measurement_y2008m01  (cost=0.00..33.12 rows=617 width=0)
         Filter: (logdate &gt;= '2008-01-01'::date)
</programlisting>
   </para>

   <para>
    Note that partition pruning is driven only by the constraints defined
    implicitly by the partition keys, not by the presence of indexes.
    Therefore it isn't necessary to define indexes on the key columns.
    Whether an index needs to be created for a given partition depends on
    whether you expect that queries that scan the partition will
    generally scan a large part of the partition or just a small part.
    An index will be helpful in the latter case but not the former.
   </para>

   <para>
    Partition pruning can be performed not only during the planning of a
    given query, but also during its execution.  This is useful as it can
    allow more partitions to be pruned when clauses contain expressions
    whose values are not known at query planning time, for example,
    parameters defined in a <command>PREPARE</command> statement, using a
    value obtained from a subquery, or using a parameterized value on the
    inner side of a nested loop join.  Partition pruning during execution
    can be performed at any of the following times:

    <itemizedlist>
     <listitem>
      <para>
       During initialization of the query plan.  Partition pruning can be
       performed here for parameter values which are known during the
       initialization phase of execution.  Partitions which are pruned
       during this stage will not show up in the query's
       <command>EXPLAIN</command> or <command>EXPLAIN ANALYZE</command>.
       It is possible to determine the number of partitions which were
       removed during this phase by observing the
       <quote>Subplans Removed</quote> property in the
       <command>EXPLAIN</command> output.
      </para>
     </listitem>

     <listitem>
      <para>
       During actual execution of the query plan.  Partition pruning may
       also be performed here to remove partitions using values which are
       only known during actual query execution.  This includes values
       from subqueries and values from execution-time parameters such as
       those from parameterized nested loop joins.  Since the value of
       these parameters may change many times during the execution of the
       query, partition pruning is performed whenever one of the
       execution parameters being used by partition pruning changes.
       Determining if partitions were pruned during this phase requires
       careful inspection of the <literal>loops</literal> property in
       the <command>EXPLAIN ANALYZE</command> output.  Subplans
       corresponding to different partitions may have different values
       for it depending on how many times each of them was pruned during
       execution.  Some may be shown as <literal>(never executed)</literal>
       if they were pruned every time.
      </para>
     </listitem>
    </itemizedlist>
   </para>

   <para>
    Partition pruning can be disabled using the
    <xref linkend="guc-enable-partition-pruning"/> setting.
   </para>
  </sect2>

  <sect2 id="ddl-partitioning-constraint-exclusion">
   <title>Partitioning and Constraint Exclusion</title>

   <indexterm>
    <primary>constraint exclusion</primary>
   </indexterm>

   <para>
    <firstterm>Constraint exclusion</firstterm> is a query optimization
    technique similar to partition pruning.  While it is primarily used
    for partitioning implemented using the legacy inheritance method, it can be
    used for other purposes, including with declarative partitioning.
   </para>

   <para>
    Constraint exclusion works in a very similar way to partition
    pruning, except that it uses each table's <literal>CHECK</literal>
    constraints &mdash; which gives it its name &mdash; whereas partition
    pruning uses the table's partition bounds, which exist only in the
    case of declarative partitioning.  Another difference is that
    constraint exclusion is only applied at plan time; there is no attempt
    to remove partitions at execution time.
   </para>

   <para>
    The fact that constraint exclusion uses <literal>CHECK</literal>
    constraints, which makes it slow compared to partition pruning, can
    sometimes be used as an advantage: because constraints can be defined
    even on declaratively-partitioned tables, in addition to their internal
    partition bounds, constraint exclusion may be able
    to elide additional partitions from the query plan.
   </para>

   <para>
    The default (and recommended) setting of
    <xref linkend="guc-constraint-exclusion"/> is neither
    <literal>on</literal> nor <literal>off</literal>, but an intermediate setting
    called <literal>partition</literal>, which causes the technique to be
    applied only to queries that are likely to be working on inheritance partitioned
    tables.  The <literal>on</literal> setting causes the planner to examine
    <literal>CHECK</literal> constraints in all queries, even simple ones that
    are unlikely to benefit.
   </para>

   <para>
    The following caveats apply to constraint exclusion:

   <itemizedlist>
    <listitem>
     <para>
      Constraint exclusion is only applied during query planning, unlike
      partition pruning, which can also be applied during query execution.
     </para>
    </listitem>

    <listitem>
     <para>
      Constraint exclusion only works when the query's <literal>WHERE</literal>
      clause contains constants (or externally supplied parameters).
      For example, a comparison against a non-immutable function such as
      <function>CURRENT_TIMESTAMP</function> cannot be optimized, since the
      planner cannot know which child table the function's value might fall
      into at run time.
     </para>
    </listitem>

    <listitem>
     <para>
      Keep the partitioning constraints simple, else the planner may not be
      able to prove that child tables might not need to be visited.  Use simple
      equality conditions for list partitioning, or simple
      range tests for range partitioning, as illustrated in the preceding
      examples.  A good rule of thumb is that partitioning constraints should
      contain only comparisons of the partitioning column(s) to constants
      using B-tree-indexable operators, because only B-tree-indexable
      column(s) are allowed in the partition key.
     </para>
    </listitem>

    <listitem>
     <para>
      All constraints on all children of the parent table are examined
      during constraint exclusion, so large numbers of children are likely
      to increase query planning time considerably.  So the legacy
      inheritance based partitioning will work well with up to perhaps a
      hundred child tables; don't try to use many thousands of children.
     </para>
    </listitem>

   </itemizedlist>
   </para>
  </sect2>

  <sect2 id="ddl-partitioning-declarative-best-practices">
   <title>Best Practices for Declarative Partitioning</title>

   <para>
    The choice of how to partition a table should be made carefully, as the
    performance of query planning and execution can be negatively affected by
    poor design.
   </para>

   <para>
    One of the most critical design decisions will be the column or columns
    by which you partition your data.  Often the best choice will be to
    partition by the column or set of columns which most commonly appear in
    <literal>WHERE</literal> clauses of queries being executed on the
    partitioned table.  <literal>WHERE</literal> clauses that are compatible
    with the partition bound constraints can be used to prune unneeded
    partitions.  However, you may be forced into making other decisions by
    requirements for the <literal>PRIMARY KEY</literal> or a
    <literal>UNIQUE</literal> constraint.  Removal of unwanted data is also a
    factor to consider when planning your partitioning strategy.  An entire
    partition can be detached fairly quickly, so it may be beneficial to
    design the partition strategy in such a way that all data to be removed
    at once is located in a single partition.
   </para>

   <para>
    Choosing the target number of partitions that the table should be divided
    into is also a critical decision to make.  Not having enough partitions
    may mean that indexes remain too large and that data locality remains poor
    which could result in low cache hit ratios.  However, dividing the table
    into too many partitions can also cause issues.  Too many partitions can
    mean longer query planning times and higher memory consumption during both
    query planning and execution, as further described below.
    When choosing how to partition your table,
    it's also important to consider what changes may occur in the future.  For
    example, if you choose to have one partition per customer and you
    currently have a small number of large customers, consider the
    implications if in several years you instead find yourself with a large
    number of small customers.  In this case, it may be better to choose to
    partition by <literal>HASH</literal> and choose a reasonable number of
    partitions rather than trying to partition by <literal>LIST</literal> and
    hoping that the number of customers does not increase beyond what it is
    practical to partition the data by.
   </para>

   <para>
    Sub-partitioning can be useful to further divide partitions that are
    expected to become larger than other partitions.
    Another option is to use range partitioning with multiple columns in
    the partition key.
    Either of these can easily lead to excessive numbers of partitions,
    so restraint is advisable.
   </para>

   <para>
    It is important to consider the overhead of partitioning during
    query planning and execution.  The query planner is generally able to
    handle partition hierarchies with up to a few thousand partitions fairly
    well, provided that typical queries allow the query planner to prune all
    but a small number of partitions.  Planning times become longer and memory
    consumption becomes higher when more partitions remain after the planner
    performs partition pruning.  Another
    reason to be concerned about having a large number of partitions is that
    the server's memory consumption may grow significantly over
    time, especially if many sessions touch large numbers of partitions.
    That's because each partition requires its metadata to be loaded into the
    local memory of each session that touches it.
   </para>

   <para>
    With data warehouse type workloads, it can make sense to use a larger
    number of partitions than with an <acronym>OLTP</acronym> type workload.
    Generally, in data warehouses, query planning time is less of a concern as
    the majority of processing time is spent during query execution.  With
    either of these two types of workload, it is important to make the right
    decisions early, as re-partitioning large quantities of data can be
    painfully slow.  Simulations of the intended workload are often beneficial
    for optimizing the partitioning strategy.  Never just assume that more
    partitions are better than fewer partitions, nor vice-versa.
   </para>
  </sect2>

 </sect1>

 <sect1 id="ddl-foreign-data">
  <title>Foreign Data</title>

   <indexterm>
    <primary>foreign data</primary>
   </indexterm>
   <indexterm>
    <primary>foreign table</primary>
   </indexterm>
   <indexterm>
    <primary>user mapping</primary>
   </indexterm>

   <para>
    <productname>PostgreSQL</productname> implements portions of the SQL/MED
    specification, allowing you to access data that resides outside
    PostgreSQL using regular SQL queries.  Such data is referred to as
    <firstterm>foreign data</firstterm>.  (Note that this usage is not to be confused
    with foreign keys, which are a type of constraint within the database.)
   </para>

   <para>
    Foreign data is accessed with help from a
    <firstterm>foreign data wrapper</firstterm>. A foreign data wrapper is a
    library that can communicate with an external data source, hiding the
    details of connecting to the data source and obtaining data from it.
    There are some foreign data wrappers available as <filename>contrib</filename>
    modules; see <xref linkend="contrib"/>.  Other kinds of foreign data
    wrappers might be found as third party products.  If none of the existing
    foreign data wrappers suit your needs, you can write your own; see <xref
    linkend="fdwhandler"/>.
   </para>

   <para>
    To access foreign data, you need to create a <firstterm>foreign server</firstterm>
    object, which defines how to connect to a particular external data source
    according to the set of options used by its supporting foreign data
    wrapper. Then you need to create one or more <firstterm>foreign
    tables</firstterm>, which define the structure of the remote data. A
    foreign table can be used in queries just like a normal table, but a
    foreign table has no storage in the PostgreSQL server.  Whenever it is
    used, <productname>PostgreSQL</productname> asks the foreign data wrapper
    to fetch data from the external source, or transmit data to the external
    source in the case of update commands.
   </para>

   <para>
    Accessing remote data may require authenticating to the external
    data source.  This information can be provided by a
    <firstterm>user mapping</firstterm>, which can provide additional data
    such as user names and passwords based
    on the current <productname>PostgreSQL</productname> role.
   </para>

   <para>
    For additional information, see
    <xref linkend="sql-createforeigndatawrapper"/>,
    <xref linkend="sql-createserver"/>,
    <xref linkend="sql-createusermapping"/>,
    <xref linkend="sql-createforeigntable"/>, and
    <xref linkend="sql-importforeignschema"/>.
   </para>
 </sect1>

 <sect1 id="ddl-others">
  <title>Other Database Objects</title>

  <para>
   Tables are the central objects in a relational database structure,
   because they hold your data.  But they are not the only objects
   that exist in a database.  Many other kinds of objects can be
   created to make the use and management of the data more efficient
   or convenient.  They are not discussed in this chapter, but we give
   you a list here so that you are aware of what is possible:
  </para>

  <itemizedlist>
   <listitem>
    <para>
     Views
    </para>
   </listitem>

   <listitem>
    <para>
     Functions, procedures, and operators
    </para>
   </listitem>

   <listitem>
    <para>
     Data types and domains
    </para>
   </listitem>

   <listitem>
    <para>
     Triggers and rewrite rules
    </para>
   </listitem>
  </itemizedlist>

  <para>
   Detailed information on
   these topics appears in <xref linkend="server-programming"/>.
  </para>
 </sect1>

 <sect1 id="ddl-depend">
  <title>Dependency Tracking</title>

  <indexterm zone="ddl-depend">
   <primary>CASCADE</primary>
   <secondary sortas="DROP">with DROP</secondary>
  </indexterm>

  <indexterm zone="ddl-depend">
   <primary>RESTRICT</primary>
   <secondary sortas="DROP">with DROP</secondary>
  </indexterm>

  <para>
   When you create complex database structures involving many tables
   with foreign key constraints, views, triggers, functions, etc. you
   implicitly create a net of dependencies between the objects.
   For instance, a table with a foreign key constraint depends on the
   table it references.
  </para>

  <para>
   To ensure the integrity of the entire database structure,
   <productname>PostgreSQL</productname> makes sure that you cannot
   drop objects that other objects still depend on.  For example,
   attempting to drop the products table we considered in <xref
   linkend="ddl-constraints-fk"/>, with the orders table depending on
   it, would result in an error message like this:
<screen>
DROP TABLE products;

ERROR:  cannot drop table products because other objects depend on it
DETAIL:  constraint orders_product_no_fkey on table orders depends on table products
HINT:  Use DROP ... CASCADE to drop the dependent objects too.
</screen>
   The error message contains a useful hint: if you do not want to
   bother deleting all the dependent objects individually, you can run:
<screen>
DROP TABLE products CASCADE;
</screen>
   and all the dependent objects will be removed, as will any objects
   that depend on them, recursively.  In this case, it doesn't remove
   the orders table, it only removes the foreign key constraint.
   It stops there because nothing depends on the foreign key constraint.
   (If you want to check what <command>DROP ... CASCADE</command> will do,
   run <command>DROP</command> without <literal>CASCADE</literal> and read the
   <literal>DETAIL</literal> output.)
  </para>

  <para>
   Almost all <command>DROP</command> commands in <productname>PostgreSQL</productname> support
   specifying <literal>CASCADE</literal>.  Of course, the nature of
   the possible dependencies varies with the type of the object.  You
   can also write <literal>RESTRICT</literal> instead of
   <literal>CASCADE</literal> to get the default behavior, which is to
   prevent dropping objects that any other objects depend on.
  </para>

  <note>
   <para>
    According to the SQL standard, specifying either
    <literal>RESTRICT</literal> or <literal>CASCADE</literal> is
    required in a <command>DROP</command> command.  No database system actually
    enforces that rule, but whether the default behavior
    is <literal>RESTRICT</literal> or <literal>CASCADE</literal> varies
    across systems.
   </para>
  </note>

  <para>
   If a <command>DROP</command> command lists multiple
   objects, <literal>CASCADE</literal> is only required when there are
   dependencies outside the specified group.  For example, when saying
   <literal>DROP TABLE tab1, tab2</literal> the existence of a foreign
   key referencing <literal>tab1</literal> from <literal>tab2</literal> would not mean
   that <literal>CASCADE</literal> is needed to succeed.
  </para>

  <para>
   For a user-defined function or procedure whose body is defined as a string
   literal, <productname>PostgreSQL</productname> tracks
   dependencies associated with the function's externally-visible properties,
   such as its argument and result types, but <emphasis>not</emphasis> dependencies
   that could only be known by examining the function body.  As an example,
   consider this situation:

<programlisting>
CREATE TYPE rainbow AS ENUM ('red', 'orange', 'yellow',
                             'green', 'blue', 'purple');

CREATE TABLE my_colors (color rainbow, note text);

CREATE FUNCTION get_color_note (rainbow) RETURNS text AS
  'SELECT note FROM my_colors WHERE color = $1'
  LANGUAGE SQL;
</programlisting>

   (See <xref linkend="xfunc-sql"/> for an explanation of SQL-language
   functions.)  <productname>PostgreSQL</productname> will be aware that
   the <function>get_color_note</function> function depends on the <type>rainbow</type>
   type: dropping the type would force dropping the function, because its
   argument type would no longer be defined.  But <productname>PostgreSQL</productname>
   will not consider <function>get_color_note</function> to depend on
   the <structname>my_colors</structname> table, and so will not drop the function if
   the table is dropped.  While there are disadvantages to this approach,
   there are also benefits.  The function is still valid in some sense if the
   table is missing, though executing it would cause an error; creating a new
   table of the same name would allow the function to work again.
  </para>

  <para>
   On the other hand, for a SQL-language function or procedure whose body
   is written in SQL-standard style, the body is parsed at function
   definition time and all dependencies recognized by the parser are
   stored.  Thus, if we write the function above as

<programlisting>
CREATE FUNCTION get_color_note (rainbow) RETURNS text
BEGIN ATOMIC
  SELECT note FROM my_colors WHERE color = $1;
END;
</programlisting>

   then the function's dependency on the <structname>my_colors</structname>
   table will be known and enforced by <command>DROP</command>.
  </para>
 </sect1>

</chapter>